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Abstract 

This article proposes a number of efficient heuristics for two versions of the 
Median Cycle Problem (MCP). In both versions the aim is to construct a simple cycle 
containing a subset of the vertices of a mixed graph. In the first version the objective 
is to minimize the cost of cycle and the cost of assigning vertices not on the cycle to 
the nearest vertex on the cycle. In the second version the objective is to minimize the 
cost of the cycle subject to an upper bound on the total assignment cost. Two 
heuristics are developed. The first, called the multistart greedy add heuristic, is 
composed of two main phases. In the first phase, a cycle composed of a limited 
number of randomly chosen vertices is constructed and augmented by iteratively 
adding the vertex yielding the largest cost reduction until either no further reduction is 
possible (for the first version) or the assignment cost is below the upper bound (for 
the second version). The second phase applies a number of improvement routines. 
The second heuristic is a random keys evolutionary algorithm. Computational results 
on a number of benchmark test instances show that the proposed heuristics are highly 
efficient for both versions of the problem, and superior to the only other available 
heuristic for these two versions of the problem. 

Key words: Median cycle problem, greedy add heuristic, evolutionary algorithm 

 

Introduction 

The purpose of this article is to describe heuristics for two versions of the Median Cycle 

Problem (MCP) defined as follows. Let G = (V, E∪ A) be a complete mixed graph where V = {v1, 

v2, …, vn} is the vertex set, E = {[vi,vj]: vi, vj∈ V, i<j} is the edge set and A = {(vi, vj): vi, vj∈ V} is 

the arc set. The vertex v1 is referred to as the depot, each edge is associated with a non-negative 

routing cost cij and each arc is associated with a non-negative assignment cost dij. The first version 

of the median cycle problem, called MCP1, is to determine a Hamiltonian cycle through a subset 
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V' of V including v1 that minimizes the sum of the routing cost of the cycle and the assignment cost 

of the vertices not on the cycle to their nearest vertex on the cycle. The routing cost r(V') is the 

sum of all edge costs on the cycle, and the assignment cost a(V') is computed as { }∑
∈ ∈'\ '

 min
VVv

ijVv
i

j

d . 

The second version, called MCP2, is to determine a Hamiltonian cycle over V' that minimizes 

r(V'), subject to a(V') ≤ d0. 

Both versions of the MCP are solved by Moreno Pérez, Moreno-Vega and Rodríguez Martín1 

by means of a variable neighbourhood tabu search heuristic. Labbé, Laporte, Rodríguez Martín, 

and Salazar González2,3 also provide integer linear programming formulations and develop a 

branch-an-cut algorithm for the MCP1 and MCP2. They use the appellation “Ring Star Problem” 

for MCP1. 

Applications of MCP1 arise in the design of telecommunications networks in which user nodes 

are connected to concentrators lying on a backbone network linked to a root (depot)4,5. Both 

versions of the MCP have applications in the design of circular metro lines or motorways where 

the cost of a circular structure has to be weighted against its access costs. Another application is 

the location of post-boxes where both collection cost and user access time has to be considered6. 

The MCP is related to a number of Cycle Problems in which it is required to construct a cycle 

through a subset of vertices of a graph7. It can also be viewed as a Location Routing Problem8. In 

these problems, there may be constraints on the cycle length, or on the distance between the cycle 

and vertices not on it, or penalties for not visiting vertices, or profits for visiting them. Well known 

examples include the Traveling Salesman Problem with Non-Visiting Penalties9, the Selective 

Traveling Salesman Problem10,11, the Prize Collecting Traveling Salesman Problem12 and the 

Covering Tour Problem13. Similar problems exist in context where a structure such as a path or a 

tree must be located through a subset of the vertices of a graph14,15. 

Our aim is to present two new heuristics for MCP1 and MCP2, both of which outperform tabu 

search. The first heuristic, called Multistart Greedy Add (MGA) is a multistart greedy construction 

heuristic followed by an improvement phase. The second, called Random Keys Evolutionary 

Algorithm (RKEA), is a mechanism combining and improving solutions produced by MGA. These 

heuristics will be presented in the next sections. This will be followed by computational results 

and by our conclusions. 
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Basic procedures for the Multistart Greedy Add Heuristic 

As is the case in a number of location-routing problems, simple construction and improvement 

heuristics tend to produce rather poor results on the MCP. This is due to the fact that removing a 

vertex from the cycle or introducing a new vertex has repercussions not only on the cycle itself, 

but also on the assignment cost. To obtain good results, it is necessary to produce a right blend of 

cycle reduction, cycle augmentation and cycle improvement operations. In what follows, we 

present five basic procedures used as building blocks for MGA, followed, in the next section, by 

the description by the MGA itself. The five basic procedures are called cycle reduction, cycle 

augmentation, vertex exchange, cycle improvement and cycle perturbation. 

Cycle reduction 

Consider in turn each vertex vj ∈  V’, where V’ is the set of vertices on the cycle, its predecessor 

vi and its successor vk. Compute: 1) the saving sj = cij + cjk – cik, obtained by removing vj from the 

cycle and reconnecting vi with vk, and, 2) a penalty pj obtained by reassigning vj and all vertices 

previously assigned to vj to their closest vertex on the cycle. 

In MCP1, remove the vertex vj yielding { }jjVv
ps

j

−
∈

 max
'

 as long as this value is positive. In 

MCP2, remove the vertex vj yielding { }jVv
s

j

 max
'∈

 as long as this value is positive and the updated 

assignment cost does not exceed d0. 

Cycle augmentation 

Consider in turn each vertex vj not on the cycle and compute: 1) the loss sj = cij + cjk –cik, and 2) 

the gain pj obtained by reassigning vertices not on the cycle to vj if this yields a smaller assignment 

cost (the assignment cost of vj is now zero). 

In MCP1, insert the vertex vj yielding { }jjVVv
sp

j

−
∈

 max
'\

 as long as this value is positive. In  a 

feasible MCP2 solution, insert the vertex vj yielding { }jVVv
s

j

 min
'\∈

 as long as this value is negative 

(this can only happen if the routing cost matrix does not satisfy the triangle inequality). In an 
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infeasible MCP2 solution, insert the vertex vj yielding { }jVVv
s

j

 min
'\∈

. In the latter case, this means that 

the routing cost increases can be accepted in order to reach feasibility. 

Vertex exchange 

Consider each vertex pair {vj, vl} where vj ∈  V’ and vl ∈  V\V’. Remove vj from the cycle and 

insert vl in the cycle as described in the cycle reduction and augmentation procedures. In MCP1 

implement the vertex exchange yielding the maximal total cost reduction as long as it is positive. 

In a feasible MCP2 solution implement the vertex exchange yielding the largest routing cost 

reduction as long as it is positive and the solution remains feasible. This procedure is never applied 

to an infeasible MCP2 solution. 

Cycle improvement 

Attempt to improve the routing cost by means of a Traveling Salesman Problem (TSP) 

heuristic We have used both the I3 heuristic16 and the Lin-Kerninghan17 implementation of 

Helsgaum18. 

Cycle perturbation 

The perturbation procedure repeats the following three steps for α = 0.10, 0.09, …, 0. The role 

of α is to generate several different perturbated solutions. For each value of α, the procedure is 

applied to a feasible initial solution in which the cycle cost is equal to z. 

1) Select the unrouted vertex vj ∈  V\V’ yielding the largest gain pj. Insert this vertex in the cycle 

in the position yielding the minimal insertion cost as long as the routing cost does not 

exceed (1+α)z. Repeat this step as long as this condition holds and the cycle contains fewer 

than n vertices. 

2) Apply the Cycle reduction procedure described above. 

3) Apply the Cycle improvement procedure using I3. 
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Description of the Multistart Greedy Add Heuristic 

For simplicity we first define two mega-procedures involving the above basic procedures. 

These are then used in the MGA heuristic. 

Mega-procedure MP1 

Starting from a feasible solution, repeatedly apply Cycle reduction, Cycle augmentation, Vertex 

exchange and I3 as long as the solution improves. 

Mega-procedure MP2 

Starting from a feasible solution, repeatedly apply MP1 and Cycle perturbation as long as the 

solution improves. 

Detailed Description of MGA 

The Multistart Greedy Add heuristic works with four parameters: β1 ∈  {1, 3, 5}, β2 ∈  {2, 3, 4}, 

β3 ∈  {0.5, 1} and β4 ∈  {5, 10, 15, 20}. It applies the following five steps. 

1) Generate β1n solutions as follows. Create a first cycle containing β2 randomly selected 

vertices (including the depot). Apply the Cycle augmentation procedure. 

2) Retain the best β3n solutions (with β3 ≤ β1). 

3) Apply MP1 to the best β4% of these solutions where β4 ≤ 20%. 

4) Apply MP1 to another (25-β4)% of the remaining solutions, randomly selected. 

5) Apply MP2 and Lin-Kerninghan heuristic to the overall best solution. 

A Random Keys Evolutionary Algorithm 

Since MGA produces a family of good solutions at the end of Step 4, it is natural to use these as 

the basis of an evolutionary algorithm in the hope of generating even better solutions. Our random 

keys evolutionary algorithm was constructed in this spirit. It works on the β3n solutions generated 

at the end of Step 4 of the MGA heuristic. It uses the random keys encoding mechanism developed 

by Bean19. We first describe this scheme followed by the evolutionary algorithm itself. 
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The random keys encoding mechanism 

In our implementation of the random keys encoding mechanism, a random key xi ∈  [0,1] is 

assigned to each vertex vi on the cycle (v1, …, vi, …, vj, …) where x1=0. These keys are such that if 

vj comes after vi on a cycle, then xj > xi. For example, the cycle (v1,v3,v7,v4) could be assigned the 

keys (0, 0.12, 0.39, 0.46). For n = 7, this can also be represented as shown in Figure 1. In this 

figure, the sign “-”means that the corresponding vertex does not appear on the cycle. 

 

Vertex 1 2 3 4 5 6 7 

Key 0 - 0.12 0.46 - - 0.39 

Figure 1: Random keys representation of a solution 

Using these keys, applying a crossover operator to two parent solutions becomes easy. A 

crossover position is selected to combine the first part of the first parent with the second part of the 

second parent. Each vertex retains its key, which easily enables the reconstruction of the offspring 

(if two keys have the same value, the corresponding vertices are ordered arbitrarily). Figure 2 

depicts a crossover of the two cycles (v1,v3,v7,v4) and (v1,v2,v5,v4,v7,v3) yielding a new cycle 

(v1,v3,v4,v5,v7). The crossover position in this example is after vertex 4. The interest of this key 

encoding mechanism is that it easily allows for recombination of cycles of different lengths and 

also for large solution diversification. Thus a vertex near the end of one of the two parent solutions 

could move to an earlier position in the offspring solution. This process does not always yield a 

feasible offspring for MCP2. This may be the case if the offspring corresponds to a cycle 

containing very few vertices thus causing the total assignment cost of vertices not on the cycle to 

exceed the upper bound d0. However, feasibility can be regained by introducing additional vertices 

on the cycle through the application of the Cycle augmentation procedure. We have also tested a 

variant of the crossover operator where two offspring are generated instead of only one but it 

turned out that generating only one offspring was better. 
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Vertex 1 2 3 4 5 6 7 
Parent 1 

Key 0 - 0.12 0.46 - - 0.39 

 

Vertex 1 2 3 4 5 6 7 
Parent 2 

Key 0 0.30 0.95 0.76 0.70 - 0.81 

 

Vertex 1 2 3 4 5 6 7 
Offspring 

Key 0 - 0.12 0.46 0.70 - 0.81 

Figure 2: Crossover operation and the resulting offspring 

 

Detailed description of the Random Keys Evolutionary Algorithm 

The proposed Random Keys Evolutionary Algorithm uses two parameters γ1 and γ2. The first 

parameter controls the number of successive iterations without improvement in the best known 

solution. The second parameter controls the proportion of solutions transferred from one 

population to another in Step 2 below. The algorithm works on a population P composed of the 

β3n solutions generated at the end of Step 4 of MGA and transforms it into another population P' 

of the same size. The population P' is derived from P by following these five steps. 

1) Set P' = ∅ .�

2) Move to P' the subset P* of the γ2β3n best solutions of P, where 0 ≤ γ2 ≤ 1.  

3) Generate (1-γ2) β3n new solutions to be included in P'. Each new solution is generated by 

randomly selecting two solutions from P, combining them using the crossover operator and 

applying MP1 to the offspring.  

4) Starting with the worst offspring just created, replace it by a solution P\P* if its cost is less 

than that of the offspring.  

5) Set P = P'. 
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Repeat steps 1 to 5 as long as no improvement has been observed for γ1 consecutive iterations. 

Then apply MP2 and Lin-Kernighan heuristic to the best solution of P. 

Computational Results 

The Multistart Greedy Add heuristic and the Random Keys Evolutionary Algorithm were coded 

in Delphi 3.0 and run under Windows 2000 on an IBM Pentium III Desktop, 900 MHz. We first 

describe our test instances, followed by results obtained with the Multistart Greedy Add heuristic 

and the Random Keys Evolutionary Algorithm. 

Test instances 

Both heuristics were tested on a subset of the instances used by Labbé et al2,3 which are derived 

from the TSPLIB instances20 with 51 ≤ n ≤ 200 and distance matrices lij. To define the routing and 

assignment costs, we have proceeded as in Labbé et al2,3. For MCP1 instances, we have set 

cij = α1lij and dij = (10-α1)lij, where α1∈ {5,7,9}. For MCP2 instances, we have set cij = dij = lij. To 

determine d0, we have first computed l0, the cost of the shortest cycle with respect to the lij 

distances including the depot and three other vertices. We have then set d0 = α2l0, where 

α2 ∈  {0.08, 0.22, 0.42}. We have restricted our tests to the 52 instances of MCP1 and the 41 

instances of MCP2 for which Labbé et al2,3 have produced optimal solutions. 

 

Multistart Greedy Add results and best parameters 
 

We have first conducted tests for the MGA heuristic over the 52 MCP1 and the 41 MCP2 

instances, with several values of the parameters β1, β2, β3 and β4. We present in Tables 1 and 2 

average results over all instances considered for each problem. The table headings are as follows: 

β1: multiplier used to generate a number of initial solutions (β1n solutions are generated); 

β2: number of vertices in the initial solution; 

β3: multiplier used to select the solutions to be retained (β3n solutions are selected); 

β4: percentage of the best solution to which the mega-procedure MP1 is applied; 

%: percentage deviation of the heuristic solution value with respect to the optimum; 

Seconds: computation time in seconds. 
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We first observe that irrespective of the parameter values, MGA always yields very accurate 

solutions within short computing times. For MCP1, irrespective of parameter values, MGA always 

yields average deviations not exceeding 0.45% of the optimum within 8 to 15 seconds of 

computing time. This can be compared with an average deviation of 0.69% and an average 

computing time of 75 seconds (for a tabu search heuristic coded in C++ and run on a Sun Ultra 60 

computer running at 300 MHz) obtained by Moreno Pérez, Moreno-Vega and Rodríguez Martín1. 

For MCP2, our average deviation is always below 1.46% within 2 to 8 seconds, compared to an 

average deviation of 1.47% and an average running time of 32 seconds for Moreno Pérez, 

Moreno-Vega and Rodríguez Martín1. It should be stressed that our results are for a greedy 

procedure whereas Moreno Pérez, Moreno-Vega and Rodríguez Martín1 use tabu search. 

Our results also show that using β1= 3 or 5 is much better than β1 = 1. In other words, it pays to 

start with a larger pool of initial solutions. The algorithm seems much less sensitive to the other 

three parameters β2, β3 and β4 although the best solutions were produced by using β1 = 5, β3 = 1 

and β2 = 3 or 4. 

Random Keys Evolutionary Algorithm results and best parameters 

We first summarize, in Table 3, the average results obtained with RKEA for MCP1 and MCP2 

on the modified TSPLIB instances. Two new headings are used in this table: 

γ1: number of successive iterations without improvement; 

γ2: proportion of population best solutions directly moved to the new population. 

With respect to MGA, the computation times of RKEA are much higher (averages range from 

53 to 161 seconds for MCP1 and from 85 to 437 seconds for MCP2) but accuracy is much 

improved (average deviation range from 0.16% to 0.27% for MCP1 and from 0.31% to 0.67% for 

MCP2). In contrast, minimum deviation over five runs obtained by Moreno Pérez, Moreno-Vega 

and Rodríguez Martín1 are 0.25% and 0.56% for MCP1 and MCP2, respectively. 

As expected a larger value of γ1 yields better accuracy and larger computation times, but it is 

more difficult to assess the behaviour of the algorithm with respect to γ2. 

Finally, we present in Tables 4 and 5 individual results for each of MCP1 and MCP2 instances. 

We present average and minimum deviations as well as average computation times for the Moreno 
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Pérez, Moreno-Vega and Rodríguez Martín1 Variable Neighbourhood Tabu Search (VNTS) 

heuristic and for RKEA (γ1 = 5). It should be noted that the VNTS minimum and average results 

were obtained by running five times the same version of the heuristic (which contains random 

components), whereas the RKEA minimum and average results were obtained by successively 

running it with five different values of γ2 (20, 25, 30, 35 and 40). A summary of the statistics of 

Tables 4 and 5 is presented in Table 6. It can be seen that RKEA is superior to VNTS both in 

terms of the average deviation from the optimum and in terms of the proportion of optimal 

solutions. 

Conclusions 

We have presented two heuristics for two versions of the Median Cycle Problem, a 

combinatorial optimization problem arising, for example, in the design of telecommunications 

networks. The first of these heuristics, the Multistart Greedy Add (MGA) heuristic, quickly 

constructs a solution by means of a greedy mechanism. Despite its relative simplicity, MGA 

produces within very short computing times highly accurate solutions and compares well with a 

more elaborate Variable Neighbourhood Tabu Search heuristic developed by Moreno Pérez, 

Moreno-Vega and Rodríguez Martín1. The second heuristic (RKEA) applies evolutionary search to 

improve upon the solutions produced by MGA. Its accuracy level is much higher than that of the 

MGA but computation times increase as a result. However, these times remain reasonable given 

the fact that the MCP usually involves medium or long term decisions which do not call for 

instantaneous solutions. 
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Table 1: Multistart Greedy Add results for the 52 MCP1 test problems 
β1 β2 β4 β3 = 0.5 β3 = 1 

   % Seconds % Seconds
  5 0.41 5.4 0.39 9.3 
  10 0.43 5.4 0.38 9.1 
 2 15 0.43 5.3 0.40 8.9 
  20 0.41 5.1 0.45 8.5 
  5 0.38 5.2 0.34 9.3 
1  10 0.44 5.3 0.34 9.1 
 3 15 0.37 5.1 0.31 9.0 
  20 0.40 4.8 0.37 8.5 
  5 0.42 5.4 0.37 9.6 
  10 0.39 5.1 0.37 9.4 
 4 15 0.37 5.1 0.39 9.1 
  20 0.38 4.9 0.38 8.5 
  5 0.37 8.0 0.38 11.8 
  10 0.39 7.8 0.39 11.6 
 2 15 0.38 7.7 0.35 10.9 
  20 0.41 7.4 0.39 10.6 
  5 0.35 7.3 0.35 11.2 
3  10 0.32 7.1 0.34 10.9 
 3 15 0.37 7.0 0.32 10.6 
  20 0.30 6.8 0.31 10.1 
  5 0.35 7.0 0.30 11.1 
  10 0.34 6.9 0.30 10.7 
 4 15 0.36 6.7 0.29 10.5 
  20 0.32 6.6 0.30 10.2 
  5 0.39 10.2 0.35 14.0 
  10 0.36 10.2 0.35 13.7 
 2 15 0.36 10.0 0.34 13.5 
  20 0.37 9.9 0.33 12.9 
  5 0.35 9.1 0.35 13.3 
5  10 0.28 9.0 0.35 12.6 
 3 15 0.28 8.9 0.32 12.3 
  20 0.33 8.7 0.30 12.3 
  5 0.31 8.6 0.24 12.5 
  10 0.30 8.4 0.29 12.3 
 4 15 0.34 8.4 0.29 11.9 
  20 0.30 8.2 0.30 11.8 
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Table 2: Multistart Greedy Add results for the 41 MCP2 test problems 
β1 β2 β4 = 0.5 β3 = 0.5 β3 = 1 

   % Seconds % Seconds
  5 1.46 3.1 1.15 5.3 
  10 1.43 3.1 1.36 5.1 
 2 15 1.31 3.1 1.16 5.1 
  20 1.38 2.9 1.20 4.8 
  5 1.30 3.2 1.35 5.3 
1  10 1.21 3.0 1.17 5.1 
 3 15 1.19 3.0 1.11 5.1 
  20 1.24 2.9 1.19 4.8 
  5 1.17 3.0 1.42 5.4 
  10 1.41 3.0 1.28 5.4 
 4 15 1.34 2.8 1.17 5.1 
  20 1.35 2.8 1.04 5.0 
  5 1.10 4.4 1.05 6.3 
  10 1.08 4.3 1.25 6.2 
 2 15 1.01 4.3 1.23 6.2 
  20 1.12 4.3 1.05 6.1 
  5 1.23 4.0 0.98 6.3 
3  10 1.06 4.0 0.93 6.1 
 3 15 1.16 3.9 1.03 5.9 
  20 1.00 3.9 1.12 5.7 
  5 1.13 4.1 1.10 6.1 
  10 1.03 3.8 1.18 6.1 
 4 15 0.92 3.8 1.22 6.0 
  20 1.20 3.8 1.06 5.8 
  5 1.12 5.7 1.13 7.6 
  10 1.11 5.7 0.91 7.5 
 2 15 1.05 5.6 1.03 7.4 
  20 0.93 5.5 1.05 7.2 
  5 0.98 5.2 1.02 7.1 
5  10 0.93 4.9 0.88 7.0 
 3 15 1.00 5.0 0.94 6.8 
  20 1.01 5.0 0.95 6.8 
  5 1.17 4.9 1.03 7.0 
  10 1.07 4.8 0.99 6.9 
 4 15 1.06 4.7 0.99 6.6 
  20 1.05 4.7 1.10 6.7 
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Table 3: RKEA results for MCP1 and MCP2 test problems 
γ1 γ2 MCP1 MCP2 
  

% Seconds % Seconds 
 20 0.22 70 0.58 108 
 25 0.27 65 0.49 157 
2 30 0.27 69 0.53 108 
 35 0.25 60 0.58 105 
 40 0.27 53 0.67 85 
 20 0.26 99 0.46 258 
 25 0.20 101 0.51 214 
3 30 0.21 87 0.39 254 
 35 0.24 82 0.51 152 
 40 0.24 90 0.49 153 
 20 0.24 114 0.40 367 
 25 0.21 120 0.46 268 
4 30 0.20 126 0.35 312 
 35 0.19 104 0.46 174 
 40 0.23 118 0.42 281 
 20 0.18 161 0.33 437 
 25 0.22 123 0.36 333 
5 30 0.21 148 0.31 432 
 35 0.16 155 0.40 245 

 40 0.18 144 0.39 291 
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Table 4: Results for MCP1 instances 
 VNTS RKEA  VNTS RKEA 
Name Avg Min Seconds Avg Min Seconds Name Avg Min Seconds Avg Min Seconds
Eil51A-5 0.92 0.40 4.1 1.15 0.00 2.2 KroD100-9 0.00 0.00 68.7 0.00 0.00 43.0 
Eil51A-7 0.00 0.00 5.9 0.00 0.00 2.2 KroE100-5 0.59 0.41 37.4 0.31 0.23 33.8 
Eil51A-9 0.00 0.00 2.6 0.00 0.00 1.4 KroE100-7 0.16 0.00 54.3 0.00 0.00 32.6 
ST70-5 0.12 0.00 11.2 0.00 0.00 10.6 KroE100-9 0.00 0.00 26.9 0.00 0.00 37.8 
ST70-7 0.00 0.00 20.7 0.00 0.00 6.8 Eil101-5 1.49 0.34 35.6 0.85 0.34 27.2 
ST70-9 0.00 0.00 23.6 0.00 0.00 7.6 Eil101-7 0.64 0.00 33.5 0.00 0.00 44.6 
Eil76-5 0.99 0.20 14.5 0.08 0.00 12.4 Eil101-9 0.00 0.00 49.5 0.00 0.00 34.4 
Eil76-7 0.00 0.00 21.5 0.00 0.00 9.4 Pr107-5 0.13 0.00 45.3 0.09 0.00 41.8 
Eil76-9 0.00 0.00 20.8 0.00 0.00 9.2 Pr107-7 0.00 0.00 43.6 0.01 0.00 98.4 
PR76-5 3.53 1.93 15.8 0.09 0.00 11.8 Pr107-9 0.00 0.00 100.3 0.00 0.00 64.0 
PR76-7 0.29 0.00 13.5 0.00 0.00 19.0 Pr136-5 1.51 0.04 108.6 0.37 0.19 110.0 
PR76-9 0.05 0.00 10.7 0.00 0.00 11.6 Pr136-7 1.31 0.05 86.9 0.06 0.00 429.0 
Rat99-5 1.64 1.10 36.7 1.10 0.76 54.2 Pr136-9 0.00 0.00 120.7 0.00 0.00 159.8 
Rat99-7 0.62 0.26 29.3 0.00 0.00 37.0 Pr144-5 1.93 0.69 126.9 0.71 0.52 122.8 
Rat99-9 0.00 0.00 27.3 0.00 0.00 39.0 Pr144-7 0.72 0.00 140.2 0.00 0.00 160.2 
KroA100-5 0.12 0.00 38.5 0.02 0.00 32.2 Pr144-9 0.00 0.00 174.3 0.00 0.00 331.0 
KroA100-7 1.30 0.00 44.5 0.00 0.00 33.8 KroA150-5 2.40 0.43 142.1 0.54 0.15 230.8 
KroA100-9 0.14 0.00 27.1 0.00 0.00 39.4 KroA150-7 0.37 0.00 122.2 0.01 0.00 297.2 
KroB100-5 1.04 0.26 39.2 0.06 0.02 30.8 KroA150-9 0.00 0.00 142.2 0.00 0.00 210.8 
KroB100-7 0.23 0.19 31.3 0.14 0.00 53.4 KroB150-7 0.90 0.00 131.9 0.00 0.00 225.2 
KroB100-9 0.03 0.00 32.0 0.00 0.00 31.8 KroB150-9 0.05 0.00 91.0 0.00 0.00 235.2 
KroC100-5 0.53 0.34 36.6 0.12 0.00 33.4 PR152-9 0.49 0.00 116.9 0.00 0.00 436.8 
KroC100-7 0.00 0.00 43.3 0.00 0.00 28.1 RAT195-5 3.29 2.39 301.6 2.60 2.25 549.4 
KroC100-9 0.00 0.00 85.3 0.00 0.00 36.2 RAT195-7 0.63 0.11 237.7 0.39 0.32 1309.4 
KroD100-5 2.08 0.08 37.3 0.45 0.29 37.2 KroB200-5 2.73 1.78 347.4 0.67 0.11 660.6 
KroD100-7 0.54 0.06 36.4 0.04 0.00 43.8 KroB200-7 2.47 1.79 323.5 0.05 0.00 1044.2 
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Table 5: Results for MCP2 instances 
 VNTS RKEA  VNTS RKEA 
Name Avg Min Seconds Avg Min Seconds Name Avg Min Seconds Avg Min Seconds
Eil51A-0.08 2.25 0.87 4.7 1.79 0.87 6 KroB100-0.42 0.24 0.00 24.8 0.12 0.00 272 
Eil51A-0.22 2.44 0.81 2.3 0.81 0.81 4 KroC100-0.08 1.12 0.34 38.3 0.32 0.15 191 
Eil51A-0.42 0.12 0.00 2.8 0.23 0.00 5 KroC100-0.22 0.25 0.00 29.4 0.00 0.00 199 
ST70-0.08 1.74 0.61 12.8 0.32 0.20 13 KroC100-0.42 0.11 0.11 24.1 0.02 0.00 119 
ST70-0.22 0.59 0.00 8.6 0.17 0.00 20 KroD100-0.08 1.74 1.45 41.1 0.19 0.07 216 
ST70-0.42 0.17 0.00 8.2 0.00 0.00 27 KroD100-0.22 1.36 0.40 26.6 0.13 0.00 256 
Eil76-0.08 5.70 4.91 17.0 0.83 0.74 16 KroD100-0.42 0.38 0.00 23.0 0.22 0.04 224 
Eil76-0.22 1.87 0.75 9.1 0.67 0.00 40 KroE100-0.08 1.70 1.06 39.8 0.24 0.17 96 
Eil76-0.42 0.00 0.00 9.4 0.00 0.00 26 KroE100-0.22 0.22 0.16 27.0 0.01 0.00 278 
PR76-0.08 5.39 1.06 15.2 0.24 0.02 19 KroE100-0.42 0.10 0.00 22.6 0.00 0.00 170 
PR76-0.22 1.04 0.53 10.9 0.17 0.00 48 Eil101-0.08 4.58 3.02 41.5 2.93 2.59 82 
PR76-0.42 0.29 0.01 9.4 0.01 0.00 35 Eil101-0.22 1.53 1.05 22.3 0.91 0.70 158 
Rat99-0.08 1.71 1.21 36.9 0.92 0.66 72 Eil101-0.42 0.60 0.60 20.4 0.24 0.00 178 
Rat99-0.22 0.27 0.00 28.5 0.16 0.00 113 Pr107-0.22 0.13 0.00 29.5 0.00 0.00 161 
Rat99-0.42 0.29 0.00 21.0 0.24 0.00 114 Pr107-0.42 0.15 0.00 16.9 0.00 0.00 130 
KroA100-0.08 2.39 0.87 39.9 0.02 0.00 157 Pr136-0.22 3.86 0.46 72.8 0.33 0.22 652 
KroA100-0.22 4.30 0.03 23.8 0.09 0.02 243 Pr136-0.42 0.29 0.25 49.6 0.19 0.00 456 
KroA100-0.42 0.47 0.00 20.9 0.00 0.00 207 Pr144-0.22 0.63 0.19 78.4 0.45 0.33 1880 
KroB100-0.08 1.94 0.94 40.6 0.51 0.27 164 KroA150-0.22 3.82 0.36 87.8 0.11 0.04 3429 
KroB100-0.22 2.50 0.14 25.4 0.11 0.02 317 KroB150-0.08 1.70 0.73 150.3 0.73 0.37 1717 
       KroB150-0.22 0.36 0.12 91.3 0.15 0.02 1728 
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Table 6: Average computational results for 5 runs of VNTS and RKEA (γ1 = 5) 
MCP1 MCP2  

VNTS RKEA VNTS RKEA 

Minimum deviation from the optimum (%) 0.25 0.09 0.56 0.19 

Average deviation (%) 0.69 0.19 1.47 0.36 

Average (per run) computational time in seconds 75.4 146 31.8 347 

Proportion of optimal solutions 32/52 41/52 13/41 21/41 
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