
A Met
Servic

Arild Ho
Arnt-Gu
Arne Lø
Teodor

Decemb

CIRREL

taheuris
ce Netwo

off
unnar Lium
økketangen
Gabriel Cr

ber 2007

LT-2007-62

tic for S
ork Des

m
n
rainic

Stochast
ign

tic

A Metaheuristic for Stochastic Service Network Design

Arild Hoff1, Arnt-Gunnar Lium2, Arne Løkketangen1, Teodor Gabriel Crainic3,*

1 Molde University College, P.O. Box 2110, NO-6402 Molde, Norway
2 SINTEF Technology and Society, Applied Economics and Operations, NO-7465 Trondheim,

Norway
3 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

(CIRRELT), and Department of Management and Technology, Université du Québec à Montréal,
C.P. 8888, succursale Centre-ville, Montréal, Canada H3C 3P8

Abstract. This paper considers the time-dependent service network design problem with

stochastic demand represented by scenarios. To our knowledge, this is the first attempt to

address real life-size instances of this problem. The model integrates the balancing of

empty vehicles, the cost of handling freight in intermediate terminals, the costs associated

with moving freight using the selected services, and the penalty costs of not being able to

deliver freight. A metaheuristic method is presented and computational results are

reported on a set of large new problem instances.

Keywords. Stochastic programming, scheduled service network design, scenarios,

metaheuristics.

Acknowledgements. The authors thank Øyvind Halskau for pointing out errors and

helping us improve the paper. While working on this project, Arild Hoff and Arnt-Gunnar

Lium were employed as Research Fellows at Molde University College (Norway). Dr.

Teodor Gabriel Crainic was Adjunct Professor at Molde University College and the

department of Computer Science and Operations Research of the Université de Montréal

(Canada). Partial funding for this project was provided by the Natural Sciences and

Engineering Research Council (NSERC) of Canada.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Teodor-Gabriel.Crainic@cirrelt.ca

Dépôt légal – Bibliothèque nationale du Québec,
 Bibliothèque nationale du Canada, 2007

© Copyright Hoff, Lium, Løkketangen, Crainic and CIRRELT, 2007

Introduction
Planning operations with the aid of decision support systems (DSS) can help in making better
decisions. In industries ranging from telecommunications to various modes of transportation of
freight and passengers, many DSS are based on service network design formulations. In the freight
transportation industry, service network design methods provide help with deciding between which
terminals a company should offer services, at which frequency and according to what schedules
service should be offered, and how to deal with the empty vehicles. Simultaneously with the
construction of the underlying service network, policies regarding operations at terminals have to be
addressed, as well as the movement of freight from origins to destinations. This is usually done so
that costs are minimized or profit maximized. The output of the process is usually denoted
“transportation plan”. See Crainic (2000, 2003) for an introduction to service network design in
freight transport.

The last two decades have brought significant improvements in the modeling of these problems
as well as in algorithmic and computational efficiency. Most of this work has been done for the
deterministic case, however; the interested reader is referred to Crainic (2003) for an overview.
Studies by Lium, Crainic, and Wallace (2007a, 2007b) indicate that cost reductions can be achieved
when building plans based on the explicit consideration of stochastic demand compared to plans
based on the assumption of deterministic demand. Due to combinatorial challenges, only small
instances could be solved by the authors. This paper is based on their formulations and looks into
how to obtain good solutions for large instances of the time-dependent service network design
problem with stochastic demand. We also extend the formulation proposed by Lium, Crainic, and
Wallace (2007a, 2007b) to incorporate the cost of handling freight at intermediate terminals as well
as the cost associated to movement/storage of the commodities (for example inventory cost of
storing freight at intermediary terminals). In previous research, Ghamlouche, Crainic, and Gendreau
(2003, 2004) used linear programming to optimize the commodity flow associated to a given
service design. We propose instead a local search-based greedy heuristic able to obtain a more than
tenfold increase in speed compared to the leading commercial solver, usually giving solutions close
to optimality.

The goal of this paper is to solve large time-dependent service network design problems with
stochastic demand. These problems are seen as intractable and currently impossible to solve using
exact methods. Our contribution is to provide the first attempt to solve such problems using
metaheuristics. The paper presents computational results for 55 new test instances and shows that it
is possible to solve such real life size problems within reasonable time. We also look at how the
representation chosen for demand stochasticity can affect the solutions obtained.

The paper is organized as follows. Section 1 provides the assumptions for the model, the
mathematical formulation, and the representation of the demand stochasticity. Section 2 describes
the main ideas and elements of the solution approach, which are then computationally evaluated in
Section 3. As a result of this evaluation, the final metaheuristic design of the procedure we
proposed is presented in the last sub-section of Section 3. Computational results with this
metaheuristic are reported in Section 4 and we conclude in Section 5.

1. The stochastic service network design model
Deciding how much capacity to offer and where and when to offer it so that it matches the demand,
is one of the most important decisions being made in the transportation industry. The problem is
that most cases, one does not know what the actual demand will be at the time when the plan is
executed. Consequently, ad-hoc changes have to be made to the plans during operations to better
match the offered capacity to the observed demand. Such ad-hoc changes usually come at a much
higher cost compared to the capacity allocated in the original plan. Actually, the knowledge of

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 1

future demand is out of reach for most practical applications, but the decision maker might be able
to describe uncertainty with statistical distributions based, for example, on historical data. The best
we then can do is to find a solution or a plan that minimizes the cost of offering services and the
expected cost of possible ad-hoc changes required for executing the plan.

We propose a model inspired by the time-dependent stochastic service network design
formulation by Lium, Crainic, and Wallace (2007a, 2007b). Their model assumes the use of a
homogeneous fleet of vehicles to move commodities. The commodities are moved from their
origins, either in the period they become available or in later periods, and they are moved to their
destinations within the delivery times, either directly or via one or more intermediary terminals.
This formulation assumes that the handling of freight in terminals happens instantaneously (within
the time period) and that there are no capacity limitations at terminals. It provides the user with
decision support on how many vehicles to use and how to operate them. The planned capacity is
supplemented by a high-cost ad-hoc “capacity increase”, representing the recourse to additional
vehicles, outsourcing or demand rejection.

The goal is to select and schedule services provided by a fleet of homogeneous vehicles, such
that the expected total system cost is minimized. The expected total system cost consists of three
components: 1) the cost of operating the vehicles; 2) the cost of handling and storing freight in
intermediary terminals plus the cost of transporting freight using the vehicles; and 3) the cost of ad-
hoc capacity increase. The schedules are to be repeated periodically. The stochasticity of demand is
explicitly represented through scenarios. There are no restrictions on how many vehicles can be
used. We assume that all demand must be met either using the company’s own vehicles or by ad-
hoc capacity increases. Traveling time from one terminal to another can take one or more periods
and no delays are assumed while traveling. Handling of freight happens instantaneously (within the
period) and without delays. The capacity of the vehicles cannot be exceeded.

We create a space-time network by repeating the set of nodes (freight terminals) N in each of the
periods t = 0,…,T – 1. Because schedules must be periodic, we create repetitive schedules in a
circular fashion and, thus, the issue of the end-of-horizon effects is not relevant. Assuming a T-
period planning horizon, a circular notation means that the period following period t is (t + 1) mod
T. Each arc (i, j, t) represents either a service, if i ≠ j, or a holding activity if i = j, in period t. We
assume that all nodes for period t can be connected to any other node in period ((t + ν) mod T),
where ν is the number of periods required to go from one node to another.

The stochastic demand is represented by a set of scenarios Ss∈ . To each scenario is attached a
probability 0≥sp , with∑ =1sp . The demand for each commodity Kk ∈ for every scenario s is
defined as),(skλ . A scenario is thus |K|-dimensional, as it contains one demand realization for
each commodity Kk ∈ . We also define for each commodity its origin o(k), destination d(k), and the
periods σ(k) and τ(k) when it becomes available at its origin and must be delivered (at the latest) at
its destination, respectively. The vehicle capacity is denoted Θ and is given in the same units as the
demand.

Let Ww∈ represent all arcs (i, j, t). Thus, the arc index w is dependent on the values of i, j, and
t, and is calculated as jNiNtw +−+=)1(2 , where N is the set of nodes. A cost cij is associated
with each arc (i, j, t), equal to the cost of operating a vehicle from terminal i to j if i ≠ j, or to the
cost of holding a vehicle at the terminal i if i = j. These arcs w can be combined to form paths Ll∈
. To indicate whether an arc belongs to a path we introduce the indicator function)(klwδ ,

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 2

1 if arc belongs to path for commodity
()

0 otherwise

k

lw
w l L k

kδ
⎧ ∈

=⎨
⎩

Each commodity k can have several possible paths kLl ∈ from its origin o(k) to its destination
d(k). Paths are commodity specific, but the capacity of the vehicles must be shared by the
commodities when they have one or more arcs (services) in common.

The use of these paths comes at a unit cost al which is made up of the following components: 1)
the cost associated with transporting a unit of freight (for example incurred by increase in the
vehicle fuel consumption); 2) the cost associated with storing freight in a vehicle or at an
intermediate terminal (there are no costs of storing freight at origin or destination); and, 3) the cost
of moving freight from one vehicle to another at intermediate terminals when the path l for
commodity k is served by two or more consecutive services (and, thus, vehicles). The latter cost
component can also represent real-world costs associated with having freight being delayed at
intermediate terminals. The cost of ad-hoc capacity increase of one unit is represented by b. The
cost components cij, al, and b are not commodity specific. uw is the capacity offered on arc w that
equals the total capacity of the vehicles traveling on the arc.

The decision variables are:
t
ijx : Number of vehicles traveling from node i in period t to node j in period t + ν, where ν

is an integer number greater than or equal to 1 representing the “traveling” time from i
to j. This applies for all i, j and t.

),(skfl : Flow of commodity k on path l in scenario s.

),(skz : Amount of commodity k sent to its destination using the extra, ad-hoc capacity, in
scenario s.

The model then becomes:
1

0
min

T
t

ij ij
i N j N t

c x
−

∈ ∈ =

⎡
⎢
⎣
∑∑∑ (1a)

∑ ∑∑
∈ ∈ ∈

+
Ss Kk Ll

ll
s

k

skfap),((1b)

⎥
⎦

⎤
+ ∑ ∑

∈ ∈Ss Kk

s skzpb),((1c)

(mod) , 0, , 1,t t T

ij ji
i N i N

x x t T j Nυ+

∈ ∈

= = − ∀ ∈∑ ∑ K (2)

0 and integer, 0, , 1, ,t
ijx t T i j N≥ = − ∀ ∈K (3)

WjNiNtww

LlTtSsNjixskfk kt
ij

Kk
llw

∈+−+=∀

∈∀−=∈∀∈∀Θ≤∑
∈

))1((:

,,1,,1,0,,,,),()(

2

Kδ
 (4)

∑
∈

∈∀∈∀=+
kLl

l KkSsskskzskf ,,),(),(),(λ (5)

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 3

{ }
WjNiNtwwTt

SsKkLlNjixskf kt
ijkl

lw

∈+−+=∀−=

∈∀∈∀∈∀∈∀Θ≤
=

))1((:,1,,0

,,,,,,min),(

2

1)(

K

δ (6)

TtNjiSsLlKkxskzskf kt

ijl ∈∀∈∀∈∀∈∀∈∀≥ ,,,,,,0),,(),,((7)

The objective function is given by the sum of (1a), (1b), and (1c) and minimizes the total
expected system cost, where (1a) associates a cost with the vehicles moving between terminals plus
the cost of holding them at terminals, (1b) denotes the expected cost of moving all commodities k
on the paths l over all the scenarios, and the expected cost of adding ad-hoc capacity is given by
(1c). Equation (2) is the conservation of flow constraint for vehicles, while (3) is a non-negativity
and integrality constraint for vehicles. Relation (4) ensures that the flow of all the commodities k on
an arc do not exceed its capacity. Equation (5) ensures that the demand of commodity k in scenario
s is satisfied by using the vehicles of the company and, eventually, additional ad-hoc capacity. It
can be noted that nothing restricts the flow splitting of a commodity, which can therefore use
multiple paths from origin to destination. Relations (6) enforce that the flow of a commodity k on
path kLl∈ must be equal to or lower than the minimum capacity of the arcs making up the path l.
Relation (7) is a non-negativity constraint.

The model makes some tacit assumptions regarding the construction of the paths for the

commodities. One assumption is that any terminal can be used as an intermediate terminal. Another
is that freight cannot be shipped out of such a terminal before it has arrived. We also make the
assumption that there is a cost of having a commodity “on its way” to discourage excessive
transportation and storage at intermediate terminals. There is no cost associated with storing freight
at its respective origin and destination.

The quality of our solutions can only be as good as the input used. Ideally, the distributions
describing stochasticity in demand should be used directly. However, the use of scenarios
generated by sampling the scenario distributions allows us to compare our solutions to solutions
obtained using exact methods (that cannot be obtained using continuous distributions).
Unfortunately, the change from continuous to discrete distributions means losing of some of the
information inherent in the underlying problem. The information loss happens during the scenario
generation process, where the underlying distribution is being represented by relatively few
scenarios. Scenarios are created similar to Lium, Crainic, and Wallace (2007a, 2007b) who based
their scenario generation on triangular distributions for the demands. The use of a similar approach
to test our algorithms is motivated by the opportunity to address real-life size instances of
comparable but somewhat “richer” problems.

When using scenarios in an optimization problem, one has to decide how many scenarios to use.
There is no clear answer to this, but most researchers seem to agree that larger problems require a
higher number of scenarios, and that the more scenarios used, the better the representation of the
underlying distributions. Scenarios that represent the underlying distributions in a good way should
also give consistent results. This means that, creating multiple sets of scenarios from the same
distribution should produce the same objective function value for all the sets. This is refereed to as
in-sample stability by Kaut and Wallace (2007). For us, the consequence of having in-sample
stability is that the objective function value will not depend on which scenario tree we choose, but
on the underlying stochasticity of the demand and our ability to solve the problem. Experience has

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 4

shown that in-sample stability improves with the use of more scenarios and is dependent on the
number of commodities (|K|) considered. Previous work by Lium, Crainic, and Wallace (2007a,
2007b) shows that in-sample stability is achieved using approximately |K| + 10 scenarios for similar
problems. Though addressing quite similar problems they did not integrate issues such as costs of
handling and cost storing of goods. Unfortunately, increasing the number of scenarios implies an
increase in the size of the problem. For problems that are difficult to solve this could mean having
to choose either a poor solution to a good description of the problem, or a good solution to a poor
description of the problem. We address this issue by letting each problem be represented by several
sets of scenarios with different cardinalities. This allows us to compare how the number of
scenarios affects the search time as well as the resulting objective function values. Ideally, this
should yield good solutions either because the use of few scenarios provides us with a smaller
problem or because the use of many scenarios gives a better description of the problem.
Computational results are shown in Sections 3 and 4.

2. Proposed method
The last two decades have seen a great increase in computation power. Nonetheless, several
combinatorial problems are NP-hard and thus intractable for large instances using exact methods.
For this reason, alternate techniques such as metaheuristics have received considerable attention
from researchers as well as practitioners. Problems that earlier were considered impossible to solve
can now be solved to near optimality within minutes or hours.

We have developed a method for finding good solutions to the Stochastic Service Network
Design Problem by combining exact and heuristic methods. The heuristic is based on Local Search
and changes of neighborhood in different phases of the search. A solution is defined as a set of
active arcs in the network which describes the possible routes of the vehicles over the time horizon.
The search space will then be all combinations of arcs that describe a solution which can be served
by the vehicles. The neighborhood of a solution will be all solutions that can be reached by
performing particular transformations to the current solution (the so-called “move”). When
evaluating a solution, one has to consider two different parts in calculating the cost. First, the cost
of operating the vehicles according to the active arcs in the network, and second, the cost of
delivering the commodities by moving the freight along paths, including the cost of outsourcing the
part of the commodities which cannot be delivered by regular services.

The heuristic we propose starts at an initial solution and moves from one solution to another
using an initial neighborhood. Then, after a while, the search stagnates and does not improve for a
number of iterations. The neighborhood is then changed and the search continues with the new
neighborhood. The search may then improve for some iterations, but after a while it may stagnate
again, and the search will swap back to the original neighborhood and continue with it. The search
being in a different position of the search space, the initial neighborhood may yield possible
improvements. The swapping of neighborhoods is done continuously during the search until a
stopping criteria is fulfilled. The method utilizes the best from each neighborhood, focusing the
search in some promising areas with one neighborhood and exploring these new areas with the
other neighborhood. The idea of changing neighborhoods is inspired by the Variable Neighborhood
Search introduced by Mladenović and Hansen (1997).

The heuristic considers possible new solutions by changing the active arcs in the network, and
the flow of the freight has to be calculated along the possible paths for each commodity in that
network. The optimization of the flow distribution could be done by exact methods, but this is very

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 5

time consuming. In fact, the need for exact optimization is not very important during the search as
most solutions are intermediary steps in the search for better solutions. To speed up computations, a
greedy method is thus proposed to find indications of good moves, exact optimization being limited
to solutions that are candidates for the overall best solution found during the search.

2.1 Initial solutions
Most metaheuristics require a starting solution that they can use as a basis for further improvement.
In this paper we consider three different initial-solution procedures, all with a fixed number of
vehicles.

2.1.1 All vehicles parked
Having decided on the number of vehicles to use, we start with the vehicles parked for the entire
time horizon, evenly distributed among the terminals. In such a solution no commodities will be
delivered and all transportation has to be outsourced. When the search starts, the solution will build
itself from scratch with no predefined structure.

2.1.2 Randomized initial solutions
The second procedure lets vehicles follow randomly selected paths. Each vehicle starts at a
randomly selected terminal, and then goes to another randomly selected terminal, where it arrives ν
periods later, and so on. At the end of the planning horizon, each vehicle is repositioned to its
starting point.

2.1.3 Demand-driven initial solutions
More sophisticated initial solutions can be created by letting the underlying demand be taken into
account in the process. We define the commodity flow factor as the average demand for each
commodity for all the scenarios divided by the number of periods between σ(k) and τ(k). A
commodity with a large average demand to be delivered within a few time periods will have a large
flow factor, while a commodity with a lesser demand and more periods available will have a
smaller flow factor. Sorting the commodities in descending order according to this factor will
prioritize them accordingly.

We also define a period flow factor for each period to be the sum of the commodity flow factors
for the commodities it is possible to send in the period. Then the periods can be sorted ascending
according to this period flow factor to decide which periods are least demanded by the
commodities.

The idea behind the demand-driven initial solution is to find the most dominant commodities,
and construct a solution that transports those commodities during the possible time periods that are
least demanded by the other commodities. An initial solution can then be built by introducing direct
service arcs in the network for one commodity at a time for the least demanded time period
available.

The demand-driven initial solution will be constructed using the following algorithm:

1. For each commodity k, find the commodity flow factor.
2. Sort the commodities in descending order of their commodity flow factors.
3. For each period, find the period flow factor.
4. Sort the periods in ascending order of their period flow factors.
5. Initialize all vehicles by marking them available to use in all the periods.

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 6

6. Construct the paths for the vehicles.
a. Loop through all commodities from the highest commodity flow factor to the lowest.
b. Loop through all periods from the lowest period flow factor to the highest.
c. If it is possible to send the current commodity in the current period, loop through all

the vehicles.
d. Add the direct connection from origin to destination for the current commodity to a

possible vehicle. Connections which can be linked with other existing connections
are prioritized. Once a connection is added, return to 6a for the next commodity.

7. Go through the routes of all the vehicles and check if any of them is still not used in any
period. If true, change the position to the same node as in an adjacent period.

2.2 Neighborhood structure and moves
A solution is defined as a set of active arcs in the network and the associated flow distribution. We
represent the first part by an integer vector describing the position of each vehicle, i.e., the index of
the terminal where the vehicle is, at each time period. Once the positions of the vehicles are known,
the active arcs are the services between the corresponding terminals. The search space is then
defined as all vectors of vehicle positions corresponding to feasible solutions given the fleet of
vehicles.

Neighborhoods condition how the search progresses and performs. Moving from one solution to
a neighboring one is performed by changing the value of one or more variables in the vehicle-
position vector thereby obtaining a different solution by shifting capacity from some arcs (services)
to others. The neighborhoods used are described in the following, while the evaluation procedures
are detailed in Section 2.3.

2.2.1 Random-period neighborhood
One way to define a move in a service network design problem is simply to change the position of
one of the vehicles in one time period. We have named this type of neighborhood a Two-Terminal
Swap Neighborhood (TTS). An example of this neighborhood can be seen in Figure 1 where arcs
represent the integer decision variables (the movement of a vehicle) for three different solutions.
The solid arcs represent the services offered in the current solution, while the dashed and the dotted
arcs represent the corresponding services in two neighboring solutions. The solid, the dashed, and
the dotted arcs form direct paths starting in the first period in terminal 2 and ending at the same
terminal in the last time period. By enforcing that these paths must end up in the same terminal they
started from, we are sure that the schedule for the vehicle is feasible in all moves and that the
constraint sets (2) and (3) are not violated. A move in this setting implies a shift of Θ units of
capacity from the path in the current solution to a neighboring solution with the result of possibly
closing one or more arcs if their capacity is equal to Θ.

Figure 1. The current solution and two of its neighboring solutions

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 7

The TTS neighborhood could be very large for large instances and a full evaluation of all
possible moves would be very time consuming. Restricting the neighborhood to a subset of moves
only would speed up the search, which we prefer even though some promising moves might be
overlooked.

One approach to restrict this neighborhood is to focus on one randomly selected time period and
limit the moves to this period. Thus, every vehicle can be moved to all nodes other than the current
one in the selected time period and the number of neighboring solutions to evaluate is (|N|-1) x
Number of Vehicles. The type of move illustrated in Figure 1, where relatively short paths are
considered, makes the neighborhood quite small, thereby making it relatively fast to evaluate all
possible moves.

The variant of the TTS-neighborhood which evaluates the possible moves in one randomly
selected period only is called Random-Period Neighborhood (RPN). An overview of a search with
RPN is as follows

1. Chose one time period randomly.
2. Loop through all vehicles.

a. Try to change the position of the current vehicle in the chosen time period to all
possible positions;

b. Evaluate the neighbor solutions found in 2a;
3. Select the best neighbor found in 2.

A special case in the Random-Period Neighborhood is when the last time period is chosen. The
mathematical model allows vehicles to end up at another customer than it started from as long as
the total number of vehicles at each node is the same in the last period as it was in the first. In these
cases the Random-period Neighborhood will have an extra control if the solution is feasible in the
case where the last time period is chosen and only the feasible solutions will be evaluated.

Notice that we did not include tabu-like mechanisms to prevent the search from cycling (Glover
and Laguna 1997). Indeed, preliminary experimentations indicated that the high degree of
randomness inherent to these neighborhoods made them superfluous.

2.2.2 Demand-based neighborhood
While the neighborhood structure described in Section 2.2.1 has the advantage of providing a

somewhat limited neighborhood that can be evaluated quickly, it also has the drawback of being
myopic, bearing the risk of focusing too strongly on parts of the network. We therefore explore an
alternate neighborhood structure based on paths covering more time periods to try to overcome
these myopic tendencies. An example of this neighborhood can be seen in Figure 2, where the solid
arcs constitute the current solution while the dashed arcs represent one of its potentially many
neighbors.

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 8

Figure 2. Neighborhood consisting of longer paths

Enumerating and evaluating all possible neighbors is usually a daunting task due to the size of
the neighborhood, which grows very rapidly with the number of periods and nodes. We thus
evaluate only the most promising neighbors.

To use this approach efficiently, we need to identify certain characteristics of neighboring
solutions that are especially promising. Thus, adding capacity to a solution where a number of
commodities rely heavily on “expensive” ad-hoc capacity increase would probably result in a better
solution. One may therefore identify the terminals between which the largest number of
commodities make use of ad-hoc capacity and insert a service (vehicle) instead. Of course, vehicle
flow-conservation constraints must continue to be enforced. This is illustrated in Figures 3 to 5.
Figure 3 shows the case of ad-hoc capacity use between terminals 1 and 2 at period 2, while a
vehicle is held at terminal 3. In Figure 4, the vehicle is moved to serve the commodities between
terminals 1 and 2, removing the need for ad-hoc capacity. This move makes for an infeasible
schedule for the vehicle. Feasibility is recovered by repositioning the vehicle in periods 1 and 3 as
illustrated in Figure 5.

Figure 3. Ad-hoc capacity use from

terminal 1 to terminal 2 (dotted arc), while
a vehicle is held at terminal 3 (solid arcs)

Figure 4. Move of vehicle to serve from
terminal 1 to terminal 2 and elimination

of ad-hoc capacity use

Figure 5. Feasibility recovering by repositioning the vehicle in periods 1 and 3.

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 9

Selecting the neighbors that are to be evaluated is done by identifying the commodity with the
highest expected ad-hoc capacity utilization cost in the current solution. Then, the demand-based
neighborhood consists of the new direct arcs that can be inserted into the solution and service that
commodity. Thus, the possible moves are found by inserting an arc from the origin to the
destination of that commodity for each of the periods the commodity is available and for each of the
vehicles available as shown in Figures 3, 4, and 5. Figure 6 illustrates the search based on this
neighborhood.

Initialization;
iteration = 0;
while iteration < max iteration do
 Find the commodity k with the highest expected
 level of utilization of ad-hoc capacity in the current solution;
 if no ad-hoc capacity used then
 set k = random commodity;
 end
 for first vehicle to last vehicle do
 startTime = σ(k);
 notDeliv = τ(k);
 if notDeliv < 0 then
 notDeliv = notDeliv + T;
 end
 while startTime ≠ notDeliv do
 Create candidate by:
 - inserting an arc from the origin to destination at startTime;
 - recovering feasibility regarding vehicle flows by connecting the

inserted arc to the path of the vehicle;
 Evaluate the candidate;
 if cost of candidate < cost of best neighbor solution then
 best neighbor solution = candidate;
 end
 startTime ++;
 end
 end
 if cost of best neighbor solution < cost of best found solution then
 best found solution = best neighbor solution;
 end
 current solution = best neighbor solution;
 iteration ++;
end

Figure 6. Algorithm 1: A demand-based neighborhood search

2.3 Evaluating moves
Three factors have to be considered when evaluating moves: the cost of operating the resulting
schedule (the cost of the design), the expected cost of moving freight using this schedule, and the
expected cost of ad-hoc capacity utilization. The cost of operating the schedule is given by (1a) and

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 10

evaluating it is straightforward. All that has to be done is to calculate the cost of operating vehicles
between terminals or holding them at terminals according to the given schedule. To calculate the
cost of moving the freight in the network (term 1b), one has to solve the flow distribution problem.
Once the resulting path flows are known, the cost of using ad-hoc capacity (term 1c) may be
computed directly. Evaluating the cost of the flow distribution is the potentially most time-
consuming part of this procedure.

The exact evaluation of the flow distribution can be done in polynomial time by formulating an
LP with (1b) and (1c) as objective function and (3) - (9) as constraints (with fixed integer
variables). This is, however, a computationally costly procedure: preliminary tests have shown it to
be the most time-consuming component of the entire method.

We therefore developed a greedy heuristic that finds good new neighboring solutions
substantially faster than the exact method. Preliminary tests indicate that the solutions of the greedy
method are usually almost as good as those obtained using the exact method. The greedy method
was on average 40 times faster than the exact optimization on our test instances.

The method proceeds as follows. For the move being evaluated, we generate a list of paths for
each commodity from its origin to its destination. We sort the paths in increasing order of their cost.
In addition, the commodities are sorted by dominance, i.e., the average demand from the scenarios
divided by the number of time periods between when the commodity is available and when it
should be delivered. The most dominant commodity is then assigned to the cheapest path that can
be used to move it. This is continued until all demand in all scenarios is satisfied using this same
path or the path is saturated. If demand exceeds the capacity of the path in one or more scenarios
the exceeding freight is shifted to the second cheapest path for this commodity (and so on). The
subsequent commodities are treated similarly until all commodities have been examined.
Commodities that were not assigned to a path use ad-hoc capacity. The cost associated to the paths
and the ad-hoc capacity is then computed.

3. Evaluating the algorithmic components
Several algorithmic components have been introduced in the previous section. The worth of each
and of the possible combinations thereof must be evaluated to yield the final metaheuristic design
for the class of problems we contemplate. This is the scope of this section, which also introduces
the problem instances used throughout the experimental phases.

3.1 The test cases
Service network design research has, with few exceptions, focused on deterministic problem
variants. Consequently, test instances that integrate stochasticity are to the best of our knowledge
not publicly available. We therefore present 55 new test instances that take demand stochasticity
into account. The instances are available online at: http://www.himolde.no/OR-problems.

3.1.1 Nodes, planning horizon, O-D pairs, and demand
We created instances as diverse as possible. Using from 6 to 30 terminals, we generated problem
instances from small enough to be solved using exact methods to problems equivalent in
dimensions to those faced by medium-sized European less-than truckload (LTL) carriers.

An important aspect of any time-dependent problem is the planning horizon. The more periods
in a planning horizon, the better the solutions that can be obtained. Unfortunately, this has the
consequence of increasing the size of the problem. Our instances have a planning horizon of either

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 11

7 or 14 periods. The problem size also depends on ν, which is the number of periods required to
travel from one node to another. The model formulation in Section 1 allows for ν taking any integer
value 1 ≤ ν ≤ T. In our test instances, however, ν = 1, which makes our problems consist of |N|2 x T
integer variables.

The time span between when a commodity becomes available (σ(k)) and when it has to be
delivered (τ(k)) at its destination typically affects the costs and the number of paths it can follow.
This time span was randomly selected with an average of 3 or 5, according to the instance.
Commodity demands were computed by discretizing triangular distributions. Each commodity has a
demand lower than the vehicle capacity Θ. The test instances were constructed to avoid that few
commodities dominate the solution through, for example, a significantly higher demand than the
other commodities.

3.1.2 Cost structures
In the transportation industry, a large fraction of the costs is associated to operating a fleet of
vehicles, trains, aircraft, ships, trucks, and can be divided into several components such as cost of
capital, maintenance, fuel, depreciation, wage costs, wear and tear, etc. These costs are closely
connected to the distance or travel time between the terminals. The cost (distance) for our test
instances are given by symmetric matrices that are strongly inspired by the cost/distances found in
the E-016-03 and E-031-09 vehicle routing test instances by Christofides, Mingozzi, and Toth
(1981) and Hadjiconstantinou, Christofides, and Mingozzi (1995), respectively.

The instances also include costs for handling freight at intermediary terminals, holding vehicles
at terminals, holding freight at intermediary terminals, moving freight with the particular vehicles
considered, and adding ad-hoc capacity. These costs were estimated as proportions to the traveling
costs of the particular instances.

3.1.3 Number of scenarios

Increasing the number of scenarios to describe the underlying distributions provides a better
description of the actual problem, ceteris paribus. Unfortunately, it also increases the size of the
instance being solved. Experience from solving similar problems using exact methods shows that
the number of scenarios used has a significant impact on the solution time. We therefore balance the
quality of the problem description with the problem size by using 3 different discretizations of the
underlying distributions consisting of 20, 60, and 90 scenarios, respectively, for each problem
instance. Our experiments have showed that, while the number of scenarios has an impact on the
memory and the computation time required solving a problem instance, the objective function
values of the instance obtained with different number of scenarios do not differ very much. We
therefore do not generate a larger number of scenarios.

3.2 Calibration and variant evaluation
This section presents a comparative evaluation of the algorithmic variants introduced earlier on, the
alternative initial solution procedures and neighborhood definitions, in particular. The resulting
heuristic that we propose is shown in Section 3.2.5.

3.2.1 Comparison of initial solution procedures
Comparing the objective-function values of the initial solutions produced by the three procedures of
Section 2.1 shows the demand-driven solution outperforming the others significantly. A parked
initial solution implies that all the commodities use ad-hoc capacity and the costs of such solutions

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 12

are 44.79 times higher on average than the best solutions for the problem instances described in
Section 3.1. A randomly-created initial solution is also having most commodities using ad-hoc
capacity. On average for the test problem instances, random-initial solutions have a cost 32.27 times
higher than the best solutions. Demand-driven initial solutions deliver many commodities using the
existing fleet, their costs being on average only 3.08 times worse than the best solutions for the
instances in our test set. The experiments show, however, that the results change as the search
progresses and the number of iterations increases.

After 5000 iterations performed on the test instances, the results starting from the parked initial
solutions were on average 2.86% worse than the best known solutions, compared to 3.53% and
5.90% worse starting from the random and demand-driven initial solutions, respectively. It thus
seems that, the demand-driven strategy drives the search to local optima containing combinations of
services from which the metaheuristic cannot escape easily. We conclude that the demand-driven
initial solution should be chosen to obtain a “good” solution fast, but a parked initial solution is to
be preferred for a longer search. We used parked initial solutions for our subsequent tests.

3.2.2 Limiting the search space

The model of Section 1 does not specify the route of each vehicle and yields the arcs (services) used
and the loads on these arcs. It is thus possible that solutions exist where vehicles end up at nodes
different from the ones they started, the only requirement being that the vehicle-balance conditions
be verified at all nodes and time periods. This means that valid solutions may exist where vehicles
swap routes from one week to another. Commodity path costs should be higher in this case. The
evaluation of these costs would be problematic, however, without the knowledge of the vehicle
routes.

Figure 8. Impact on search performance of enforcing each vehicle to end

 up in the same terminal as it started (Λ)

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 13

These difficulties result in the described neighborhoods and moves not effectively addressing
solutions where vehicles swap routes, generally leading to less good solutions than when vehicles
are not permitted such swaps. We identify with the parameter Λ the limitation of the search space to
the case where all vehicles have to end up at the same node they started from. Λ may be used in all
neighborhoods and tests were run both with and without it.

Figure 7 displays the difference between the results of a search with and without Λ on all
instances listed sequentially (detailed results may be found in Tables 2 and 3 in the Appendix). The
objective-function value obtained by the search with Λ was divided by the corresponding value
obtained without Λ, and 1 was subtracted from the result. Then, instances with a positive deviation
found a better result using Λ, while those with a negative deviation found the best result not using
Λ. As we can see in the figure, the variance can be significant for some instances. On average the
solutions found with the search limitation Λ are 2.6% better than the solutions found without.

3.2.3 Number of vehicles
The model of Section 1 does not constrain the number of vehicles to be used. Solving the model
using an exact method would yield the optimal required number of vehicles. A heuristic cannot
provide such a figure. We can, however, use the heuristic imposing different fixed number of
vehicles and, thus, approximating the minimum number of vehicles required by a given instance.

Figure 6 shows the results for the instance SND80C30N14D5T with 20, 60, and 90 scenarios
and different numbers of vehicles. The tests show best results for this instance in the 8 to 11 vehicle
range, the lowest values being obtained, by a small margin, for 10 or 11 vehicles. We can also
clearly see from the large improvement obtained by adding the eighth vehicle that 7 vehicles are not
enough. This instance is typical, test results displaying a similar behavior on al instances.

Figure 9. Impact of the numbers of vehicles and scenarios on the solution cost

The cost of ad-hoc capacity is relatively high compared to the cost of operating the vehicles.
Hence, a solution where a significant part of the commodities requires ad-hoc capacity will be more
expensive than a solution using mostly the existing vehicles. Typically, the number of vehicles
where the graph flattens corresponds to the number needed to be able to deliver all commodities in
a majority of scenarios. Ad-hoc capacity might still be needed in some scenarios, but better

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 14

solutions can then be created by adding more vehicles. Thus, for the number of vehicles used in the
best found solutions the amount of ad-hoc capacity used is normally close to zero for all
commodities.

A direct link from the origin to the destination terminal is the cheapest way to move the
commodity freight. Hence, when the number of vehicles is sufficient, solutions are created with
direct links (services) able to transport the commodities in most scenarios. Alternate paths have to
be created, however, to cope with scenarios with large demand. When the number of vehicles is too
small to create enough direct links, some commodities are transported using longer service paths. In
most such situations, the vehicle routes are such that the commodities stay on the same vehicle for
several periods before arriving at destination. Paths that include more than one vehicle are generally
avoided because of the extra cost of transferring the goods, but for some commodities such paths
are possible alternatives.

For most problem instances in our test set, the number of vehicles was sufficient to create direct
links for a majority of the commodities and most of them were transported only one period.
Alternative paths with up to three periods were however used in some of the scenarios. Paths
spanning more than three periods and paths including more than one vehicle were used by only
1.2% of all the commodities and only in the scenarios with an amount much larger than the average.

3.2.4 Evaluation of moves
The greedy algorithm makes the search proceed much faster than when the exact optimization of
the freight flow is used. Experimentally, for up to 100 iterations, no significant difference in the
quality of the results may be observed between a search using the greedy and a search using the
exact optimization. The results after 100 iterations are on average 3.65 times poorer than the best
results found for the test problem instances. In some cases, the same neighbor was selected by both
methods but even when the search trajectories differed, the greedy method produced solutions with
an objective value that did not differ by more than 4.24% on average above those found with a
search using exact optimization. Comparing the computation time required by the two methods
indicates a significant difference, however. For the instances in our test set, a search with the exact
optimization uses on average more than 40 times more time than a search with the greedy method.

Notice that, during the search, it is not vital to find the exact solution value for each temporary
solution evaluated, but rather to find indications whether a move seems good or not and compare
the alternative candidates. For this purpose, a greedy and fast algorithm for distributing the freight
can be almost as useful as an exact optimization method which uses much more time.

The exact optimization method should then be limited to particular candidate solutions only. In
our case, we limit the exact method to the solutions found by the greedy algorithm with an
objective-function value within 5% of the value of the best known solution and after the search has
progressed for more than 60% of the total number of iterations. This strategy increases the
computational time by only some 6% compared to a pure greedy search. This is considered
acceptable to provide optimal flows for the best solutions found.

3.2.5 Evaluation of neighborhoods and final heuristic
The preliminary experiments have shown that a local search using the neighborhoods described in
Sections 2.2.1 and 2.2.2 performs very differently.

A search using the random-period neighborhood strategy for 5000 iterations is rather time
consuming due to the size of the neighborhood being evaluated. However, it provides gradual

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 15

improvements during all phases of the search and produce results on average 13% above the best
known solutions. A search conducted for the same duration with the demand-based neighborhood
converges very early in the search and the results produced are on average 44% above the best-
known solutions for our test instances. This strategy seems get often stuck in a local optimum and
has problems escaping from it due to the limited number of possible neighbors.

By combining these two neighborhoods, it is however possible to utilize their best features. The
demand-based neighborhood would identify which commodities use the most ad-hoc capacity and
focus the search around these for a limited number of iterations. When the improvement stagnates,
the search swaps to the random-period neighborhood. Then after a given number of iterations
without improvement, the search swaps back to the demand-based strategy, and so on.

We tested this mixed-neighborhood strategy by swapping between the two neighborhood after
100 iterations without improvement for the RPN and 10 iterations without improvement for DBN.
This strategy gave significantly better results than using only one of the neighborhoods. The global
best solutions to our test instances were obtained by selecting the best out of a large number of
solutions found with a number of runs with different parameter settings. The results found by the
mixed-neighborhood strategy were on average less than 3% above these global best solutions. We
therefore selected the mixed-neighborhood for the final form of the metaheuristic we propose and
for all experiments. The search using the mixed-neighborhood and switching between the
neighborhoods corresponds to the Algorithm 2 presented in Figure 10.

initialization;
RandomPeriod = true;
iteration = 0;
iteration RPN = 0; // Counter for iterations with random-period Neighborhood
iteration DBN = 0; // Counter for iterations with demand-based Neighborhood
while iteration < max iterations do
 if iteration RPN > φ then
 RandomPeriod = false;
 Iteration DBN = 0;
 end
 if iteration DBN > β then
 RandomPeriod = true;
 iteration RPN = 0;
 end
 if RandomPeriod = = true then
 search using random-period neighborhood search strategy;
 if cost of best neighbor solution < cost of best found solution then
 best found solution = best neighbor solution;
 iteration RPN = 0;
 else
 iteration RPN ++;
 end
 end
 if RandomPeriod = = false then
 search using demand-based neighborhood search strategy;
 if cost of best neighbor solution < cost of best found solution then

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 16

 iteration DBN = 0;
 best found solution = best neighbor solution;
 else
 iteration DBN ++;
 end
 end
 move to best neighbor solution;
end

Figure 10. Algorithm 2: The mixed-neighborhood search

The metaheuristic that we propose may then be summarized as follows:

1. Create an initial solution where all vehicles are parked at a terminal.
2. Set φ = 100, β = 10, and the max number of iterations = 5000.
3. Perform a search with greedy optimization and variable neighborhoods as shown in

algorithm 2.
a. If iterations = ψ

i. Perform an exact optimization of the flow of the best found solution so far.
ii. Save the solution value in BestSolVal.

b. If iterations > ψ and the greedy value of the best neighbor solution is within α% of
BestSolVal
i. Perform an exact optimization of the flow on the best neighbor solution and save

the solution value in BestNeighVal.
ii. If BestNeighVal < BestSolVal, set BestSolVal = BestNeighVal and save the

solution as the best found so far.
4. Report best found solution and stop.

A local search from a demand-driven initial solution with a full TTS neighborhood will normally
find a local optimum within 30 iterations for the instances in our test set. With a parked initial
solution and a mixed neighborhood, the local optimum is not that easy to identify because of the
high degree of randomness in the search, but the search starts to level before 500 iterations even on
the largest instances. Figure 11 illustrates the general observed behavior by displaying the
improvement in the objective-function value for instance SND80C30N14D5T90S. The first 125
iterations are omitted for scaling reasons.

Preliminary tests show that with the mixed neighborhood, most improvements will be achieved
before the search reaches 4000 iterations. Even though for some instances later improvements will
be seen, this number is considered sufficient to reach sufficiently good solutions. As indicated
previously, we run the greedy search for 4000 iterations. The search is then be extended by 1000
iterations, for a total number of 5000. During these 1000 iterations, all solutions with a greedy
objective-function value within 5% of the value of the best known solution will be optimized to see
if they are better than the best solution found earlier. We denote ψ, the minimum number of
iterations before the exact optimization kicks in and α, the maximum deviation from the objective-
function value of best found solution used to decide if an exact optimization should take place.

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 17

Figure 11. Example of improvement in the objective-function value during the search

4. Computational Experiments
The metaheuristic described in Section 3.2.5 was coded in C++ and run on a Pentium 4 2.40 GHz
computer with 512 MB of RAM running Windows XP. The results are presented in Table 1 and in
Tables 2 and 3 (in the Appendix).

Since we present the first experiments on these problem instances comparison with other
methods is difficult. The smallest instance, SND14C6N7D3T20S, is however solved to optimality
by exact methods using the model in Section 2. On this small problem, the solver CPLEX 9.0 using
the network simplex algorithm and default options required about 9.5 hours to find the optimum,
while our heuristic used 140 seconds to run for 5000 iterations. The heuristic yielded an objective
value of 6057.50 after 5000 iterations, representing a deviation of 5.2% with respect to the optimal
solution of CPLEX. Running the heuristic for 10000 iterations with the same parameters reduced
the optimality gap to 3.3% only. Testing larger instances using CPLEX shows the limits of exact
methods. The test on SND40C16N7D3T20Sa run for one week on a Pentium 4, 3.2GHz, 2GB
RAM without finding the optimum. The best result found by CPLEX during this period, was
121740.3 which is more than 5 times higher than the result achieved by the metaheuristic in 4288
seconds for 5000 iterations.

Table 1 displays the results for the two instances. The table indicates the number of commodities
(|K|), the number of terminals (|N|), the number of time periods in the planning horizon (T), the
average available time for delivery of the commodities (tΔ), the number of scenarios (|S|), the
minimum number of vehicles required to avoid ad-hoc capacity utilization (Min. Veh.), the number
of vehicles used in the best found solution (No. Veh.) and their respective cost (Obj. F. Meta.), as
well as the objective-function values for the metaheuristic (the value after 10000 iterations is
indicated for the first instance) and CPLEX.

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 18

Table 1. Best found solutions by the metaheuristic and CPLEX

Instance |K| |N| T tΔ |S| Min.
Veh.

No.
Veh.

Obj. F.
Meta.

Obj. F.
CPLEX

SND14C6N7D3T20S 14 6 7 3 20 3 3 5948.5 5759.0
SND40C16N7D3T20Sa 40 16 7 3 20 8 8 24264.3 121740.3

We do not have a comparison point for the other problem instances and it is thus hard to evaluate

how good the solutions found by our heuristic are. We can, however, compare them to each other
and draw some conclusions from that. The set of test instances was actually created to make it
possible to analyze each of the parameters individually. Thus, a number of instances differ in the
number of scenarios only, with the same expected value of the demand for all scenarios.

When examining the instances with the same number of commodities, terminals, average time
for delivery, and scenarios, but with different planning horizons, we find, as expected, that a seven-
day planning horizon requires more vehicles than a fourteen-day one. On average, the minimum
number of vehicles needed for the seven-day instances were 48% higher than for the corresponding
fourteen-day instances. The differences in the length of the routes, however, made the solution
value of the seven-day instances on average 88% of that the fourteen-day instances. The size of the
neighborhood, which is the factor deciding most of the searching time per iteration, is not affected
by the number of time periods. The CPU time used for the fourteen-day instances is, however,
about 18% above that of the instances with a seven-day horizon.

From the point of view of the difference in time periods between the delivery deadline and the
availability of the commodity, we find that instances with a longer difference generally need fewer
vehicles than instances for which this difference is small. An average delivery time of five periods
will, as a basic rule, save one vehicle and the solution value is on average 4% lower compared to
those instances with an average of three periods delivery time.

When examining the impact of the number of scenarios, we find that using 20 or 90 scenarios
yields approximately the same objective-function value. With 60 scenarios, we get an objective-
function value 3.5% higher than the others. This is somewhat unexpected as previous experiences
(Lium, 2006) show that an increase in the number of scenarios would result either in no change or
an increase in the objective-function value.

It is hard to find patterns regarding the limitation of the search (Λ). The instances where this is
profitable seem to be randomly distributed among instances of all sizes.

5. Conclusions
We proposed a new metaheuristic approach for time-dependent stochastic service network design
problems. We believe this to be one of the first successful metaheuristics for this class of problems.

The metaheuristic is inspired by VNS principles and uses fast approximations to the move
evaluations where appropriate. Computational experiments on a large set of problem instances
indicate that the metaheuristic provides the means to address large instances of this complicated
class of problems within reasonable time.

Interesting research perspectives are now open in improving the methodology. One such avenue
concerns the use of arc pseudo dual information to help decide where to increase/decrease capacity.
The development of cooperative parallel mechanisms for this metaheuristic constitutes another way

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 19

to increase the efficiency and quality of the search. We are initiating research on some of these
ideas and will report in the near future

Acknowledgements
The authors thank Øyvind Halskau for pointing out errors and helping us improve the paper. While
working on this project, Arild Hoff and Arnt-Gunnar Lium were employed as Research Fellows at
Molde University College (Norway). Dr. Teodor Gabriel Crainic was Adjunct Professor at Molde
University College and the department of Computer Science and Operations Research of the
Université de Montréal (Canada). Partial funding for this project was provided by the Natural
Sciences and Engineering Research Council (NSERC) of Canada.

References
Christofides, N., Mingozzi, A., and Toth, P. (1981). Exact Algorithms for the Vehicle Routing

Problem Based on Spanning Tree and Shortest Path Relaxations. Mathematical Programming
20, 255-282.

Crainic, T.G. (2003). Long Haul Freight Transportation. In Handbook of Transportation Science
(Hall, R.W., ed.), pp. 451-516. Kluwer Academic Publishers, Norwell, MA, second edition.

Crainic, T.G. (2000). Network Design in Freight Transportation. European Journal of Operations
Research 122(2), 272-288.

Glover, F., and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers, Norwell, MA.

Ghamlouche, I, Crainic, T.G. and Gendreau, M. (2003). Cycle-based Neighbourhoods for Fixed-
Charge Capacitated Multicommodity Network Design. Operations Research 51, 655-667

Ghamlouche, I, Crainic, T.G. and Gendreau, M. (2004). Path Relinking, Cycle-Based
Neighbourhoods and Capacitated Multicommodity Network Design. Annals of Operations
Research 131, 109-131

Hadjiconstantinou, E., Christofides, N., and Mingozzi, A. (1995). A New Exact Algorithm for the
Vehicle Routing Problem Based on q-Path and k-Shortest Path Relaxations. Annals of
Operations Research 61, 21-43.

Kaut, M. and Wallace, S. W. (2007). Evaluation of Scenario-Generation Methods for Stochastic
Programming. Pacific Journal of Optimization (forthcoming).

Lium, A.-G. (2006). Stochastic Service Network Design, PhD Thesis in Logistics. Molde University
College.

Lium, A.-G., Crainic, T.G., and Wallace, S.W. (2007a). Correlations in Stochastic Programming: A
Case from Stochastic Service Network Design. Asia-Pacific Journal of Operational Research
24(2), 161-179.

Lium, A.-G., Crainic, T. G., and Wallace, S. W. (2007b). A Study of Demand Stochasticity in
Service Network Design. Transportation Science (forthcoming)

Mladenovic, N., and Hansen, P. (1997). Variable Neighborhood Search. Computers and Operations
Research 24, 1097-1100.

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 20

Appendix
The following two tables display detailed results by instances described by their name (column 1).
For each instance, the following information is indicated: the number of commodities (|K|), the
number of terminals (|N|), the number of time periods in the planning horizon (T), the average
available time for delivery of the commodities (tΔ), the number of scenarios used (|S|), whether
yes/no the vehicles must return to where they start (Λ), the minimum number of vehicles required to
avoid ad-hoc capacity utilization (Min. Veh.), the number of vehicles used in the best found solution
(No. Veh.) and their respective cost (Obj. F. Meta.).

Table 2. Best found solutions – 7 days planning period

Instance |K| |N| T tΔ |S| Λ Min.
Veh.

No.
Veh.

Obj. F.
Meta.

SND14C16N7D3T20S 14 16 7 3 20 Y 4 4 785.57
SND14C16N7D5T20S 14 16 7 5 20 N 3 3 715.42
SND14C30N7D3T20S 14 30 7 3 20 Y 4 4 780.62
SND14C30N7D5T20S 14 30 7 5 20 N 3 4 706.96
SND40C16N7D3T20S 40 16 7 3 20 N 8 8 2199.67
SND40C16N7D3T90S 40 16 7 3 90 Y 8 9 2176.45
SND40C16N7D5T20S 40 16 7 5 20 Y 7 7 2047.34
SND40C16N7D5T60S 40 16 7 5 60 N 7 8 2071.66
SND40C16N7D5T90S 40 16 7 5 90 N 7 8 2056.52
SND40C30N7D3T20S 40 30 7 3 20 Y 8 8 1744.14
SND40C30N7D3T60S 40 30 7 3 60 Y 8 8 1707.36
SND40C30N7D3T90S 40 30 7 3 90 N 8 9 1760.65
SND40C30N7D5T20S 40 30 7 5 20 N 7 8 1602.77
SND40C30N7D5T60S 40 30 7 5 60 Y 7 7 1611.62
SND40C30N7D5T90S 40 30 7 5 90 Y 7 8 1604.78
SND80C16N7D3T20S 80 16 7 3 20 N 14 14 4138.12
SND80C16N7D3T60S 80 16 7 3 60 N 14 14 4050.01
SND80C16N7D3T90S 80 16 7 3 90 N 14 14 4110.83
SND80C16N7D5T20S 80 16 7 5 20 Y 12 13 3694.77
SND80C16N7D5T60S 80 16 7 5 60 N 12 13 3699.18
SND80C16N7D5T90S 80 16 7 5 90 N 12 13 3724.42
SND80C30N7D3T20S 80 30 7 3 20 Y 16 16 3941.83
SND80C30N7D3T60S 80 30 7 3 60 N 16 16 4014.35
SND80C30N7D3T90S 80 30 7 3 90 Y 15 16 4003.77
SND80C30N7D5T20S 80 30 7 5 20 N 13 14 3414.57
SND80C30N7D5T60S 80 30 7 5 60 Y 13 14 3414.37
SND80C30N7D5T90S 80 30 7 5 90 N 13 14 3454.48

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 21

Table 3. Best found solutions – 14 days planning period

Instance |K| |N| T tΔ |S| Λ Min.
Veh.

No.
Veh.

Obj. F.
Meta.

SND14C16N14D3T20S 14 16 14 3 20 Y 3 3 924.72
SND14C16N14D5T20S 14 16 14 5 20 N 2 2 894.42
SND14C30N14D3T20S 14 30 14 3 20 Y 3 3 844.09
SND14C30N14D5T20S 14 30 14 5 20 Y 3 3 830.82
SND40C16N14D3T20S 40 16 14 3 20 N 6 6 2509.48
SND40C16N14D3T90S 40 16 14 3 90 Y 6 6 2570.39
SND40C16N14D5T20S 40 16 14 5 20 Y 4 5 2289.50
SND40C16N14D5T60S 40 16 14 5 60 N 4 5 2289.63
SND40C16N14D5T90S 40 16 14 5 90 Y 4 5 2279.95
SND40C30N14D3T20S 40 30 14 3 20 N 5 6 1993.47
SND40C30N14D3T60S 40 30 14 3 60 Y 5 6 1934.19
SND40C30N14D3T90S 40 30 14 3 90 N 5 6 1974.51
SND40C30N14D5T20S 40 30 14 5 20 Y 5 5 1823.63
SND40C30N14D5T60S 40 30 14 5 60 N 5 6 1850.93
SND40C30N14D5T90S 40 30 14 5 90 N 5 5 1811.24
SND80C16N14D3T20S 80 16 14 3 20 N 9 10 4524.15
SND80C16N14D3T60S 80 16 14 3 60 N 9 11 4585.39
SND80C16N14D3T90S 80 16 14 3 90 N 9 11 4503.08
SND80C16N14D5T20S 80 16 14 5 20 Y 8 8 4099.01
SND80C16N14D5T60S 80 16 14 5 60 N 8 9 4199.84
SND80C16N14D5T90S 80 16 14 5 90 N 8 9 4222.63
SND80C30N14D3T20S 80 30 14 3 20 Y 11 11 4432.54
SND80C30N14D3T60S 80 30 14 3 60 N 11 11 4534.27
SND80C30N14D3T90S 80 30 14 3 90 N 11 12 4351.18
SND80C30N14D5T20S 80 30 14 5 20 Y 9 10 4052.64
SND80C30N14D5T60S 80 30 14 5 60 Y 9 11 3975.22
SND80C30N14D5T90S 80 30 14 5 90 Y 9 10 3994.80

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2007-62 22

	CIRRELT-2007-62-PP
	CIRRELT-2007-62-abstract
	CIRRELT-2007-62

