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Abstract. In the logistics network design problem (LNDP), decisions must be made 

regarding the selection of suppliers, the location of plants and warehouses, the 

assignment of activities to these facilities, and the flows of raw materials and finished 

products in the network. This article introduces an iterated local search (ILS) heuristic for 

the LNDP variant arising when each raw material should be supplied by a unique supplier, 

and each finished product should be produced and distributed by a unique plant and a 

unique warehouse, respectively. The ILS heuristic exploits the combinatorial nature of the 

problem and relies on simple moves combined within a descent algorithm. Several 

perturbation operators are used to allow a broad exploration of the solution space. The 

performance of the algorithm is evaluated on randomly generated instances, and the 

solutions are compared with lower bounds computed by solving the LP relaxation of the 

problem. 
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Introduction

In the Logistics Network Design Problem (LNDP), decisions must be made regarding: i) the

selection of suppliers; ii) the location of plants and warehouses; iii) the assignment of raw

materials to suppliers and of finished products to plants and warehouses (i.e., the activity

mix of each facility); and iv) the flows of raw materials and finished products through the

network. These decisions must be made so as to satisfy customer demand while minimizing

the sum of fixed and variable costs associated with procurement, production, warehousing

and transportation. This paper is concerned with the deterministic LNDP arising in a

single-period and single-country environment.

The LNDP generalizes classical capacitated facility location problems (see, e.g., Aikens

(1985), Drezner (1995)) by considering multiple stages (or echelons) connected together by

product flows. In addition, the design of a logistics network often involves additional decisions

regarding technology acquisition, transportation mode selection or inventory levels. Models

for the design of multi-national networks must also take into account factors such as exchange

rates, transfer prices, duties, and income taxes (see, e.g., Arntzen et al. (1995), Vidal and

Goetschalckx (2001), Hadjinicola and Kumar (2002)). Because they involve strategic

decisions over long planning horizons, some models also incorporate stochastic elements (see,

e.g., Santoso et al. (2005)).

Following the pioneering work of Geoffrion and Graves (1974) on multi-commodity

distribution network design, a large number of models have been proposed to locate facilities

by incorporating sourcing, production and transportation aspects. Notable examples are the

studies of Brown et al. (1987), Cohen and Lee (1989), Pirkul and Jayaraman (1996),

Dogan and Goetschalckx (1999), Lakhal et al. (2001), Paquet et al. (2004) and

Martel (2005). For detailed reviews of such models, the reader is referred to the recent

surveys of Goetschalckx et al. (2002), Klose and Drexl (2005) and Meixell and

Gargeya (2005).

Recently, Cordeau et al. (2006b) have introduced a general formulation of the LNDP for

the deterministic, single-country, single-period context. This formulation integrates supplier

selection, plant location and warehouse location with product-range assignment, sourcing

decisions and transportation mode selection. The authors have described two algorithms

for solving the resulting formulation: a simplex-based branch-and-bound algorithm and a

Benders decomposition procedure. They have also proposed valid inequalities to strengthen

the LP relaxation of the model and accelerate convergence. Both approaches are capable of

solving within reasonable CPU time instances with several hundred customers but a modest
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number (i.e., a few tens) of products and potential suppliers, plant locations and warehouse

locations.

When considering large numbers of suppliers and potential plant and warehouse locations,

however, the combinatorial nature of the problem becomes more important, and solving the

problem optimally becomes very difficult. This is particularly true when single assignment

constraints are considered. Under these constraints, each raw material should be supplied by

a unique supplier while each finished product should be manufactured and distributed by a

unique plant and a unique warehouse, respectively. These constraints are especially relevant

in situations where a large number of products have a low but highly variable demand. In

this case, it is often desirable to centralize the production and distribution of each product

so as to benefit from economies of scale.

For example, the first author has recently studied a network design problem arising in

the management of spare parts used by a large public utility in Canada. In this problem,

several depots have to be located but each part should be stocked in a single depot to avoid

maintaining large inventories of slow-moving items. Obviously, centralization may lead to

higher transportation costs but the analysis has shown that the reduction in inventory costs

more than offsets the increase in transportation costs.

Under single assignment constraints, the LNDP becomes purely combinatorial and can be

reformulated using only binary variables. Solving the resulting formulation exactly through

branch-and-bound proves to be extremely difficult because of the large number of variables

and the poor lower bounds provided by the linear programming relaxation. This problem

can, however, be effectively tackled by means of local search heuristics.

Facility location and logistics network design problems can often be solved satisfactorily

by classical mathematical programming techniques such as branch-and-bound, Lagrangian

relaxation and Benders decomposition. Nevertheless, numerous heuristic algorithms have

been proposed to address different variants of these problems. Since the publication of

the Kuehn and Hamburger (1963) heuristic for warehouse location, a large number of

approximate algorithms have been devised to address location problems possessing some

combinatorial structure. Recent examples are the work of Ghosh (2003), Michel and

Van Hentenryck (2004), and Sun (2006) on tabu search for uncapacitated warehouse

location. The capacitated case has received far less attention in terms of heuristics. Recently,

Ahuja et al. (2002) have devised a very large scale neighborhood search algorithm for the

capacitated facility location problem with single-sourcing constraints. Reactive GRASP and

tabu search heuristics for this problem were also proposed by Delmaire et al. (1999).

Finally, Lapierre et al. (2004) have described a hybrid heuristic combining tabu search
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and variable neighborhood search for the design of distribution networks with transshipment

centers and general cost functions.

The purpose of this article is to introduce an iterated local search heuristic for the

LNDP with Single Assignment (LNDPSA). This heuristic is easy to implement and relies

on a number of simple yet powerful local search operators. Comparisons with the branch-

and-bound approach of Cordeau et al. (2006b) show that the proposed heuristic yields

solutions of very high quality in a fraction of the CPU time required for just solving the

linear programming relaxation of the problem.

The remainder of the paper is organized as follows. In Section 2, we formally define the

LNDPSA and introduce two mathematical formulations of the problem. In Section 3, we

then describe the iterated local search heuristic. This is followed by computational results

in Section 4, and by the conclusion.

1 Problem definition and mathematical formulation

In this section, we first introduce the notation that will be used throughout the paper. In

Section 1.1, we then recall the linear mixed-integer programming formulation of Cordeau

et al. (2006b) for the LNDP and explain how it can be modified to model the LNDPSA. We

then present in Section 1.2 a more compact, non-linear integer programming formulation.

Let F and R denote the sets of finished products and raw materials, respectively. For

every r ∈ R and every f ∈ F , let brf be the quantity of raw material r required in the

production of one unit of product f . The set of all suppliers considered by the company is

denoted by S, and Sr ⊆ S represents the subset of suppliers that can provide raw material

r ∈ R. Let also P and W denote the sets of potential locations for plants and warehouses,

respectively. For every product f ∈ F , let Pf and Wf denote the subsets of plants and

warehouses at which product f can be made and stored, respectively. Finally, let C be the

set of customers, and for every c ∈ C and f ∈ F , let af
c ≥ 0 be the demand of customer c

for product f .

For notational convenience, denote by K = R∪F the set of all commodities represented

in the model, and by O = S ∪ P ∪W and D = P ∪W ∪ C the sets of potential origins and

destinations for these commodities. Then, for every k ∈ K, define Ok ⊆ O and Dk ⊆ D as

the sets of potential origins and destinations for commodity k. More specifically, Or = Sr

for any raw material r ∈ R, and Of = Pf ∪Wf for any product f ∈ F . Similarly, possible

destinations for a raw material r are plants at which products requiring this raw material
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can be made, i.e., Dr = ∪f∈FrPf , where F r = {f ∈ F|brf > 0}. Finally, the set of possible

destinations for a product f is defined as Df =Wf ∪ Cf , where Cf = {c ∈ C|af
c > 0}.

For every k ∈ K and every o ∈ Ok, let V k
o be a binary variable equal to 1 if and only if

commodity k is assigned to origin o, and let ck
o be the fixed cost of assigning the commodity

to the origin. For instance, variable V r
s will take the value 1 if supplier s is selected to provide

raw material r, and variable V f
p will take the value 1 if product f is made at plant p. For

every origin o ∈ O, also define a binary variable Uo equal to 1 if and only if this origin is

assigned at least one commodity, and let co be the fixed cost of selecting this origin. In the

case of a supplier s ∈ S, the variable Us will take the value 1 if the supplier is selected to

provide at least one raw material. In the case of a potential plant or warehouse location,

the associated variable will take the value 1 if the corresponding location is chosen to site a

facility.

For every o ∈ O, let uo be the capacity, in equivalent units, of origin o, and for every

k ∈ K, let uk
o be the amount of capacity required by one unit of commodity k at origin o. An

equivalent unit is a common unit of measurement that can be used to compare and add the

resource requirements of various products. Typical examples are pallets, kilograms or work

hours required. In the case of a plant p, up represents the total manufacturing capacity in

the planning horizon while uf
p is the transformation factor to convert real units of product

f into equivalent units. For every k ∈ K and o ∈ Ok, let also qk
o be the capacity of origin o

for commodity k.

Finally, for every k ∈ K, o ∈ Ok and d ∈ Dk, define a non-negative variable Xk
od

representing the number of units of commodity k transported from origin o to destination

d, and let ck
od be the unit transportation cost. This cost may also include the cost of the

activity performed at the origin o (i.e., the cost of acquisition, production or handling of one

unit of commodity k).

1.1 A linear mixed-integer programming formulation

The LNDP is formulated by Cordeau et al. (2006b) as the following linear mixed-integer

program:

Minimize

∑

o∈O

[

coUo +
∑

k∈K

[

ck
oV

k
o +

∑

d∈Dk

ck
odX

k
od

]]

(1)
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subject to
∑

s∈Sr

Xr
sp −

∑

f∈Fr

∑

w∈Wf

brfXf
pw = 0 r ∈ R; p ∈ P (2)

∑

p∈Pf

Xf
pw −

∑

c∈Cf

Xf
wc = 0 f ∈ F ; w ∈ Wf (3)

∑

w∈Wf

Xf
wc = af

c f ∈ F ; c ∈ Cf (4)

∑

k∈K

∑

d∈Dk

uk
oX

k
od − uoUo ≤ 0 o ∈ O (5)

∑

d∈Dk

Xk
od − qk

oV k
o ≤ 0 k ∈ K; o ∈ Ok (6)

Xk
od ≥ 0 k ∈ K; o ∈ Ok; d ∈ Dk (7)

Uo ∈ {0, 1} o ∈ O (8)

V k
o ∈ {0, 1} k ∈ K; o ∈ Ok. (9)

The objective function (1) minimizes the sum of all fixed and variable costs. Variable costs

ck
od may include not only transportation expenses but also relevant acquisition, production

and storage costs. Constraints (2) ensure that the total amount of raw material r shipped

to plant p is equal to the total amount required by all products made at this plant, while

constraints (3) ensure that all finished products that enter a given warehouse also leave

that warehouse. Demand constraints are imposed by equations (4). Constraints (5) impose

global capacity limits on suppliers, plants and warehouses, whereas limits per commodity

are enforced through (6). The latter constraints can be used, for example, to restrict the

total amount of a given raw material purchased from a particular supplier, or the number of

units of a finished product made at a particular plant.

To address the LNDPSA, model (1)-(9) can be restricted by imposing the following single

assignment constraints for all commodities:
∑

o∈Ok

V k
o = 1 k ∈ K. (10)

As explained by Cordeau et al. (2006b), formulation (1)-(9) can be improved through

the introduction of valid inequalities. First, the following forcing constraints link the Uo and

V k
o variables:

V k
o ≤ Uo k ∈ K; o ∈ Ok. (11)

If the same system of equivalent units is used throughout the network, one may denote

by uk the conversion factor to transform a real unit of commodity k into equivalent units.
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The following constraints can then be added to ensure that sufficient capacity is provided

by the selected suppliers, plants and warehouses, respectively:

∑

s∈S

usUs ≥
∑

r∈R

ur
∑

f∈F

brf
∑

c∈C

af
c (12)

∑

p∈P

upUp ≥
∑

f∈F

uf
∑

c∈C

af
c (13)

∑

w∈W

uwUw ≥
∑

f∈F

uf
∑

c∈C

af
c . (14)

Valid inequalities (11)-(14) will be added to the formulation when computing the lower

bounds used to assess the performance of the heuristic in Section 3.

1.2 A non-linear integer programming formulation

In the presence of single assignment constraints (10), model (1)-(9) can be restated using

only binary variables. Indeed, because each commodity k ∈ K is assigned to a single location,

the flows between the locations are entirely determined by the assignment decisions. It is

thus possible to eliminate the Xk
od variables and to retain only the binary variables Uo and

V k
o .

For each product f ∈ F , let af =
∑

c∈C af
c denote the total demand for this product.

Similarly, let ar =
∑

f∈F brfaf denote the total requirement for raw material r ∈ R. For

every f ∈ F , p ∈ Pf and w ∈ Wf , define

c̃f
pw = cf

pwaf +
∑

c∈Cf

cf
wca

f
c .

The parameter c̃f
pw denotes the total cost of the flow of product f in the network if this

product is assigned to plant p and warehouse w. Similarly, for every r ∈ R, f ∈ F , s ∈ Sr

and p ∈ Pf , define

c̃rf
sp = cspa

fbrf .

The parameter c̃rf
sp denotes the total cost of the flow of raw material r ∈ R in the network

if this raw material is assigned to supplier s while product f is assigned to plant p.

Using this notation, the problem can now be stated as the following non-linear integer

program:

Minimize

∑

o∈O

coUo +
∑

k∈K

∑

o∈Ok

ck
oV

k
o +

∑

f∈F

∑

p∈P

∑

w∈W

c̃f
pwV f

p V f
w +

∑

r∈R

∑

s∈S

∑

f∈F

∑

p∈P

c̃rf
spV

r
s V f

p (15)
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subject to

∑

k∈K

uk
oa

kV k
o − uoUo ≤ 0 o ∈ O (16)

∑

o∈Ok

V k
o = 1 k ∈ K (17)

Uo ∈ {0, 1} o ∈ O (18)

V k
o ∈ {0, 1} k ∈ K; o ∈ Ok. (19)

This model assumes that for all o ∈ Ok, ak ≤ qk
o , i.e., any facility in Ok has a capacity

qk
o larger than or equal to the total demand ak for commodity k. If this is not the case, one

may simply remove from the set Ok the elements o for which qk
o < ak.

Using the transformation proposed by Frieze and Jadegar (1983) and Padberg and

Rijal (1996) for the quadratic assignment problem, formulation (15)-(19) can be linearized

by introducing additional binary variables. Indeed, let Y f
pw = V f

p V f
w and Zrf

sp = V r
s V f

p . The

resulting formulation is the following:

Minimize

∑

o∈O

coUo +
∑

k∈K

∑

o∈Ok

ck
oV

k
o +

∑

f∈F

∑

p∈P

∑

w∈W

c̃f
pwY f

pw +
∑

r∈R

∑

s∈S

∑

f∈F

∑

p∈P

c̃rf
spZ

rf
sp (20)

subject to

∑

k∈K

uk
oa

kV k
o − uoUo ≤ 0 o ∈ O (21)

∑

o∈Ok

V k
o = 1 k ∈ K (22)

V f
p =

∑

w∈W

Y f
pw p ∈ P, f ∈ F (23)

V f
w =

∑

p∈P

Y f
pw w ∈ W, f ∈ F (24)

V r
s =

∑

p∈P

Zrf
sp s ∈ S, r ∈ R, f ∈ F (25)

V f
p =

∑

s∈S

Zrf
sp p ∈ P, f ∈ F , r ∈ R (26)

Uo ∈ {0, 1} o ∈ O (27)

V k
o ∈ {0, 1} k ∈ K; o ∈ Ok (28)

Y f
wp ∈ {0, 1} w ∈ W; p ∈ P; f ∈ F (29)

Zrf
sp ∈ {0, 1} s ∈ S; p ∈ P, r ∈ R; f ∈ F . (30)
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It is worth pointing out that because constraints (23)-(26) define the V k
o variables in terms

of the Y f
pw and Zrf

sp variables, the former may be removed from the formulation. Nevertheless,

formulation (20)-(30) is tractable only for very small instances. Indeed, for an instance with

|R| = |F| = 20 and |S| = |P| = |W| = 10, the formulation would contain a total of 42,030

binary variables (30 Uo variables, 102 · 20 = 2000 Y f
pw variables and 202 · 102 = 40000 Zrf

sp

variables) and 4470 constraints. In contrast, model (1)-(9) would contain only 630 binary

variables, 6000 continuous variables and 1230 constraints. In the context of the closely related

generalized quadratic assignment problem, the above linearization has also been shown to

provide weak linear programming lower bounds (see Cordeau et al. (2006a)).

Although formulations (15)-(19) and (20)-(30) are intractable for instances of realistic

size, their structure emphasizes the combinatorial nature of the problem and suggests ways to

exploit this structure within local search heuristics. The notation introduced in this section

will thus be used to describe our iterated local search heuristic in the next section.

2 Iterated local search heuristic

This section describes the iterated local search heuristic we have developed for the LNDPSA.

We first provide a general outline of the method. We then describe its main ingredients in

more detail by focusing on the neighborhoods that we use and their evaluation.

Iterated local search (ILS) is a neighborhood exploration paradigm that was introduced

by Lourenço et al. (2002). Let ŝ represent the starting solution for the ILS process. In

each cycle, a diversification step is first applied by perturbing ŝ to obtain a new solution s′.

Intensification is then performed around s′ by applying a descent heuristic to produce a new

solution s̃. If s̃ satisfies an acceptance criterion, it replaces ŝ and the next perturbation is

performed from that solution. Otherwise, the search returns to the previous solution ŝ. The

perturbations are aimed at escaping from local optima and exploring other parts of the search

space. Let f(s) denote the cost of solution s. The complete process can be summarized by

the following pseudo-code:

1. s0 ← initial solution; s∗ ← s0;

2. apply local search to s0 to obtain an improved solution ŝ;

3. while the termination criterion is not satisfied

(a) apply a perturbation to ŝ to obtain s′,
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(b) apply local search to s′ to obtain a local optimum s̃,

(c) if s̃ satisfies the acceptance criterion, ŝ← s̃;

(d) if f(s̃) < f(s∗), s∗ ← s̃;

4. return the best solution found s∗.

It is worth pointing out that the solution ŝ perturbed in Step 3a of the algorithm is not

necessarily the best solution found since the beginning of the search. Indeed, the acceptance

criterion specified in Step 3c may allow solutions that do not improve upon the best known

solution s∗ but are sufficiently close in terms of cost.

In the following sections, we describe the main steps of the algorithm: initialization, local

search, perturbation and acceptance criterion.

2.1 Initialization

Because the algorithm allows infeasible intermediate solutions (i.e., solutions violating the

capacity constraints), it can be initialized with any assignment of raw materials to suppliers

and finished products to plants and warehouses. In our implementation, we construct an

initial solution s0 as follows:

1. set Uo = 0 and V k
o = 0 for all o ∈ O and k ∈ K;

2. for each raw material r ∈ R, randomly select a supplier s from the set Sr and set

V r
s = 1;

3. for each finished product f ∈ F , randomly select a plant p ∈ Pf and a warehouse

w ∈ Wf and set V f
p = V f

w = 1;

4. for each location o ∈ O such that V k
o = 1 for at least one commodity k ∈ K, set U0 = 1.

This solution will clearly satisfy the assignment constraints (17). It may, however, violate

the capacity constraints (16). The next section describes how infeasible solutions are handled

in the course of the search process.

2.2 Local search

Our local search heuristic performs a descent from a starting solution s′ until it reaches a

local minimum s̃. At each iteration, this heuristic moves from the current solution s to
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the best solution in its neighborhood N(s). We now describe the main ingredients of this

heuristic.

2.2.1 Relaxation mechanism

Infeasible solutions are allowed throughout the search by relaxing the capacity constraints

(16) and penalizing their violations in the objective function. Let f(s) denote the value of the

objective function (15). The local search heuristic considers an augmented objective function

g(s) = f(s) + αv(s), where v(s) is the sum of the violations of the capacity constraints and

α is a positive parameter equal to 106 in our implementation.

2.2.2 Solution neighborhood

An important consideration in the implementation of our algorithm is the fast evaluation of

the solutions in the neighborhood N(s) of the current solution s. To this end, we maintain

data structures which are updated every time a move is performed on the current solution.

A solution can be fully characterized by the values given to the binary variables Uo and

V k
o . For every commodity k ∈ K, let o(k) denote the location to which this commodity

is currently assigned. In other words, o(k) corresponds to the unique location for which

V k
o = 1. Define Ko ⊂ K as the set of commodities currently assigned to location o, i.e.,

Ko = {k ∈ K|V k
o = 1}. For every o ∈ O, let ūo =

∑

k|o(k)=o uk
oa

k denote the capacity usage

of location o in the current solution.

For every raw material r and every supplier s ∈ Sr, let Add(r, s) denote the cost of

assigning r to s given the current assignments of products to plants. This value is computed

as follows:

Add(r, s) = cr
s +

∑

f∈F

∑

p∈P

c̃rf
spV

f
p + α min{ur

sa
r, max{0, ūs + ur

sa
r − us}}. (31)

The first term in this sum is the fixed cost of assigning raw material r to supplier s. The

second term is the sum of the flow costs between the supplier s and all plants p that require

some amount of raw material r. The third term is the penalty related to the increase in the

violation of the capacity constraint at supplier s. This increase is the minimum between the

capacity required for raw material r, ur
sa

r, and the total violation of the capacity constraint

following the assignment, max{0, ūs + ur
sa

r − us}.

Similarly, we denote by Add(f, p) the cost of assigning product f to plant p given the

current assignments of raw materials to suppliers and products to warehouses. This cost is
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computed as follows:

Add(f, p) = cf
p +

∑

r∈R

∑

s∈S

c̃rf
spV

r
s +

∑

w∈W

c̃f
pwV f

w + α min{uf
pa

f , max{0, ūp + uf
pa

f − up}}. (32)

In this case, two sums must be considered: the cost of flows between suppliers and the plant,

and the cost of flows between the plant and the warehouses.

Finally, the cost Add(f, w) of assigning product f to warehouse w given the current

assignment of products to plants is computed as follows:

Add(f, w) = cf
w +

∑

p∈P

c̃f
pwV f

p + α min{uf
waf , max{0, ūw + uf

waf − uw}}. (33)

For every commodity k, we also compute in a similar fashion the cost Rem(k, o(k)) of

removing commodity k from its current location o(k).

For every commodity k ∈ K, let l(k) ∈ Ok \ {o(k)} denote a location for which Add(k, l)

is minimized, i.e., l(k) ∈ arg minl∈Ok\{o(k)} Add(k, l).

The neighborhood N(s) considered in our local search is defined by the following four

types of exchanges:

1. move a commodity k ∈ K from its current location o(k) to a different location o′ ∈ Ok,

i.e., set V k
o(k) = 0 and V k

o′ = 1;

2. swap two commodities k1, k2 ∈ K between their respective locations, i.e., set V k1

o(k1) =

V k2

o(k2) = 0 and V k1

o(k2) = V k2

o(k1) = 1;

3. close a location o ∈ O such that |Ko| = 1 and reassign its commodity to a least-cost

location, i.e., set Uo = 0 and for the commodity k such that V k
o = 1, set V k

o = 0 and

V k
l(k) = 1;

4. open a location o ∈ O and assign to it the commodity k for which the value of

Rem(k, o(k)) + Add(k, o) is minimal, i.e., set Uo = 1 and set V k
o = 1 and V k

o(k) = 0 for

a commodity k in arg minl∈K Rem(l, o(l)) + Add(l, o).

Restricting exchanges of type 3 to locations that are assigned at most one commodity in

the current solution allows us to evaluate the impact of each exchange very quickly because

this evaluation can be performed directly through the values of Add(k, o) and Rem(k, o(k)),

which are computed only once at the beginning of each neighborhood evaluation. The same

reason motivates us to restrict exchanges of type 4 to the reassignment of a single commod-

ity. More massive reassignments will be performed through the perturbation mechanisms

described below.
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2.3 Perturbation mechanisms

Five different mechanisms are used to perturb the current solution ŝ and obtain a new

solution s′ in Step 3a of the iterated local search heuristic:

1. close a location o ∈ O and reassign each commodity k such that o(k) = o to its

least-cost location l(k);

2. open a random location o ∈ O with no commodity;

3. open a random location o ∈ O and assign to it all commodities k such that o ∈ Ok;

4. randomly reassign all commodities to open locations;

5. reconstruct the solution by applying the procedure used to generate an initial solution.

Every time a location is opened or closed through a perturbation of type 1, 2 or 3,

exchanges that would undo this move are forbidden until the next perturbation is performed.

For instance, if a plant is opened through a perturbation of type 2, this plant will remain open

until the next perturbation is performed. It is also worth noting that although perturbations

of type 1 are similar to exchanges of type 3, they are performed regardless of their impact

on the augmented objective function value g(s). This is obviously not the case for exchanges

of type 3 which are performed only if they improve g(s) in the descent phase.

Each time a perturbation is performed in Step 3a of the algorithm, a mechanism is chosen

randomly (with equal probabiliy) from the set of five mechanisms listed above.

2.4 Neighborhood sampling

In the hope of accelerating the neighborhood evaluation and of performing a larger number of

perturbations, only a fraction of the possible exchanges can be considered at each iteration

of the local search algorithm. This may also help diversify the search. We use a simple

form of neighborhood sampling in which each possible exchange is considered with a given

probability π, where π is a user-controlled parameter.

2.5 Acceptance criterion

The solution s̃ obtained at the end of Step 3b is accepted and replaces the current solution

ŝ if its cost g(s̃) is smaller than or equal to g(s∗)(1 + φ) where s∗ is the best solution found

since the beginning of the search and φ ≥ 0 is a user-set parameter.
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2.6 Stopping criterion

The algorithm stops if it fails to improve the incumbent for η successive perturbations in

Step 3 of the algorithm.

3 Computational experiments

This section first describes the instances used to evaluate the performance of the heuristic.

It then presents a summary of our computational experiments.

3.1 Test instances

To assess the performance of the ILS heuristic, experiments were performed on a set of 50

randomly generated instances. These instances were generated with a procedure similar to

that described by Cordeau et al. (2006b) for the general logistics network design problem.

We refer the reader to the work of these authors for a complete description of the instance

generator.

The size of an instance is given by the number |S| of suppliers, the number |P| of

potential plant locations, the number |W| of potential warehouse locations, the number |C|

of customers, the number |R| of raw materials, and the number |F| of finished products.

For an instance of size n, we have set |S| = |P| = |W| = |C| = n and |R| = |F| = 2n. Ten

instance sizes were used in our experiments: n = 5, 10, . . . , 50.

In all instances, we assume that Sr = S for every r ∈ R and that Pf = P,Wf =W for

every f ∈ F . In other words, all raw materials can be assigned to any of the suppliers and

all finished products can be assigned to any plant and any warehouse. Similarly, Cf = C,

meaning that all customers have a positive demand for each finished product.

For each commodity k ∈ K, a unit capacity usage uk is first generated by drawing a

random integer from the set {1, . . . , 10} according to a uniform distribution. For every

origin o ∈ Ok, we assume uk
o = uk. Let u be the total manufacturing capacity that is

required to satisfy the demand for all products and let ū = u/|P|. The capacity up of each

plant p ∈ P is selected at random from the set [αū, βū] according to a uniform distribution.

For all instances, we have set α = 1 and β = 10. The same approach is used to generate uo

values for the suppliers and warehouses.

The number |Rf | of raw materials that go into each finished product is drawn randomly

from the set {1, . . . , |R|}. The amount brf of raw material r ∈ Rf that goes into each unit
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of finished product f is then drawn randomly from the set {1, . . . , 10}. Finally, the values af
c

are also drawn randomly in the set {1, . . . , 10} for every finished product f ∈ F and every

customer c ∈ Cf .

The cost structure is determined as follows. For each plant p ∈ P, a fixed cost cp is

first drawn randomly in the interval [105, 106] according to a uniform distribution. Next, for

each product f ∈ F , an average fixed cost c̄f is drawn randomly in the interval [104, 105].

Then, for every plant p ∈ Pf , a fixed cost cf
p is drawn from the set [αc̄f , βc̄f ], where α = 0.5

and β = 5. For each warehouse w ∈ W, fixed costs cw and cf
w are generated by using the

same procedure and drawing values in [104, 105] and [103, 104], respectively. In the case of

suppliers, the corresponding intervals are [103, 104] and [102, 103].

For every variable Xk
od, the variable cost ck

od is composed of two distinct terms: the

unit transportation cost of commodity k from o to d and the unit purchase, production or

warehousing cost of commodity k at the origin o. For every commodity k, every origin o ∈ Ok

and every destination d ∈ Dk, an average unit transportation cost t̄kod is first generated by

multiplying the Euclidean distance between o and d by a random number drawn according

to a uniform distribution in the interval [1, 10]. For every location, Euclidean coordinates are

themselves drawn randomly in the unit square [0, 1]× [0, 1]. Next, for every raw material r ∈

R and every finished product f ∈ F , an average unit purchase, production or warehousing

cost ēk is drawn randomly in the interval [1, 10]. Then, for every origin o ∈ Ok, a unit cost

ek
o is drawn in the interval [αēk, βēk] where α = 0.5 and β = 5.0. Finally, the cost ck

od is

obtained by setting ck
od = tkod + ek

o.

Table 1 summarizes the main characteristics of model (1)-(9) for each instance size. A

total of 50 test instances were finally obtained by generating 5 random instances of each size.

It is worth pointing out that increasing the number of customers has a very negligible

impact on the computational effort required by the heuristic. Indeed, the set of customers

is only considered at the beginning of the algorithm when computing the cost of assigning a

product to a warehouse. This is obviously not true when solving model (1)-(9) by branch-

and-bound since any increase in the number of customers leads to an increase in the number

of flow variables Xk
od.

3.2 Summary of computational experiments

We first ran some experiments to determine appropriate values for the three parameters

controlling the ILS heuristic: the sampling fraction π, the acceptance criterion φ, and the

stopping criterion η. The best values for these parameters are of course interdependent. In
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Table 1: Characteristics and size of problem instances

Number of variables Number of

n |S|, |P|, |W|, |C| |R|, |F| Uo V
k

o
X

k

od
constraints

5 5 10 15 150 750 315

10 10 20 30 600 6,000 1,230

15 15 30 45 1,350 20,250 2,745

20 20 40 60 2,400 48,000 4,860

25 25 50 75 3,750 93,750 7,575

30 30 60 90 5,400 162,000 10,890

35 35 70 105 7,350 257,250 14,805

40 40 80 120 9,600 384,000 19,320

45 45 90 135 12,150 546,750 24,435

50 50 100 150 15,000 750,000 30,150

initial experiments, however, we have noticed that the performance of the heuristic is not

very sensitive to the values of π and φ, and that using values in the interval [0.125; 1.0]

for π and [0.0125; 0.10] for φ produced good results on most instances. Setting π = 0.5

and η = 1000, we first performed experiments by varying the value of φ. To this end, we

used one instance of each size. The results of these experiments are reported in Table 2.

Solution quality varies only slightly but for most instances, the best solution is obtained with

φ = 0.025. We have thus retained this value for all further experiments.

Table 2: Solution costs obtained with different values of φ

Value of φ

n 0.0125 0.025 0.05 0.1

5 1814367.84 1801620.68 1802080.05 1801620.68

10 3553332.15 3553332.15 3553332.15 3553332.15

15 5831649.09 5831649.09 5831979.04 5831649.09

20 9617584.51 9612246.79 9739113.98 9612246.79

25 12441090.95 12440863.83 12441090.95 12804686.87

30 19627137.15 19753067.43 19753067.43 19789078.90

35 27401795.54 27398144.86 27334986.03 27464642.30

40 35428372.25 35439159.14 35535641.22 35413980.24

45 48744625.49 46463159.45 46670189.51 46485241.47

50 71314197.69 71224354.81 71240726.74 71315081.83

Sum 235774152.66 233517598.23 233902207.10 234071560.32

Using φ = 0.025, we have then let the value of π vary in the interval [0.125; 1.0]. The
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results of these experiments, reported in Table 3, show that the best performance is obtained

with π = 0.5. We have thus used this value in further experiments.

Table 3: Solution costs obtained with different values of π

Value of π

n 0.125 0.25 0.5 1.0

5 1802080.05 1814367.84 1801620.68 1801620.68

10 3553332.15 3553332.15 3553332.15 3553332.15

15 5860700.03 5832732.21 5831649.09 5860700.03

20 9621647.09 9871752.37 9612246.79 9612246.79

25 12473117.99 12485001.77 12440863.83 12442808.19

30 19661064.09 20040665.57 19753067.43 19770266.59

35 27431696.71 27402070.11 27398144.86 27411987.16

40 35487445.29 35472568.08 35439159.14 35480558.51

45 46884297.17 46836262.95 46463159.45 46620993.15

50 71546688.23 71448310.20 71224354.81 71416056.85

Sum 234322068.80 234757063.25 233517598.23 233970570.10

In the third set of experiments, we have let the value of η vary while holding the values

of π and φ fixed. Three values were considered for η: 10, 100 and 1000. In all cases, we also

impose an upper limit of 105 on the total number of iterations performed in order to control

the CPU time. Results of these experiments are reported in Table 4. The last column of this

table indicates the CPU time when using η = 1000. Computing times for η = 100 and η = 10

are roughly 10 times and 100 times smaller, respectively. As can be seen from these results,

a large improvement is obtained when going from η = 10 to η = 100. The improvement is

less significant for η = 1000. In column 10× 100, we also report the cost of the best solution

obtained by running the algorithm 10 times with η = 100, thus using a similar total CPU

time to the case where η = 1000. These results show that, on average, slightly better results

are obtained by performing one execution with η = 1000 than performing 10 executions with

η = 100. Finally, one can observe that for the largest instance considered, the CPU time is

below two hours. These computing times are acceptable considering that the LNDPSA is a

strategic planning problem.

In Table 5, we also indicate for the case η = 1000 the total number of perturbations

performed in step 3a of the algorithm, the total number of iterations performed in the

descent phases (step 3b of the algorithm), the average number of iterations performed in

each descent, and the total number of exchanges of each type (see Section 2.2.2) performed

in the descent phases. These results show that for instances of size n = 30, 40, 45 and 50,
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Table 4: Solution costs obtained with different values of η

Value of η CPU time

n 10 100 1000 10× 100 (minutes)

5 1808948.73 1801620.68 1801620.68 1801620.68 0.00

10 3553332.15 3637887.66 3553332.15 3553332.15 0.06

15 5869631.22 5843900.40 5831649.09 5843900.40 0.72

20 9906493.78 9766667.74 9612246.79 9616115.38 3.83

25 13661890.06 12786584.84 12440863.83 12448978.35 11.04

30 20220229.65 19798728.62 19753067.43 19643015.04 12.65

35 31314231.58 27394259.39 27398144.86 27394259.39 30.03

40 36148942.69 35416322.85 35439159.14 35398397.45 28.70

45 52066643.91 46623355.91 46463159.45 46621653.02 65.95

50 72026193.77 71362327.39 71224354.81 71360956.64 94.94

Sum 246576537.54 234431655.48 233517598.23 233682228.50

the algorithm was stopped because the total number of iterations performed reached 105.

Considering all instances, the average number of iterations performed in each descent phase

was 28.9, but this number obviously increases with instance size. The results also indicate

that exchanges of types 1 and 2 (moving a commodity to a different location or swapping

two commodities) are performed the most often, with exchanges of types 3 and 4 (closing

or opening a facility) being less frequent. The latter results are to be expected since the

number of potential exchanges of types 1 and 2 is much larger than the number of potential

exchanges of types 3 and 4.

Table 5: Number of perturbations, iterations and exchanges performed with η = 1000

Perturbation Descent Iterations / Exchange type

n cycles iterations descent 1 2 3 4

5 1167 6471 5.54 3007 1267 349 680

10 1083 15063 13.91 8458 2694 1097 1730

15 1627 25973 15.96 14433 5671 1998 2243

20 2731 58383 21.38 31547 15073 4212 4819

25 2883 74762 25.93 41196 19438 6413 4831

30 3300 100000 30.30 52405 27784 9439 7193

35 2527 87116 34.47 46710 26381 6560 4937

40 2356 100000 42.44 54962 28708 9229 4806

45 2071 100000 48.29 50941 32236 9540 5376

50 1987 100000 50.33 52009 32687 8840 4580

Avg. 2173 66777 28.86 35567 19194 5768 4120
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Using the best parameter settings determined above, we have then run the heuristic ten

times on each of the 50 instances to study the stability of the solutions produced. Table 6

indicates, for each instance, the cost of the best and worst solutions obtained at the end of

these ten executions. We also report the average solution cost and the standard deviation

as a percentage of the average cost. These results show that the heuristic is very stable and

that the standard deviation of the cost is on average only 0.31% of the average cost. It is

also interesting to observe that the variability of the results increases only very slightly with

the size of the instance.

Table 6: Results obtained by running the algorithm 10 times on each instance

Instance Best Worst Average % St.Dev.

5-1 1801620.68 1814367.84 1809268.98 0.36

5-2 1883625.86 1883625.86 1883625.86 0.00

5-3 2119688.44 2119688.44 2119688.44 0.00

5-4 2040172.94 2040172.94 2040172.94 0.00

5-5 2010293.74 2010293.74 2010293.74 0.00

10-1 3553332.15 3637887.66 3561787.70 0.75

10-2 4198965.70 4198965.70 4198965.70 0.00

10-3 3675831.47 3675831.47 3675831.47 0.00

10-4 3705195.00 3705575.69 3705309.21 0.00

10-5 3902731.51 3903547.76 3902813.14 0.01

15-1 5831649.09 5847306.70 5834505.97 0.10

15-2 5037894.82 5039768.32 5038285.64 0.02

15-3 5430692.87 5430692.87 5430692.87 0.00

15-4 5866317.96 5866317.96 5866317.96 0.00

15-5 5671336.61 5672156.84 5671992.79 0.01

20-1 9612246.79 9640694.65 9623734.55 0.12

20-2 9679158.17 9701624.15 9691482.71 0.09

20-3 9431694.38 9497659.03 9453438.95 0.32

20-4 8394520.82 8426653.48 8410683.66 0.11

20-5 8007238.59 8092871.02 8042198.80 0.40

25-1 12440863.83 12804166.91 12511484.83 1.19

25-2 12833465.03 12967270.43 12888430.09 0.42

25-3 12140851.88 12171249.77 12157844.54 0.08

25-4 12335638.64 12366276.52 12341862.91 0.10

25-5 12088834.15 12141094.62 12118362.53 0.15

30-1 19626916.20 20013946.80 19776336.23 0.69

30-2 19161622.91 19295629.21 19214311.11 0.25

30-3 17249596.14 17277853.04 17264389.01 0.05

Continued on next page
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Instance Best Worst Average % St.Dev.

30-4 18626308.11 19217279.32 18740790.61 1.28

30-5 19596807.68 20090834.11 19788238.26 1.06

35-1 27314096.09 27381282.25 27343862.09 0.08

35-2 29629540.16 29903544.54 29774835.10 0.38

35-3 28725913.27 28853902.44 28796036.00 0.14

35-4 25898208.08 26611297.49 26382975.66 0.74

35-5 29684344.93 29807184.04 29729950.02 0.14

40-1 35325745.25 35539369.90 35428838.74 0.21

40-2 34696451.21 35945819.58 34952710.36 1.49

40-3 36901639.28 37680093.35 37006982.47 0.64

40-4 38305006.46 39335669.70 38470359.71 0.79

40-5 37287750.96 37896768.86 37487268.53 0.68

45-1 46384395.31 46742059.95 46595698.71 0.26

45-2 50321946.34 50546153.66 50444418.81 0.15

45-3 45835983.79 45990360.63 45951322.37 0.10

45-4 51436271.04 52302030.96 51622513.05 0.59

45-5 50653540.95 51055045.38 50932457.08 0.32

50-1 71283418.52 71412116.83 71307732.80 0.05

50-2 60701772.87 61013818.53 60827126.88 0.18

50-3 63369633.98 64417642.56 63624409.61 0.46

50-4 62518134.37 63429809.40 62773134.82 0.45

50-5 59933934.56 60159886.85 60010347.69 0.10

Avg. 0.31

Finally, to evaluate the performance of the heuristic in terms of solution quality, we

have tried solving formulation (1)-(9) with the branch-and-bound of CPLEX. The CPLEX

branch-and-bound was successful on instances of size n = 5 and n = 10 but failed to solve

any of the larger instances when given a maximum of two hours of computing time. We

then tried to solve the LP relaxation of formulation (1)-(9) for all remaining instances. For

instances of size n ≥ 35, this was again impossible with two hours of computing time.

In Table 7 we first report the value of the LP relaxation for all instances with n ≤ 30.

For instances of size n = 5 and n = 10, we also indicate the cost of the optimal integer

solution computed by CPLEX (column “IP”). For instances of size n = 15 and n = 20,

we stopped the branch-and-bound search after two hours of CPU time. We thus report

in column “IP” the value of the best integer solution identified within that time limit. In

column “H”, we then indicate the cost of the best solution identified by the heuristic (this

information is identical to that reported in column “Best” of Table 6). Column “Int. gap”

indicates the percentage integrality gap between the optimal integer solution and the value

of the LP relaxation, computed as 100(IP - LP)/LP. Column “Tot. gap” indicates the total
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gap between the heuristic solution and the value of the LP relaxation. This gap is the sum of

the true integrality gap and the optimality gap (both unknown quantities). Finally, column

“Improv.” indicates the percentage improvement of the heuristic solution with respect to

the CPLEX solution. This improvement was computed as -100(H - IP)/IP.

Table 7: Comparison with LP relaxation and optimal solution values

Instance LP IP H Int. gap (%) Tot. gap (%) Improv. (%)

5-0 1779010.11 *1801620.68 1801620.68 1.27 1.27 0.00

5-1 1883216.60 *1883625.86 1883625.86 0.02 0.02 0.00

5-2 2119688.44 *2119688.44 2119688.44 0.00 0.00 0.00

5-3 2038262.55 *2040172.94 2040172.94 0.09 0.09 0.00

5-4 2000746.79 *2010293.74 2010293.74 0.48 0.48 0.00

10-0 3455529.77 *3553332.15 3553332.15 2.83 2.83 0.00

10-1 4080404.55 *4198965.70 4198965.70 2.91 2.91 0.00

10-2 3611933.64 *3675831.47 3675831.47 1.77 1.77 0.00

10-3 3593498.44 *3705195.00 3705195.00 3.11 3.11 0.00

10-4 3739652.91 *3902731.51 3902731.51 4.36 4.36 0.00

15-0 5487504.24 5831649.09 5831649.09 6.27 0.00

15-1 4776425.20 5037894.82 5037894.82 5.47 0.00

15-2 5011175.66 5430692.87 5430692.87 8.37 0.00

15-3 5591494.83 5866317.96 5866317.96 4.92 0.00

15-4 5110369.76 5672319.23 5671336.61 10.98 0.02

20-0 8671992.44 9897571.07 9612246.79 10.84 2.88

20-1 8894963.08 9766087.82 9679158.17 8.82 0.89

20-2 8216891.58 9554016.81 9431694.38 14.78 1.28

20-3 7440934.15 8409654.03 8394520.82 12.82 0.18

20-4 7237136.90 8057327.04 8007238.59 10.64 0.62

25-0 11417242.89 12440863.83 8.97

25-1 11509929.09 12833465.03 11.50

25-2 11243712.57 12140851.88 7.98

25-3 11303032.81 12335638.64 9.14

25-4 11001150.10 12088834.15 9.89

30-0 17129018.41 19626916.20 14.58

30-1 17181982.25 19161622.91 11.52

30-2 15570310.21 17249596.14 10.79

30-3 16668973.12 18626308.11 11.74

30-4 17366397.93 19596807.68 12.84

These results show that the heuristic has identified the optimal solution for all instances

with n ≤ 10. For instances of size n = 15 or n = 20, the heuristic has identified in less

than 4 minutes (see Table 4) a solution that is better than or equal to the best solution
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identified by CPLEX in two hours of CPU time. In fact, the heuristic found significantly

better solutions for all instances of size n = 20. For the remaining instances, just solving the

LP relaxation took a very long time and CPLEX could often not even find a feasible integer

solution within the allowed CPU time. In this case, it is difficult to evaluate the quality of

the solution produced by the heuristic. Looking at the results for the instances with n ≤ 10,

however, it appears that the integrality gaps grow rather quickly with instance size, going

from an average of 0.37% for n = 5 to an average of 2.99% for n = 10. As a result, the total

gap reported in the last column of the table is likely to be very close to the actual integrality

gap. Finally, it is worth pointing out that for instances with n = 35, the heuristic requires

only 30 minutes of computing time whereas CPLEX could not even solve the LP relaxation

in two hours. The comparison is of course even more impressive for larger instances.

The model introduced in this paper assumes a single-country environment and a single-

period planning horizon. It can, however, be generalized to a global context by considering

aspects such as transfer pricing and cost allocation (see, e.g., Vidal and Goetschalckx,

2001). Following the work of Hamer-Lavoie and Cordeau (2006), the model could also

be extended to a multiple-period horizon while taking seasonal, cyclic and safety stocks into

account. Finally, additional considerations such as single sourcing constraints and multiple

transporation modes with different fixed and variable costs can be handled as explained by

Cordeau et al. (2006b)

4 Conclusion

This article has introduced an iterated local search heuristic for an important variant of

the logistics network design problem. This heuristic is both easy to implement and fast. It

is also flexible in the sense that it could be adapted to handle additional constraints such

as single sourcing constraints which require each customer to receive all products from the

same warehouse. Computational experiments show that the heuristic clearly outperforms

the branch-and-bound of CPLEX both in computation times and solution quality.
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