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Abstract. The objective of this paper is to investigate the importance of taking uncertainty
explicitly into account for service network design. We study how solutions based on
uncertain demand differ from solutions based on deterministic demand and provide
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A Study of Demand Stochasticity in Service Network Design

1 Introduction

Service network design formulations are generally associated with tactical
planning of operations for consolidation carriers, that is, carriers letting more
than one commodity (or passenger) share the capacity of their vehicles. The
goal of the planning process is to determine the routes on which services will
be offered, the type of services that will be offered, as well as the frequency
and schedules of services. The selected services and the schedule constitute
a transportation or load plan. The schedule is also published for the benefit
of the potential users of the system. In building the plan, one aims for an
efficient operation in terms of total system cost, given the available resources,
the known demands, and the level of service quality that the carrier desires
to achieve.

There is quite a significant body of literature on the subject. Service
network design formulations have been proposed for many types of mul-
timodal (e.g., Crainic and Rousseau 1986; Crainic and Roy 1988) or sin-
gle mode transportation: rail (e.g., Crainic, Ferland, and Rousseau 1984;
Haghani 1989; Gorman 1998a, 1998b; Keaton 1989, 1991, and 1992; Newton
1996; Newton, Barnhart, and Vance 1998); less-than-truckload (LTL; e.g.,
Delorme and Roy 1989; Powell and Sheffi 1983, 1986, 1989; Powell, 1986a;
Lamar, Sheffi, and Powell 1990; Farvolden and Powell 1991, 1994), maritime
navigation (Christiansen, Fagerholt, and Ronen 2004), express courier ser-
vices (e.g., Griinert and Sebastian 2000; Griinert, Sebastian, and Théarigen
1999; Buedenbender, Griinert, and Sebastian 2000; Armacost, Barnhart, and
Ware 2002; Barnhart and Schneur 1996; Smilowitz, Atamtiirk, and Daganzo
2003); and so on. See Christiansen et al. (2007), Cordeau, Toth, and Vigo
(1998), Crainic (2000; 2003), and Crainic and Kim (2007) for recent reviews.

The service network literature and, to the best of our knowledge, the
systems implemented at various carriers assume complete knowledge. That
is, all these formulations are deterministic. This is not to say that the research
community and the transportation professionals ignore the uncertainties that
accompany actual operations. On the contrary, several papers clearly state
that one works with forecasted demand, that the transportation plan is built
for a “regular” operation period, usually a week, and that the plan is to be
adjusted during actual operations to account for too high or too low demand.

This approach may be cast as a two-phase procedure. The first phase
solves the service network design using point forecasts of the demand. In the
second phase the uncertainty is resolved, the actual values of demand are
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observed, and the plan is modified accordingly. The first phase is performed
once for the contemplated time horizon, while the second one is repeated
every period. (The same treatment is equally applied to other critical factors,
such as transportation times, but for simplicity, we will restrict the scope of
this paper to demand only.)

One may then ask: What is lost by not integrating information about the
stochastic nature of demand directly into the tactical planning methodology?
Would the integration of such information lead to different service design
patterns, either in the services selected or the consolidation strategies used?
Would the resulting transportation plan and schedule be more robust than
what we presently obtain by providing more flexibility in the day-to-day
operations? And if the answer is yes, can we characterize what it is that
creates robustness? Why and how are solutions to stochastic models better
than those from deterministic ones? Answers to these two questions are the
main contributions of this paper.

The objective of this paper is to contribute to answering such questions.
These questions are rather general in nature. They are relevant to all sit-
uations where we use deterministic optimization models in contexts where
stochastics is obviously present. We need to ask: Will solving the determin-
istic model, rather than the stochastic one, result in significant errors, or
are we just talking about minor adjustments? The computational as well as
modeling efforts needed to address the stochastic case are substantial, so we
need to be sure that it is worth while. Or at least — and that is the setting of
this paper — that the potential errors must be such that checking the actual
effects must be worth the cost.

Keywords here are flexibility and robustness. By robustness we under-
stand the ability to withstand random effects, while flexibility implies the
ability to adjust to them. A tree is robust while a straw is flexible when
facing high winds. In our context we wish robust schedules as seen by the
customers. Specifically, that means the ability to operate the specified origin-
destination pairs regardless of changes in demand. This will be achieved by
flexibility in how commodities are sent in day-to-day operations. We say
that a schedule is more robust, the more cost effectively it deals with these
varying demands, hence the lower expected costs it leads to. The choice
that schedules should be robust and the flows of commodities from origin to
destination are to be flexible is a conscious choice the modeler has to make.
Schedules do not simply happen to be robust, the requirement must be put
into the model. For the model presented in this paper, the design coming
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from the deterministic model is feasible, but not necessarily optimal, in the
stochastic model. Hence, by construction, the stochastic model is best in the
stochastic framework.

There are many objections to this simple argument. The two most im-
portant are

e What happens if our estimation of (stochastic) future demand is off?
Is it not safer to use expected demand?

e Even if the stochastic solution obviously is better in the described set-
ting, are we sure the difference is of importance?

In the end, we cannot prove that a given stochastic model is better than
its deterministic counterpart. Obviously, if the data used in the model, or the
model itself, is totally off the mark, a deterministic model can yield results
which, in the real world, are better than those of a stochastic model.

What we can do, though, is to assume that our description of the problem
is correct, and then investigate how the two models behave relative to one
another. That is the purpose of this paper. The first important observation
is that the expected behavior of the solution coming from a deterministic
model can be arbitrarily worse than the one coming from the stochastic
model. This is discussed in Wallace (2000) and Higle and Wallace (2003).
It is there shown that the solutions of stochastic models are structurally
different from those of deterministic models. Simply stated, flexibility costs
money, and in a deterministic world, you will therefore never buy flexibility.
In the language of this paper: In a deterministic world, you will fit your
network design perfectly to the future demand you are shown, and not at
all (of course) take into account that there might be other possible futures
where it may fit very badly.

In most service network design models, decisions and structures are en-
forced upon the solution before any optimization takes place at all. It is
common to decide a priori whether to use consolidation or not, and if this
consolidation should be performed in some kind of hub-and-spoke system or
in other ways. There is no one-to-one relationship between consolidation and
hub-and-spoke. While a hub-and-spoke system implies consolidation, the re-
verse is not true. Typically, these strategic decisions are based on the idea
that operating a hub-and-spoke network will bring consolidation, making op-
erations more efficient due to, for example, economies of scale. One might
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then ask, will this type of network that uses consolidation provide us with
some sort of robustness when dealing with uncertain demand? To test this,
we propose a model that does not have any a priori bindings with respect
to the structure of the solution, but rather lets the structure be a result of
the optimization process with its stochastic demand. Whatever structure is
obtained, we know that it will be based on quantitative aspects only, and not
be biased by “rules-of-thumb” or politics, which — unfortunately — are more
common than not in the transport industry.

Most textbooks in operations research — and obviously many vendors
of software as well — tell us to perform “what-if-sessions” to address the
uncertainty about the future. The idea is that if we study these solutions —
one solution for each possible future — we have in front of us a collection of
(in our case) designs that gives us the total picture of what we might do. We
might for example calculate the expected behavior for each potential design,
and keep the best one. Or we may try to combine them into something even
better — perform a kind of “convex” combination to arrive at an overall very
good (if not optimal) solution. To realize that this is a false assurance is
possibly the most critical point in understanding what stochastics does to
an optimization problem. This approach does not take into account that
what we need is robust solutions, and what we have is a collection of non-
robust ones. Even though we have many solutions in front of us, none of
them is robust, in the sense that they are all made under assumptions of a
known future. More details, with a worked out example, about this subtle
but crucial point can be found in Higle and Wallace (2003).

We may also set this argument in the framework of real options. A robust
design will typically contain options in the sense of investments that make
the future more easy to handle. But options cost money, and we never buy
an option if we know we will not need it. And if we know we shall need what
the option offers, we do not buy the option, but the real object immediately.
This is true unless the option comes for free. If you have three decisions in
a simple investment problem: Do nothing, build a factory or buy the right
to build a factory, a deterministic model will always pick one of the first
two as long as there is a cost associated with the option (and in real life
there is). So, the observation is: The robust solutions contain options, the
deterministic ones do not, and solving many deterministic problems will not
overcome that problem. We must tell the model explicitly that the future
is stochastic. It will then pick up good options — if they exist — and hence
provide flexibility in the operations. So, only in problems without implicit
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options (if they exist), will deterministic models work well. And this is why
we turn to stochastic programs, despite the heavy burden that places on us
with respect to both data collection and solution abilities (in addition to the
more complicated modeling itself).

For a more general look at stochastic programming, see, for example, Kall
and Wallace (1994) and Volume 10 of Handbooks in Operations Research and
Management Science by Ruszczynski and Sharpiro (2003).

To initiate the study of the impact of introducing stochastic elements
into service network design formulations, we take a simplified version of the
problem faced by LTL carriers in which periodic schedules are built for a
number of vehicles and where only the demand may vary stochastically. We
chose a problem size allowing the use of standard mixed-integer software.
The results clearly indicate that 1) yes, integrating stochastic elements in
the service network design model is beneficial, 2) the resulting transportation
plan is more robust by introducing operational flexibility, and 3) we are able
to describe qualitatively what are the structural differences, that is, what are
the options.

The plan of the paper is as follows. Section 2 recalls the main compo-
nents of a service network design model and introduces the simplified prob-
lem we use and the associated deterministic formulation. Section 3 displays
the stochastic formulation and introduces the solution strategy employed.
The experimental setting, including a detailed discussion of how we generate
scenarios, is presented in Section 4, while the computational results are pre-
sented in Section 5. Analyses of some of the characteristics that can be found
in stochastic schedules are shown in Section 6. We conclude in Section 7.

2 A Service Network Design Case

Consolidation transportation carriers are usually organized as so-called hub-
and-spoke networks, where service is offered between a much larger number
of origin-destination pairs than that of direct, origin-to-destination services
operated by the carrier. Low-volume demands are then moved first to an
intermediate point, a hub, there to be consolidated with loads from other
customers into vehicles and convoys and moved to other hubs by high fre-
quency and capacity services. More than one consolidation-transfer operation
may occur during a trip. Such an organization allows a higher quality service
for all origin-destination pairs, in terms of frequency of service, and a more
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efficient utilization of resources (hence, lower costs). The drawback of this
type of organization is increased delays due to longer routes, increased time
spent in terminals, and more complex planning processes and operations.

The term service network design refers to the process of selecting the
services and schedules to operate. This process is often performed at the
tactical planning level and the collection of services and schedules are known
as the transportation, or load, plan. The objective is to provide the highest
level of service possible and ensure customer satisfaction, while operating
efficiently and profitably.

Service network design problems thus address two types of major de-
cisions. The first concerns the choice of the service network, that is, the
selection of the routes — origin and destination terminals, physical routes,
and intermediate stops — on which services will be offered and the charac-
teristics of each service, in particular its frequency or schedule. The second
major type of decision is to determine the distribution of traffic, that is, the
itineraries (routes) used to move the loads of each demand: services used,
terminals passed through, operations performed in these terminals, etc. Op-
erating rules specifying, for example, how loads and vehicles may be sorted
and consolidated, are sometimes specified at particular terminals and become
part of the service network (this is the case, in particular, for rail carriers).
The service network thus specifies the movements through space and time
of the vehicles and convoys considered, while itineraries move freight from
origins to destinations and determine the volumes of commodities that flow
on the services and through the terminals of the service network.

Several efforts have been directed towards the formulation of service net-
work design models and static and time-dependent formulations have been
proposed. The former assumes that demand does not vary during the plan-
ning period or that the distribution of departures is known (typically uni-
form) and only the service selection and frequencies are of interest. The time
dimension of the service network is then implicitly considered through the
definition of services and the inter-service operations at terminals. Time-
dependent formulations include an explicit representation of movements in
time and usually target the planning of schedules to support decisions related
to when services are dispatched. This is usually achieved by representing the
operations of the system over a certain number of time periods by using a
space-time network. In such a structure, the representation of the physical
network is replicated in each period. Starting from its origin in a given pe-
riod, a service arrives (and leaves, in the case of intermediary stops) later

CIRRELT-2007-22 8



A Study of Demand Stochasticity in Service Network Design

at other terminals. Services thus generate temporal service links between
different terminals at different time periods. Temporal links that connect
two representations of the same terminal at two different time periods may
represent the time required by terminal activities or the vehicles and freight
waiting for the next departure. Additional arcs may be used to capture
penalties for arriving too early or too late.

2.1 The initial deterministic model

The initial model takes the form of a deterministic, fixed cost, capacitated,
multicommodity network design formulation. Integer-valued decision vari-
ables are used to represent service selection decisions, while continuous product-
specific variables capture the commodity flows. Fixed costs are associated
with the inclusion of services into the plan. Costs that vary with the inten-
sity of service and commodity traffic are associated with the movements of
commodities and services. The goal is to minimize the total system cost, or
to maximize the net profit, under constraints enforcing demand, service, and
operation rules and goals.

For the study reported in this paper, we build a version of a multi-period
service network design model inspired by the less-than-truckload motor car-
rier case. Several simplifying assumptions are made:

e We consider a homogeneous fleet of capacitated vehicles and no restric-
tions on how many vehicles are used;

e The transport movements require one period, while terminal operations
are instantaneous (within the period);

e Demand cannot be delivered later than the due date, but may arrive
earlier;

e There is a (fixed) cost associated with operating a vehicle (service), but
no cost is associated with moving freight; That is, truck movements cost
the same whether they move loaded or empty;

e There are no costs associated with time delays or terminal operations;

e The plan is repeated periodically;
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e No hub-and-spoke structure is assumed for the service network, i.e., all
terminals and services have similar characteristics.

The resulting model is sufficiently simple to be solved by commercial
off-the- shelf mixed-integer software for moderately sized problem instances,
while retaining the main characteristics of service network design problems.
It thus offers a good environment for an explicit study of the effects of un-
certainty.

The space-time network is built by repeating the set of nodes (terminals)
N in each of the periods t = 0,...,7 — 1. Each arc (i,j) represents either
a service, if ¢ # j, or a holding activity if ¢ = j. A cost ¢;; is associated
to each arc (i,7), equal to the cost of driving a truck from terminal ¢ to j
if ¢ # 7, or to the cost of holding a truck at terminal ¢ if + = j. For each
commodity k € K, we define its demand J(k), origin o(k), destination d(k),
and the points in time (k) and 7(k) when it becomes available at its origin
and must be delivered (at the latest) at its destination, respectively. The
truck capacity is denoted M (same units as for demand).

The decision variables then represent the commodity distribution deci-
sions over the selected service network, and the frequencies of the selected
services (a zero frequency indicating the service was not selected):

Vi (k) : Amount of commodity k going from terminal 7 at time ¢ to terminal
J at time ¢t + 1, for {i = o(k),t = o(k),Vj} U{j = d(k),t = 7(k),Vi} U
{o(k) <t <7(k), Vi, j};

Xj; + Number of trucks from node 4 at time ¢ to in node j at time ¢ + 1,
Vi, j,t.

The basic deterministic service network design formulation may then be
written as:
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min Z Z Z_: cinfj (1)

ieN jeN t=0
t=0,....T—2: > X, =) X' Vje~N (2)
ieN ieN
t=0,...,T—1: X}, >0 andinteger Vi,jeN (3)
(o(k), o (k)) - Zi@@i@(k) =d(k)  VkeK (4)
z'eN
Gook)+1): Yok =>"vi" k) VjeN VkekK
ieEN

(5)

(L+ok)<t<tk)—1): > Vi'k) =) Yik) VjieNVkek
iEN 1eEN
(6)

Gty =1 S viP ) =y (k) VjeN,Vkek

1EN
(7)

(d(k),7(k) = DY (k) = 0(k)  VReEK (8)
ieN

t=0,....T—1: > Vik)<MX, VijeN:i#j (9)
kek

t=0,....,T—1: Yi(k)>0 Vi,jeN,Vkek (10)

The objective function (1) minimizes the cost associated with vehicles
moving between terminals, plus the cost of holding them at terminals. Con-
straints (2) enforce conservation of flow for trucks, which must be integer as
indicated by constraints (3).

Equations (4)-(8) are conservation of flow constraints dealing with the
flow of freight from origins to destinations at various time periods. Figure 1
provides a graphical overview of where each of these constraints apply in the
space-time network. Constraints (4) are illustrated in the left-hand side of
Figure 1, preserving the conservation of flow in the origin node for commod-
ity k. Constraints (8) perform a similar function for the flow of freight at the
destination node, as shown on the right-hand side of Figure 1. Equations (5)
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represent conservation-of-flow conditions at nodes one period after a com-
modity has left its origin node. The flow may come only from node o(k) at
time o(k), but may go to any node at time o (k) + 1. Similarly, equations (7)
enforce conservation of flow at nodes one period before the flow arrives at its
destination; The time periods where these two constraints apply are marked
by (5) and (7) in Figure 1. Equations (6) are the general conservation-of-flow
constraints valid from two time periods after a commodity has left its origin
and up to two periods before arriving at its destination; It is denoted by (6)
in the center of Figure 1. Relations (9) are the usual linking and vehicle
capacity constraints. Note that commodities can be held at nodes without a
truck being present (hence, i # j).

e o 9
= ,/"
REE)

RSD)
L
& o o

n

Period t

Figure 1: The relationship between constraint sets (4)-(8) and the underlying
network.

2.2 Fleet capacity considerations

Most consolidation carriers experience demand variations, not only in overall
quantity but also in how demand is distributed among the markets (origin-
destination city pairs) served, and over time within a market. Consequently,
carriers will plan for a demand pattern that represents the “regular” traffic
(the demand one may reasonably expect to always be there) over an aver-
age or heavy (the average forecasted over a busy period) week. Such point
forecasts of future demand are used in most service network design models
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to produce a plan where all demand is satisfied by using the company’s own
vehicles. The previous model is no exception.

Capacity does not always match demand, however. In the case of a low
demand relative to the planned capacity, carriers tend to cancel services (de-
laying, eventually, some demand). When demand is higher than planned,
carriers can act in a variety of ways: add capacity on a service, either using
some of the company’s own vehicles, if available, or by “renting” vehicles
and /or drivers, refuse the load (a course of action very rarely chosen), delay
some freight, possibly at a cost, and so on. Sometimes, such choices, and
the associate cost-profit-quality of service trade-offs, are reflected in the tac-
tical planning models. They should certainly be included when the demand
variability is explicitly considered in the formulations.

We integrate this factor into our formulation by defining an ad-hoc capac-
ity increase, denoted Z(k), k € IC, as the amount of commodity k transported
using a different vehicle from those of the fleet considered. The associated
per-unit cost is b, set such that there is a reasonable balance between own
transportation and taking the ad-hoc alternative.

We then update the basic formulation by replacing the objective function
(1) with (11), which takes the cost of ad-hoc capacity increase into account.
The constraints (4) and (8) are replaced by (12) and (13), respectively.

mmzzicﬁxfj +b> (k) (11)

1EN jEN t=0 keK

(o(k),a(k) : D Yihl(k)+ Z(k) = (k) VkeK (12)
ieN

(d(k), 7(k)) = DYk + Z(k) = 0(k)  VEeK  (13)
iEN

2.3 Circular schedules

In any multi-period formulation, one has to address the end-of-horizon effects.
We can mitigate this problem by casting the previous model in a circular
fashion. This implies that vehicles operate according to circular routes over
the planning horizon considered, which is an approach to introduce fleet
management issues into service network design models.

Assuming a T-period planning horizon, a circular notation means that the
period following period ¢ is (t 4+ 1) mod T', while the previous period becomes
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(t =14+ T)modT. To improve readability, we present constraints according
to the difference, diff, in number of time periods, between o(k) and 7(k).
To keep the paper relatively short, the circular notation is introduced in the
following section, together with the stochastic notation.

3 Stochastic Service Network Design

Let the deterministic demand ¢ be replaced by the random demand 5, with
density function f(9§). The model then becomes (the formulation assumes
circular vehicle schedules, as indicated previously):

min » "> 2 i XL +0b / Q(X,0)f(8)ds (14)

ieEN jEN t=0
SOXG =YX mAD 0L To1weN  (15)
ieN ieN
ijZO and integer t=0,...,7 —1,Vi,j € N (16)
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where
Q(X,6) =min y _ Z(k) (17)
keK
Youlk) + Z(k) = 0(k), Vkek (18)
ieN
(dift>3): YOk Z oW MOA Ty i N VEEK (19)
1EN
d
ieN ieEN
t=0,....T—1,Vj e N,Vk €K (20)
7(k)—2+T7) mod T 7(k)—-14+T7) mod T
(diff > 3) Z ; (k) =Yoo (k)
1EN
Vi e N,Vk e K (21)
yGW-nmod Ty 2y = 5(k), Vkek  (22)
ieEN
. - - d :
(diff =2): Y (k) =Y MO T () vjeN VRek  (23)
D Vi(k) < MX
kex
Vi,jeN:i#j t=0,....T—1 (24)
Yi(k)>0  VijeN,VkeK,t=0,...T-1 (25)

The objective function (14) minimizes the costs of this two-stage problem.
The first stage determines how to operate the vehicles while the second stage
addresses how to deal with ad-hoc capacity increase for given demand real-
ization § and first-stage decision X. Constraints (15) represent conservation
of flow for vehicles, while (16) is a non-negativity and integrality constraint.

In the second stage, the objective function (17) minimizes the cost of
commodities sent using ad-hoc capacity increase. Equations (18) state that
the demand of a commodity at its origin is served either by the company’s
own vehicles or by some ad-hoc capacity increase. Equations (22) are the
equivalent constraints for a commodity at its destination. Constraints (20)
enforce the conservation of flow of commodities when there are four or more
time periods between o (k) and 7(k). Similarly, equations (19) and (21) are
conservation of flow constraints for commodity k one period after it becomes
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available at its origin and one period before it has to arrive at its destination.
Constraints (23) represents the conservation of flow for commodity k& when
there are only 2 time periods between (k) and 7(k). Finally, constraints (24)
make sure that the vehicle capacity is not exceeded; (25) is a non-negativity
constraint.

In most applications, stochastics is described by (large) data sets or by
continuous distributions, as indicated in the model above. Stochastic pro-
grams, solved with exact methods, cannot handle that directly but need
discrete distributions with limited cardinality. Hence, there is a need to pass
from the underlying distribution (empirical, possibly) to a discrete one. This
process has become known as scenario generation. The result is a set of
scenarios (possible futures). In the multi-stage case, where randomness is re-
vealed over time, these scenarios take the form of a tree, called the scenario
tree. In our case, the model has only two stages, and hence the tree is just a
“bush”. However, we shall still talk about the scenario tree, even though it
is a very shallow one.

The discretization process provides us with scenarios s € §, which can be
used in the optimization process. A probability p* > 0 is attached to each
scenario, with » p® = 1. As a result, the Y and the Z flow variables are
indexed by s. A scenario is |K|-dimensional, as it contains a demand §°(k) for
each commodity k. The result of this process is to transform the stochastic
formulation into a large-scale deterministic model, where the integral in the
objective function of the stochastic formulation is replaced by a sum over all
scenarios.

Thus, to reflect the move from a continuous to a discrete distribution, the
objective function (14) is replaced with:

min » Y icijxfj +b> p'Q(X,6%) (26)

ieN jeN t=0 seS

The first stage then determines the “optimal” number of vehicles and as-
sociated schedules. The second stage describes the flow for each commodity
k which can, and probably will, be different for the different scenarios s. Put
in another way, the vehicle movements are the same for all scenarios, while
the flow of freight is different for the various demand realizations. Obviously,
both “stages” are solved simultaneously.
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4 Experimental Setting

In Section 4.1 we look into how to deal with some of the challenges related
to scenario generation. Section 4.2 provides an overview of the setup for our
computational tests, with Section 4.2.1 providing an overview of the structure
of the space-time network and Section 4.2.2 discussing the stochastic demand.

4.1 Building the Scenario Tree

Scenario generation is a very critical step in the setup of a stochastic program.
On one hand, the scenario tree has to be small, otherwise the corresponding
stochastic program cannot be solved to optimality with a reasonable com-
puting effort. On the other hand, we must be sure that the scenario tree
represents the underlying distribution reasonably well. We must make sure,
in fact, that it is not the discretization procedure that drives the stochastic
program, or, put differently, that the result of the stochastic program is not
a random effect of a (random) scenario tree generation procedure. More to
the point, sampling will eventually lead to a scenario tree which represents
the underlying distributions arbitrarily well but may also results in a very
large and (numerically) unsolvable stochastic program. On the other hand,
sampling a small enough scenario tree for computational efficiency can yield
a tree displaying uncontrollable proprieties and lead to very strange deci-
sions. A general overview of scenario generation procedures can be found
in Dupacovd, Consigli, and Wallace (2001). It is worth noting that having
good scenario trees is particularly important given our goal here: To study
the structure of optimal solutions. We need to interpret our solutions rela-
tive to our formulations consisting of distributions and algebraic equations,
and not relative to a scenario tree with potentially strange distributional
properties caused by a faulty scenario generation procedure.

The scenario generation process we use is based on the method pro-
posed by Hgyland, Kaut, and Wallace (2003), which again is developed from
Hgyland and Wallace (2001). The idea is to construct a scenario tree with
pre-specified properties. The authors show that, for their application (port-
folio management), the necessary properties were four marginal moments (for
each random variable) plus correlations. Which properties are important will
depend on which model we are studying.

Most scenario generation procedures are themselves random. Hence,
when run several times with the same data, they produce different scenario
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trees. By in-sample stability (see Kaut and Wallace 2007 for details) is un-
derstood that whichever of these trees is used in the optimization problem,
the optimal objective function value is (approximately) the same. This is
a necessary but not sufficient property of a satisfactory scenario generation
procedure. By out-of-sample stability is understood that the true objective
function values are also the same for those decisions obtained by the different
scenario trees. Out-of-sample performance will normally be measured using
some type of simulation.

When in- and out-of-sample stability are verified, we can run the scenario
generation procedure only once and then solve the resulting program. The
optimal objective function value will not depend on which scenario tree we
ended up with. Similarly, the true expected objective value of this solution
is the same as it would have been had we used any other of the possible
trees. This emphasizes the importance of in- and out-of-sample stability.
Note that we define stability relative to the objective function and not the
solution. We do not consider it a problem that solutions are different if they
have the same performance. This is not contrary to our goal of studying
optimal solutions, as we look at structures of the solutions rather than the
solutions themselves. And it turns out that different near-optimal solutions
possess the same structural properties.

When using the method by Hgyland, Kaut, and Wallace without any
changes, we found in-sample instability. Analyzing the results showed that
outcomes were generated outside the support of the random variables in some
scenarios. This is not necessarily a problem (in the case of Kaut, Hgyland,
and Wallace it was not), but we suspected it might be of importance in
a discrete model like ours, as even minute outcomes outside the support
can potentially change the objective function value substantially due to the
integrality requirements. Hence, we choose to enforce this property onto the
tree.

We therefore changed the procedure slightly so that it generated outcomes
within the support. This yielded the desired stability. In-sample stability was
achieved using 50 scenarios (the difference between the highest and the lowest
objective function values was 1.2%). Thus, in the present case, the first four
marginal moments, correlations, and staying within the defined support were
the necessary properties to achieve in-sample stability.

Out-of-sample stability was verified by sampling scenario trees S with
20000 scenarios from the same distributions used to construct scenario trees
for the optimization. These were declared as the "truth”. The evaluation was
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performed by fixing the integer variables (denoted X ) representing the vehicle
schedules from the stochastic programs, and optimizing the flow of freight by
solving the linear program (in fact, this is a collection of |S| separate linear
programs):

min » _p*Q(X,6*), (27)

seS

for the given X over the "true” tree S. We then compared the values across
the different schedules coming from our selection of scenario trees, and found
that the difference between the highest and the lowest objective function
values was 0.3% (in this comparison we add the vehicle costs ¢X to what we
get from (27)). We find this satisfactory, and declare that we have out-of-
sample stability.

4.2 Building the test problem instances

One of the challenges of creating good test instances is to avoid instances
tailored to suit an algorithm or some desired results. To address the issue,
we created 630 diverse schedules, all consisting of 12 commodities. Instances
differ along a number of characteristics, most notably in vehicle operating
costs, the association of random variables to commodities in the scenario tree,
and correlations in demand for the various commodities. In the following
subsections we describe how some of these characteristics were defined.

Notice that, for a better understanding of how demand uncertainty can
affect the structure of service network design solutions, we have deliberately
chosen to use very small test cases (10 - 16 commodities). There are two
reasons for this. First, small dimensions allow us to solve to optimality
instances of this AP-hard and degenerate problem. Second, it is easier to
visually study the results when dimensions are small, which contributes to
developing insights.

4.2.1 Networks and costs

All our experiments use a time-space network that consists of six nodes re-
peated for seven periods. We always use complete networks with no hub-
and-spoke structure. Costs associated with the use of vehicles (¢;;) are given
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by nine different matrices, making the instances diverse. The cost associated
with ad-hoc capacity increase (b) is the same in all instances.

4.2.2 Demands

Very little work has been done on how dependence affects the solutions to
stochastic optimization problems, with the notable exception of the analysis
of correlations in portfolio management in finance (e.g., Chopra and Ziemba
1993). For service network design, Lium, Crainic and Wallace (2007) discuss
the effects of demand correlations. We found that correlations did indeed
matter. The behavior of the deterministic solution varied substantially de-
pending on the underlying correlation structure (obviously overlooked by the
deterministic model). The different stochastic cases (varying types of corre-
lations) showed very different performance when tested with demand based
on correlations different from what was originally used.

Correlations describe how the different demands vary relatively one to
another, and the results show that a better understanding of these patterns
can be crucial to generating robust schedules. We also saw that schedules
corresponding to very high positive correlations were less robust when fac-
ing demands based on different correlation matrices, compared to schedules
generated with zero or mixed correlated demands. The reason is that strong
positive correlations push the problem instance close to the worst-case where
robustness is of no concern in the construction of the schedule.

To account for these findings in our experiments, we used three different
correlation settings: 1) all the commodities are positively correlated, with the
correlation between each pair of commodities set at 0.4 or 0.7; 2) uncorrelated
demand; 3) mix of (positive) demand correlations set at 0.5 and (negative)
demand correlation set at -0.5.

To better demonstrate how uncertainty affects solutions, we use three
different “levels” of uncertainty; high, low, and no uncertainty For instances
with demand uncertainty, stochasticity is represented by the triangular dis-
tribution § ~Tri(2,14,8) and § ~Tri(5,11,8) for high and low uncertainty,
respectively. In the deterministic case, the schedules are constructed using a
mean of 8.
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4.2.3 The problem instances

We constructed 90 deterministic problem instances using 10 demand matri-
ces, each describing different O-D combinations for the commodities, and the
9 vehicle operating cost matrices.

We use the same approach to create instances for the stochastic problems,
except that we introduce variability in demand. As indicated, we use 2 differ-
ent “levels” of uncertainty, high and low, and 3 different types of correlation
between commodities. This procedure yields 6 stochastic instances for each
deterministic one, for a total of 540 stochastic problem instances.

5 Computational Results

To evaluate the effect of using stochastic models, we turn to a procedure
similar to Monte Carlo simulation. We first solve each of the 90 deterministic
and 540 stochastic problem instances. Since we know that we have in- and
out-of- sample stability, we solve each case only once. Then, we generate
three 1000-scenario trees that we declare to represent the “true” situations
(actual realizations of demands). These trees are based on the same data as
the problem instances: triangular distributions with § ~Tri(2,14,8) and three
different types of correlations between the random variables (uncorrelated,
positive correlation of 0.7, and a mix of positively, 0.5, and negatively, -0.5,
correlated demands).

For each service schedule, X , we then solve the flow distribution problem
(the linear program given by (27)) using the large 1000-scenario tree with
the same correlation structure as was used to find X.

We thus obtain the best utilization of the schedules selected by the
stochastic service network design model (using a small tree), given the more
appropriate distribution of demands contained in the “true” large tree. An
advantage of this approach is that we avoid potential biases in the evaluation
caused by a different evaluation procedure (e.g., a discrete-time simulator).
So, in a sense, the evaluation is fair.

Statistical measures are then computed and are displayed in Table 1.
A number in the “Stoch.” (“Det.”) line of Table 1 represents the average
expected cost of using the 180 stochastic (the 90 deterministic) schedules, for
a given correlation matrix, measured using the corresponding 1000-scenario
tree. Half of the positively correlated schedules were based on a correlation
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of 0.4 and the other half on a correlation of 0.7. Deterministic schedules are
based on average demand. The fifth column shows the average performance
for each type of schedule.

Table 1: Average expected true cost of stochastic and deterministic problem
instances

Correlation type
Schedules | Uncorrelated | Positive Mix Average
Performance
Stoch. 4939.94 5110.8 | 4948.53 4999.76
Det. 5875.1 6235.6 | 5946.9 6019.18
Savings 15.92% 18.0% | 16.8% 16.94%

The last row of Table 1 gives an indication of potential savings result-
ing from the integration of demand stochasticity into the service network
design models when constructing schedules. Despite the limitations of our
experiments, indications of average savings of 17% are interesting and shows
that using deterministic formulations to solve stochastic problems may cause
unnecessary costs.

6 The Impact of Stochasticity on Plans

The purpose of this section is to illustrate some of the structures we found by
studying the solutions from Section 5. We shall use very simple examples in
order to bring forward the major ideas. We shall see that, on one hand, the
structures are somewhat simple while, on the other hand, deterministic mod-
els would not produce these structures. We shall also observe that the well-
known structure of hub-and-spoke, in particular the idea of consolidation,
will be part of the solution structures without being enforced. It is sim-
ply optimal, in light of randomness in demand, to use consolidation. Under
certain reasonable conditions, consolidation takes place in a hub-and-spoke
environment.
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6.1 Reducing risk and capacity requirements through
consolidation

Consolidation in LTL-trucking is normally thought of as a way to accommo-
date the fact that most loads are less than one truckload. In deterministic
models, consolidation helps keep truck utilization up, and also facilitates the
use of reasonably large trucks over long distances. However, there are also
risk-related reasons for using consolidation. Let us look at a minor example
where each load has an expected size equal to the truck capacity. In such a
setting, consolidation will not be part of a deterministic solution.

Consider the example with two commodities in Figures 2 and 3. One
commodity (represented by a dashed arrow) becomes available at node 1 at
time 0 and has to be delivered to node 2 within three periods. The other
commodity (represented by a dotted arrow) becomes available at node 3 at
time 1 and has to be delivered to node 2 within one period. The solid arrows
in the two figures show the optimal schedule for the two trucks that are used
to transport the commodities from their origins to their destinations. We
note that there will not be any consolidation in the deterministic solution
(assuming just these two commodities) so that each commodity will use its
own truck.

In the stochastic solution, we see both trucks following the same path.
This is a different and, in the example, slightly more expensive schedule,
compared to the deterministic one. However, it allows the two commodi-
ties to share the joint capacity of the two trucks from node 3 to node 2 at
time 1. This is an example where commodity 1 is sent trough an intermedi-
ary breakbulk (node 3), before being consolidated with commodity 2 using
the two trucks servicing the link from node 3 to node 2 at time 1. Having
this kind of solution where two commodities share the common capacities of
two trucks, makes expensive ad-hoc capacity increase less likely compared to
if they had used one truck each as in the deterministic case.

Let us illustrate by using some numbers. Let trucks have capacity 2,
and let the demand for each of the commodities be 0, 2 or 4, each with a
probability of % Hence, in total, there are nine possible scenarios, and if the
demands are independent, each scenario has a probability of é.

If we use the deterministic solution shown in Figure 2, but let it face
uncertainty, whatever demand that cannot be met will be handled by the
ad-hoc capacity increase. Of the nine scenarios, five will result in ad-hoc
capacity increase, and the expected amount of ad-hoc capacity increase is
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Time t Time t

Figure 2: Deterministic solution, no  Figure 3: Stochastic solution, consol-
consolidation, two trucks idation between nodes 3 and 2, two
trucks

%. If we test the schedule in Figure 3, we note that the expected amount
8

of ad-hoc capacity increase will be g, or % lower than for the deterministic
schedule. What has happened is that the two scenarios (4,0) and (0,4) can
now be handled without ad-hoc capacity increase due to consolidation, that
is, due to the ability to share transportation capacity.

What we observe here is closely related to what has been observed in
other parts of the operations research literature. For example, in inventory
theory, when the number of warehouses/inventories drops, safety stocks can
be reduced without reducing the service levels. In finance, the risk in a
portfolio of various financial instruments can be reduced by diversification,
keeping the expected return the same.

To our knowledge, such use of consolidation as a means to hedge against
uncertainty is a feature that has not been described in the service network
design literature. There can be several reason for this, but since the literature
almost exclusively refers to or uses deterministic models, hedging against
uncertainty becomes irrelevant. Notice again, that consolidation is not a
property we enforce on the solution, but a structure that emerges because it

is good for the overall behavior of the schedules.

6.2 Flexibility through path sharing

In the above example there are only two commodities. Let us now pass to
an example with four commodities. We shall see that not only is it good to
consolidate, but also to have many paths available for each commodity. Also
here, all observed aspects of consolidation will come from stochastics, and
not from standard volume related arguments.

Figure 4 illustrates the example. We have four commodities becoming
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available at their respective origins at time zero to be transported to their
destinations within three periods. The schedule in Figure 6 is based on
stochastic demand, while for the schedule of Figure 5, demand equals the
expected demand from the stochastic case. Otherwise, all parameters are
the same.

The deterministic and stochastic schedules require the same number of
trucks. In the deterministic case no ad-hoc capacity increase is used (when
the demand is deterministic), while the stochastic case uses some ad-hoc
capacity increase (less than 0.1% of the expected flow) to be able to transport
all the commodities to their destinations. (However, this does not imply that
the deterministic solution is better with respect to ad-hoc capacity increase.
When the deterministic solution is subjected to random demand, a total of
1.17 % of the expected flow is moved with the help of the ad-hoc capacity.)

The most substantial difference between the two solutions is the number
of paths connecting the various O-D pairs. In the deterministic case there
are two O-D pairs that are connected with one path while the two others are
connected by two paths. In the stochastic case each O-D pair is connected
by at least two paths. The higher number of paths in the stochastic solution
makes it easier to switch the flow of commodities from one path to another, if
required because the first path is taken by another O-D pair. Such situations
might occur when there is a surge in demand on a specific O-D pair that fully
or partially can be routed on a different path. This larger number of paths
in the stochastic solution gives more operational flexibility when routing
commodities through the network. This is shown in Figure 8 where one
of the commodities has three available paths, while the schedule based on a
deterministic approach only offers one possible path, as shown in Figure 7. In
most cases, this flexibility increases the capacity available to each commodity,
without having to increase the total capacity in the network by adding more
and/or larger trucks. This makes our stochastic solution perform better
under uncertainty.

This result is in line with what we have observed in a variety of test cases.
When uncertainty becomes an issue, our solutions habitually move away from
“direct connections” between origins and destinations in deterministic cases,
to more hub-and-spoke looking networks where the freight is being shipped
trough intermediary terminals. This is not because it was “decided” a priori
that freight between some O-D pairs should be handled this way, but because
it turned out to be the best solution to deal with the uncertainty. Using
our model has shown us that consolidation in hub-and-spoke networks takes
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Figure 5: Schedule of trucks based on  Figure 6: Schedule of trucks based on
deterministic demand stochastic demand
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Figure 7: The flow of a commodity Figure 8: The flow of a commodity in
in a schedule based on a deterministic  a schedule based on a stochastic ap-
approach (represented by the dotted proach (represented by the non-solid
line) lines)
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place not necessarily due to economy of scale or other similar volume related
reasons, but as a result of the need to hedge against uncertainty.

So, the conclusion so far is that a stochastic solution will try to provide
many paths for each O-D pair, such that capacity is shared with other (dif-
ferent) O-D pairs on each of these paths. This provides optimal operational
flexibility. It implies that as soon as some demand is low, others can imme-
diately utilize the freed capacity if they are in need. A deterministic model
would never produce such structures.

6.3 How correlations affect schedules

Look back at Figures 2 and 3. When we calculated the value of using the
stochastic rather than the deterministic model, we assumed the demands
were independent. Assume instead that the two demands are perfectly neg-
atively correlated. In that case, the sum of the two demands will always be
4, and the expected ad-hoc capacity increase will be zero. But, if we use
the solution from the deterministic model, the expected ad-hoc capacity in-
crease will remain at %. What we observe is not surprising, but important.
Negative correlations imply a chance to achieve hedging, but only if the two
negatively correlated flows can be set up so as to share capacity. And the
more negatively correlated they are, the more important the issue.

On the other hand, in the same example, if the two demands are perfectly
positively correlated, the expected ad-hoc capacity increase will be the same
for the deterministic and stochastic solution, since, in fact, consolidation will
never take place.

More generally, as long as random variables are not perfectly positively
correlated, there is something to be gained from flexible routing. The more
we move towards perfectly negative correlations, the higher is the potential
for hedging. As flexibility normally comes at a cost, there is a tradeoff
between the cost of achieving operational flexibility and the expected gain
from the investment. Of course, when there are many random variables, the
relationships are more complex. But even so, we can conclude as follows:
Operational flexibility is achieved by having many paths available for each
O-D pair, such that each of these paths is shared by other O-D pairs. The
more negative the correlations are, the more there potentially is to be gained
from well structured schedules.
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7 Conclusions and Perspectives

In the presented cases we show that uncertainty plays a very important role
when constructing schedules in service network design, and that there exist
certain characteristics in solutions based on uncertain demand that can be of
practical value as they provide operational flexibility, making the schedules
robust as seen by the customers. Solutions containing these characteristics
will typically not be found when a deterministic approach is used, as flex-
ibility does not even have meaning in a deterministic world. The future is
“known” and no flexibility would therefore be needed. Our experiments show
that solutions based on a stochastic approach can be structurally different
from their deterministic counterparts. Such structural differences might vary
from case to case, but there are two characteristics that seem to show up in
most of the cases when dealing with uncertainty. One is the number of paths
between the origin and destination, the other is that the more commodities
share a link, the higher expected utilization the link achieves.

Correlation in demand between different commodities is clearly an is-
sue (or should be) when planning for consolidation carriers. Our findings
indicate that there are benefits to be obtained when commodities share
paths/services. This is particularly important when negative correlations
are present. The reason is that commodities that share some capacity in-
crease the utilization of this resource. This result is very similar to how
one can reduce risk in a financial portfolio by mixing negatively correlated
financial instruments.

By neither enforcing nor encouraging any specific structure or design upon
the schedules, we have seen that consolidation and hub-and-spoke systems
offer better solutions when there are uncertainties in demand. Most OR liter-
ature advocate the use of consolidation as a mean to increase efficiency/higher
frequencies/economy of scale, while we have demonstrated that uncertainty
also favors the use of a hub-and-spoke systems as they provide hedging. Our
findings indicate that making strategic decisions, such as how many hubs to
use and where to locate them, and more tactical /operational activities such
as creating schedules, should not be two separate decision processes, but —
preferably — one.

There are especially two issues that look promising for future research.
One is to use the knowledge we have gained so far in some heuristic method,
so as to obtain good solutions without having to solve a stochastic program.
Another issue is to study similar problems, such as more general network
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design problems.
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