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Abstract. Parallel solution methods contribute to efficiently address large and complex 

combinatorial optimization problems, vehicle routing problems in particular. Parallel exact 

and heuristic methods for VRP variants are increasingly being proposed and the pace 

seem to increase in recent years. “New” strategies have been proposed and many of the 

best known solutions to classical formulations have been obtained. The paper describes 

and discusses the main strategies used to parallelize exact and meta-heuristic solution 

methods for vehicle routing problems. It also provides an up-to-date survey of 

contributions to this rapidly evolving field and points to a number of promising research 

directions. 
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1 Introduction

The Vehicle Routing Problem (VRP) is one of the core operations research and combinatorial
optimization problem classes with numerous applications in transportation, telecommunica-
tions, production planning, and so on. The basic VRP may be briefly described as follows.
Given one or more depots, a fleet of vehicles, homogeneous or not, and a set of customers
with known or forecast demands, find a set of closed routes, originating and, generally, ending
at one of the depots, to service all customers at minimum cost, while satisfying vehicle and
depot capacity constraints. Other characteristics and requirements may be considered, such
as service and travel time restrictions, multiple commodities with different transportation
requirements, time-dependent and uncertain demands or travel times, etc., yielding a rich
set of VRP variants.

Vehicle routing problems have been the object of numerous studies and a very large
number of papers propose solution methods. Because most VRP variants are NP-Hard,
exact solution methods are confined to limited-size problem instances. Heuristics, meta-
heuristics principally, are thus proposed in most cases. Contributions are continuously being
made to VRP methodology and practice alike. Yet, despite the progress the field has seen
in recent years, many challenges still stand and new ones are emerging.

Problem instances of interest are becoming larger. More importantly, problems are be-
coming more complex in terms of “new” constraints and objectives that are added to the
generic formulations the community usually focuses on. The term rich vrp has been coined to
identify these new and challenging problem variants. Two additional trends may be observed
that contribute to making VRP a challenging and interesting field. On the one hand, the
time available to reach a decision is limited for several problem settings, such as the real-time
routing and re-routing problems. These settings require therefore solution methods display-
ing high computational efficiency without a decrease in solution quality. On the other hand,
there is the need for “simpler” but efficient and robust methods, that is, solution approaches
that do not require complex and extensive calibration procedures, while still offering high
performance over a broad range of problem instances. Beyond their intrinsic elegance, such
methods provide for added flexibility in practical use.

Parallel optimization contributes toward meeting these challenges. As illustrated by the
survey papers indicated further in this Introduction, parallel exact, e.g., branch-and-bound,
and meta-heuristic methods have been successfully applied to many diverse combinatorial
optimization problems. One is surprised to realize, however, that relatively few developments
have targeted vehicle routing problems, most of those that do having been proposed from the
turn of the millennium on. This is certainly the case for parallel branch-and-bound methods.
The author is not aware of any contribution related to VRP published before the year 2000
and of very few published after that (Section 3). The case is not as extreme regarding
parallel meta-heuristics. Even though the contributions related to VRP published before
the year 2000 are not as numerous as for other combinatorial optimization problems [21],
a few particular ones have had a significant impact on the field (e.g., the adaptive memory
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concept - see Section 4). Yet, a much larger number of contributions have been proposed
starting around the turn of the millennium. “New” strategies have been proposed and many
of the best known solutions to classical formulations have been obtained by applying them.

The objective of this paper is twofold. First, to describe and discuss the main strategies
used to parallelize exact and meta-heuristic solution methods for vehicle routing problems.
Second, to provide an up-to-date survey of contributions to this rapidly evolving field and
point to a number of promising research directions.

The paper is organized as follows. Section 2 recalls basic concepts in parallel computing
and indicates a number of general references. Section 3 introduces parallel tree-search based
algorithms and surveys the few VRP applications proposed so far. Section 4 presents parallel
meta-heuristic strategies, while Section 5 surveys recent parallel meta-heuristic contributions
to VRP variants. Section 6 concludes the chapter.

2 A Very Brief Tour of Parallel Computing

To limit the length of the paper, we restrict to a minimum the discussion of general parallel
computing issues (see, e.g., [10] for a more in-depth presentation), as well as the presenta-
tion of general parallel branch-and-bound and meta-heuristic strategies (Sections 3 and 4,
respectively).

Parallel/distributed computing applied to problem solving means that several processes
work simultaneously on several processors with the common goal of solving a given problem
instance. Parallelism thus follows from a decomposition of the total workload and the distri-
bution of the resulting tasks to the available processors. The decomposition may concern the
algorithm or the problem-instance data. In the former case, denoted functional parallelism,
different tasks, possibly working on the “same”’ data, are allocated to different processors
and run in parallel, possibly exchanging information. The latter is denoted data parallelism
or domain decomposition and refers to the case where the feasible domain of the problem
considered is partitioned and a particular solution methodology is used to address the prob-
lem on each of the components of the partition. According to how “large” the tasks are, a
few instructions or a sizable part of the algorithm, the parallelization is called fine- or coarse-
grained, respectively. When the tasks are independent or weakly correlated (e.g., partitioning
two matrices to speed up their multiplication), the same work is performed in parallel and
in sequential, but the former is faster, the wall-clock time being reduced proportionally to
the average number of tasks that are run concurrently during the computation.

There are very few cases of such “pure” parallelism in optimization, however. Conse-
quently, the volumes of work performed by the sequential and parallel versions of a solution
method, are different in all but the simplest cases, e.g., low-level parallelism where only the
work of computing-intensive tasks, such as the computation of a bound or the evaluation of
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a neighborhood, is decomposed. This is particularly true when the parallel method imple-
ments a multi-search strategy rather than a direct parallelization of a given algorithm. In
case, several search methods, including but not restricted to branch-and-bound and meta-
heuristics, explore simultaneously the solution space of the same problem instance. The
methods proceed independently but may engage in various types of communication and in-
formation sharing, the intensity, scope, and form of communication defining the particular
multi-search strategy.

Information must be exchanged among tasks to provide the necessary data for computa-
tions or the estimation of the global status of the search. Communications may be performed
synchronously and asynchronously. In the former case, all concerned tasks have to stop and
engage in some form of communication and information exchange at moments (number of
iterations, time intervals, specified algorithmic stages, etc.) exogenously determined, either
hard-coded or determined by a control (master) task. In the latter case, each task is in
charge of establishing communications with other tasks, according to its internal logic. The
frequency of communication and the volume of exchanged information vary with the partic-
ular solution method and parallelization strategy, and are often central to the success of the
parallel method. Communications must be carefully controlled, however, to avoid that the
associated search overhead obliterates the gains of decomposition.

Recall that the traditional goal when designing parallel solution methods is to reduce the
time required to “solve”, exactly or heuristically, given problem instances or to address larger
instances without increasing the computational effort. For exact solution methods run until
the optimal solution is obtained, this translates into the well-known speedup performance
measure, computed as the ratio between the wall-clock time required to solve the problem
instance in parallel with p processors and the corresponding solution time of the best-known
sequential algorithm; A somewhat less restrictive measure replaces the latter with the time
of the parallel algorithm run on a single processor. See [6] for a detailed discussion of this
issue, including additional performance measures.

Speedup measures are more difficult to define when the optimal solution is not guaranteed
or the exact method is stopped before optimality is reached. Indeed, for most parallelization
strategies, the sequential and parallel versions of a heuristic yield solutions that are different
in value, composition, or both. Thus, an equally important objective when parallel heuristics
are contemplated is to design methods that outperform their sequential counterparts in terms
of solution quality and, ideally, computational efficiency (i.e., the parallel method should not
require a higher overall computation effort than the sequential method or should justify the
effort by higher quality solutions). Search robustness is another characteristic increasingly
expected of parallel heuristics. Robustness with respect to a problem variant is meant here in
the sense of providing “equally” good solutions to a large and varied set of problem instances,
without excessive calibration, neither during initial development, nor when addressing new
problem instances. See [22, 23] for a discussion of these issues.

The reader may consult a number of surveys, taxonomies, and syntheses of parallel meta-
heuristics, some addressing methods based on particular methodologies, while others address
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the field in more comprehensive terms. Two recent books [1] and [77] collect chapters on
many issues in parallel computing for combinatorial optimization. Syntheses of strategies for
parallel branch-and-bound and branch-and-cut may be found in [19] and [64], respectively,
while [4], [44], [45], and [67] address parallel simulated annealing; [13], [52], [54], and [73]
parallel evolutionary and genetic algorithms; [25], [18], [42], and [80] parallel tabu search;
[12] and [33] ant-based methods; and [53] parallel Variable Neighborhood Search (VNS).
Surveys and syntheses that address more than one methodology may be found is [17], [22],
[23], [21], [26], [46], [59], and [79].

3 Exact Search Methods

Research into exact methods for vehicle routing problems is advancing at a steady pace
focusing on branch-and-bound methods with column generation (branch-and-price) plus,
eventually, the addition of valid inequalities to strengthen the formulations and the bounds
(branch-and-cut and branch-and-cut-and-price). Yet, very few efforts have been dedicated
to developing parallel algorithms for VRP and variants. This is in contrast to many other
combinatorial optimization areas for which a rather rich literature on parallel branch-and-
bound exists. (For the sake of simplicity of presentation, unless otherwise specified, we
discuss issues from the point of view of branch-and-bound search.) Still, we chose to address
this topic because we believe it offers interesting perspectives in terms of efficient vehicle
routing problem solving, either by itself or combined to the co-operative meta-heuristics
described in Section 4. We initiate the section by briefly discussing sources of parallelism in
branch-and-bound methods, and conclude with the presentation of recent results.

Two basic, by now classic, approaches are known to accelerate the branch-and-bound
search: node and tree-based strategies. Domain decomposition is not mentioned in the
parallel branch-and-bound literature because, in fact, it may be seen as a particular tree-
based strategy in which branching at the root node of the tree partitions the problem domain.
As for multi-search strategies, even though the topic is often mentioned as an interesting
research direction, significant research efforts have yet to be dedicated to their development.

Node-based strategies aim to accelerate the branch-and-bound search by executing con-
currently operations associated to subproblems (nodes) of the tree: evaluation, bounding,
and branching. The operations contemplated range from “simple” numerical tasks (e.g.,
matrix inversion), to the decomposition of computing-intensive tasks (e.g., the generation of
cuts), to parallel mathematical programming (e.g., simplex, Lagrangean relaxation, capac-
itated multicommodity network flow) and meta-heuristic (e.g., tabu search) methods used
to compute lower bounds and to derive feasible solutions. This class of strategies has also
been identified as low-level (or type 1 ) parallelization, because it does not aim to modify the
search trajectory, the dimension of the branch-and-bound tree, or its exploration.

Most parallel branch-and-bound algorithms implement some form or another of tree ex-
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ploration in parallel. The fundamental idea is that, since in most applications of interest
the size of the branch-and-bound tree grows rapidly to unmanageable proportions, distribut-
ing the tree-exploration work among several concurrent processes would reduce the total
computation time.

Recall that sequential branch-and-bound is fundamentally a procedure that first selects
and extracts a subproblem, a node, from a data structure, the pool. It then performs a series
of operations, evaluation, computation of upper bound, branching, and so on, to finally com-
plete the loop by inserting into the pool one or several nodes, the new subproblems yielded
by the branching operation. Subproblems in the pool are usually kept and accessed accord-
ing to their priority based on node attributes (e.g., lower-bound value) and the search tree
exploration strategy (e.g., best or depth first). An evident property of sequential branch-and-
bound is that each node-selection decision is taken with a complete knowledge (information)
regarding the status of the search, that is, with the global view of all the nodes generated
so far. In a parallel environment, both the search decisions and information may be dis-
tributed. Relative to the former, different processors may decide more or less simultaneously
what node to select and process next. The main source of information, the pool, may also
be distributed. Consequently, not all the relevant information may be available at the time
and place (i.e., the processor) a decision is taken. Moreover, work may come in short supply
for some processors, while others experience excessive loads, which requires a load-balancing
procedure to be undertaken. Parallel tree exploration methods may therefore be described in
terms of search-control (or scheduling) strategies made up of decision and pool management
rules, respectively.

The pool of nodes is the main source of knowledge and may be kept in a unique data
structure, a centralized pool, and thus be made available to all associated processors. Al-
ternatively, the pool may be distributed, in which case a processor or a group of processors
has direct access to its local pool only. We may then define the search knowledge of a given
processor as the available information relative to the pool of nodes with their priorities (plus
the incumbent value and the other global status variables of the search). We define also
the workload knowledge as the information available to a given processor regarding the load
factors of all relevant processors involved in the search. When branch-and-cut methods are
contemplated, similar concepts are introduced for the sets (pools) of local and global cuts.

The control of a branch-and-bound search is made up of a number of decisions: node
selection, allocation of node work (i.e., the operations related to subproblem evaluation and
bound computation), incumbent update, termination determination and, for distributed-
pool-based strategies, load balancing. Search control is then primarily defined by the number
of processors that collaborate to guide the search and the quantity of available information.
Generally speaking, decision-making may be centralized or distributed and may be based on
complete or partial knowledge.

A centralized search control refers to the case when a single processor, the so-called
“master”, makes all the search decisions, based on the complete search and workload knowl-
edge given by a centralized pool, but distributes node work to a number of processors. It

5

Parallel Solution Methods for Vehicle Routing Problems

CIRRELT-2007-28



is the classical master-slave strategy. We refer to distributed-search control when the node
selection decision is distributed among several processors. Providing complete information
in this case is very difficult and usually involves significant search overheads in terms of
synchronization and information exchange. Thus, most distributed-search control strategies
are associated to distributed node pools, partial information, and asynchronous communi-
cation schemes. The term “collegial” is often used to denote such strategies. Of course,
load-balancing mechanisms, based on the currently available workload knowledge, have to
be included into the parallel algorithm design to avoid processor idle time due to lack of
work or processors performing unnecessary work due to the poor quality of the nodes in
their local pools.

Few parallel branch-and-bound algorithms targeted vehicle routing problems. This has
started to change recently, with the VRP being used as one of the testbeds in the development
of strategies and libraries (Ralphs, Ladány, and Saltzman [66]) for parallel branch-and-
cut (and price) algorithms (Ralphs [63], Ralphs, Ladány, and Saltzman [65]). The current
implementation uses a centralized pool of nodes, as well as a centralized pool of cuts. This
provides for complete knowledge during the search. A master processor than guides the
branch-and-bound search, dispatching node-related work to a number of other processors.
An alternate strategy making use of multiple cut pools has also been tested. The advantage
of this approach is to limit the number of “slave” processors a cut pool must service when
nodes are examined, which makes for a more scalable algorithm. Furthermore, multiple pools
also make for a more efficient procedure to scan the cuts and verify whether they apply to a
given node and facilitate the utilization of local nodes (local to a node and its descendants).
Extensive experimental work showed that, as expected, the centralized-knowledge strategy
preserves the logic of the sequential tree exploration and avoids most redundant work. On
the other hand, the procedure was efficient on a limited number of processors, only. The
authors are thus developing tools to implement hierarchical parallel strategies where, at the
first level a number of processors collegially explore the tree (a “master” is in charge of load
balancing) while, at the second level, each of these processors distributes node-related work
to several other “slave” processors. Asynchronous communications, distributed node pools
(first level) and multiple cut pools are part of the in-development design.

4 Parallel Meta-heuristics

Given the difficulty of routing problems, most solution methods that are proposed are based
on heuristics and meta-heuristics. It is therefore not surprising that most parallel solution
methods proposed are based on meta-heuristics as well. This section recalls and briefly dis-
cusses the principal parallel meta-heuristic strategies proposed in the literature. Applications
to VRP and variants published before 2000 are also indicated.

To describe parallel meta-heuristic strategies, we adopt the classification of Crainic and
Nourredine [21], which generalizes that of Crainic, Toulouse, and Gendreau [25] (see also
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[17], [22], and [23]; Verhoeven and Aarts [79] and Cung et al. [26] present classifications that
proceed of the same spirit). This classification is sufficiently general to encompass all meta-
heuristic classes, while avoiding a level of detail incompatible with the scope and dimension
limits of the paper. The classification and parallel meta-heuristic strategies will be used in
Section 5 to analyze recent contribution to VRP and variants.

The three dimensions of the classification indicate how the global problem-solving pro-
cess is controlled, how information is exchanged among processes, and the variety of solution
methods involved in the search for solutions, respectively. The first dimension, Search Con-
trol Cardinality, thus examines how the global search is controlled: either by a single process
or collegially by several processes that may collaborate or not. The two alternatives are
identified as 1-control (1C) and p-control (pC), respectively. The second dimension, rela-
tive to the type of Search Control and Communications, addresses the issue of information
exchange according to four classes to reflect the quantity and quality of the information
exchanged and shared, as well as the additional knowledge derived from these exchanges (if
any): Rigid (RS) and Knowledge Synchronization (KS) and, symmetrically, Collegial (C)
and Knowledge Collegial (KC).

Because more than one solution method or variant (e.g., different parameter settings)
may be involved in a parallel meta-heuristic, the third dimension indicates the Search Dif-
ferentiation: do search threads start from the same or different solutions and do they make
use of the same or different search strategies? The four cases considered are: SPSS, Same
initial Point/Population, Same search Strategy ; SPDS, Same initial Point/Population, Dif-
ferent search Strategies ; MPSS, Multiple initial Points/Populations, Same search Strategies ;
MPDS, Multiple initial Points/Populations, Different search Strategies. Obviously, one uses
“point” for neighborhood-based methods such as Simulated Annealing, Tabu Search, Vari-
able Neighborhood Search, GRASP, Guided Local Search, etc., while “population” is used for
Evolutionary methods (e.g., Genetic Algorithms), Scatter Search, and Ant Colony methods.

Typically, 1-control strategies implement a classical master-slave approach that aims
solely to accelerate the search. Here, a “master” processor executes a sequential meta-
heuristic but dispatches computing-intensive tasks to be executed in parallel by “slave”
processes. The master receives and processes the information resulting from the slave oper-
ations, selects and implements moves or, for population-based methods, selects parents and
generates children, updates the memories (if any) or the population, and decides whether to
activate different search strategies or stop the search.

In the context of neighborhood-based search, the operation most widely targeted in such
approaches is the neighborhood evaluation. At each iteration, the possible moves in the
neighborhood of the current solution are partitioned into as many sets as the number of
available processors and the evaluation is carried out in parallel by slave processes (e.g., the
master-slave parallelization scheme of Garcia, Potvin, and Rousseau [36] for the VRP with
time-window constraints). For population-based methods, it is the fitness evaluation that is
most often targeted in 1C/RS/SPSS strategies.
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Probing or look-ahead strategies belong to the 1C/KS class with any of the search differ-
entiation models identified previously. For neighborhood-based methods, such an approach
may allow slaves to perform a number of iterations before synchronization and the selection
of the best neighbor solution from which to proceed (one may move directly to the last solu-
tion identified by the slave process or not). For population-based methods, the method may
allow each slave process to generate child solutions, “educate” them through a hill climbing
or local search procedure, and play out a tournament to decide who of the parents and
children survive and are passed back to the master.

The impact of such “low level”, 1-control strategies has proved limited, however. The
search trajectory of the parallel procedure is quite similar to that of its sequential counterpart
(it is the same, for 1C/RS/SPSS strategies). Of course, when neighborhoods are large or
neighbor-evaluation procedures are costly, the corresponding gain in computing time may
prove interesting. Then, when a sufficiently large number of processors is available, it might
prove worthy to combine such an approach to more sophisticated strategies into hierarchical
solution schemes (e.g., Rego and Roucairol [68] who used low-level parallelism to accelerate
the move evaluations of the individual searches engaged into an independent multi-thread
procedure for the VRP).

Multi-search or multi-thread parallel strategies for meta-heuristics have generally offered
better performances, in terms of solution quality and computing times, than the meth-
ods introduced above. Historically, independent and synchronous co-operative multi-search
methods were proposed first. The emphasis currently is on asynchronous communications
and co-operation. Most applications of such strategies fall into the pC category.

Independent multi-search methods belong to the pC/RS class of the taxonomy. Most
implementations start several independent search processes, all using the same search strat-
egy, from different, randomly generated, initial configurations. No attempt is made to take
advantage of the multiple threads running in parallel other than to identify the best overall
solution once all processes stop. This earns independent search strategies their rigid synchro-
nization classification. This parallelization of the classic sequential multi-start heuristic is
easy to implement and may offer satisfactory results, as has been demonstrated by Rego and
Roucairol [68] for the VRP. Each thread implemented their ejection-chain-based tabu search
with a different set of parameter settings but the same initial solution. The pC/RS/SPDS
method was implemented such that each thread executed a complete sequential tabu search.
The overall-best solution was then selected, the threads using it as initial solution for a new
search. Low-level parallelism was used to accelerate the move evaluations of the individual
searches, as well as in a post-optimization phase. Experiments showed the method to be
competitive on a set of standard VRP problems [14].

Co-operative strategies often offer superior performances compared to independent search.
pC/KS co-operative strategies adopt the same general approach as in the independent search
case but attempt to take advantage of the parallel exploration by synchronizing processors
at pre-determined intervals. An information exchange mechanism then determines the best
current overall solution and the search is restarted from that point. The mechanism may
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use a designated process to gather information, extract the best solution, and broadcast it
to all search processes. Alternatively, each search process may be empowered to initiate
synchronization (e.g., using a broadcast) of all or a pre-specified subset of processes (e.g.,
processes that run on neighboring processors). Here, as in the more advanced co-operation
mechanisms indicated bellow, migration is the term used to identify information exchanges
in population-based parallel algorithms.

Asynchronous co-operative multi-thread search methods belong to the pC/C or pC/KC
classes of the taxonomy according to the quantity and quality of the information exchanged
and, eventually, the “new” knowledge inferred based on these exchanges. Co-operative multi-
thread strategies exchanging “good” solutions only and implementing simple strategies to
extract solutions from the pool belong to the PC/C class of methods. When procedures are
added to extract information or create new information and solutions based on the solutions
exchanged, the corresponding methods are said to belong to the pC/KC class.

The design of the information communication and exchange mechanism is a key element
to the good performance of multi-thread parallel meta-heuristics. Questions relative to what
information to exchange, when to exchange it and among what processors, as well as what
to do with the received information are of the highest importance when designing parallel
meta-heuristics. Parallelism in general, and multi-thread strategies in particular, imply that
both the individual searches and the resulting global search proceed most of the time with
incomplete knowledge regarding the status of the search. Synchronization has been seen as
a means to re-create a state of complete knowledge to share among all participating search
threads. It was hopped that performances, in terms of computing efficiency and solution
quality, would be improved. This did not materialize, however. In fact, compared to in-
dependent and most asynchronous search strategies, synchronous methods display larger
computational overheads, appear less reactive to the evolution of the search, and conduct
to the premature convergence of the dynamic process representing the parallel search. The
issue is also relevant for co-operative search. It has been shown, for example, that frequent
broadcasting of new solutions that stop individual threads from continuing to explore im-
proving sequences leads to either a random search or premature convergence. Controlled,
parsimonious, and timely exchanges of meaningful information are thus characteristic of
successful co-operative multi-thread meta-heuristics.

Communications may be undertaken either directly or indirectly. Strategies based on the
evolutionary paradigm generally use direct communications. The population is divided into
subsets, each assigned to a processor (alternatively, relatively small populations are generated
for each processor), and a genetic algorithm runs on each. An individual population and
genetic algorithm form a so-called island. Each island may potentially communicate with
any of the other islands, as illustrated in Figure 1. Then, according to an exchange protocol
(e.g., on demand from an island with low population diversity), it sends a “good” individual
to another island. This exchange mechanism is called migration and the parallel strategy is
known as coarse grained. Islands (processors) may also be allowed to communicate with a
limited number of other islands (processors) only, as illustrated in Figure 2. Such limitations
are generally the result of particular topologies of the processor network (e.g., hypercube,
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torus, and so on). Communications then take place only among adjacent processors according
to a so-called diffusion mechanism. Notice that, in this case, islands tend to have very small
populations and the strategy to be denoted fine grained. When populations are down to
single individuals, the genetic operators are applied to individuals on adjacent islands.
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Figure 2: Diffusion Communication Scheme

Most co-operative multi-thread developments outside the evolutionary community are
based on indirect communications and, currently, the largest number use some form of mem-
ory for inter-thread communications (the terms pool and solution warehouse are also used;
due to the role assigned to the elements it contains, the terms “reference” and “elite set” are
also sometimes used, while the artificial intelligence community uses a similar concept under
the name “blackboard”). The individual searches are generally assigned each to a processor,
as illustrated in Figure 3. A search tread either heuristically constructs new solutions, or
executes a neighborhood-based improving meta-heuristic, or implements a population-based
meta-heuristic, or performs post-optimization procedures on solutions in the pool. Improv-
ing meta-heuristics aggressively explore the search space, while population-based methods
contribute toward increasing the diversity of solutions exchanged among the co-operating
methods. When the same meta-heuristic is used by several search threads, the initial solu-
tion and particular setting of a number of important search parameters differentiate each
search thread from the others.

The co-operation aspect of the parallelization scheme is achieved through asynchronous
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exchanges of information through the pool (which could be assigned to a different processor
or could share one with an individual search thread). Whenever a thread desires to send out
information (e.g., when a new local optimum is identified), it sends it to the pool. Similarly,
when a thread accesses outside information (to diversify the search, for example), it reaches
out and takes it from the pool. Communications are initiated exclusively by the individual
threads, irrespective of their role as senders or receivers of information. No broadcasting is
taking place and there is no need for complex mechanisms to select the threads that will
receive or send information and to control the co-operation. The solution warehouse is thus
an efficient implementation device that allows for a strict asynchronous mode of exchange,
with no predetermined connection pattern, where no process is interrupted by another for
communication purposes, but where any thread may access at all times the data previously
sent out by any other search thread.

The information exchanged among co-operating procedures has to be meaningful, in the
sense that it has to be useful for the decision process of the receiving threads or the evolution
of the shared data (and thus the evolution of the global search). Information indicative of
the current status of the global search or, at least, of some individual search thread is, in
this sense, meaningful. The information exchanged may be simply a “good” solution, a
solution and its context (e.g., memories recording recent behavior of solution attributes), or
a comprehensive history search. Memories recording the performance of individual solutions,
solution components, or even search threads may be added to the pool and statistics and
guidance mechanisms may be gradually built.

Historically, two main classes of co-operation mechanisms are found in the literature,
based on partial and complete solutions, respectively. Adaptive memory methods (Rochat
and Taillard [71]) store partial elements of good solutions and combine them to create new
complete solutions that are then improved by the co-operating threads. Central memory
approaches exchange complete elite solutions among neighborhood and population-based
meta-heuristics (Crainic, Toulouse, and Gendreau [24], Crainic and Toulouse [23], Crainic
[17]). The differences between the two approaches tend to become somewhat blurred, how-
ever.
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A different approach to co-operation has been proposed recently by Toulouse, Thulasira-
man, and Glover [78]. The mechanism is called multi-level co-operative search, belongs to the
pC/KC with potentially any search differentiation strategy (the authors used MPSS), and
is based on the principle of controlled diffusion of information. Each search thread works at
a different level of aggregation of the original problem (one processor works on the original
problem) and communicates exclusively with the processes working on the immediate higher
and lower aggregation levels. Improved solutions are exchanged asynchronously at various
moments dynamically determined by each process according to its own logic, status, and
search history. Received solutions are used to modify the search at the receiving level. An
incoming solution will not be transmitted further until a number of iterations have been
performed, thus avoiding the uncontrolled diffusion of information. No application to ve-
hicle routing problems has been proposed yet, but excellent results have been obtained for
graph and hypergraph partitioning problems [57, 58], network design [20], feature selection
in biomedical data [56], and covering design [28]. It all these cases, the proposed method is
either the current best or is on the par with the best meta-heuristics for the problem.

We complete this section with two notes. The first concerns the decomposition of the
problem domain. Despite its interest when problem instances are very large, relatively few
contributions can be found. For routing problems, Taillard [75] proposed a pC/KS/MPSS
parallel tabu search where the domain was partitioned and vehicles were allocated to the
resulting regions. Once the initial partition was performed, each subproblem was solved
by an independent tabu search. All processors stopped after a number of iterations that
varied according to the total number of iterations already performed. The partition was
then modified by an information exchange phase, during which tours, undelivered cities, and
empty vehicles were exchanged between adjacent processors (corresponding to neighboring
regions). At the time, this approach did allow to address successfully a number of problem
instances, but the synchronization inherent in the design of the strategy hindered its perfor-
mance. Clearly, more work is required on how to best combine domain decomposition and
the other parallelization strategies, co-operation in particular. We report in the next section
on some contributions that address this issue.

The second note is related to the so-called hybrid methods. The term is much used but
its meaning varies widely. In a strict sense, all meta-heuristics are hybrids since they involve
at least two methods. Closer to most applications, a hybrid involves at least two meth-
ods that belong to different methodological approaches. Thus, for example, using genetic
operators to control the temperature evolution in a parallel simulating annealing method
yields a hybrid. Notice, however, that by this definition, all population-based methods that
include an “educational” component, that is, an enhancement of new solutions through a hill
climbing, a local search, or even a full-blown meta-heuristic, are hybrids. Most co-operative
parallel strategies could be qualified as hybrids as well. Yet, since, other than “more than
one method is used”, the term does not offer any fundamental insight into the design of
parallel strategies for meta-heuristics, we do not use it to qualify the contributions reviewed
in this paper.
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5 Parallel Meta-heuristics for the VRP

This section is dedicated to a review of recent parallel meta-heuristic contributions to ve-
hicle routing problems. “Recent” means that we focus on the period since the change of
millennium, except when the contribution is still of significant interest. The contributions
are presented according to the VRP variant concerned.

5.1 The vehicle routing problem

Drummond, Ochi, and Vianna [34, 35] (see also Ochi et al. [55]) proposed a pC/KS/MPSS
coarse-grained parallel genetic algorithm based on the island model for the VRP with het-
erogeneous fleet. A petal decomposition procedure was used to build the initial population,
which was then divided into several disjoint subpopulations. Each genetic thread evolved
a subpopulation and triggered migration when subpopulation renewal was necessary. An
island in this case would broadcast its need and receive the best individual of every other
island. The incoming individuals would replace the worst individuals of the receiving pop-
ulation. Computational tests showed encouraging results in terms of solution quality and
computing effort.

Alba and Dorronsoro [2] addressed the VRP in which routes have to be limited by a
predefined travel time and proposed a fine-grained, cellular parallel genetic algorithm. The
population was arranged in a 2 dimentional toroidal grid, each individual having 4 neigh-
bors. Binary tournament selection was applied when selecting the mate for the first parent.
Crossover was applied for these parents, then mutation and local search for the offspring.
Two local search procedures were tested, 2-opt and 2-opt+λ-Interchange, with λ ∈ {1, 2}.
Elitist replacement was used. The authors compared their algorithm to several heuristics,
parallel or not: the tabu search of Rochat and Taillard [71], the genetic algorithms of Prins
[62] and Berger and Barkaoui [8], the ant algorithms of Bullnheimer, Hartl, and Strauß [11]
and Reimann, Doerner, and Hartl [69]. Computational results on benchmark problem in-
stances showed high performance quality for both local search versions. Best performance
(solution quality and rapidity) was observed for 2-opt+1-Interchange.

Jozefowiez, Semet, and Talbi [48, 49] addressed a vehicle routing problem in which the
total length of routes is to be minimized, as well as the balance of route lengths, that is
the difference between the maximal and minimal route lengths. The authors proposed an
island method where each island had its own population and run the multi-objective pareto
genetic algorithm NSGA II [29] enhanced with an elitist feature for greater diversity. The
islands were organized into a ring network. Communications took place at regular intervals,
determined by the number of iterations. Each island synchronously exchanged information
with its two neighbors by sending its best solutions (the number of solutions was pre-defined)
and receiving the best solutions of its neighbors. The imported solutions replaced the worst
ones in the receiving population. Experiments on the Christofides, Mingozzi, and Toth

13

Parallel Solution Methods for Vehicle Routing Problems

CIRRELT-2007-28



problem instances [14] showed the parallel versions to outperform the sequential one, even
though increasing the number of processors over the 4 to 8 range did not seem beneficial.

¿From a parallel computing point of view, ant-based methods may be viewed as a par-
ticular form of population-based methods, the ant colony being made up of a population
of ants and the update of the pheromone matrix taking the place of the usual evolution-
ary operators. Parallel ant-based methods start to be proposed based on these ideas, some
of which are dedicated to vehicle routing problems. Doerner et al. [31] (see also Doerner
et al. [30] and Benkner et al. [7]) studied fine and coarse-grained 1C/KS/MPDS par-
allelizations with synchronous communications for their savings-based heuristic (Reimann,
Stummer, and Doerner [70]). In the fine-grained approach, the ant colony was partitioned
into small sub-colonies (the sparsely populated islands of parallel genetic algorithms) and
the savings-based heuristic was executed on each. The same pheromone matrix was used for
all sub-colonies, but was replicated to decrease communications. Once all ants found their
solutions, the local best for each sub-colony was found. Best solutions were sent to a “root”
node, which determined the global best and an elite set of ants that were broadcasted back
to the sub-colonies.

Two coarse-grained strategies were also studied. The first is a classical pC/RS/MPDS in-
dependent multi-colony approach. The second follows a pC/KS/MPDS co-operation scheme
where several independent colonies communicate at regular intervals (pre-defined number of
iterations). To speed up computations, a hierarchical strategy was used, in which a number
of processors were allocated to each colony to implement the fine-grained parallelization de-
scribed above. The authors compared several strategies with respect to shared information:
the global-best solution, the global best solution plus the elite solutions, each of the first
two data sets plus the re-initialization of the pheromone matrix, and the global-best solu-
tion plus the corresponding pheromone matrix. Experimentations were performed on the
four largest problem instances of [14] (single depot, 150 or 199 customers, limits on vehicle
capacity and tour length (2 problems), zero service time at all customers) and on four of
the largest problem instances of [43] (single depot, between 320 or 480 customers, various
customer distributions). Two colonies were used for the experiments.

Computational results showed, yet again, the co-operative strategy outperforming the in-
dependent search method. The comparison of the information-sharing strategies also showed
that the knowledge relative to parallel meta-heuristics accumulated in the last ten years is
equally valid when the parallelization of ant-colony methods is concerned. Thus, sharing the
elitist solutions outperformed the strategy where only the global best was shared. Further
improvements were obtained by also re-initializing the pheromone matrix. On the other
hand, broadcasting the pheromone matrix of the best performing sub-colony (the one that
identified the current global best solution) was detrimental to performance due to the pre-
mature “convergence” of the dynamic process. As for the fine-grained strategy, as expected,
intensive communications were required to keep the pheromone matrix up to date. This
makes the approach not really suitable when the number of processors (and ants) increases,
but may contribute to hierarchical approaches.
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In the same paper [31] (see also Doerner, Hartl, and Lucka [32]), the authors examined a
parallelization of their D-Ants algorithm (Reimann, Doerner, and Hartl [69]), which applies
the domain-decomposition ideas of Taillard [75] to the savings-based heuristic (Reimann,
Stummer, and Doerner [70]) significantly improving its performance. A hierarchical coarse-
grained approach similar to that described previously was proposed. Two or four sub-
problems were defined, and the parallel savings algorithm was used on each, thus imple-
menting the fine-grained parallel strategy described previously. In all their developments,
the authors aimed for parallel strategies that sped up computations but did not change the
behavior of the corresponding method. Strict synchronization communication schemes were
imposed to this effect. Consequently, in all experiments, solution quality was sensibly the
same and moderate speed ups were observed. To conclude, the authors point out to the
need to develop more sophisticated parallel strategies based on asynchronous co-operation
mechanisms.

5.2 Vehicle Routing with Time Constraints

Also known as the Vehicle Routing Problem with Time Windows (VRPTW ), this problem
specifies that service at customer sites must take place within given time intervals. Most
time constraints specify that service cannot begin before a certain moment (but vehicles may
wait “outside”, in most cases) and must be over by a given deadline. In soft-constrained
versions, the time limits may be violated at a penalty.

Czech and Czarnas [27] proposed a pC/KS/MPSS co-operative multi-thread parallel
simulated annealing implemented on a master-slave platform. The master sent the initial
solution to the salves. It was also in charge of controlling the annealing temperature schedule,
collecting the best local solution from each slave after n2 iterations for each temperature level
(n was the number of customers) and updating the global best solution. Each slave run a
simulated annealing algorithm with the same parameters. Each slave j co-operated with
slaves j − 1 and j + 1 (slave 1 co-operated with slave 2 only) by exchanging best solutions.
Co-operation was triggered every n iterations. Computational tests with few (five) processors
showed good performance, in terms of solution quality, compared to the best-known solutions
of the Solomon benchmarks.

Berger and Berkaoui [9] presented a low-level parallel hybrid genetic method that used
two population. The first aimed to minimize the total traveled distance, while the second
aimed to minimize the violation of the time window constraints. A different fitness function
was associated with each population. A master-slave platform was applied, where the master
controlled the execution of the algorithm and coordinated the genetic operations. The slave
concurrently executed the reproduction and mutation operators. Computational tests were
conducted on a cluster of heterogeneous machines (19 computers). The authors compared
their algorithm to the best-known methods in the literature for Solomon’s benchmark. Their
results showed that the proposed technique was very competitive.
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Polacek et al. [60] focused on parallel algorithms for the multi-depot VRPTW, starting
from a Variable Neighborhood Search (VNS) meta-heuristic proposed earlier on [61]. The
authors studied two approaches, both based on co-operation and asynchronous exchanges
through a central memory. The first approach implemented full VNS threads, each search-
ing through a limited number of neighborhoods. The VNS threads collaborated through
exchanges of best solutions via the central memory. Each VNS sent its best solutions. When
the overall best was improved, it was broadcasted to all. In the second approach, the VNS
threads sent their best solutions to the central memory (functioning as a “master”) at reg-
ular intervals (number of iterations). The objective was to reproduce the behavior of the
sequential method only faster. Performance was good, best known solutions being reached
or improved. The first, full co-operation methods performed best due, in particular, to its
higher adaptability to the problem instance.

Gehring and Homberger [37, 38] proposed a pC/C/MPDS co-operative parallel strat-
egy where concurrent searches were performed with differently configured two-phase meta-
heuristics. The first phase tried to minimize the number of vehicles by using an evolutionary
meta-heuristic, while the second phase aimed to minimize the total traveled distance by
means of a tabu search. The parallel meta-heuristic was initiated on different threads with
different starting points and values for the search time available for the first and second search
phases. Threads co-operated by exchanging solutions asynchronously through a “master”
process according to the central-memory concept. Notice that this is different from most
evolutionary-based parallel meta-heuristics proposed in the literature. For now, this ap-
proach has produced, on average, the best solutions for the Solomon problems with respect
to, first, the number of vehicles and, second, the total distance. Results were also presented
on larger instances, generated similarly to the original Solomon problems, but varying in size
from 200 to 1000 customers. It is worth mentioning, however, that this method is rather
time consuming compared to other meta-heuristics, tabu search in particular.

Rochat and Taillard [71] proposed what may be considered as the first fully developed
adaptive memory-based approach for the VRPTW. The adaptive memory contained tours
of good solutions identified by the tabu search threads. The tours were ranked according to
attribute values, including the objective values of their respective solutions. Each tabu search
process then probabilistically selected tours in the memory, constructed an initial solution,
improved it, and returned the corresponding tours to the adaptive memory. Despite the
fact that it used a rather simple tabu search, this method produced many new best results
at publication time. Taillard et al. [76] and Badeau et al. [5] refined this method by
enriching the neighborhood and the intensification phase and by adding a post-optimization
procedure. A similar approach was used with good results by Schulze and Fahle [72]. The
routes generated by the tabu search threads were collected in a pool, and were recombined
by solving a set covering heuristic whenever a new solution was needed. Badeau et al. [5]
also reported that their method run significantly faster when using more search processes
than the number of available processors, because this allowed to overcome the bottlenecks
created when several threads attempted to access the memory simultaneously. Furthermore,
computational evidence showed that running a search thread concurrently with the adaptive
memory management procedure on the same processor was not a good idea, because it
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contributed to block the access to the memory.
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Figure 4: Central Memory with Guidance for the VRPTW

Le Bouthiller and Crainic [50] and Le Bouthiller, Crainic, and Kropf [51] aimed to study
central memory co-operative mechanisms enhanced with strategies to guide the global search.
Le Bouthiller and Crainic proposed a central memory pC/C/MPDS co-operative parallel
method for the VRPTW based on the mechanism presented at Section 4 and illustrated in
Figure 4. The co-operation involved two tabu search methods that perform well sequentially,
the Unified Tabu of Cordeau, Laporte, and Mercier [15] and Taburoute of Gendreau, Hertz,
and Laporte [40], two simple evolutionary algorithms with order and edge recombination
crossovers, respectively, as well as a number of post-optimization methods (2-opt, 3-opt,
or-opt, and ejection chains) that were used to reduce the number of vehicles and the total
traveled distance. Four simple construction algorithms were used to provide initial solutions
to the population. The threads shared information about their respective good solutions
identified so far. When a thread improved the solution, it sent it to the post-optimization
algorithms present in the central memory. These solutions were considered in-training until
they were post-optimized and identified as adult solutions. The pool of solutions formed
an elite population from which the independent procedures required solutions when needed.
The Unified Tabu requested a new solution at regular intervals, while Taburoute did so at
diversification time. The adult solutions in memory formed the population for the genetic
operators. This algorithm, without any calibration or tailoring, proved to be competitive
with the best meta-heuristics of its day.

The goal of Le Bouthiller, Crainic, and Kropf [51] was to improve upon this simple co-
operating scheme by extracting new knowledge from the information exchanged, in order to
guide the individual threads and, hopefully, yield a more efficient global search. Moreover,
the authors aimed for a guidance mechanism independent of particular features of the prob-
lem class at hand, such as the routes in vehicle routing problems. They selected therefore
to work with one of the atomic elements of the problem: the arc.

The basic idea was that an arc that appears often in good solutions and less frequently
in bad solutions may be worthy of inclusion in a tentative solution, and vice versa. To
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implement this idea, the authors considered the frequency of inclusion of arcs in three subsets
of solutions in the pool, the elite (e.g., the 10% best), average (between the 10% and 90%
best), and worst (the last 10%) groups of solutions. An arc with a high frequency in a given
group signals that the meta-heuristics participating to the co-operation have often produced
solutions that include that arc. Patterns of arcs were then defined, representing subsets of
arcs with similar frequency of inclusion or not in particular population groups. Guidance was
obtained by transmitting arc patterns to the individual threads indicating whether the arcs
in the pattern should be “fixed” to intensify the search or, on the contrary, they should be
prohibited to diversify the search (“fix” and “prohibit” were performed by using the patters
to bias the selection of arcs during moves or reproduction). The computing time allocated
to the co-operative method was divided into four phases: Two phases of diversification at
the beginning to broaden the search, followed by two intensification phases to focus the
search around promising regions. Figure 4 illustrates the flow of information and guidance
indications.

Experiments were carried out with this pC/KC/MPDS co-operative method on the stan-
dard set of 100-customer test problems proposed by Solomon [74], as well as on the extended
set produced by Homberger and Gehring [47] with 300 problem instances that vary from 200
to 1000 customers. Runs of 12 min wall-clock time were performed by the co-operative meta-
heuristic for each of the 100 city problems. Longer running times, equal to those reported
by Homberger and Gehring were allowed for the larger problem instances. These times go
up to 50 min wall-clock time for the 1000-city problem. Comparisons were carried on with
the best performing methods and the results were very good. In linear speed up and without
any calibration, the guided co-operative search was globally performing on a par with the
best. This is very encouraging, because patterns of attributes may be constructed for many
problem classes, independently of particular solution structures.

5.3 Dynamic Problems

Gendreau, Laporte, and Semet [41] addressed the deployment problem for a fleet of emer-
gency vehicles and proposed a 1C/KS/MPSS parallel tabu search method based on domain
decomposition. In this problem, when a call is received, an ambulance is assigned to it ac-
cording to relatively simple dispatching rules. Then, the remaining available ambulances can
be relocated to other waiting sites to provide a better coverage of the expected demand. The
parallel algorithm was based on a pure master-slave scheme. The master managed global
data structures with pre-calculated information on each ambulance and sent the relocation
problems to the slaves. The time allotted to slaves was controlled by fixing the number of
iterations in the tabu search. Computational tests showed high solution quality as indicated
by territory coverage measures.

Attanasio et al. [3] addressed the multi-vehicle dial-a-ride-problem and proposed two
multi-thread tabu search parallel strategies following pC/KS/SPDS and pC/KS/MPSS frame-
works. In the former, each processor run a different tabu search strategy from the same
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initial solution. Once a processor found a new best solution, it broadcast it. Re-initialized
searches were then launched. Every κ iterations, a diversification procedure was applied to
the first half of the processors, while an intensification was run on the remaining half. The
pC/KS/MPSS strategy consisted in running a tabu search algorithm from different starting
points. Each processor run the same tabu search algorithm with the best known parameter
settings. Every η iterations, processors exchanged information in order to perform a diver-
sification procedure. According to the computational results, both strategies outperformed
the sequential tabu search of Cordeau and Laporte [16].

Gendreau et al. [39] proposed a co-operative multi-thread parallel tabu search method for
real-time routing and vehicle dispatching problems. The problem was motivated by courier
services where customer requests for the transportation of small items must be accommo-
dated in real-time and incorporated into the current planned routes of a fleet of vehicles.
Due to the presence of soft time constraints for servicing a customer, the problem was mod-
eled as an Uncapacitated Vehicle Routing Problem with Soft Time Windows. The objective
function to be minimized related to the total distance traveled (or total travel time) for ser-
vicing the customers plus penalties for lateness at customer locations. The authors followed
the co-operative adaptive memory approach championed by Taillard et al. [76] and Badeau
et al. [5]. The dynamic problem was addressed as a series of static problems, a new one
being defined each time a new request was received. A two-level parallelization scheme was
proposed to implement this problem-solving framework. At the first level, a pC/KC/MPSS
co-operating adaptive memory scheme was implemented. At the second level, each individual
tabu search thread benefited of the work of several slave processors and the route decom-
position of Taillard [75] was implemented. The results showed that the proposed procedure
provides substantial benefits over simpler dispatching approaches.

6 Perspectives

We have presented a survey of exact and meta-heuristic parallel methods applied to vehicle
routing problems. Although not necessarily comprehensive, it includes the major contribu-
tions and trends in the field, most of which have been proposed from 2000 onwards.

We found few contributions targeting parallel exact methods for VRP and variants. The
proposed branch-and-price parallelization schemes are not very sophisticated yet, but we
expect them to represent initial steps on what promises to be a very fruitful research road.

The parallel meta-heuristic field is much richer, of course, as illustrated by the number
of contributions and by the increasing variety of the methodologies used. This richness
notwithstanding, the survey points out that not all VRP variants have been addressed with
comparable fervor. Indeed, many important topics have seen only a few of contributions,
if at all. Moreover, even for topics for which the number of contributions is larger, these
are not evenly distributed among meta-heuristic classes. Interesting research avenues and
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promising developments may thus go unexplored, and appropriate tools may be missing in
some areas. It should be a challenge of the profession to explore as comprehensively as
possible as many problem variants, search methodologies, and parallelization strategies as
possible. While taking up this challenge, one should make sure that methods are compared
across methodological approaches and that such comparisons are performed fairly, that is,
all algorithmic developments are at the same level of sophistication.

To sum up the observations relative to parallel meta-heuristics, it appears that methods
based on asynchronous co-operation mechanisms display the most interesting performance,
independently of the methodology used in the initial sequential method. This conclusion is
strongly supported by the results obtained by multi-thread co-operative strategies. It also
appears that one can build simple but meaningful statistics and indicators to learn from the
solutions already explored and to globally guide the search. This research direction is at the
very beginning and should yield interesting results.

To conclude, parallel exact and meta-heuristic solution methods offer versatile, robust,
and powerful tools to address large and complex vehicle routing problems. Many fascinating
research avenues are still open for investigation, however. Other than those indicated above,
we may mention applying more sophisticated branch-and-bound parallelization strategies
to VRP variants, studying co-operation mechanisms based on multi-level concepts, combin-
ing branch-and-bound and meta-heuristic threads within a co-operative search framework,
developing enhanced guidance mechanisms, and applying these solution methods to new
problem classes. We hope that this paper has contributed to illustrate these opportunities
and challenges.
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