
Publié par :
Published by :
Publicación de la :

Faculté des sciences de l’administration
Université Laval
Québec (Québec) Canada G1K 7P4
Tél. Ph. Tel. : (418) 656-3644
Fax : (418) 656-7047

Édition électronique :
Electronic publishing :
Edición electrónica :

Aline Guimont
Vice-décanat - Recherche et partenariats
Faculté des sciences de l’administration

Disponible sur Internet :
Available on Internet
Disponible por Internet :

http ://www.fsa.ulaval.ca/rd
rd@fsa.ulaval.ca

DOCUMENT DE TRAVAIL 2003-020

FAST AND EFFICIENT HEURISTICS TO SOLVE TWO
VERSION OF THE MEDIAN CYCLE PROBLEM

Jacques Renaud
Fayez F. Boctor
Gilbert Laporte

Version originale :
Original manuscript :
Version original :

ISBN – 2-89524-170-8

Série électronique mise à jour :
On-line publication updated :
Seria electrónica, puesta al dia

05-2003

 1

Fast and Efficient Heuristics to Solve Two Version of the
Median Cycle Problem

Jacques Renaud1,2, Fayez F. Boctor1,2 and Gilbert Laporte3
1 Centre de Recherche sur les Technologies de l’Organisation Réseau, Université Laval, Québec, Canada G1K 7P4

2Faculté des sciences de l’administration, Université Laval, Québec, Canada G1K 7P4

3 Canada Research Chair in Distribution Management, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine,
Montréal, Canada H3T 2A7

Abstract

This article proposes a number of efficient heuristics for two versions of the
Median Cycle Problem (MCP). In both versions the aim is to construct a simple cycle
containing a subset of the vertices of a mixed graph. In the first version the objective
is to minimize the cost of cycle and the cost of assigning vertices not on the cycle to
the nearest vertex on the cycle. In the second version the objective is to minimize the
cost of the cycle subject to an upper bound on the total assignment cost. Two
heuristics are developed. The first, called the multistart greedy add heuristic, is
composed of two main phases. In the first phase, a cycle composed of a limited
number of randomly chosen vertices is constructed and augmented by iteratively
adding the vertex yielding the largest cost reduction until either no further reduction is
possible (for the first version) or the assignment cost is below the upper bound (for
the second version). The second phase applies a number of improvement routines.
The second heuristic is a random keys evolutionary algorithm. Computational results
on a number of benchmark test instances show that the proposed heuristics are highly
efficient for both versions of the problem, and superior to the only other available
heuristic for these two versions of the problem.

Key words: Median cycle problem, greedy add heuristic, evolutionary algorithm

Introduction

The purpose of this article is to describe heuristics for two versions of the Median Cycle

Problem (MCP) defined as follows. Let G = (V, E∪ A) be a complete mixed graph where V = {v1,

v2, …, vn} is the vertex set, E = {[vi,vj]: vi, vj∈ V, i<j} is the edge set and A = {(vi, vj): vi, vj∈ V} is

the arc set. The vertex v1 is referred to as the depot, each edge is associated with a non-negative

routing cost cij and each arc is associated with a non-negative assignment cost dij. The first version

of the median cycle problem, called MCP1, is to determine a Hamiltonian cycle through a subset

 2

V' of V including v1 that minimizes the sum of the routing cost of the cycle and the assignment cost

of the vertices not on the cycle to their nearest vertex on the cycle. The routing cost r(V') is the

sum of all edge costs on the cycle, and the assignment cost a(V') is computed as { }∑
∈ ∈'\ '

 min
VVv

ijVv
i

j

d .

The second version, called MCP2, is to determine a Hamiltonian cycle over V' that minimizes

r(V'), subject to a(V') ≤ d0.

Both versions of the MCP are solved by Moreno Pérez, Moreno-Vega and Rodríguez Martín1

by means of a variable neighbourhood tabu search heuristic. Labbé, Laporte, Rodríguez Martín,

and Salazar González2,3 also provide integer linear programming formulations and develop a

branch-an-cut algorithm for the MCP1 and MCP2. They use the appellation “Ring Star Problem”

for MCP1.

Applications of MCP1 arise in the design of telecommunications networks in which user nodes

are connected to concentrators lying on a backbone network linked to a root (depot)4,5. Both

versions of the MCP have applications in the design of circular metro lines or motorways where

the cost of a circular structure has to be weighted against its access costs. Another application is

the location of post-boxes where both collection cost and user access time has to be considered6.

The MCP is related to a number of Cycle Problems in which it is required to construct a cycle

through a subset of vertices of a graph7. It can also be viewed as a Location Routing Problem8. In

these problems, there may be constraints on the cycle length, or on the distance between the cycle

and vertices not on it, or penalties for not visiting vertices, or profits for visiting them. Well known

examples include the Traveling Salesman Problem with Non-Visiting Penalties9, the Selective

Traveling Salesman Problem10,11, the Prize Collecting Traveling Salesman Problem12 and the

Covering Tour Problem13. Similar problems exist in context where a structure such as a path or a

tree must be located through a subset of the vertices of a graph14,15.

Our aim is to present two new heuristics for MCP1 and MCP2, both of which outperform tabu

search. The first heuristic, called Multistart Greedy Add (MGA) is a multistart greedy construction

heuristic followed by an improvement phase. The second, called Random Keys Evolutionary

Algorithm (RKEA), is a mechanism combining and improving solutions produced by MGA. These

heuristics will be presented in the next sections. This will be followed by computational results

and by our conclusions.

 3

Basic procedures for the Multistart Greedy Add Heuristic

As is the case in a number of location-routing problems, simple construction and improvement

heuristics tend to produce rather poor results on the MCP. This is due to the fact that removing a

vertex from the cycle or introducing a new vertex has repercussions not only on the cycle itself,

but also on the assignment cost. To obtain good results, it is necessary to produce a right blend of

cycle reduction, cycle augmentation and cycle improvement operations. In what follows, we

present five basic procedures used as building blocks for MGA, followed, in the next section, by

the description by the MGA itself. The five basic procedures are called cycle reduction, cycle

augmentation, vertex exchange, cycle improvement and cycle perturbation.

Cycle reduction

Consider in turn each vertex vj ∈ V’, where V’ is the set of vertices on the cycle, its predecessor

vi and its successor vk. Compute: 1) the saving sj = cij + cjk – cik, obtained by removing vj from the

cycle and reconnecting vi with vk, and, 2) a penalty pj obtained by reassigning vj and all vertices

previously assigned to vj to their closest vertex on the cycle.

In MCP1, remove the vertex vj yielding { }jjVv
ps

j

−
∈

 max
'

 as long as this value is positive. In

MCP2, remove the vertex vj yielding { }jVv
s

j

 max
'∈

 as long as this value is positive and the updated

assignment cost does not exceed d0.

Cycle augmentation

Consider in turn each vertex vj not on the cycle and compute: 1) the loss sj = cij + cjk –cik, and 2)

the gain pj obtained by reassigning vertices not on the cycle to vj if this yields a smaller assignment

cost (the assignment cost of vj is now zero).

In MCP1, insert the vertex vj yielding { }jjVVv
sp

j

−
∈

 max
'\

 as long as this value is positive. In a

feasible MCP2 solution, insert the vertex vj yielding { }jVVv
s

j

 min
'\∈

 as long as this value is negative

(this can only happen if the routing cost matrix does not satisfy the triangle inequality). In an

 4

infeasible MCP2 solution, insert the vertex vj yielding { }jVVv
s

j

 min
'\∈

. In the latter case, this means that

the routing cost increases can be accepted in order to reach feasibility.

Vertex exchange

Consider each vertex pair {vj, vl} where vj ∈ V’ and vl ∈ V\V’. Remove vj from the cycle and

insert vl in the cycle as described in the cycle reduction and augmentation procedures. In MCP1

implement the vertex exchange yielding the maximal total cost reduction as long as it is positive.

In a feasible MCP2 solution implement the vertex exchange yielding the largest routing cost

reduction as long as it is positive and the solution remains feasible. This procedure is never applied

to an infeasible MCP2 solution.

Cycle improvement

Attempt to improve the routing cost by means of a Traveling Salesman Problem (TSP)

heuristic We have used both the I3 heuristic16 and the Lin-Kerninghan17 implementation of

Helsgaum18.

Cycle perturbation

The perturbation procedure repeats the following three steps for α = 0.10, 0.09, …, 0. The role

of α is to generate several different perturbated solutions. For each value of α, the procedure is

applied to a feasible initial solution in which the cycle cost is equal to z.

1) Select the unrouted vertex vj ∈ V\V’ yielding the largest gain pj. Insert this vertex in the cycle

in the position yielding the minimal insertion cost as long as the routing cost does not

exceed (1+α)z. Repeat this step as long as this condition holds and the cycle contains fewer

than n vertices.

2) Apply the Cycle reduction procedure described above.

3) Apply the Cycle improvement procedure using I3.

 5

Description of the Multistart Greedy Add Heuristic

For simplicity we first define two mega-procedures involving the above basic procedures.

These are then used in the MGA heuristic.

Mega-procedure MP1

Starting from a feasible solution, repeatedly apply Cycle reduction, Cycle augmentation, Vertex

exchange and I3 as long as the solution improves.

Mega-procedure MP2

Starting from a feasible solution, repeatedly apply MP1 and Cycle perturbation as long as the

solution improves.

Detailed Description of MGA

The Multistart Greedy Add heuristic works with four parameters: β1 ∈ {1, 3, 5}, β2 ∈ {2, 3, 4},

β3 ∈ {0.5, 1} and β4 ∈ {5, 10, 15, 20}. It applies the following five steps.

1) Generate β1n solutions as follows. Create a first cycle containing β2 randomly selected

vertices (including the depot). Apply the Cycle augmentation procedure.

2) Retain the best β3n solutions (with β3 ≤ β1).

3) Apply MP1 to the best β4% of these solutions where β4 ≤ 20%.

4) Apply MP1 to another (25-β4)% of the remaining solutions, randomly selected.

5) Apply MP2 and Lin-Kerninghan heuristic to the overall best solution.

A Random Keys Evolutionary Algorithm

Since MGA produces a family of good solutions at the end of Step 4, it is natural to use these as

the basis of an evolutionary algorithm in the hope of generating even better solutions. Our random

keys evolutionary algorithm was constructed in this spirit. It works on the β3n solutions generated

at the end of Step 4 of the MGA heuristic. It uses the random keys encoding mechanism developed

by Bean19. We first describe this scheme followed by the evolutionary algorithm itself.

 6

The random keys encoding mechanism

In our implementation of the random keys encoding mechanism, a random key xi ∈ [0,1] is

assigned to each vertex vi on the cycle (v1, …, vi, …, vj, …) where x1=0. These keys are such that if

vj comes after vi on a cycle, then xj > xi. For example, the cycle (v1,v3,v7,v4) could be assigned the

keys (0, 0.12, 0.39, 0.46). For n = 7, this can also be represented as shown in Figure 1. In this

figure, the sign “-”means that the corresponding vertex does not appear on the cycle.

Vertex 1 2 3 4 5 6 7

Key 0 - 0.12 0.46 - - 0.39

Figure 1: Random keys representation of a solution

Using these keys, applying a crossover operator to two parent solutions becomes easy. A

crossover position is selected to combine the first part of the first parent with the second part of the

second parent. Each vertex retains its key, which easily enables the reconstruction of the offspring

(if two keys have the same value, the corresponding vertices are ordered arbitrarily). Figure 2

depicts a crossover of the two cycles (v1,v3,v7,v4) and (v1,v2,v5,v4,v7,v3) yielding a new cycle

(v1,v3,v4,v5,v7). The crossover position in this example is after vertex 4. The interest of this key

encoding mechanism is that it easily allows for recombination of cycles of different lengths and

also for large solution diversification. Thus a vertex near the end of one of the two parent solutions

could move to an earlier position in the offspring solution. This process does not always yield a

feasible offspring for MCP2. This may be the case if the offspring corresponds to a cycle

containing very few vertices thus causing the total assignment cost of vertices not on the cycle to

exceed the upper bound d0. However, feasibility can be regained by introducing additional vertices

on the cycle through the application of the Cycle augmentation procedure. We have also tested a

variant of the crossover operator where two offspring are generated instead of only one but it

turned out that generating only one offspring was better.

 7

Vertex 1 2 3 4 5 6 7
Parent 1

Key 0 - 0.12 0.46 - - 0.39

Vertex 1 2 3 4 5 6 7
Parent 2

Key 0 0.30 0.95 0.76 0.70 - 0.81

Vertex 1 2 3 4 5 6 7
Offspring

Key 0 - 0.12 0.46 0.70 - 0.81

Figure 2: Crossover operation and the resulting offspring

Detailed description of the Random Keys Evolutionary Algorithm

The proposed Random Keys Evolutionary Algorithm uses two parameters γ1 and γ2. The first

parameter controls the number of successive iterations without improvement in the best known

solution. The second parameter controls the proportion of solutions transferred from one

population to another in Step 2 below. The algorithm works on a population P composed of the

β3n solutions generated at the end of Step 4 of MGA and transforms it into another population P'

of the same size. The population P' is derived from P by following these five steps.

1) Set P' = ∅ .�

2) Move to P' the subset P* of the γ2β3n best solutions of P, where 0 ≤ γ2 ≤ 1.

3) Generate (1-γ2) β3n new solutions to be included in P'. Each new solution is generated by

randomly selecting two solutions from P, combining them using the crossover operator and

applying MP1 to the offspring.

4) Starting with the worst offspring just created, replace it by a solution P\P* if its cost is less

than that of the offspring.

5) Set P = P'.

 8

Repeat steps 1 to 5 as long as no improvement has been observed for γ1 consecutive iterations.

Then apply MP2 and Lin-Kernighan heuristic to the best solution of P.

Computational Results

The Multistart Greedy Add heuristic and the Random Keys Evolutionary Algorithm were coded

in Delphi 3.0 and run under Windows 2000 on an IBM Pentium III Desktop, 900 MHz. We first

describe our test instances, followed by results obtained with the Multistart Greedy Add heuristic

and the Random Keys Evolutionary Algorithm.

Test instances

Both heuristics were tested on a subset of the instances used by Labbé et al2,3 which are derived

from the TSPLIB instances20 with 51 ≤ n ≤ 200 and distance matrices lij. To define the routing and

assignment costs, we have proceeded as in Labbé et al2,3. For MCP1 instances, we have set

cij = α1lij and dij = (10-α1)lij, where α1∈ {5,7,9}. For MCP2 instances, we have set cij = dij = lij. To

determine d0, we have first computed l0, the cost of the shortest cycle with respect to the lij

distances including the depot and three other vertices. We have then set d0 = α2l0, where

α2 ∈ {0.08, 0.22, 0.42}. We have restricted our tests to the 52 instances of MCP1 and the 41

instances of MCP2 for which Labbé et al2,3 have produced optimal solutions.

Multistart Greedy Add results and best parameters

We have first conducted tests for the MGA heuristic over the 52 MCP1 and the 41 MCP2

instances, with several values of the parameters β1, β2, β3 and β4. We present in Tables 1 and 2

average results over all instances considered for each problem. The table headings are as follows:

β1: multiplier used to generate a number of initial solutions (β1n solutions are generated);

β2: number of vertices in the initial solution;

β3: multiplier used to select the solutions to be retained (β3n solutions are selected);

β4: percentage of the best solution to which the mega-procedure MP1 is applied;

%: percentage deviation of the heuristic solution value with respect to the optimum;

Seconds: computation time in seconds.

 9

We first observe that irrespective of the parameter values, MGA always yields very accurate

solutions within short computing times. For MCP1, irrespective of parameter values, MGA always

yields average deviations not exceeding 0.45% of the optimum within 8 to 15 seconds of

computing time. This can be compared with an average deviation of 0.69% and an average

computing time of 75 seconds (for a tabu search heuristic coded in C++ and run on a Sun Ultra 60

computer running at 300 MHz) obtained by Moreno Pérez, Moreno-Vega and Rodríguez Martín1.

For MCP2, our average deviation is always below 1.46% within 2 to 8 seconds, compared to an

average deviation of 1.47% and an average running time of 32 seconds for Moreno Pérez,

Moreno-Vega and Rodríguez Martín1. It should be stressed that our results are for a greedy

procedure whereas Moreno Pérez, Moreno-Vega and Rodríguez Martín1 use tabu search.

Our results also show that using β1= 3 or 5 is much better than β1 = 1. In other words, it pays to

start with a larger pool of initial solutions. The algorithm seems much less sensitive to the other

three parameters β2, β3 and β4 although the best solutions were produced by using β1 = 5, β3 = 1

and β2 = 3 or 4.

Random Keys Evolutionary Algorithm results and best parameters

We first summarize, in Table 3, the average results obtained with RKEA for MCP1 and MCP2

on the modified TSPLIB instances. Two new headings are used in this table:

γ1: number of successive iterations without improvement;

γ2: proportion of population best solutions directly moved to the new population.

With respect to MGA, the computation times of RKEA are much higher (averages range from

53 to 161 seconds for MCP1 and from 85 to 437 seconds for MCP2) but accuracy is much

improved (average deviation range from 0.16% to 0.27% for MCP1 and from 0.31% to 0.67% for

MCP2). In contrast, minimum deviation over five runs obtained by Moreno Pérez, Moreno-Vega

and Rodríguez Martín1 are 0.25% and 0.56% for MCP1 and MCP2, respectively.

As expected a larger value of γ1 yields better accuracy and larger computation times, but it is

more difficult to assess the behaviour of the algorithm with respect to γ2.

Finally, we present in Tables 4 and 5 individual results for each of MCP1 and MCP2 instances.

We present average and minimum deviations as well as average computation times for the Moreno

 10

Pérez, Moreno-Vega and Rodríguez Martín1 Variable Neighbourhood Tabu Search (VNTS)

heuristic and for RKEA (γ1 = 5). It should be noted that the VNTS minimum and average results

were obtained by running five times the same version of the heuristic (which contains random

components), whereas the RKEA minimum and average results were obtained by successively

running it with five different values of γ2 (20, 25, 30, 35 and 40). A summary of the statistics of

Tables 4 and 5 is presented in Table 6. It can be seen that RKEA is superior to VNTS both in

terms of the average deviation from the optimum and in terms of the proportion of optimal

solutions.

Conclusions

We have presented two heuristics for two versions of the Median Cycle Problem, a

combinatorial optimization problem arising, for example, in the design of telecommunications

networks. The first of these heuristics, the Multistart Greedy Add (MGA) heuristic, quickly

constructs a solution by means of a greedy mechanism. Despite its relative simplicity, MGA

produces within very short computing times highly accurate solutions and compares well with a

more elaborate Variable Neighbourhood Tabu Search heuristic developed by Moreno Pérez,

Moreno-Vega and Rodríguez Martín1. The second heuristic (RKEA) applies evolutionary search to

improve upon the solutions produced by MGA. Its accuracy level is much higher than that of the

MGA but computation times increase as a result. However, these times remain reasonable given

the fact that the MCP usually involves medium or long term decisions which do not call for

instantaneous solutions.

Acknowledgements

This work was partially supported by the Canadian Natural Sciences and Engineering Research

Council (NSERC) under grants OPG0039682, OPG0036509 and OPG0172633. This support is

gratefully acknowledged. Thanks are also due to Keld Helsgaum who provided us with his Lin-

Kernighan code and to Juan José Salazar González and Inmaculada Rodríguez Martín who

provided their solutions of the TSPLIB instances. Finally, we thank two referees for their valuable

comments.

 11

Table 1: Multistart Greedy Add results for the 52 MCP1 test problems
β1 β2 β4 β3 = 0.5 β3 = 1

 % Seconds % Seconds
 5 0.41 5.4 0.39 9.3
 10 0.43 5.4 0.38 9.1
 2 15 0.43 5.3 0.40 8.9
 20 0.41 5.1 0.45 8.5
 5 0.38 5.2 0.34 9.3
1 10 0.44 5.3 0.34 9.1
 3 15 0.37 5.1 0.31 9.0
 20 0.40 4.8 0.37 8.5
 5 0.42 5.4 0.37 9.6
 10 0.39 5.1 0.37 9.4
 4 15 0.37 5.1 0.39 9.1
 20 0.38 4.9 0.38 8.5
 5 0.37 8.0 0.38 11.8
 10 0.39 7.8 0.39 11.6
 2 15 0.38 7.7 0.35 10.9
 20 0.41 7.4 0.39 10.6
 5 0.35 7.3 0.35 11.2
3 10 0.32 7.1 0.34 10.9
 3 15 0.37 7.0 0.32 10.6
 20 0.30 6.8 0.31 10.1
 5 0.35 7.0 0.30 11.1
 10 0.34 6.9 0.30 10.7
 4 15 0.36 6.7 0.29 10.5
 20 0.32 6.6 0.30 10.2
 5 0.39 10.2 0.35 14.0
 10 0.36 10.2 0.35 13.7
 2 15 0.36 10.0 0.34 13.5
 20 0.37 9.9 0.33 12.9
 5 0.35 9.1 0.35 13.3
5 10 0.28 9.0 0.35 12.6
 3 15 0.28 8.9 0.32 12.3
 20 0.33 8.7 0.30 12.3
 5 0.31 8.6 0.24 12.5
 10 0.30 8.4 0.29 12.3
 4 15 0.34 8.4 0.29 11.9
 20 0.30 8.2 0.30 11.8

 12

Table 2: Multistart Greedy Add results for the 41 MCP2 test problems
β1 β2 β4 = 0.5 β3 = 0.5 β3 = 1

 % Seconds % Seconds
 5 1.46 3.1 1.15 5.3
 10 1.43 3.1 1.36 5.1
 2 15 1.31 3.1 1.16 5.1
 20 1.38 2.9 1.20 4.8
 5 1.30 3.2 1.35 5.3
1 10 1.21 3.0 1.17 5.1
 3 15 1.19 3.0 1.11 5.1
 20 1.24 2.9 1.19 4.8
 5 1.17 3.0 1.42 5.4
 10 1.41 3.0 1.28 5.4
 4 15 1.34 2.8 1.17 5.1
 20 1.35 2.8 1.04 5.0
 5 1.10 4.4 1.05 6.3
 10 1.08 4.3 1.25 6.2
 2 15 1.01 4.3 1.23 6.2
 20 1.12 4.3 1.05 6.1
 5 1.23 4.0 0.98 6.3
3 10 1.06 4.0 0.93 6.1
 3 15 1.16 3.9 1.03 5.9
 20 1.00 3.9 1.12 5.7
 5 1.13 4.1 1.10 6.1
 10 1.03 3.8 1.18 6.1
 4 15 0.92 3.8 1.22 6.0
 20 1.20 3.8 1.06 5.8
 5 1.12 5.7 1.13 7.6
 10 1.11 5.7 0.91 7.5
 2 15 1.05 5.6 1.03 7.4
 20 0.93 5.5 1.05 7.2
 5 0.98 5.2 1.02 7.1
5 10 0.93 4.9 0.88 7.0
 3 15 1.00 5.0 0.94 6.8
 20 1.01 5.0 0.95 6.8
 5 1.17 4.9 1.03 7.0
 10 1.07 4.8 0.99 6.9
 4 15 1.06 4.7 0.99 6.6
 20 1.05 4.7 1.10 6.7

 13

Table 3: RKEA results for MCP1 and MCP2 test problems
γ1 γ2 MCP1 MCP2

% Seconds % Seconds
 20 0.22 70 0.58 108
 25 0.27 65 0.49 157
2 30 0.27 69 0.53 108
 35 0.25 60 0.58 105
 40 0.27 53 0.67 85
 20 0.26 99 0.46 258
 25 0.20 101 0.51 214
3 30 0.21 87 0.39 254
 35 0.24 82 0.51 152
 40 0.24 90 0.49 153
 20 0.24 114 0.40 367
 25 0.21 120 0.46 268
4 30 0.20 126 0.35 312
 35 0.19 104 0.46 174
 40 0.23 118 0.42 281
 20 0.18 161 0.33 437
 25 0.22 123 0.36 333
5 30 0.21 148 0.31 432
 35 0.16 155 0.40 245

 40 0.18 144 0.39 291

 14

Table 4: Results for MCP1 instances
 VNTS RKEA VNTS RKEA
Name Avg Min Seconds Avg Min Seconds Name Avg Min Seconds Avg Min Seconds
Eil51A-5 0.92 0.40 4.1 1.15 0.00 2.2 KroD100-9 0.00 0.00 68.7 0.00 0.00 43.0
Eil51A-7 0.00 0.00 5.9 0.00 0.00 2.2 KroE100-5 0.59 0.41 37.4 0.31 0.23 33.8
Eil51A-9 0.00 0.00 2.6 0.00 0.00 1.4 KroE100-7 0.16 0.00 54.3 0.00 0.00 32.6
ST70-5 0.12 0.00 11.2 0.00 0.00 10.6 KroE100-9 0.00 0.00 26.9 0.00 0.00 37.8
ST70-7 0.00 0.00 20.7 0.00 0.00 6.8 Eil101-5 1.49 0.34 35.6 0.85 0.34 27.2
ST70-9 0.00 0.00 23.6 0.00 0.00 7.6 Eil101-7 0.64 0.00 33.5 0.00 0.00 44.6
Eil76-5 0.99 0.20 14.5 0.08 0.00 12.4 Eil101-9 0.00 0.00 49.5 0.00 0.00 34.4
Eil76-7 0.00 0.00 21.5 0.00 0.00 9.4 Pr107-5 0.13 0.00 45.3 0.09 0.00 41.8
Eil76-9 0.00 0.00 20.8 0.00 0.00 9.2 Pr107-7 0.00 0.00 43.6 0.01 0.00 98.4
PR76-5 3.53 1.93 15.8 0.09 0.00 11.8 Pr107-9 0.00 0.00 100.3 0.00 0.00 64.0
PR76-7 0.29 0.00 13.5 0.00 0.00 19.0 Pr136-5 1.51 0.04 108.6 0.37 0.19 110.0
PR76-9 0.05 0.00 10.7 0.00 0.00 11.6 Pr136-7 1.31 0.05 86.9 0.06 0.00 429.0
Rat99-5 1.64 1.10 36.7 1.10 0.76 54.2 Pr136-9 0.00 0.00 120.7 0.00 0.00 159.8
Rat99-7 0.62 0.26 29.3 0.00 0.00 37.0 Pr144-5 1.93 0.69 126.9 0.71 0.52 122.8
Rat99-9 0.00 0.00 27.3 0.00 0.00 39.0 Pr144-7 0.72 0.00 140.2 0.00 0.00 160.2
KroA100-5 0.12 0.00 38.5 0.02 0.00 32.2 Pr144-9 0.00 0.00 174.3 0.00 0.00 331.0
KroA100-7 1.30 0.00 44.5 0.00 0.00 33.8 KroA150-5 2.40 0.43 142.1 0.54 0.15 230.8
KroA100-9 0.14 0.00 27.1 0.00 0.00 39.4 KroA150-7 0.37 0.00 122.2 0.01 0.00 297.2
KroB100-5 1.04 0.26 39.2 0.06 0.02 30.8 KroA150-9 0.00 0.00 142.2 0.00 0.00 210.8
KroB100-7 0.23 0.19 31.3 0.14 0.00 53.4 KroB150-7 0.90 0.00 131.9 0.00 0.00 225.2
KroB100-9 0.03 0.00 32.0 0.00 0.00 31.8 KroB150-9 0.05 0.00 91.0 0.00 0.00 235.2
KroC100-5 0.53 0.34 36.6 0.12 0.00 33.4 PR152-9 0.49 0.00 116.9 0.00 0.00 436.8
KroC100-7 0.00 0.00 43.3 0.00 0.00 28.1 RAT195-5 3.29 2.39 301.6 2.60 2.25 549.4
KroC100-9 0.00 0.00 85.3 0.00 0.00 36.2 RAT195-7 0.63 0.11 237.7 0.39 0.32 1309.4
KroD100-5 2.08 0.08 37.3 0.45 0.29 37.2 KroB200-5 2.73 1.78 347.4 0.67 0.11 660.6
KroD100-7 0.54 0.06 36.4 0.04 0.00 43.8 KroB200-7 2.47 1.79 323.5 0.05 0.00 1044.2

 15

Table 5: Results for MCP2 instances
 VNTS RKEA VNTS RKEA
Name Avg Min Seconds Avg Min Seconds Name Avg Min Seconds Avg Min Seconds
Eil51A-0.08 2.25 0.87 4.7 1.79 0.87 6 KroB100-0.42 0.24 0.00 24.8 0.12 0.00 272
Eil51A-0.22 2.44 0.81 2.3 0.81 0.81 4 KroC100-0.08 1.12 0.34 38.3 0.32 0.15 191
Eil51A-0.42 0.12 0.00 2.8 0.23 0.00 5 KroC100-0.22 0.25 0.00 29.4 0.00 0.00 199
ST70-0.08 1.74 0.61 12.8 0.32 0.20 13 KroC100-0.42 0.11 0.11 24.1 0.02 0.00 119
ST70-0.22 0.59 0.00 8.6 0.17 0.00 20 KroD100-0.08 1.74 1.45 41.1 0.19 0.07 216
ST70-0.42 0.17 0.00 8.2 0.00 0.00 27 KroD100-0.22 1.36 0.40 26.6 0.13 0.00 256
Eil76-0.08 5.70 4.91 17.0 0.83 0.74 16 KroD100-0.42 0.38 0.00 23.0 0.22 0.04 224
Eil76-0.22 1.87 0.75 9.1 0.67 0.00 40 KroE100-0.08 1.70 1.06 39.8 0.24 0.17 96
Eil76-0.42 0.00 0.00 9.4 0.00 0.00 26 KroE100-0.22 0.22 0.16 27.0 0.01 0.00 278
PR76-0.08 5.39 1.06 15.2 0.24 0.02 19 KroE100-0.42 0.10 0.00 22.6 0.00 0.00 170
PR76-0.22 1.04 0.53 10.9 0.17 0.00 48 Eil101-0.08 4.58 3.02 41.5 2.93 2.59 82
PR76-0.42 0.29 0.01 9.4 0.01 0.00 35 Eil101-0.22 1.53 1.05 22.3 0.91 0.70 158
Rat99-0.08 1.71 1.21 36.9 0.92 0.66 72 Eil101-0.42 0.60 0.60 20.4 0.24 0.00 178
Rat99-0.22 0.27 0.00 28.5 0.16 0.00 113 Pr107-0.22 0.13 0.00 29.5 0.00 0.00 161
Rat99-0.42 0.29 0.00 21.0 0.24 0.00 114 Pr107-0.42 0.15 0.00 16.9 0.00 0.00 130
KroA100-0.08 2.39 0.87 39.9 0.02 0.00 157 Pr136-0.22 3.86 0.46 72.8 0.33 0.22 652
KroA100-0.22 4.30 0.03 23.8 0.09 0.02 243 Pr136-0.42 0.29 0.25 49.6 0.19 0.00 456
KroA100-0.42 0.47 0.00 20.9 0.00 0.00 207 Pr144-0.22 0.63 0.19 78.4 0.45 0.33 1880
KroB100-0.08 1.94 0.94 40.6 0.51 0.27 164 KroA150-0.22 3.82 0.36 87.8 0.11 0.04 3429
KroB100-0.22 2.50 0.14 25.4 0.11 0.02 317 KroB150-0.08 1.70 0.73 150.3 0.73 0.37 1717
 KroB150-0.22 0.36 0.12 91.3 0.15 0.02 1728

 16

Table 6: Average computational results for 5 runs of VNTS and RKEA (γ1 = 5)
MCP1 MCP2

VNTS RKEA VNTS RKEA

Minimum deviation from the optimum (%) 0.25 0.09 0.56 0.19

Average deviation (%) 0.69 0.19 1.47 0.36

Average (per run) computational time in seconds 75.4 146 31.8 347

Proportion of optimal solutions 32/52 41/52 13/41 21/41

References

1. Moreno Pérez J, Moreno-Vega M and Rodríguez Martín I (2002). Variable neighbourhood

tabu search and its application to the median cycle problem, To appear in European Journal of

Operational Research, 2004.

2. Labbé M, Laporte G, Rodríguez Martín I and Salazar González JJ (2001). The Ring star

problem: Polyhedral analysis and exact algorithm, unpublished manuscript.

3. Labbé M, Laporte G, Rodríguez Martín I and Salazar González JJ (2001). The median cycle

problem, unpublished manuscript.

4. Gourdin E, Labbé M and Yaman H (2002). Telecommunication and location, in Facility

location: Applications and theory, Drezner, Z. and Hamacher H. (eds), Springer, Berlin, 275-

305.

5. Klincewicz J (1998). Hub location in backbone/tributary network design: A review, Location

Science, 6, 307-335.

6. Labbé M and Laporte G (1986). Maximizing user convenience and postal service efficiency in

post box location, Belgian Journal of Operations Research, Statistics and Computer Science,

26, 21-35.

7. Bauer P (1997). The circuit polytope: Facets, Mathematics of Operations Research, 22, 110-

145.

8. Laporte G (1988). Location-routing problems. In Vehicle Routing: Methods and Studies, B. L.

Golden and A. A. Assad (Editors). North-Holland, Amsterdam, 1988, 163-197.

9. Volgenant T and Jonker R (1987). On some generalizations of the traveling salesman problem,

Journal of the Operational Research Society, 38, 1073-1079.

 17

10. Gendreau M, Laporte G and Semet F (1998). The selective traveling salesman problem,

Networks, 32, 263-273.

11. Fischetti M, Salazar González JJ and Toth P (1998). Solving the orienteering problem through

branch-and-cut, INFORMS Journal on Computing, 10, 133-148.

12. Balas E (1989). The prize collecting traveling salesman problem, Networks, 19, 621-636.

13. Gendreau M, Laporte G and Semet F (1997). The covering tour problem, Operations

Research, 45, 568-576.

14. Labbé M, Laporte G and Rodríguez Martín I (1998). Path, tree and cycle location, in Fleet

Management and Logistics, T. Crainic and G. Laporte (edts), Kluwer, Boston, 187-204.

15. Feremans C, Labbé M and Laporte G (2003). Generalized network design problems, To

appear in European Journal of Operational Research.

16. Renaud J, Boctor F and Laporte G (1996). Fast composite heuristic for the symmetric

traveling salesman problem, ORSA Journal on Computing, 3, 134-143.

17. Lin S and Kernighan BW (1973). An effective heuristic algorithm for the traveling salesman

problem, Operations Research, 20, 498-516.

18. Helsgaum K (2000). Effective implementation of the Lin-Kerninghan traveling salesman

heuristic, European Journal of Operational Research, 126, 106-130.

19. Bean J (1994). Genetic algorithms and random keys for sequencing and optimization, ORSA

Journal on Computing, 6, 154-160.

20. Reinelt G (1991). TSPLIB – A Traveling salesman problem library, ORSA Journal on

Computing, 3, 376-384.

