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Abstract.   In urban public transport, smart card data is made of millions of observations 

of users boarding vehicles over the network across several days.  The issue that we 

address is whether data mining techniques can be used to study user behaviour from 

these observations.  This must be done with the help of transportation planning 

knowledge.  Hence, this paper presents a common “transportation planning / data mining” 

methodology for user behaviour analysis.  Experiments were conducted on data from a 

Canadian transit authority.  This experience demonstrates that a combination of planning 

knowledge and data mining tool allows to produce travel behaviours indicators, mainly 

regarding regularity and daily patterns, from data issued from operational and 

management system. Results show that the public transport users of this study can rapidly 

be divided in four major behavioural groups, whatever type of ticket they use. 
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1. INTRODUCTION 

While Smart Card Automated Fare Collection Systems’ popularity is increasing in public transport, a large 

quantity of data is gathered each day in the existing systems.  Although they are mainly aimed to revenue 

collection, SCAFC systems can help planners to better understand public transport user behaviours, thus 

helping to improve the service.  Indeed, these systems contain data on each boarding in a public transport 

network, with exact time and some precision on location.  The datasets produced by these systems grow 

rapidly and requires both efficient data exploration tool and discrimination ability from planning 

experience.  It is our belief that data mining gathers useful data processing methods to enhance the 

analytical relevance of smart card data. 

Hence, this paper tries to join the better of two worlds –data mining methods and public transport planning 

models— in order to obtain an improved portrait of user behaviours in a public transport system equipped 

with a SCAFC system.  User behaviour is a quite large research field, and this paper will focus mainly on 

weekday’s trips habits. 

In the literature review, we will expose some works on smart card data analysis in public transport.  We 

will recall some references in data mining advances.  Nonetheless, we could not find any previous work 

combining the two research fields.  In the methodology section, the case study and the smart card data 

structure will be presented.  The experiments section relates the different approaches used for analysis and 

the hypothesis for the different clustering actions.  Finally, the paper exposes results on two aspects:  data 

mining methods spin-offs, and user behaviour key elements. 

2. REVIEW 

2.1 Smart card in public transport 

The complex fare system that is used by many public transport authorities can be better managed with the 

help of a Smart Card Automated Fare Collection System, because smart cards can store more than one 

transport document at a time and the card is validated automatically (Card Technology Today, 2003, 

2004).  In the next years, the need to integrate fare policies within large metropolitan areas will promote 

smart card usage (Bonneau 2002).   

However, privacy is an important issue that could retain smart card implementation.  The French Council 

for Computer and Liberty recommends being careful with such data because one may reconstitute the 

personal movements of a specific person (CNIL 2003).  But Clarke (2001) recalls that smart card data is 

not different from other individual data collection systems like credit card usage, road tolls, police corps 

database. 
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With technological and ethical problems resolved, several advantages arise from the analysis of SCAFC 

data (Bagchi and White 2004): 

• Access to larger sets of individual data; 

• Possibilities of links between user and card information; 

• Continuous data available for long periods of time; 

• Better knowledge of a large part of the transit users. 

These authors conducted a study on the passenger transfer behaviours on the Bradford and Merseyside 

transit networks (UK).  The absence of alighting location information was then identified as the main issue 

for further analysis.  In a recent paper (Bagchi and White 2005), they propose different actions to avoid 

undermining data quality in SCAFC systems.  They especially insist on the need of implementing 

complementary surveys to validate SCAFC data.  They also propose that the organizations prepare a 2-

year settling-in period to implement such systems. 

In the case of the Société de transport de l’Outaouais (STO), Trépanier et al. (2004) have shown the 

potentialities of using SCAFC data for public transport network planning with the help of a Transportation 

Object-Oriented Modelling. 

2.2 Data mining tools and applications 

Anand and Büchner (1998) defined data mining as the discovery of non-trivial, implicit, previously 

unknown, and potentially useful and understandable patterns from large data sets. 

Westphal and Blaxton (1998) categorized data mining functions as classification, estimation, 

segmentation, and description: 

• Classification involves assigning labels to new data based on the knowledge extracted from historical 

data. 

• Estimation deals with filing in missing values in the fields of a new record as a function of fields in 

other records. 

• Segmentation (called also clustering) divides a population into smaller sub-populations with similar 

behaviour according to a predefined metric. It maximizes homogeneity within a group and maximizes 

heterogeneity between the groups. 

• Description and visualization are used to explain the relationships among the data. Frequent patterns 

may be extracted in the form of A=>B rules with two measures of quality: the support which 

represents the number of times A occurs as a fraction of the total number of examples and confidence 

which expresses the number of times B exists in the data when A is present. 

Data mining techniques offer applications in many areas, on can cite as examples Braha (2001) who 

propose many applications of in design and manufacturing as well as Berry and Linoff (2004) who 

presented numerous examples and applications of data mining in marketing, sales, and customer support. 
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Agard and Kusiak (2004) developed a methodology for the design of product families with data mining. 

da Cunha et al. (2005) analyzed manufacturing quality operation for resequencing. 

3. METHODOLOGY 

3.1 Case study 

Experiments were conducted at the Société de transport de l’Outaouais (STO), Gatineau, Quebec.  The 

STO is a medium-size public transport authority operating 200 buses and servicing 240,000 inhabitants.  

The STO operates its smart card system since 2001.  Today, more than 80% of all STO passengers hold a 

smart card. 

Moreover, every STO bus is equipped with GPS reader.  At each boarding, stop location and bus route are 

stored in the database along with a timestamp. Since the STO uses a high-level secured procedure to 

ensure the privacy of the data, smart card data are completely anonymous.  No nominal information on 

user is known in any kind. 

3.2 Smart Card Data structure 

A special information system has been developed at the STO to manage SCAFC data.  This fare collection 

information system is made up of several subsystems as shown on Figure 1.  Smart cards are first bought 

at emission locations and can be recharged at further locations.  Then, when the user boards the buses, the 

smart card’s fare gets validated.  The validation is done following those steps:  the bus system contains the 

planned runs for the day (a run is a sequence of stops to be deserved; it usually represents one direction of 

a route).  The Global Positioning System (GPS) reader on the bus identifies the stop where the boarding is 

made.  The system validates the run (correct route) at this location.  Card number, date, time, validation 

status and stop number are stored at each boarding.  This information is downloaded to the central server 

at each end of day. 
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Fig. 1.  The STO smart card information system 

The central database management system (called SIVT server, Système d’information et de validation des 

titres) holds the information of users and boardings.  The data is voluntarily separated to preserve 

confidentiality; individual user information will not be used in this study.  The central server is also fed by 

service operation information system and smart card point-of-sale systems. 

Figure 2 presents the simplified data model that stores boarding data.  The key table is “Boardings”, which 

contains a record for each smart card validation on the network.  Boarding refusals are also stored in the 

table, so they will be ignored for the analysis.  A link is also made between boarding and the public 

transport network geometry (“Routes” and “Route-stops”).  The link ensures the validity of the time and 

location of boardings.  Finally, information on cards and card recharges are available but will not be used 

here.  
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Fig. 2.  Simplified database model for boarding data storage 

3.3 Mining tools 

Different data mining techniques and tools were used in this project: 

• Filtering data 

• Clusters : K-mean, HAC 

• Group characterization 

The dataset was extracted from a SQL Server database and was analysed within the TANAGRA free 

software (Rakotomalala, 2005). 

3.4 Dataset 

The dataset is a compilation of 2,147,049 boarding validations made by 25,452 card holders on the STO 

network between January 10th and April 1st, 2005.  The transactions were summarized into twelve 1-week 

record for each card (238,895 user-weeks overall).  Each record is divided into 20 binary variables, 

representing 5 weekdays X 4 periods per day (AM = 5:30 to 8:59, MI = 9:00 to 15:29, PM = 15:30 to 

17:59 and SO = 18:00 and over).  This day division is common to transport planning studies in Quebec, 

other countries may have different time intervals. 

Table 1 presents sample records. Fields J2_AM to J6_SO represent the 20 periods (2=Monday, …, 

6=Friday). For example, the card #12244 is of category “T1” (in the group “adult”). This card has been 

validated (user has boarded a bus at least once) on Monday morning (J2_AM) and Monday PM peak hour 

(J2_PM) on week “S1”, on week “S2”, and so on.  In addition, we can assume that the holder of card 

#23231 has made at least one trip at each period on Monday in the first week. 
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Information will be extracted from that dataset in order to split the user-weeks in homogeneous groups 

according to their behaviours and thus explain (or reveal) the comportment of each group.  In the sample 

dataset, customers are classified as “adults”, “students” and “elderly” for commercial raisons.  This 

classification relies on the transit card type. 

Table 1: Sample dataset 

Num_card Num_title group week J2_AM J2_MI J2_PM J2_SO ... J6_SO 
12244 T1 adult S1 1 0 1 0 … … 
12244 T1 adult S2 1 0 1 0 … … 
1234312 T2 adult S1 1 0 0 1 … … 
23231 T34 student S1 1 1 1 1 … … 
… … … … … … … … … … 

3.5 Protocol 

Let us remind that the goal is to characterize user behaviour by looking at similar trip habits during 

weekdays and through the weeks.  The analysis will conduct to an aggregate view of the 25,452 card 

holders. 

The first step considers the whole dataset as an ensemble and subdivides it in large homogeneous clusters 

on the base of the trip patterns observed on a weekly basis.  The goal is to determine “natural” groupings 

of user-weeks. The number of groups is not fixed a priori; the Hierarchical Ascending Clustering method 

(HAC) is employed (Lebart et al., 2000). In order to accelerate the HAC algorithm, a first grouping is 

computed with a k-mean method to provide 20 groups. The result of the k-mean clustering becomes the 

input of the HAC. In order to build groups that have the same behaviours, the inputs of the clustering 

methods are constituted of all the Jx_xx columns. 

In the second step, we analyse the composition of the natural grouping with respect to card type in order to 

see if the clustering method only reconstructs pre-known segments (adults, students, and elderly).  

In the last step of this study, we examine the variability of the group belongings for the twelve weeks of 

observation.  This will give a good idea of the regularity of the habits over time. It will also help identify 

the unusual weeks in terms of travel behaviours. 

4. RESULTS 

4.1 General user behaviour 

The processing of the whole dataset produces 4 clusters of user-weeks with similar patterns. Two of the 

clusters (Group 1 and Group 3) have easily interpretable travel behaviours.   

• Fig. 3: The first group (45.6% of the user-weeks) clearly relates to the people with regular trips to and 

from constraint activities such as work since they mainly travel during the peak hours.  On average, 

79.4% of these users will travel during the AM peak hour and 71.0% during the PM peak hour on 
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weekdays. The proportion of users travelling during the other periods is quite low, 6.4% during the 

day and 2.6% during the evening.   
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Fig. 3. General user behaviour – Group 1 

• Fig. 4: The third group (14.3% of the user-weeks) relates to people with regular activities in the first 

part of the day with, on average, 77.6% of the users travelling during the AM peak hour and 74.8% 

during the day. 
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Fig. 4. General user behaviour – Group 3 

The two other clusters (Group 2 and Group 4 with respectively 14.8% and 25.2% of the user-weeks) 

gather users with similar patterns of non-travelling. Actually, no clear travel pattern can be observed for 

Group 2 while Group 4 gathers users with lower use of the network. At most, 36% of the users of this 

group will use the transit network during the day period.   
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Fig. 5. General user behaviour – Group 2 
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Fig. 6. General user behaviour – Group 4 

4.2 Composition of the natural groups 

The following tables summarize the composition of the four clusters created by the data mining method.  

On the first hand, Table 2 presents the distribution of the user-weeks in the four groups according to the 

type of card hold by the traveller. For instance, it shows that almost 80% of the weeks of travel of elderly 

card holders are classified in Group 4. This is no surprise since this Group has a low level of mobility. It 

also confirms that the symmetrical movements observed for user-weeks of group 1 are partly explained by 

the plausible level of constraint of the activities of the adults, with almost 60% of the adult card holders 

being in this group.  
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Table 2: Distribution of user-weeks in the four clusters according to card type 

Card type Gr1 Gr2 Gr3 Gr4 TOT
Adult 58,8% 13,9% 9,2% 18,1% 100%

Student 21,0% 17,7% 26,4% 34,8% 100%
Elderly 6,2% 6,4% 7,9% 79,5% 100%  

Table 2 also shows that the weeks of travel of student card holders are spread over the four natural groups. 

This is quite intriguing. It may be caused by the fact that some students automatically receive transit 

passes due to their status without actually needing it for their main travel needs. What is then observed is a 

very low subset of their travelling behaviours on weekdays. 

On the second hand, Table 3 presents the composition of the four natural clusters in terms of card type (of 

the travellers for which user-weeks are examined). We see that the adult card holders represent 85% of the 

user-weeks of Group 1. This also explains the regularity of the travel patterns on weekdays of this Group. 

This table shows that student are the main segment composing Group 3 which shows regular travel 

patterns in the first part of the weekdays.  

Table 3: Composition of the four clusters regarding card type 

Card type Adult Student Elderly Total
Gr1 85,6% 13,9% 0,5% 100%
Gr2 62,4% 36,1% 1,4% 100%
Gr3 42,7% 55,4% 1,8% 100%
Gr4 47,7% 41,7% 10,6% 100%  

What these tables show as well is that some card types are linked to regular behaviours such as the elderly 

cards (app. 80% of the users with this type of card belong to group 4) but that other types can reveal 

variable travel behaviours over several weeks.  

4.3 Variability over 12 weeks 

A better understanding of these two groups is obtained by the study of the variability of belonging of the 

users over the 12 weeks.   

For the student case, a study of the belonging among these groups over the 12 weeks, presented in Figure 

7, clearly spots one irregular week of travel. The atypical distribution observed on week 10 is due to the 

school break where students temporarily adopt other activity patterns.  
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Fig. 7. Variability of cluster belonging over 12 weeks of the student card holders 

Adult Student Elderly

Gr1

Gr2

Gr3

Gr4

ALL BETWEEN
80% & 99% UNDER 80%

 

Fig. 8. Proportion of users regarding their cluster belonging over weeks (week # 10 removed) 

In the figure 8, the black sectors of the pie charts indicate users that belong to the same group for all weeks 

(gray is for most of the weeks).  The size of the charts is proportional to the number of users.  We can see 

that a large majority of the adults of group 1 have a regular behaviour.  It is less the case for adults of other 

groups.  Students have less regular behaviour.  That could be related to 1) irregular college schedules and 

2) students are sometimes accompanied to school by their parents and will not use public transit.  Elderly 
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people of group 4 are concentrated in Group 4, but let us remind that this group is atypical with a low level 

of mobility. 

5. CONCLUSION 

This study is only a first impression about mining data from Smart Card Automated Fare Collection 

systems.  First results tell that data mining techniques help to identify and characterize market segments 

among public transportation users.  It also demonstrates the wide set of statistics that can be calculated 

from the dataset; much work is still to come to pinpoint the most important statistics for the STO and the 

user behaviour researchers. 

Further studies will be conducted to better characterise both supply and demand on the STO public 

transport network.  Typically, the following elements may be examined: 

• Geospatial trip behaviour (with the help of geospatial data mining techniques). 

• Specific route usage over space and time (to measure the turnover of the users). 

• More detailed mining in time period (for example, using the exact time of the first boarding of each 

day over a year period). 
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