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1 Introduction

This paper reviews applications of evolutionary algorithms (EAs) for solving vehicle routing
problems. EAs are stochastic search methods that operate on a population of solutions
by simulating, at a high level of abstraction, the evolution processes observed in nature.
The survey excludes the work done on the Traveling Salesman Problem (TSP), a canonical
combinatorial optimization problem that has been used as a testbed for many new method-
ologies, including EAs. We thus focus on extensions of the TSP, where a fleet of vehicles,
starting from one or a number of depots, must visit a set of customers at minimum cost,
subject to side constraints. A precise definition of the classical capacitated vehicle routing
problem and its variants is given in Section 2.

This review is divided along methodological lines rather than vehicle routing types.
It just happens that the same researchers have often addressed different variants of the
vehicle routing problem with the same basic problem-solving methodology, slightly adapted
or extended to address the specific characteristics of a given variant. It is thus easier to
follow the work done by these researchers. Section 6, however, provides a classification by
problem type.

We also need to mention that the reference section is divided into two parts. The first
part corresponds to core references that are directly related with the topic of this survey.
The second part contains auxiliary references that are mentioned for completeness, but are
not directly related with the survey. We did not want to mix core references with auxiliary
references to allow the reader to get a complete view of the work done in the vehicle routing
domain with EAs, just by considering the core references.

Although this survey is the only one that provides an exhaustive account of applications
of EAs to vehicle routing problems, the reader can find overviews, surveys and classification
of metaheuristics for solving combinatorial optimization problems at large in [18, 24, 39, 126],
and reviews of metaheuristics for vehicle routing problems in [22, 23, 35, 36, 37, 38, 40, 87].

2 The Vehicle Routing Problem

In the Vehicle Routing Problem (VRP), least-cost delivery or collection routes must be
designed for a set of customers, using a fleet of vehicles located at a central depot, subject
to side constraints. More formally, let G = (V,A) be a graph with V = {1, ..., n} the
vertex set. In this graph, vertex 1 stands for the depot, while the remaining vertices are
customers. Also, with every arc (i, j) ∈ A, i 6= j, is associated a non negative distance matrix
C = (cij) (in some contexts, cij represents a travel cost or travel time). Note that when C
is symmetrical, the set A can be conveniently replaced by a set E of undirected edges. We
also assume that a fleet of m vehicles is available at the depot to visit the customers, where
m is fixed or free. In the latter case, the number of vehicles in a solution can vary between
1 and n − 1. All vehicles are identical and have the same finite capacity Q.

Usually, the number of vehicles is free and the objective is to minimize the total distance
traveled by the vehicles to visit all customers. Sometimes, a fixed cost is associated with
each vehicle and the objective is then a weighted sum of fixed costs and travel costs. The
problem then consists in designing a set of optimal routes such that:

• each customer is visited exactly once by exactly one vehicle;

• all vehicle routes start and end at the depot;

• some side constraints are satisfied.
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This problem is NP-Hard, as it is a generalization of the TSP. Accordingly, it has given
rise to a large number of heuristic problem-solving methodologies, including metaheuristics,
to address instances of reasonable size. The most common types of vehicle routing problems
reported in the literature are:

• Capacitated VRP. In the capacitated VRP, a non negative demand di is associated
with each customer i ∈ V \ {1} and the total demand on a route should not exceed
the vehicle capacity Q. In some time- or distance-constrained variants, additional
constraints state that the length of a route should not exceed a given limit. Note that
VRP will stand for the capacitated VRP, with or without route length limits, in the
following.

• VRP with time windows. In the VRPTW, a vehicle must arrive at customer i within
the time interval [ei, li]. In most cases, it is possible for the vehicle to wait at customer
i and thus to arrive before the lower bound ei. Some variants also allow a vehicle to
arrive late, thus after li, although a penalty is incurred in the objective.

• VRP with time deadlines. The VRPTD is a special case of the VRPTW, where the
time windows are replaced by time deadlines. More precisely, there is no lower bound
ei at each customer i, only an upper bound li.

• Time-dependent VRP. The TVRP is aimed at modeling more realistic situations by
considering travel times that depend both on the distance between two customers and
the time of the day. For example, it takes longer to get from one customer to the next
during rush hours. The TVRP takes these considerations into account.

• Periodic VRP. The PVRP is a variant of the VRP where the horizon extends over
a number of periods. Routes are constructed for each period, and each customer is
visited once or more over the horizon, depending on the customer requirements.

• VRP with heterogeneous fleet. The VRPHF is a variant of the VRP where the vehicles
do not share the same characteristics (e.g., different capacities).

• Multiple Depot VRP. In the MDVRP, there are many depots and each vehicle can
start or end its route from any of these depots.

• VRP with backhauls. In the VRPB, some customers require deliveries (linehauls)
while others require pickups (backhauls). Each route is thus a mix of linehaul and
backhaul customers, where the backhauls are typically visited after the linehauls. It
has been quickly recognized that substantial cost savings can be achieved by allowing
empty vehicles that return from deliveries to pick up inbound products. In the grocery
industry, for example, supermarkets and grocery suppliers would be the linehaul and
backhaul customers, respectively.

• VRP with simultaneous delivery and pick-up. In the VRPSDP, the same customer can
ask both for goods to be delivered from the depot and for other goods to be picked
up and brought to the depot.

• Pick-up and delivery problem. Each customer i in a PDP has both a pick-up location
i+ and a delivery location i−. That is, the demand collected at i+ must be delivered
at i−. Both the pick-up and delivery points of customer i must be in the same
route (pairing constraint) and i+ must be visited before i− (precedence constraint).
Different real-world applications, usually with time windows (PDPTW), are reported
in the literature, like courier and dial-a-ride services.
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We examine different adaptations of EAs for these vehicle routing problems. In the
sections that follow, genetic algorithms (GA) and evolution strategies (ES) are reviewed.
Particle swarm optimization (PSO), which is often related to EAs, is also briefly considered.

3 Genetic Algorithms

Genetic algorithms (GAs) have emerged from the work of Holland at the University of
Michigan [150]. Starting from some initial population, the search mechanism of a simple GA
is divided into four phases: (1) evaluation of each solution in the population, (2) selection of
parent solutions, (3) application of crossover and mutation operators to parent solutions to
generate offspring solutions and (4) replacement of the old population by the new population
of offspring solutions. This process is repeated for a number of iterations or until the system
does not improve anymore. This search mechanism is applied on solutions encoded as bit
strings. Through this coding scheme, generic operators have been designed that manipulate
bit strings without any knowledge of the corresponding solution (apart from the solution
value). A simple GA can be sketched as follow:

1. Create an initial population of P solutions.

2. Evaluate each solution.

3. Repeat for a fixed number of iterations:

3.1 Repeat until P offspring solutions are created:

3.1.1 Select two parent solutions in the population (with replacement) using a
randomized selection procedure based on the solution values.

3.1.2 Apply crossover to the two parent solutions to create two offspring solutions.

3.1.3 Apply mutation (with a certain probability) to each offspring.

3.1.4 Insert the two offspring in the new population.

3.2 Evaluate each offspring in the new population.

3.3 Replace the old population by the new one.

4. Return the best solution found.

In Step 1, the initial population can be created randomly, but it is better to use construc-
tion heuristics to create at least a fraction of the population. Different techniques exist for
selecting the parent solutions in Step 3.1.1. Typically, a randomized roulette-wheel selection
assigns a selection probability to each solution which is proportional to its value. More re-
cently, tournament selection procedures have been devised. Here a number of solutions are
selected in the population and the best one becomes a parent. The procedure is repeated
twice to get two parents. The crossover and mutation operators are applied in Steps 3.1.2
and 3.1.3. The classical one-point crossover creates two offspring by randomly selecting a
cut point on the two parent strings and by exchanging the two substrings after the cut point.
The mutation operator then processes each offspring position by position and switch the bit
value at each position with a small probability. This secondary operator introduces small
perturbations into the solutions and is often useful to maintain a diversity of solutions in
the population.

When applied to combinatorial optimization problems in general, and to vehicle routing
problems in particular, the simple GA described above exhibits a number of shortcomings.
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parent 2 

offspring 1 1 2 3 3 2 4

offspring 2 1 6 5 4 5 6

X

X

One-point 

Figure 1: One-point crossover

These shortcomings have been recognized early in the case of the TSP, a canonical com-
binatorial optimization problem which can be viewed as a simple vehicle routing problem.
In this particular case, a single vehicle of infinite capacity, starting from any given vertex,
visits all other vertices and returns to its starting point, with the objective of minimizing
the total distance. The main difficulties encountered when a classical GA is applied to the
TSP can be summarized as follows:

• The binary string representation is quite cumbersome. An integer string representa-
tion, where each integer stands for a customer index, is much more natural. In the
literature, this is referred to as the path representation, which is simply the sequence
of customer indices in a tour. In this representation, the last customer in the sequence
is implicitly connected to the first one to form a tour.

• The classical one-point crossover proved inadequate, even when applied on the path
representation. As illustrated in Figure 1 on a tour with six vertices, this operator
leads to invalid tours with missing and duplicated vertices. This is also true for
generalized version of this operator, like the 2-point and M-point crossover operators,
where substrings between two consecutive cut points are exchanged.

• Special crossover and mutation operators, called order-based operators, must be de-
signed to allow valid offspring tours to be generated. A well-known crossover operator
for the TSP is the order crossover OX [167]. First, two cut points are randomly chosen.
The substring between the two cut points on the first parent is copied to the offspring.
Then, the remaining positions are filled by following the customer order on the second
parent, starting at the position just after the second cross point. When the end of
the sequence is reached, the procedure resumes at position 1. Figure 2 provides an
example on a tour with six vertices. The substring made of vertices 3 and 4 in parent
1 is first copied to the offspring. Then, the customers are processed in the order 2, 4,
1, 6, 5, 3 on the second parent. Vertex 2 is inserted at position 5, vertex 4 is discarded
because it is already present in the offspring, vertex 1 is inserted at position 6, vertex
6 at position 1, vertex 5 at position 2 and vertex 3 is discarded. This operator thus
produces a valid offspring tour from two parent tours. Many order-based operators
like this one are reported in the literature to handle sequencing problems, where the
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Figure 2: OX crossover

solutions differ only by the ordering of their elements [171].

• Heuristic information must be incorporated into the GA to obtain competitive results.
For example, powerful heuristic-driven local search-based operators are now commonly
used within GAs and often play the role of the mutation operator. This kind of GA
is also known in the literature as a memetic algorithm [163, 164].

Vehicle routing problems are more complex than the TSP since they comprise both
an assignment subproblem, where each customer is assigned to a particular vehicle, and a
sequencing subproblem, where the customers assigned to the same vehicle are sequenced to
form a route. Clearly, the difficulties observed in the case of the TSP are even worse here. In
particular, the representation, solution evaluation and problem-solving methodologies need
to be adapted to solutions made of multiple routes, as it is explained below.

Representation

With regard to the representation issue, the main formalisms for vehicle routing problems
(some of which inherited from the TSP) are:

• No representation. Since many GAs for combinatorial optimization have already
drifted away from the evolutionary orthodoxy, some authors propose to forget as well
about the representation and to apply the genetic operators directly on the solutions.

• Random keys. An encoding scheme based on random numerical keys is proposed
in [8] for sequencing problems. That is, each element of a solution is tagged with a
random key and a sequence is obtained by sorting these keys. By manipulating and
modifying the random keys with crossover and mutation operators adapted to this
representation, different sequences can be generated. For vehicle routing problems, a
solution element is a customer index which is tagged with an integer that represents
the assigned vehicle, plus a real number in the interval (0,1). By sorting the real
numbers which are coupled with the same vehicle number, a route for this vehicle is
obtained [8, 53, 123].
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• Path representation. Here, a sequence of customer indices is used with separators
to indicate where the routes end. When the number of vehicles is a variable, the
number of separators also varies, thus leading to a solution string of variable length.
To obtain a fixed length representation, some authors use a sufficiently large number of
separators and interpret consecutive separators in the sequence as a single separator.
Another approach is to add pointers at the end of the representation to indicate where
each route ends. In decoder or route first-cluster second approaches (see Sections 3.2
and 3.4), a single sequence without any separator is used, thus leading to the classical
path representation for the TSP.

• Assignment representation. In this representation, each position in the string corre-
sponds to a customer (i.e., position 1 stands for customer 1, position 2 stands for
customer 2, ...) and the value at each position is a vehicle number, namely, the vehicle
assigned to the corresponding customer. Since this representation is not an order-
ing, classical crossover and mutation operators can be used to generate new vehicle
assignments. An alternative representation is reported in [50], where the assignment
is encoded as a binary matrix. In this matrix, the columns correspond to customers
and the rows to vehicles. If the entry (i, j) is 1, it means that customer j is visited
by vehicle i. Accordingly, all entries set to 1 in a row correspond to a group of cus-
tomers visited by the same vehicle. These representations are appropriate to address
the assignment subproblem, but not the sequencing subproblem.

• Cluster representation. In this representation, each position contains a cluster identi-
fier, that is, a group of customers visited by the same vehicle. This representation is
typically used at some upper level, where different partitions of the set of customers
are explored before the sequencing issue is addressed.

• Multi-part representation. In this more complex representation, each part is a different
string that corresponds to a vehicle route (this is called a Genetic Vehicle Represen-
tation (GVR) in [80]). A path representation is then used within each part to encode
the corresponding route. Note that this is pretty close to approaches where the GA
works directly on the solutions (see No representation, above).

Problem-solving methodology

Obviously, solutions with multiple routes also impact the problem-solving methodologies.
For one thing, the genetic operators need to be adapted to the chosen representation. Also,
the GA must account for the side constraints that lead to these multiple routes. This is
usually done in the following ways:

• The design of genetic operators that ensure solution feasibility.

• The use of a decoder that constructs a feasible solution from an ordering of customers
produced by the GA (see Section 3.2).

• The introduction of penalties in the evaluation of an infeasible solution.

• The use of repair operators to restore feasibility.

Solution evaluation

Multiple routes impact the way a solution is evaluated. A pervasive issue with regard
to vehicle routing problems, particularly in the case of the VRPTW, concerns the number
of vehicle routes in a solution versus the total distance or travel time of the vehicles. Most
problem-solving approaches for the VRPTW first minimize the number of vehicles and, for

6

Evolutionary Algorithms for Vehicle Routing

CIRRELT-2007-48



the same number of vehicles, minimize the total distance or travel time. This issue appears
in the proposed methodologies, either via (1) the use of operators specifically designed
for each objective, (2) the application of distinct search phases for each objective, (3) the
co-evolution of two populations, one for each objective and (4) the development of true
bi-objective approaches.

The reader will note that the considerations mentioned above emerge at different places
in this survey. In the following, we first address GAs, which are by far the most widely used
EAs for solving vehicle routing problems. The various methodological lines proposed in the
literature are described, starting with extensions of methodologies previously developed for
the TSP.

3.1 TSP extensions

Since a lot of work has been done on the TSP, it is not surprising that problem-solving
approaches developed for the TSP have been adapted to vehicle routing problems. A good
example is the edge assembly crossover EAX, a powerful operator for the TSP [165], which
was later adapted to the VRP in [70]. In the case of the VRP, this operator can be described
as follows:

1. Construct a graph by combining the edges of the two parent solutions.

2. Partition the set of edges in this graph with cycles created by alternately selecting an
edge from the first and second parents.

3. Select a subset of cycles.

4. Generate an intermediate solution as follow. Take one parent and remove all edges
that are in the subset of cycles. Then, the edges in the subset of cycles from the other
parent are added. At this point, the intermediate solution is a collection of routes
connected to the depot plus subtours that are not connected to the depot.

5. Create a complete solution. A greedy heuristic is applied where, at each iteration, a
subtour is merged at least cost to a route or to another subtour. The procedure is
repeated until a set of routes is obtained that cover all customers.

6. Eliminate capacity violations. Using a penalty function for route overcapacity, re-
stricted 2-opt exchanges [160] and customer exchanges are applied until a feasible
solution is obtained. These modifications are said to be restricted because an infeasi-
ble route is necessarily involved.

The EAX crossover is illustrated in Figure 3. From two parents, a combined graph is
obtained. Then, based on the particular set of cycles shown in this example, an offspring
is produced. The latter is obtained from parent 1, by removing the edges of parent 1 and
by adding the edges of parent 2 that are in the set of cycles. Clearly, the offspring is not
a valid solution since it contains two subtours that are not connected to the depot. These
subtours are thus merged with the routes to obtain a valid solution, as mentioned above.

This GA with EAX reached the best solution on a subset of instances taken from
Christofides, Mingozzi and Toth’s VRP set [135] and found ten new best solutions on Golden
et al.’s set [149]. This work has also been extended to the VRPTW in [71]. In this case,
an additional term for time window violations is included in the penalty function when
feasibility is restored with exchanges.

7

Evolutionary Algorithms for Vehicle Routing

CIRRELT-2007-48



parent 1 parent 2

subset of cycles combined graph 

intermediate 

offspring

Figure 3: EAX crossover
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An adaptation of the natural crossover, previously developed for Euclidean TSPs [153],
is reported in [55] for the VRPTW. This operator, works on a two-dimensional graphical
representation of the problem. It partitions the set of customers into two different classes
by drawing one or more curves or geometric figures, like rectangles and ellipses, over the
graphical representation. That is, customers are on one side or the other of the curve or
customers are inside or outside of the geometric figure. Then, arcs from the first (respec-
tively, second) parent solution with both endpoints in the first (respectively, second) class
are transferred to the offspring solution. At this stage, disconnected segments from both
parents are obtained. A repair algorithm is then applied to connect these segments to form
feasible routes. Basically, routes are constructed one by one and the last customer on the
current partial route is connected at least cost to the first customer of a segment, where the
cost takes into account spatial and temporal issues. A local optimization is also applied on
the resulting solution, based on intra- and inter-route customer moves and on 2-opt [160].
An example of the natural crossover is shown in Figure 4. In this example, a rectangle is
drawn to divide the customers into two classes, namely those that are inside or outside of
the rectangle. The customers inside the rectangle are linked according to the edge pattern
of parent 1, while the others are linked according to the edge pattern of parent 2. The in-
termediate offspring contains four segments that need to be reconnected to produce a valid
solution.

In [56, 100], the GENITOR algorithm [191] is adapted to the VRP by modifying its edge
recombination crossover ER. This operator, originally designed for the TSP, progressively
extends a tour by adding edges found in one of the two parents. These edges are stored in
a data structure called an edge table, where all parental edges incident to a given customer
node are grouped together. In the case of the VRP, ER is modified in the following ways:
(1) the depot is always used as the starting point of a route, (2) the edge table includes the
depot for which the number of incident edges is two times the number of vehicles, (3) only
edges leading to the closest nodes are considered and (4) capacity constraints are taken into
account to stop the construction of the current route and starts a new route. In this work,
the mutation operator is a 2-opt [160] which is applied at every G iterations, where G is a
parameter. In a follow-up paper [29], an open loop power distribution problem is modeled as
a VRP and solved using the same approach, except that the 2-opt is replaced by a 3-opt. In
[28, 30], the same modified ER operator is used for a multi-depot vehicle routing problem
where each route can start and end at a different depot and where the number of vehicles
at each depot is known. After a clustering phase that assigns each customer to the closest
depot, and a routing phase at each depot that creates open half routes (by dividing the
capacity in two) with a greedy heuristic, the GA with modified ER is applied at each depot
to optimize the half routes. When this is done, another GA is applied to find the best way to
link pairs of half routes together to form complete routes. Basically, the crossover operator
in this GA combines half routes taken from two different solutions. A similar approach to
this problem, but where a decoder is used to form the half routes, is discussed in Section 3.2.

The work in [26, 44] address the VRPTW through an extension of a matrix-based
crossover operator for the TSP [143]. Basically, an entry (i, j) in the matrix is set to a
large value if customers i and j are in the same route in both parents and share the same
precedence relationship. A small value is used when i and j are not in the same route.
Intermediate values are used when customers i and j are in the same route in both parents
but do not share the same precedence relationship or when i and j are in the same route in
one parent only. Offspring solutions are then generated by applying Solomon’s I1 insertion
heuristic [181], using the values in the matrix to modify the insertion costs. For example, if
customer i precedes customer j in both parent solutions, so that entry (i, j) in the matrix
has a large value, the insertion of j just after i is greatly favored by dividing its insertion
cost by this large value. The GA is used in conjunction with a tabu search heuristic [145]
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Figure 4: Natural crossover
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that further improves a fraction of the solutions in the current population. The authors
propose to run the GA without tabu search in the first iterations to favor diversification.
Then, the intensity of the tabu search is progressively increased, by applying it on a larger
fraction of the population and by running it longer on each solution. With this approach,
a graceful convergence of the population is observed. A completely different approach for
designing a crossover operator for the VRPTW is also proposed in this work, based on the
concept of a dominant and a recessive parent, where the dominant parent is the one with
better evaluation. The operator first makes the offspring a duplicate of the dominant parent.
Then, the path representation of the recessive parent is swept position by position to get
the current customer i and its immediate successor j. These customers are located in the
offspring and an attempt is made to put customer j immediately after customer i in the
offspring, if this is feasible.

The VRPB is solved in [109] with a number of order-based crossover operators for the
TSP that are adapted to take into account backhaul customers. Unfortunately, there is little
information about how this adaptation is realized. A problem that exhibits features of both
the VRPB and VRPSDP is solved in [31] with an algorithm called CLOVES. In this applica-
tion, each customer is either a pure delivery (D), a pure pickup (P) or a delivery and pickup
(DP). Furthermore, the customers must be visited in the following order: pure delivery,
delivery and pickup, pure pickup. In the CLOVES algorithm, only the last stage is based
on a GA. The first stages construct a solution for this problem by (1) clustering customers
for each of the D, P and DP categories, (2) ordering the customers within each cluster to
create segments and (3) generating complete routes for the vehicles by appropriately assign-
ing D, P and DP segments to each vehicle. The GA is then called on a population made
of the solution obtained plus additional ones produced by applying Or-opt exchanges on
this solution [168]. Two variants of the OX crossover [167] are proposed. The first variant
is the classical operator, where a segment between two crossover points is chosen on one
parent and transferred to the offspring. The empty locations in the offspring are then filled
by sweeping the second parent from the first to the last position (to preserve, as much as
possible, the required D-DP-P ordering). The second variant does the inverse: all customers
outside of the crossover points are copied in the offspring and the empty locations between
the two crossover points are filled by sweeping the second parent. Due to the unavailability
of benchmarks for the problem considered, the algorithm was tested on VRP and VRPB
benchmark instances. The average gap with the best-known solutions in these two cases
was typically under 1%.

A problem motivated from a real-world application, where a single vehicle has to perform
daily tours to visit on-shore oil wells, is addressed in [93]. The tour starts and ends at the
oil treatment station where separation of oil from water occurs. As the vehicle cannot visit
all wells in a single day, the maximum amount of oil should be collected within a given time
horizon. Although this problem is more closely related to the prize collecting TSP [141],
it is considered here due to the presence of a physical depot where the vehicle must start
and end its route. The solution representation is made of a variable number of wells, as the
authors have chosen not to include unvisited wells in it. The crossover operator thus works
on a variable-length representation and is also extended to apply to a varying number of
parents. It creates an offspring, starting with a randomly chosen node. Then, the next node
j is probabilistically chosen based on a measure that takes into account how often node j is
found just after node i in the parent solutions. Two different types of local search heuristics
are then applied in sequence with a given probability associated with each one. The first one
tries to insert a well not currently visited in the solution. The other one exchanges a visited
well with an unvisited one. At regular interval, a so-called data mining module is applied to
discover relevant subsequences in the best solutions found thus far. These subsequences are
then used to construct new solutions. A crossover mechanism similar to the one mentioned
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above is applied, except that when the next node is selected, frequent subsequences that
involve that node as the starting node are considered for inclusion in the solution.

A similar, but more complex, multi-vehicle problem is reported in [95, 96, 97]. This
problem is in fact a PDPTW, motivated from a less-than-truckload application, but where
it is still not possible for the fleet of vehicles to visit all customer requests. Accordingly,
some requests are subcontracted to a common carrier. The problem is thus to select the
customer requests to be visited, to assign these requests to the available vehicles and to
sequence them to form routes. This should be done at least cost, which is the travel cost
to visit the selected customers plus the subcontracting cost for the remaining customers.
A path representation is used (with unserved requests at the end), along with pointers
to indicate the end of each route. The GA starts with an initial population of solutions
generated with a construction heuristic reported in [95]. A uniform crossover operator is
then applied to create each offspring route. That is, a bit mask is generated to decide if
each customer request in the offspring route is taken from parent 1 or parent 2. When
the entry in the bit mask is 0, the request is taken from parent 1; when the entry is 1,
the request is taken from parent 2. Once the current route is completed, the procedure is
repeated with the next route. A mutation operator is also used, where a customer request
is reinserted at another location. The request can be taken from the unvisited ones, in
which case the operator injects a new request in the solution. Although the crossover and
mutation operators are designed to guarantee that the pairing and precedence constraints
are satisfied, this is not necessarily the case for the capacity and time window constraints.
Consequently, a 2-opt [160] is applied to reduce the travel costs and constraint violations.
Afterward, if the solution is still infeasible, requests are removed and added to the unvisited
ones to make the solution feasible.

3.2 Decoders

In a decoder, an ordering of customers (here, generated by a GA) is given as input to a
route construction heuristic that decodes the ordering into a feasible solution to the problem.
Basically, the customers are considered one by one, based on the ordering indicated by the
GA, and feasibly inserted into the current solution. The GA is thus free to explore the
search space of customer orderings and does not need to account for side constraints, which
are handled by the construction heuristic. This approach can be easily adapted to vehicle
routing problems with different side constraints, due to the generic nature of the insertion
heuristics that are used to construct a solution.

Blanton and Wainwright [17] were the first to propose a decoder approach for the
VRPTW. In their GA, the Merge crossover operators MX1 and MX2 exploit a global
precedence relationship among customers, based on their time window, which is indepen-
dent of any particular solution. Namely, the crossover operators rely on the assumption that
it is desirable for customer i to appear before customer j in the ordering if the time window
of i is earlier than the time window of j. In the MX1 crossover, the two parent orderings
are processed position by position and, at each position, the customer with the earlier time
window is transferred to the offspring. The resulting ordering is thus biased toward the one
obtained by sorting the customers in non-decreasing order of their time window. The MX2
operator works similarly and differs only in the way the two parent orderings are processed.

Each ordering produced by the GA is then decoded into a solution of the VRPTW and
evaluated by adapting an approach reported in [152] for a partitioning problem. Assuming
a fixed number of vehicles m, the first m customers in the ordering are used to initialize the
vehicle routes, where each route visits a single customer. The remaining customers are then
inserted one by one into any of these routes (so that all routes grow in parallel), based on
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a least-cost insertion measure. A customer who cannot be feasibly inserted in the solution
remains unvisited. Such infeasible solutions are kept in the population but are highly pe-
nalized. Tests on problems with 15, 30, 75 and 99 customers were performed by integrating
the two operators into the GENITOR package [191]. These operators were shown to out-
perform general purpose order-based crossover operators like ER [191] and OX [167]. An
improvement is proposed in [63] for instances where customers are geographically clustered
(as instance classes C1 and C2 in Solomon’s data set [181]). Rather then using the first m
customers in the sequence to initialize m routes, the authors take care to select customers
from different clusters to initialize the routes.

In [86], the authors argue that MX1 and MX2 are too strongly biased by the cus-
tomers’ time windows. Accordingly, they propose a crossover operator that stands between
general purpose order-based crossover operators and the MX1 and MX2 operators. The
1X crossover is similar to the classical one-point crossover and thus generates invalid order-
ings. These orderings are then repaired by eliminating duplicate customers and by inserting
all customers that are not yet part of the ordering. When inserting customers into the
ordering, their insertion order is determined by the time occurrence of their time window
(i.e., the customer with earliest time window is inserted at the first available position, etc.).
As opposed to [17], the construction heuristic for decoding the ordering into a solution is
Solomon’s I1 insertion heuristic [181], where the routes are built one by one. That is, a first
route is initialized with the first customer in the sequence, the next customers are inserted in
this route until it is full; then, a second route is initialized, etc. The new crossover operator
was shown to outperform MX1 and MX2 on Solomon’s VRPTW instances. The same GA
was then applied to the VRPB with time windows in [85], by slightly modifying Solomon’s
insertion heuristic to account for the precedence relationship among linehaul and backhaul
customers. Similar decoder approaches for the VRPTW are also reported in [69, 104, 127].
In [104, 127], Solomon’s I1 sequential insertion heuristic is used, while a time-oriented par-
allel savings heuristic, also proposed by Solomon in [181], is used to construct routes in
parallel in [69].

A messy GA [146] for the VRPTW is described in [103]. Messy GAs can be seen as
a relaxation of classical GAs, because they are more flexible with regard to the solution
representation. In particular, each element is a couple (position, value) that can appear at
any particular location along the string. Messy GAs also allow for variable-length strings
that may be under or overspecified with regard to the problem under study. Overspecifica-
tion occurs when two elements share the same position but have different values. When the
string is swept to decode it into a solution, overspecification is handled by selecting the first
element encountered and by ignoring the following ones. Underspecification occurs when
a particular position is absent. In that case, the missing value is filled using the current
template, which is the best solution from the previous iteration. As in classical GAs, there
is a parent selection phase followed by the application of a cut-and-splice operator, which
is similar to the one-point crossover, but adapted to variable-length strings. In the case of
the VRPTW, an element is a couple (customer index, vehicle). Overspecification occurs
when the same customer is served by two or more vehicles. Underspecification occurs when
a customer is not served by any vehicle. Decoding the string into a solution of the problem
is obtained by considering each couple in turn along the string and by applying Solomon’s
I1 heuristic [181] to insert the corresponding customer in the vehicle’s route. As the authors
minimize total distance only, they often obtain better solutions on Solomon’s benchmark
instances then other approaches, but they use much more vehicles. It is worth noting that
the GA developed by the authors only approximately follows the original design of messy
genetic algorithms, and the theoretical justifications at the core of this design are more or
less ignored.

A VRP with time deadlines is addressed in [65, 74]. One interesting feature of the pro-
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posed GA is a route crossover RC based on a bit mask where the number of bits corresponds
to the number of routes in the first parent solution. If the bit value is 1, the corresponding
route is transferred to the offspring solution. If the bit value is 0, the customers in the cor-
responding route are added to a temporary list. At the end, the customers in the temporary
list are sorted, based on their relative order in the second parent and inserted, one by one,
into the routes of the current offspring solution. Using the final ordering obtained, including
the addition of infeasible customers at the end, a decoder then produces the final solution
with a sequential construction heuristic.

A multi-depot VRP, where each route can originate and terminate at a different depot
and where the number of vehicles at each depot is known, is addressed in [98, 99]. In this
particular application, the number of vehicles that start their route from a given depot
and end their route at another depot is specified for each pair of depots. The problem-
solving methodology first assigns a number of closest customers to each depot. This number
corresponds to the number of vehicles that goes in and out of the corresponding depot. Each
assigned customer is used to initialize a route that goes in (first customer of the route) or
out (last customer of the route) of the depot. Afterward, a GA is applied to handle the
remaining customers and enlarge the routes until half of the vehicle capacity is reached. A
decoder is used for this purpose, that is, an ordering of unassigned customers is provided as
input to a construction heuristic that links each customer in turn to the closest end node
of a half route. When all customers are routed, the route halves are linked together in a
heuristic way by sequentially and randomly selecting a half route and connecting it in the
cheapest possible way to another half route to form a complete route (while taking care
to satisfy the specifications about the number of vehicles that travels from one depot to
another).

Finally, a GA for solving a dynamic vehicle routing problem is described in [43]. Here,
new customer requests are received over the day and must be integrated in real-time into the
current vehicle routes. In this work, the horizon is divided into time slices. A new vehicle
routing problem is then defined and solved by the GA at the end of each time slice by
incorporating any new request that has been received during that time. A variable-length
string representation is proposed that encodes the new customer requests that have not been
assigned yet, plus pointers to existing routes. A decoder then inserts these new requests one
by one into existing routes, if this is feasible, or creates new routes for them, based on their
ordering in the string.

3.3 Cluster First-Route Second

The well known cluster first-route second problem-solving methodology is based on the nat-
ural partition of a vehicle routing problem into two subproblems, namely (1) an assignment
subproblem where groups or clusters of customers that are visited by the same vehicle are
identified and (2) a sequencing subproblem where the customers within each cluster are
sequenced to form routes.

Sam R. Thangiah was one of the first researchers to apply GAs to vehicle routing prob-
lems with this framework. Basically, clusters of customers are first identified by a GA, while
the routing is done afterward with standard operations research techniques. The GIDEON
system [114, 116, 118] was first developed in the context of the VRPTW. Its clustering
and routing phases work as follows. In the clustering phase, a genetic sectoring algorithm
called GENSECT partitions the set of customers into m clusters, one for each vehicle, by
identifying m− 1 rays originating from the central depot. All customers lying between two
consecutive rays are then grouped together to form a cluster. As each ray is defined by its
polar angle, m − 1 polar angles are encoded on a bit string (to be more precise, each angle
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is encoded as an offset from a fixed increment angle). To evaluate the clusters produced by
GENSECT, a route is formed within each cluster. This is done through a least-cost insertion
heuristic, where the cost accounts for the total travel distance, as well as penalties for time
window and capacity violations. At the end, a local search heuristic is applied to the best
solution produced by GENSECT for further improvement. The neighborhood structure is
based on the λ-interchanges of Osman [169], with λ = 2. In this case, one or two customers
are moved to another route or exchanged with one or two customers in another route. This
final phase is particularly important to reduce or eliminate violations of the capacity or time
window constraints. GIDEON was used to solve a school bus routing problem in [117]. It
was also applied to VRPTDs [119, 122], where the time window at each customer is replaced
by a time deadline.

In [113], an alternative approach is proposed to cluster customers. The GA, called
GENCLUST, adapts geometric shapes (more specifically, circles) to cluster customers. Each
bit string encodes the origin and radius of a set of circles. The number of circles corresponds
to the number of vehicles, and is estimated by first solving the VRPTW with Solomon’s I1
insertion heuristic [181]. All customers found in a given circle are grouped into the same
cluster. Customers that are in-between two or more circles are associated with the closest
circle, while customers that are found inside two or more circles (assuming that circles can
overlap) are associated with the circle that appears first along the bit string. Thus, when a
small circle is included within another larger circle, and customers are found only within the
small one, the circle that appears first takes all customers. The other circle becomes empty
and is removed, thus saving one vehicle. As in GENSECT, the circles or clusters produced
by the GA are evaluated by sequencing the customers within each cluster with a least-cost
insertion heuristic to form routes.

GENCLUST was also adapted to solve the multi-depot vehicle routing problem, where
each vehicle starts and ends its route at the same depot [92, 121]. Basically, when a set
of circles is produced by the GA, a solution to the multi-depot problem is obtained by
associating each circle or cluster of customers with the nearest depot. The interested reader
will find a review of Thangiah’s work with GAs for these different types of vehicle routing
problems in [120].

In [81], the cluster first-route second approach is implemented using a different GA in
each phase. For the clustering phase, an assignment representation is exploited by the GA
to assign customers to vehicles, that is, to form clusters. Another GA then form routes
within each cluster by applying the PMX order-based crossover [147] on a classical path
representation. This problem-solving approach is applied on a PDP, more precisely a dial-
a-ride problem with no time windows. In this particular application, a repair operator
is needed to swap the pick-up and delivery associated with a given customer, when the
precedence constraint is not satisfied.

A dial-a-ride problem with time windows is addressed in [50]. Here, the assignment
representation is based on a binary matrix, where entry (i, j) is 1 if customer j is visited by
vehicle i, and 0 otherwise. Thus, each row contains the group of customers assigned to a
given vehicle. A crossover operator then explores different ways to perform this assignment.
First, one row is selected in the matrix of each parent. A binary mask is then used to
create a new row for the offspring. Each row element is inherited from parent 1 or parent 2,
depending if the bit value in the mask is 0 or 1, respectively. The other rows are inherited
from parent 1. A repair operator is then applied to make sure that each customer is assigned
to exactly one vehicle (i.e., each column has exactly one entry equal to 1). Routes are then
created from the obtained assignment using a nearest neighbor heuristic that accounts for
both spatial and temporal proximity.

In [77], each element in the representation of a PDPTW corresponds to a group of
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requests that are assigned to the same vehicle, rather than a single request or a single service
point (pickup or delivery). A variant of the 2-point crossover operator is then applied to
combine clusters from two parents on a single offspring. The substring of clusters between
the two cut points on the second parent is inserted just after the first cut point on the
first parent to create an offspring. Then, a repair operator removes duplicate customers
(which can lead to the removal of whole clusters). Finally, unassigned requests are inserted,
allocating a new vehicle if necessary. The mutation operator randomly removes a cluster and
reinserts its customers into other clusters, also allocating a new vehicle if necessary. While
clusters are worked on, the corresponding routes are created and updated. For example,
when a customer request is reinserted in another cluster, the insertion is also performed in
the corresponding route to ensure feasibility. An adaptation of this GA for a dynamic version
of the PDPTW, where new requests are incorporated in real-time into the current routes,
is reported in [78]. Basically, a series of static subproblems over known requests are solved
under a rolling time horizon. A static subproblem is defined each time a new request occurs.
At this point, each solution in the current population is updated (synchronized) to reflect
the current state of the system. The population obtained becomes the initial population for
the next execution of the GA. During synchronization, care is taken to maintain as much
as possible the integrity of the request groupings.

In [7], the VRP is addressed with a GA using an assignment representation. Although
this representation is not meant to specify the sequence of customers visited by each vehicle,
the routes are implicitly inferred. That is, the customers are indexed in such a way that
it makes sense for two customers with consecutive indices to be visited one after the other
by the same vehicle. These indices are determined by sorting the customers according to a
nearest neighbor TSP solution, when the customers are clustered, or based on their polar
angle, when the customers are randomly located. The route associated with a given vehicle
is then obtained by taking all customers with the same vehicle number, and by sequencing
these customers based on their relative order in the representation. Local optimization
heuristics, like 2-opt and 3-opt are then applied on each route. Since the representation
encodes groups of customers that are assigned to the same vehicle as well as their sequence,
it is not a true cluster-first, route-second approach. However, these routes are only the
starting point for the local optimization heuristics. They do not correspond to the real
routes, which are those obtained after the local optimization.

In the case of the work in [27, 125], the cluster first-route second paradigm is extended to
a periodic VRP. Here, cluster first corresponds to the selection of customers that are visited
during the same period over a given multi-period horizon, while route second corresponds
to the construction of routes for each period. A binary representation is used to encode
the periods where each customer is visited. For example, if an horizon of three periods is
considered, there are seven possibilities: 001, 010, 100, 110, 011, 101, 111. That is, if 101
is associated with a given customer, this customer is visited in periods 1 and 3. Based on a
particular selection of visits for each customer, a VRP is then solved in each period using a
cost saving heuristic. The proposed crossover operator creates two offspring by exchanging
the selection of visits of a given customer on the two parents (if feasible), while the mutation
operator randomly changes the selection of visits of a number of customers (if feasible). A
parallel implementation of this GA is reported, where subpopulations evolve in parallel and
periodically exchange solutions.

3.4 Route First-Cluster Second

Route First-Cluster Second is an alternative paradigm for tackling vehicle routing problems.
Basically, the path representation encodes a (likely infeasible) unique giant tour that covers
all customers. Using such a representation means, in particular, that classical order-based
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crossover and mutation operators previously developed for the TSP can be used, given that
a single sequence of customers is worked on. The giant tour then needs to be partitioned into
individual feasible routes. By working on a single sequence of customers and by coupling
this representation with a procedure that transforms this sequence into a solution of the
problem, an approach very similar to the decoders of Section 3.2 is obtained. However, the
final routes are usually more closely tied to the original sequence through the use of decoders
that can only break the sequence into subsequences. This approach can thus be viewed as
a restricted type of decoder.

A VRP with route time constraints is addressed in this way in [94]. A true solution
to the problem is obtained by sweeping the customers along the giant tour. A route ends
when either the capacity or the maximum route time constraint would be exceeded by
including the next customer. This customer is then used to start a new route. In [88], a
polynomial-time algorithm is developed to partition the giant tour into individual routes in
an optimal way. This algorithm, called SPLIT, works on an auxiliary directed acyclic graph
with vertices {1,2,...,n}, where vertex 1 is the depot and the other vertices are customers.
An arc (i, j) is added to the graph when a route from vertex i + 1 to vertex j, based on
the ordering in the giant tour, is feasible. The length of the arc is the total distance of the
corresponding route. A solution is then obtained by solving a shortest-path problem from
node 1 to node n. This can be done in polynomial time due to the acyclic nature of the
graph. An example taken from [88] is illustrated in Figure 5, assuming a vehicle capacity
of 10. In this figure, the demand at each vertex is shown within brackets and each link
is labeled with its length. The giant tour in Figure 5(a) starts at the depot 1, visits the
vertices in the order 2, 3, 4, 5, 6, and returns to the depot. The corresponding shortest
path problem is illustrated in Figure 5(b). In this graph, the arc from vertex 4 to vertex 6,
for example, corresponds to the route 1, 5, 6, 1 with a total distance of 90. The optimum,
shown with bold arcs, is to split the tour into three feasible routes: the first route visits
vertices 2 and 3, the second route visits vertex 4 only and the third route visits nodes 5
and 6, for a total distance of 55+60+90=205. It is worth noting that a similar optimal
procedure, that accounts for time windows, is reported in [128].

Before the discovery of this exact, polynomial-time tour splitting procedure, different
heuristic approaches were proposed in the literature to address this problem. In [101], a
local search heuristic explores different configurations of cut points along the giant tour.
In [64], a cooperative co-evolutionary model, where two subpopulations evolve concurrently,
is proposed. In the first subpopulation, the integer strings contain a single sequence of
customers, while the strings in the second subpopulation contain a number of route sizes
(in terms of number of customers). The giant tour encoded in the first string is then split
according to the route sizes encoded in the second string. The two subpopulations are thus
required to get a complete solution.

3.5 Ruin and Recreate and Large Neighborhoods

In this section, the genetic operators are inspired from the ruin and recreate paradigm [179],
where a fraction of a solution is destroyed and then reconstructed in some alternative way.
When integrated within a local search heuristic, this approach leads to large neighborhoods.
For example, we can choose to remove q customers from a solution to ruin it. But each
selection of q customers is likely to lead to a different neighboring solution after reconstruc-
tion. Clearly, the size of the neighborhood grows quickly with q, thus producing a large
neighborhood search.

A good example of this approach is found in the work of Berger and his colleagues for
the VRPTW. As the first objective of the VRPTW is usually to minimize the number of
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Figure 5: Exact split procedure

vehicles and, for the same number of vehicles, to minimize the total distance, researchers in
the field have soon recognized the need to pay a special attention to each objective. The line
of research of Berger and his colleagues makes no exception, as explained in the following.

In [15], an insertion-based crossover IB X is proposed. First, route 1 is probabilistically
selected from parent 1, with a bias toward routes with large waiting times. A number of
customers are then removed from this route (ruin), based on criteria indicating that a more
suitable relocation of these customers into alternate routes is likely, such as a large distance
to the immediate successor or a large waiting time. A subset of routes close to route 1
are then selected in parent 2, and the best candidate customers in these routes, plus any
unvisited customers, are considered for insertion in route 1. This procedure is repeated for
a number of routes in parent 1. At the end, the offspring solution is completed with the
remaining routes of parent 1. If there are still unvisited customers, they are handled by
constructing additional routes with a nearest neighbor heuristic. A second child is obtained
by interchanging the role of the two parents. Three mutation operators are also used to
either reduce the number of routes or to reorder customers within routes. It is worth noting
that solution feasibility is always enforced. A variant of the VRPTW, where a maximum
route time constraint is introduced, is also addressed with the same approach in [16].

In a follow-up work [14], the authors relax the time constraints and evolve two popula-
tions with different objectives. Population 1, which contains at least one feasible solution,
minimizes the total distance, while population 2 minimizes time constraint violations, both
subject to a fixed number of routes (i.e., m and m−1 routes, respectively). When a feasible
solution with m− 1 routes emerges in population 2, population 1 is replaced by population
2, the number of routes m is reduced by one, and the mutation operator RSR M (see be-
low) is applied to population 2 to obtain a new population with solutions with one fewer
route. This is repeated until no feasible solution emerges in population 2. The crossover
operators are IB X [15] and a variant called insert-within-route neighborhood crossover
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IRN X. In this case, customers are removed from a subset of routes in parent 1. Then, the
customers in the routes of parent 2 that are close enough to the subset of routes in parent 1,
become candidate for insertion in this subset. A suite of five mutation operators is also pro-
posed, among which the large neighborhood search-based mutation LNSB M follows the
guidelines of Shaw in [180]. Here, related customers (due to proximity or a common route
assignment) are removed and reinserted with a variant of Solomon’s I1 heuristic [181], within
a search tree framework. The insertion order of the customers is determined through the
summation of two ranks: one is based on the insertion cost and the other on the number of
feasible insertion places. The smaller the insertion cost and the number of insertion places,
the better the customer’s overall ranking. Note that the second term is new and is aimed
at alleviating the myopic behavior of the original approach. The edge exchange mutation
EE M is inspired from the λ-interchanges [169] and examines the insertion or exchange
of a customer with the two closest routes (as evaluated by the customer’s distance to the
route centroid). The repair solution mutation RS M is similar to EE M , but focuses on
solution feasibility by exploring exchanges involving infeasible customer visits. The reinsert
shortest route mutation RSR M is used to eliminate the route with the smallest number
of customers from a solution. It first tries to insert each customer at a feasible place in the
two closest routes by maximizing a so-called regret cost function. Basically, the procedure
computes the best insertion place for the customer in the two routes and considers the
difference between the two values. This measure indicates how much is lost by not insert-
ing the customer at its best insertion place. This a special case of the generalized regret
measure proposed in [172], where the regret is computed over all routes instead of the two
closest routes only. Finally, the reorder-customers mutation RC M is applied when a new
best feasible solution is found. It reorders the customers within each route by repeatedly
applying Solomon’s I1 heuristic [181] using different sets of randomly generated parameter
values.

A parallel master-slave implementation of this GA is reported in [13]. In this implemen-
tation, the master supervises and controls the execution of the GA, while the slaves con-
currently apply the genetic operators on different solutions in the two populations. In [20],
a post-optimization phase is added to the GA. In this final phase, a population of routes
(rather than complete solutions) is evolved, starting with the routes in the best solution pro-
duced by the original GA. The routes in the population are randomly ordered and pairs of
routes are recombined based on this ordering. After a number of iterations, the best possible
solution is constructed with the routes found in the final population. Four crossover oper-
ators are applied, depending on a priori probabilities. The CE X operator applies CROSS
exchanges [185] where two segments of consecutive customers are selected (one from each
route) and exchanged. The insertion crossover I X inserts one customer at a time in other
routes. The rebuilding crossover R X frees all customers in two parent routes and reinserts
them using a least-cost insertion heuristic. The random rebuilding crossover RR X is a
variant of R X where the customers are considered for insertion in random order. The two
mutation operators considered are first-improvement local search heuristics, where a new
route is accepted as soon as it provides an improvement. The permute mutation operator
P M is based on Or-opt exchanges [168], where a string of one, two or three consecutive
customers is removed from a route and inserted elsewhere. In the reorder mutation opera-
tor R M , customers are removed from a route. Then, those with a tight time window are
considered first during the reinsertion.

This parallel GA was later adapted to the VRP [11, 12]. In this case, the two populations
are used for diversity purposes only, as they both optimize the total distance. Since the VRP
is less constrained than the VRPTW, the IB X crossover and the suite of five mutation
operators in [14] are also used here. An approach inspired from the granular tabu search [187]
is also exploited to reduce the number of possible insertion places when applying the genetic
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operators. Basically, insertion places for a given customer are restricted to surrounding
routed customers located within a certain distance limit.

In the work of Potvin and Bengio [82], a genetic algorithm called GENEROUS is pro-
posed to solve the VRPTW. One interesting feature of this work is that the encoding issue is
avoided by applying the genetic operators directly on the solutions. A route-based crossover
RBX is proposed where two routes from two different parent solutions are exchanged to
form offspring. Another crossover operator, called SBX, is based on 2-opt* exchanges [173],
where the end parts of two routes, one in each parent solution, are exchanged. In both cases,
a repair operator is applied to produce feasible solutions, that is, duplicate customers are
eliminated and missing customers are reinserted using a least-cost insertion heuristic. A
mutation operator is specifically designed to empty small routes, by inserting customers one
by one into other routes. Another mutation operator is a primitive ejection chain [144],
where a customer can eject another customer from another route. The ejected customer is
then feasibly inserted, if possible, at some other location. Apart from these true mutation
operators, a local search heuristic based on Or-opt exchanges [168] is also applied with a cer-
tain probability to further optimize the solution. The same SBX crossover operator is used
in [76]. The authors also generalize this idea by designing a new crossover operator, inspired
from the CROSS exchanges [185], where intra-route segments from two parent solutions are
exchanged to create offspring. Similar operators for the VRP and VRPTW are described
in [80, 91, 110, 111, 112]. Using a multi-part solution representation called GVR, where
each part represents an individual route, the authors first design a crossover operator that
removes an intra-route segment from one parent and inserts it after the closest customer in a
route of the second parent to create an offspring. Duplicates are then removed. A crossover
operator similar to RBX is also proposed where a full route is taken from one parent and
transferred to the other parent to create an offspring. Duplicates are then eliminated.

The GA for the VRPTW of Bräysy and Dullaert [21] emphasizes fast computation times.
The algorithm is divided into two different stages that are applied a number of times within a
multi-start framework. The first stage corresponds to the creation of an initial solution. The
second stage corresponds to the improvement of the initial solution and is divided into two
different phases. The first phase is deterministic and minimizes the number of routes using
ejection chains [144]. The second phase exploits ideas found in [20] by evolving a population
of routes with the aim of minimizing the total distance. The initial population is made with
the routes obtained at the end of the first phase. Parent routes are paired randomly and
the offspring routes are required to contain all customers found in the parent routes. The
proposed ICROSS operator is based on CROSS exchanges [185], although exchanges that
are not likely to lead to feasible routes are filtered out to limit the computational burden.
The reinsert related customers crossover RRC removes a set of customers from two parent
routes, and then tries to reinsert them, as in [180]. After reinsertion, the customers in
both routes are reordered with Or-opt exchanges [168]. When no further improvement can
be obtained via ICROSS and RRC, a mechanism that allows the search to explore other
regions in the solution space is applied. Basically, the total waiting time along the routes is
introduced in the objective and its weighting coefficient is gradually reduced until it reaches
0, in a manner reminiscent of the cooling schedule of simulated annealing [155]. At the end,
each offspring route is improved with a local search heuristic based on intra-route CROSS
exchanges (i.e., the two segments to be exchanged are taken in the same route).

3.6 Column generation

In the work of Alvarenga and his colleagues, a set partitioning formulation of the vehicle
routing problem is exploited to partition the set of customers into a number of routes. These
routes correspond to columns in the integer programming model (IP). As it is not possible
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to enumerate all feasible routes, only a subset of routes is generated in a heuristic way with
a GA. The scaled-down set partitioning problem is then solved exactly with an IP solver.
It is worth noting that the overall approach is heuristic, because there is not guarantee that
the GA will generate all routes needed to get an optimal solution.

In [4, 6], the VRPTW is addressed in this way with the unusual objective of minimizing
the total distance only. Many executions of the GA are performed to produce different
routes (columns). Within the GA, the crossover operator creates an offspring by alternately
selecting a route from the first and second parents, while removing duplicate customers
if necessary. The remaining customers are then inserted in the existing offspring routes,
if possible. Otherwise, a new route is created. Thus, there is no incentive to reduce the
number of routes. Many different mutation operators are proposed to reinsert a customer or
exchange two customers, merge a pair of routes or split a route, with or without consideration
for an improvement in the objective. The solution obtained after solving the set partitioning
problem, based on the routes produced by the GA, is then divided into a number of subsets
of routes. The GA is then applied again on each subset of routes to generate additional
routes. By working on smaller subproblems, an intensification of the search is obtained.
At the end, the final set partitioning problem produced with all columns generated from
the start, is solved to get the final solution. This algorithm is shown to improve the best
distances reported in the literature on many Solomon’s benchmark instances [181], but at
the expense of an increase in the number of vehicles. The same approach is proposed in [19].
In this work, however, the focus is on the benefits of a memory where solutions from previous
iterations are preserved and used to fill a part of the current population.

In a follow-up work by Alvarenga and his colleagues [3, 5], the algorithm described above
is modified to focus first on route minimization and then, on total distance. To this end,
an independent GA run is performed at the start to reduce the number of vehicles. When
selecting parent solutions, the hierarchical or lexicographic order of criteria proposed in [45]
is applied (see Section 4), where the focus is on the route with the smallest number of
customers. However, the authors note that additional criteria can be useful to distinguish
between two solutions. They propose criteria of their own based on the so-called taker
route, which is the route with minimum time window violations when a customer from the
smallest route is inserted in it. The mutation operators from their previous work in [4]
are also modified because some of them are not appropriate when the number of vehicles is
considered (e.g., the mutation operator that splits a route). The new operators are aimed at
emptying the smallest route, in particular through primitive forms of ejection chains [144].
The final population produced by this GA, then becomes the initial population for the GA
in [4] which minimizes the total distance.

3.7 Landscape Analysis

The work reported in this section is based on an analysis of the solution space topology.
As observed in [57], most instances of the VRP exhibit global convexity, which means that
global optima are typically found at the bottom of big valleys (see Figure 6). Although
solutions that are close from one another do not have to preserve strict convexity (and
thus, are local optima), there is a general trend toward convexity. This observation implies
that good solutions, like local minima, should be close to one another and should have
similar features or characteristics. In [57], a GA coupled with local search is proposed to
exploit global convexity. Crossover operators are designed to generate offspring that are
close to their parents, using similarity measures based on common edges and customers
assigned to the same vehicle. The Cluster Preserving Crossover CPX preserves groups
or clusters of customers that are common to both parents. Clusters in the offspring are
formed by intersecting pairs of routes that share the largest number of customers. Routes
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Figure 6: Gloval convexity

are then created from these clusters by sequencing the customers. The Common Edges
Preserving Crossover CEPX preserves edges. It identifies paths of maximum cardinality
that are common to both parents and use them to create routes in the offspring. Finally, a
mixed crossover operator CECPX is designed to preserve both characteristics. It creates
routes through paths of maximum cardinality within groups or clusters of customers that
are common to both parents.

In a follow up work [58], similar ideas are explored to accelerate the local search in
the GA. First, a cache is used to store the change in the objective value when a move
from the current solution to a neighboring solution is performed. Since a move leaves
most of the solution unchanged, many values stored in the cache are still valid for the
new current solution, and can be directly fetched when evaluating the neighborhood of this
solution. As opposed to the TSP, however, the capacity constraints in the VRP ask for an
extension of the cache to store the feasibility status of a move. Unfortunately, due to the
non negligible overhead associated with the management of the cache, the authors did not
find any significant speed-up with the cache. The second technique is based on the global
convexity property and emphasizes closeness when the local search is applied. In this work,
after applying the edge-preserving operator CEPX, the local search explores a restricted
neighborhood, based on 2-opt [160] and customer exchanges, where any move that would
remove a common edge is forbidden.

In [48], the same ideas are exploited for a vehicle routing application in a waste man-
agement company. Starting from a central operating base, each vehicle visits a number of
sectors that contains waste containers. When the vehicle is full, it goes to a dumping site
to unload, before visiting the next sector. A route for an operations day is thus made of a
number of route segments between two dumping sites (the dumping sites at the start and
end of the day correspond to the operating base). A GA, coupled with a local search that
moves sectors from one vehicle to another, is proposed to solve this problem. A crossover
operator is developed to generate offspring solutions that are not too far from the parents.
The features that are preserved in the parents are (1) the percentage of common arcs, (2)
the percentage of common assignments of sectors to vehicles, (3) the percentage of common
assignment of arcs to vehicles and (4) the percentage of common pairs of sectors assigned to
a single route segment. First, each vehicle route in parent 1 is transferred to the offspring
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with probability 0.5. Then, the route segments in parent 2 are inserted, whenever possible,
in a route segment associated with the same vehicle in the offspring.

3.8 Cellular Approach

Typical GAs allow a solution to recombine with any other solution in the population. In
cellular GAs, the population is structured according to some underlying topology (e.g.,
grid, mesh) and a solution can only interact through crossover with its immediate neighbors,
according to the topology. As these neighborhoods overlap, good solution features can slowly
diffuse in the whole population. Smaller populations can thus be used to solve problems
with cellular GAs, as they are less prone to premature convergence.

In the work of Alba and Dorronsoro [1], the capacitated VRP with a maximum time- or
distance-constraint is solved with a cellular GA. A 2D toroidal grid defines the connection
topology. The neighborhood of a given solution is thus made of the solution itself, plus
the so-called North (up), South (down), West (left) and East (right) solutions. The ER
crossover operator [191] and reinsertion, exchange and inversion mutation operators (where
a substring of customers is inverted) are used within the GA. Local optimization is also
performed with 2-opt [160] and 2-interchanges [169]. In [2], this cellular GA is applied
on the VRP instances of van Breedam [188], Golden et al. [149] and Taillard [184]. Nine
best solutions on these instances are reported, although eight of them are obtained on van
Breedam’s instances, which are not as widely known as the two other sets.

3.9 Composite and Hierarchical Approaches

The term composite refers here to an approach where different, loosely integrated, meta-
heuristics are exploited to solve a problem. A good example is the GENSAT system which
uses simulated annealing, tabu search and a GA to solve the VRPTW [115]. First, cus-
tomers are clustered with the genetic sectoring heuristic GENSECT (see Section 3.3) and
routes are obtained by sequencing the customers within each cluster with a least-cost in-
sertion heuristic. Then, the solution is improved with either a local search, tabu search,
simulated annealing or a hybrid of tabu search and simulated annealing. In the latter case,
a probabilistic simulated annealing acceptance criterion is embedded within the tabu search.
The neighborhoods of the improvement heuristics are all based on 2-interchanges [169]. A
number of variants are obtained and regrouped into the GENSAT system by generating
the initial solution either with GENSECT or Solomon’s I1 heuristic [181] and by applying
the various improvement procedures. At the time, GENSAT produced 40 new best solu-
tions over 60 test instances, namely the 56 Solomon’s benchmark instances [181] plus four
instances in [178]. It also matched the best know solution on 11 instances. To be fair,
GENSAT can hardly be seen as a single algorithm, but rather a collection of algorithms
that are applied on a given instance, with the best solution returned at the end. In fact,
the results showed that the best solutions were produced with different variants.

A parallel algorithmic scheme is proposed by LeBouthillier and Crainic in [60], where
different tabu searches and GAs, explore the search space concurrently. The interaction
between these various metaheuristics is realized through a central warehouse, basically an
adaptive memory [175], made of elite solutions. When a metaheuristic finishes its current
execution and returns its best solution, this solution is included in the warehouse if it is
better than the worst solution. The diversity of solutions in the warehouse is exploited to
provide new starting solutions for the metaheuristics. The proposed GAs in this system are
quite standard and are based on the ER [191] and OX [167] crossovers. Through a parallel
exploration of the search space, the authors have found solutions that are competitive with
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the best approaches for the VRPTW on Solomon’s [181] and Gehring and Homberger’s [32]
benchmark instances. A first refinement of this approach is proposed in [61], where a guid-
ance mechanism is added through the identification of common patterns in over-average,
average or under-average solutions in the warehouse. Frequent patterns associated with
over-average solutions are fixed during a number of iterations to provide intensification.
Conversely, frequent patterns associated with under-average solutions are prohibited to pro-
vide diversification. A second refinement in [59] dynamically determines when to apply the
pattern-based intensification and diversification phases, based on the entropy of the solu-
tion warehouse. This entropy or uncertainty is higher when the number of different solution
elements, like arcs, is larger, thus triggering intensification. Conversely, when the number
of different solution elements is smaller, diversification is triggered.

In [49], a single vehicle PDPTW is addressed with a dynamic programming algorithm
and a GA. If the dynamic programming algorithm cannot find an optimal solution within
the allocated time, the partial solution is used to seed the initial population of the GA.
This approach greatly speeds up the solution process, thus allowing applications in dynamic
settings (although no such application is studied). It also allows the GA to find much better
solutions when compared with a randomly generated initial population.

In [79], a hierarchical GA is used to solve a variant of the VRP where the objective
is to minimize the length of the longest route based on a Manhattan distance metric. At
the lower level, solutions evolve within subpopulations called niches. At the upper level, an
evolutionary mechanism is applied to the niches themselves. At each upper level iteration,
a number of new niches are created by merging a bad niche with a good one (where the
quality of a niche is defined by its best solution). Then, the best niches obtained replace the
worst ones in the original population of niches. At the lower level, solutions evolve within
each niche through the application of crossover, mutation and local optimization operators.
The crossover operator removes a segment of route from the first parent, remembers the
immediate predecessor of the first node of the segment, finds the predecessor node in the
routes of the second parent and inserts the segment just after it. Then, duplicates are
removed. This is repeated as long as a feasible offspring is not obtained. The mutation
operator removes a route segment and inserts it into another route. Local optimization is
performed by iterating over a number of classical neighborhood structures, while always
maintaining feasibility. As observed in this work, the best solutions in different niches are
often the same. Accordingly, an elitist population replacement strategy, where the best
solution is transferred to the next population, is applied to only one of these niches. This
best solution is thus likely to disappear from the other niches. A newspaper distribution
application illustrates how this two-level GA behaves.

3.10 Multi-Objective Approach

As mentioned before, vehicle routing problems often involve conflicting objectives, like min-
imizing the number of vehicles versus minimizing the total distance. This issue is often
addressed though a weighted linear sum that aggregates the objectives or through a hier-
archical approach, where the first objective is optimized followed by the second objective,
while taking care not to degrade the value of the first objective. In this section, we review
Multi-Objective Genetic Algorithms (MOGAs) that address vehicle routing problems using
a true multi-objective approach. These algorithms are often inspired from the non domi-
nated sorting GA reported in [137, 182]. This GA is characterized by a selection procedure
based on Pareto ranks. Basically, non dominated solutions in the current population are
ranked first and get the same evaluation (which can be the rank itself). After removing these
solutions, the non dominated solutions in the reduced population are ranked second and get
a lower evaluation, etc. Parent selection is then biased toward solutions with smaller Pareto
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ranks, usually via a tournament selection procedure. To obtain a diversity of solutions along
the Pareto frontier, the value of each solution is also divided by a quantity proportional to
the number of solutions that are close to it (this is called sharing [148]). Hence, if many
solutions are in the same region along the Pareto frontier, these solutions get a relatively
low evaluation and are less likely to be selected as parents. Their number will thus tend
to diminish. Finally, while the GA is executed, an archive that contains all non dominated
solutions found during the search is maintained. This archive can also be used by the genetic
operators to intensify the search around these solutions.

The authors in [75] address the VRPTW as a true bi-ojective problem, where the two
objectives are the number of vehicles and total distance. They used a MOGA with Pareto-
ranking to this end. The crossover operator, called BCRC for Best Cost Route Crossover,
works as follows. Routes 1 and 2 are first selected in parents 1 and 2, respectively. Then,
customers selected in route 1 are removed from parent 2 and customers selected in route 2
are removed from parent 1. The removed customers are finally reinserted in each parent, in
random order, with a least-cost insertion heuristic. Due to the time windows, a constrained
inversion mutation operator is designed, where the length of the inverted segment is limited
to three consecutive customers. The VRPTW is also addressed by Tan et al. [105, 107] with
a similar approach, except that the crossover operator is RBX [82]. Also, three different
route-based mutation operators and local search heuristics are proposed to further improve
the solutions. The same authors have adapted their bi-objective GA to a more complex
real-world problem [106, 108]. Here, a company must visit customers with time windows
using different combinations of trucks and trailers. A truck-trailer pair moves between a
port, customer warehouses, trailer exchange points (where different types of trailers are
available) and container depots (where empty containers are available). Each job is made
of a number of tasks, and each task is made of an origin and destination point. The RBX
crossover operator in [107] is applied, as well as a route merge mutation. A local search
heuristic that tries to merge small routes into larger routes is also used to further improve
the solutions. In all cases, infeasible tasks are outsourced to other companies.

In [51, 52], a bi-objective VRP is also addressed, but with the objectives of minimizing
the total distance and balancing the route lengths (more precisely, minimizing the difference
between the longest and shortest routes). To obtain solutions that are dispersed along
the Pareto frontier, a diversification mechanism based on elitism is proposed. As it is
usually the case, an archive contains all non dominated solutions found during the search.
Some solutions in this archive are included into the population at each iteration to provide
a form of intensification. Diversification is obtained by maintaining additional archives
of non dominated solutions where one of the objective is inverted (i.e., one objective is
maximized rather than minimized). This approach is used in a context where different
subpopulations evolve in parallel and are connected through a toroidal grid topology. Each
subpopulation maintains the standard archive plus an additional archive where one of the
original objective is inverted. When the best solutions migrate from one subpopulation to
another to refresh the genetic pool, each subpopulation also sends its standard archive to
all neighboring subpopulations. However, the additional archive is sent only to neighbors
with the same inverted objective. The non dominated sorting GA [182] applied within
each subpopulation exploits the RBX and SBX crossover operators [82]. This MOGA is
hybridized with a tabu search, which is applied only at the end. The tabu search evaluates
each solution in the neighborhood of the current solution based on its dominance relation
with the current solution. Overall, the additional archives are shown to improve diversity
along the approximate Pareto frontier generated by this GA. A related approach for a bi-
objective VRPTW based on the number of vehicles and total distance, but without parallel
subpopulations and diversification archives, is reported in [90].

A multi-objective pick-up and delivery problem with time windows, motivated by a
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courier service application, is addressed in [62]. Here, transportation requests are received
over the day and must be assigned to vehicles in real-time. Multi-criteria utility functions,
aimed at evaluating the quality of a vehicle for visiting a transportation request, are evolved
with a GA to approximate the (unknown) utility function used by a human dispatcher to
take decisions. Basically, the GA evolves the weights of a weighted linear utility function,
using real-valued strings. In a follow-up work [10], Genetic Programming (GP) [156] is used
for the same purpose. GP is an evolutionary algorithm closely related to GAs, but where
tree structures, rather than linear structures, are evolved. These trees encode computer
programs that are made of a predefined set of functions and terminals. In the case of vehicle
dispatching, the terminal set contains attributes like the detour or the delay introduced in the
current vehicle route by a new request, while the functions are basic mathematical operators.
This is an interesting application of GP because vehicle utility functions (programs) that
are much more complex than weighted linear functions can be generated.

3.11 Parameter Optimization

Genetic algorithms have often been used for parameter optimization. As parameters are
often real-valued, both bit strings and real-valued strings have been proposed for this pur-
pose [161]. With a classical bit string representation, a lower and an upper bound on the
parameter values are defined, and the bit string is then interpreted as an integer which
is mapped within the parameter interval. The GA thus searches in a discrete space that
corresponds to a sampling of the real interval. The sampling is more refined when the bit
string is longer, but the search space then increases accordingly.

In [9], the parameter values of Solomon’s I1 heuristic [181] are optimized with a GA
on Solomon’s VRPTW benchmark instances. Each parameter is encoded as a bit string
and these strings are appended to encode groupings of parameter values. A GA based
on classical one-point crossover and mutation operators is used to evolve these parameter
groupings. The same approach is proposed in [83, 84] to optimize the parameter values of
a parallel insertion heuristic for the VRPTW [172].

In [124], the author analyzes how the various parameters of a GA impact its performance
when solving the VRP. This work thus addresses parameter optimization for the GA itself.

4 Evolution strategies

The Evolutions strategies (ES) paradigm was developed in the 60’s and 70’s at the Technical
University of Berlin by Rechenberg and Schwefel (for an introductory text on the subject,
see [132]). Although mostly applied to real-valued function optimization, discrete variants
have emerged for solving combinatorial optimization problems. The algorithmic framework
of ES is similar to genetic algorithms as they evolve a population of solutions through
mutation and recombination (crossover) operators. One distinctive feature is the concurrent
evolution, with the same genetic operators, of the so-called strategy parameters which are
usually properties of the mutation operator, like the mutation step size to be applied to
each element of the solution. In ES, the recombination operator produces a single offspring
and either involve two parents or is extended to a variable number of parents, known as a
family of parents. Also, the population replacement mechanism is completely deterministic.
That is, for a population of size µ, either the µ best solutions are selected out of λ offspring
solutions (µ < λ), which is known as a (µ, λ)-selection, or out of the union of the parent and
offspring solutions, which is a (µ + λ)-selection. The latter scheme is elitist and guarantees
a monotonically improving performance. A special case is the (1 + 1)-ES where there is
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no recombination operator, only a mutation operator. The ES search framework can be
summarized as follows (note the similarities and differences with the pseudo-code of GAs):

1. Create an initial population of µ individuals, where each individual contains a solution
and its associated strategy parameters.

2. Evaluate each solution.

3. Repeat for a fixed number of iterations:

3.1 Repeat until λ offspring are created:

3.1.1 Randomly select ρ parents in the population (with replacement).

3.1.2 Apply recombination to the parent solutions to create a single offspring so-
lution.

3.1.3 Apply recombination to the parent strategy parameters to create the off-
spring strategy parameters.

3.1.4 Append the offspring solution and strategy parameters to create a complete
individual.

3.1.5 Apply mutation (with a certain probability) to the offspring solution.

3.1.6 Apply mutation (with a certain probability) to the offspring strategy para-
meters.

3.2 Evaluate each offspring solution.

3.3 If (µ, λ)-ES then select the µ best individuals to create the new population.

3.3 If (µ+λ)-ES then select the µ best individuals among the union of the µ parents
and λ offspring to create the new population.

4. Return the best solution found.

The first application of ES to a vehicle routing problem is found in the work of Homberger
and Gehring [45], where the VRPTW is addressed with a (µ, λ)-ES. The mutation operator
is a local search heuristic and the mutation step size then corresponds to the number of
moves or modifications to the current solution. There is an additional strategy parameter
associated with the mutation operator which is the objective to be favored (either mini-
mization of the total distance or minimization of the number of vehicles). Two evolution
strategies, called ES1 and ES2 are proposed. In the simple variant ES1, there is no re-
combination, only a mutation operator that modifies the solution based on the following: a
random choice between reinsertion of a customer, exchange of two customers or 2-opt* [173].
This is followed by a specialized Or-opt [168] aimed at reducing the number of routes (when
this objective is favored) by repeatedly inserting customers from the smallest route into
alternate routes. It is worth noting that the two mutation strategy parameters are directly
inherited by the offspring without any modification. This is to be opposed to the second
variant ES2, where a uniform crossover operator [183] is applied to the mutation step size
of the parents to generate new values.

The authors note that there is a bias toward the distance, when one tries to simulta-
neously minimize the distance and the number of vehicles. To put more emphasis on the
number of vehicles, the authors propose a new approach to select the solutions that will be
part of the new population. First, the λ offspring solutions are evaluated using the follow-
ing hierarchical ordering of four criteria: number of vehicles, number of customers in the
smallest route, minimal time delay introduced in the solution when all customers in the
smallest route are inserted into other routes, total distance. The second and third criteria
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measure how easily a route can be eliminated from the solution, considering the time win-
dow constraints. Based on this ordering, the best κ (κ < µ) offspring solutions are put in
the new population. Then, the λ offspring are sorted again based on the original objective
which is to minimize the number of vehicles first and total distance second. The best µ− κ
offspring are then selected to complete the new population. Depending on the ratio κ/µ,
the minimization of the number of vehicles is more or less emphasized with regard to the
distance.

In a follow-up paper [46], the authors describe a two-stage approach where ES1 is first
applied with the objective of minimizing the number of vehicles, followed by a tabu search
heuristic to minimize the total distance. This work is an extension of a two-phase algorithm
from the same authors, where a (1, λ)-ES was used [32]. A parallel implementation of this
algorithm is reported in [33, 34]. Using a coarse-grained architecture made of a number
of workstations, the two-stage algorithm is executed in parallel on each machine, but with
different starting points and parameter configurations. These independent search threads
then communicate periodically by exchanging their best solution (to allow jumps in the
search space).

In [66], an algorithm called AGES combines guided local search (GLS) [189, 190] and ES
in an iterative two-stage procedure to address both the VRP and VRPTW. GLS introduces
modifications into the objective function through penalties when the search gets trapped in
a local optimum. Here, the penalty counter of one arc in the solution is incremented by one,
each time a local optimum is reached. The arc is selected on the basis of its length (a long
arc is more likely to be penalized) and current penalty counter (an arc with a high penalty
counter is less likely to be penalized again). In the first stage, GLS controls the objective
function of a composite local search, based on reinsertion of a customer, exchange of two
customers and 2-opt* [173]. The neighborhoods considered are restricted to routes which
are close to the currently penalized arc. This is called a penalty variable neighborhood. If
no improvement is found for a number of iterations, the first stage is stopped and the second
stage starts. In the second stage, GLS controls the objective function of a (1+1)-ES. In this
ES, mutation is performed on a parent solution, where the number and type of modifications
considered each time are randomly chosen. When the offspring is better than the parent, it
replaces the parent. The ruin and recreate principle is at the core of the proposed mutation.
That is, a number of customers are removed from the current solution and are reinserted at
least cost. Once again, a penalty variable neighborhood is used to restrict the search.

A refinement of this algorithm for the VRP in reported in [67]. In this implementa-
tion, the composite local search is based on some additional intra- and inter-route moves,
like Or-opt [168]. The authors also explore different parameter configurations and neigh-
borhood combinations in the composite local search, and identifies what they call a best
AGES and a fast AGES. Another variant of this algorithm is proposed in [68] where the
objective function is not modified with GLS. Since there are no penalized arcs, the penalty
variable neighborhood cannot be used to restrict the search. Instead, an adaptive variable
neighborhood search [162] is proposed based on a partition of the service area into smaller
rectangular areas. The original problem is thus divided into smaller subproblems, based on
the geographic proximity among customers. The rectangular areas are then processed in a
given order. Afterward, they are gradually merged back together until the original service
area is restored. The idea is to work on smaller problems when a lot of (time-consuming)
improvements are still possible, and to gradually enlarge the neighborhood as the number
of potential improving moves diminishes.
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5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based metaheuristic where each solu-
tion, called a particle, is associated with an objective value and a velocity [154]. The latter
defines a direction in the search space, as well as an amplitude, for modifying the solution
and is determined through interaction with other solutions. The velocity basically replaces
operators like crossover and mutation in classical GAs. The velocity of particle i at itera-
tion t is obtained through a randomized weighted sum of three components: the velocity
of particle i at iteration t − 1, the direction associated with the best solution achieved by
particle i and the direction associated with the best solution achieved over all particles (or
over particles that are sufficiently close to particle i, depending on the variant). Although
PSO has mostly been used for solving continuous optimization problems, discrete variants
also exist.

In [25], a binary version of PSO is used, where a solution or particle is a binary vector.
The velocity vector is made of values between 0 and 1 and the corresponding solution
is obtained by interpreting each velocity value as the probability that the corresponding
element in the solution is 0 (and conversely, as 1 minus the probability that the corresponding
element is 1). This approach is exploited to solve the VRP. Basically, a particle is a vector
of size n × m, where n is the number of customers and m the number of vehicles. That
is, the vector of customers is duplicated m times, one time for each vehicle. An entry of 1
means that the customer is served by the corresponding vehicle. The PSO thus solves the
assignment subproblem. As the solution obtained is not necessarily valid (i.e., exactly one
position associated with a customer should be equal to 1), a repair operator is used. If the
solution is valid but infeasible, the solution is discarded and the velocity is recalculated until
a feasible solution is obtained. A simulated annealing heuristic is then used to sequence the
customers in each route.

In [129], an alternative particle representation with only n + m − 1 elements is used for
solving the VRPTW. Each entry corresponds to the position of one of the n customers or one
of the m−1 copies of the depot in the solution vector. The PSO thus solves the assignment
and sequencing subproblems concurrently. The objective value is the total distance plus
penalties for violations of the capacity and time window constraints. The velocity is a
vector of values between -n + m− 2 and n + m− 2 which is added to the solution vector to
update it. Rounding is then applied to obtain integer positions.

6 Classification by Problem Types

The previous review was divided along methodological lines. The aim of this section is to
group all references according to vehicle routing problem types addressed with EAs. These
types have already been identified and briefly described in Section 2: the capacitated vehi-
cle routing problem (VRP), VRP with time windows (VRPTW), VRP with time deadlines
(VRPTD), Periodic VRP (PVRP), Time-dependent VRP (TVRP), VRP with Heteroge-
neous Fleet (VRPHF), Multi-Depot VRP (MDVRP), VRP with backhauls (VRPB) and
Pickup and Delivery Problem (PDP). The catch-all type Others is used to refer to real-world
vehicle routing applications that do not fall into any of these categories due to problem-
specific features. The row headings in Table 1 correspond to the various problem types,
while the column headings correspond to EAs.

Clearly, a high concentration of papers report applications of GAs. But, the few imple-
mentations of ES have been very successful (see Section 7). EAs have mostly been applied
to the VRPTW, followed by the VRP, which are also the most studied problems in the ve-
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Problem \ EA GA ES PSO GP
VRP [1][2][7][8][11][12][29][41] [67][68] [25]

[42][43][51][52][56][57][58]
[64][70][79][80][88][91][94]
[100][111][112][124]

VRPTW [3][4][5][6][9][13][14][15] [32][33][34] [129]
[16][17][19][20][21][26][44] [45][46][66]
[47][55][60][61] [63][65][69]
[71][74][75][76][82][83][84]
[86][90][101][102][103][104]
[105][107][110][111][112]
[113][114][115][116][117]
[118][120][123][127][128]

VRPTD [119][122]
PVRP [27][125]
TVRP [54]
VRPHF [72][73][109]
MDVRP [28][30][92][98][99][120]

[121]
VRPB [31][85][109]
PDP [49][50][53][62][77][78][81] [10]

[95][96][97]
Others [48][93][106][108]

Table 1: EAs for different problem types

hicle routing literature in general. Overall, the number of papers devoted to the VRPTW is
substantially larger than those devoted to the VRP. This can be explained as follows. When
the first applications of EAs for vehicle routing appeared in the literature, the VRPTW
was much less studied than the classical VRP. Thus, there were more opportunities for
researchers to improve the best results reported in the literature on VRPTW benchmark
instances. Accordingly, the first EAs were often developed for the VRPTW and only later
adapted to the VRP, even if the VRP can be considered as an easier problem, due to the
absence of time constraints.

7 Computational Performance

The aim of this section is to evaluate how evolutionary algorithms compare with other
metaheuristic approaches for solving the VRP, VRPTW and PDPTW. These three problem
classes have been chosen because of their importance in the vehicle routing literature and
the availability of benchmark instances that allow a fair comparison between competing
methods.

7.1 VRPTW

This section focuses on the most effective problem-solving approaches for solving the VRPTW
on Solomon’s [181] and Homberger and Gehring’s [32] benchmark instances. It just happens
that EAs, either alone or combined with other metaheuristics, are currently among the best
approaches for solving the VRPTW. Another promising trend is represented by the large
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neighborhood search [180], based on the ruin-and-recreate principle [179], where customer
removal heuristics are applied to destroy a substantial part of the current solution before
reconstructing it. All work reported here minimizes the number of vehicles first, followed
by the total distance.

7.1.1 Solomon’s instances

Solomon’s 100-customer instances [181] are divided into six problem classes depending on
the geographical distribution of the customers and the width of the time horizon. The latter
is set by a time window at the depot that defines an earliest start time and latest end time
for each vehicle route. The customers are randomly distributed in instances of type R, while
they are clustered in instances of type C. Instances of type RC are a mix of types R and
C. With regard to the time horizon, instances of type 1 have a short horizon and each
vehicle can only service a small number of customers. Conversely, instances of type 2 have
a long horizon and each vehicle can service a large number of customers. Overall, these
characteristics lead to classes R1, R2, C1, C2, RC1 and RC2, with 8 to 12 instances in
each class. All instances are Euclidean and the time units correspond to the distance units
(i.e., the travel time between two customers is the same as the Euclidean distance).

Table 2 contains the best results reported in the literature, at the time of writing, on
Solomon’s benchmark instances. The two rows associated with each entry correspond to
the number of vehicles and total distance, respectively. At the end, the cumulative number
of vehicles (CNV) and cumulative total distance (CTD) over the 56 instances are shown for
each method. The computer type (CPU) and the average time in seconds T(s) used to solve
each instance are also indicated. In the case of CPU, O stands for Opteron, P stands for
Pentium, X for Xeon, SU for Sun Ultra, M for MHz and G for GHz. Note also that u × v
in row T(s) means that the algorithm was run for v seconds on a parallel architecture with
u processors.

The following algorithms are reported in Table 2:

• B is the reactive variable neighborhood search (VNS) of Bräysy [133]. In this al-
gorithm, the number of vehicles is first minimized with an ejection chain-based ap-
proach [144]. Then, the distance is minimized with VNS.

• BBB is the GA of Berger et al. [14] where two populations are evolved (see Section 3.5).
In the first population the distance is minimized based on a fixed number of routes;
in the second population, time constraint violations are minimized on solutions with
one fewer route.

• BVH is the two-stage hybrid local search of Bent and van Hentenryck [131] where
simulated annealing is used in the first stage to minimize the number of vehicles and
a large neighborhood search is used in the second stage to minimize the distance.

• HG is the algorithm of Homberger and Gehring [46] where ES is used in the first stage
to minimize the number of routes and a tabu search is used in the second stage to
minimize the distance (see Section 4).

• IAL is the problem-solving approach of Ibaraki et al. [151], where local search heuristics
are embedded within different iterated and multi-start schemes.

• LC is the parallel search framework of Le Bouthillier and Crainic [59] where GA and
tabu search threads interact through a common solution warehouse (see Section 3.9).
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• PDR is the recent large neighborhood search of Prescott-Gagnon, Desaulniers and
Rousseau [174] which uses a heuristic branch-and-price method to explore the neigh-
borhoods.

• PR is the adaptive large neighborhood search of Pisinger and Ropke [170] which
adaptively chooses among different removal and insertion heuristics to intensify and
diversify the search.

On these small instances, the best methods all reached the same number of vehicles,
both globally and for each instance class. They only differ in total distance. The results are
the same, for all practical purposes, on classes C1 and C2 which are the easiest instances.
The recent large neighborhood search PDR of Prescott-Gagnon, Desaulniers and Rousseau
is the best on two of the four remaining classes, namely R1 and RC1. The parallel algorithm
of LeBouthillier and Crainic LC and the ES of Homberger and Gehring HG are the best
on R2 and RC2, respectively. Overall, the best cumulative total distance is obtained by
HG (note that no CPU time can be reported in this case, because the results have been
obtained over the course of many experiments involving many different parameter settings).
Also noteworthy is the adaptive large neighborhood search PR of Pisinger and Ropke, which
is very fast and still reaches a CTD which is at only .2% of the one obtained by HG.

7.1.2 Gehring and Homberger’s instances

Gehring and Homberger [32] have designed larger VRPTW instances with 200, 400, 600
and 1 000 customers. For each size, six different classes, with 10 instances in each class,
have been generated using the procedure of Solomon described in [181]. Thus, there are 60
instances for each problem size and a total of 300 instances. In Table 3, only the CNV and
CTD values are reported for each problem size. They are shown in the first two rows of
each entry. The computer type and average computation time in minutes are reported in
the next two rows. In the case of the computer type, A stands for AMD Athlon.

At the time of writing, the best methods for these larger instances are (apart from BVH,
LC, PDR and PR which have already been introduced in the previous section):

• BHD is the multi-start local search of Bräysy, Hasle and Duallert [134]. This algorithm
is divided into two stages. The first stage minimizes the number of vehicles using
an ejection chain-based mechanism, while the second stage minimizes the distance
using CROSS-exchanges. At the end, a deterministic threshold accepting variant of
simulated annealing [139] is applied to further reduce the distance.

• GH99 and GH01 stand for the parallel algorithms of Gehring and Homberger where
a (1, λ)- and (µ, λ)-ES, respectively, are applied in the first phase to minimize the
number of routes [32, 33]. A tabu search is used in the second phase to minimize the
distance (see Section 4).

• MB is the AGES algorithm of Mester and Bräysy [66] that combines ES, GLS and
local search (see Section 4).

On these larger instances, the large neighborhood search-based PDR of Prescott-Gagnon,
Desaulniers and Rousseau stand out with the best reported results for each problem size.
The adaptive large neighborhood search of Pisinger and Ropke is still noteworthy with ex-
cellent results in very fast computation times. Admittedly, the EA-based methods trail a
little bit on these instances, but the ES-based algorithm MB of Mester and Bräysy and
the parallel algorithm LC of LeBouthilllier and Crainic still produce competitive results in
reasonable computation times.
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B BBB BVH HG IAL LC PDR PR
R1 11.92 11.92 11.92 11.92 11.92 11.92 11.92 11.92

1222.12 1221.10 1211.10 1212.73 1217.40 1213.06 1210.34 1212.39
R2 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73

975.12 975.43 954.27 955.03 959.11 952.73 955.74 957.72
C1 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

828.38 828.48 828.38 828.38 828.38 828.38 828.38 828.38

C2 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

589.86 589.93 589.86 589.86 589.86 589.86 589.86 589.86

RC1 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50
1389.58 1389.89 1384.17 1386.44 1391.03 1385.14 1384.16 1385.78

RC2 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
1128.38 1159.37 1124.46 1108.52 1122.79 1129.16 1119.44 1123.49

CNV 405 405 405 405 405 405 405 405
CTD 57710 57952 57273 57192 57444 57325 57240 57332
CPU P-200M P-400M SU 10 P-400M P3 1G X 3.6G O 2.3G P4 3G
T(s) 4950 1800 7 200 n/a 15 000 5×720 1800 146

Table 2: Solomon’s instances
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BHD BVH GH99 GH01 LC MB PDR PR
200

CNV 695 697 694 696 694 694 694 694
CTD 172 406 171 715 176 180 179 328 169 903 168 573 168 556 169 042
CPU A-700M SU 10 P-200M P-400M X 3.6G P4 2G O 2.3G P4 3G
T(m) 2.4 n/a 4×10 4×2.1 5×10 8 53 7.7

400
CNV 1391 1393 1390 1392 1388 1389 1385 1385
CTD 399 132 410 112 412 270 428 489 396 159 390 386 389 011 393 210
CPU A-700M SU 10 P-200M P-400M X 3.6G P4 2G O 2.3G P4 3G
T(m) 7.9 n/a 4×20 4×7.1 5×20 17 89 15.8

600
CNV 2084 2091 2082 2079 2084 2082 2071 2071
CTD 820 372 858 040 867 010 890 121 809 882 796 172 800 797 807 470
CPU A-700M SU 10 P-200M P-400M X 3.6G P4 2G O 2.3G P4 3G
T(m) 16.2 n/a 4×30 4×12.9 5×30 40 105 18.3

800
CNV 2776 2778 2770 2760 2759 2765 2745 2758
CTD 1 384 306 1 469 790 1 515 120 1 535 849 1 444 525 1 361 586 1 391 344 1 358 291
CPU A-700M SU 10 P-200M P-400M X 3.6G P4 2G O 2.3G P4 3G
T(m) 26.2 n/a 4×40 4×23.2 5×40 145 129 22.7

1000
CNV 3465 3468 3461 3446 3439 3446 3432 3438
CTD 2 133 376 2 266 959 2 276 390 2 290 367 2 133 673 2 078 110 2 096 823 2 110 925
CPU A-700M SU 10 P-200M P-400M X 3.6G P4 2G O 2.3G P4 3G
T(m) 39.6 n/a 4×50 4×30.1 5×50 600 162 26.6

Table 3: Gehring and Homberger’s instances
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7.2 VRP

The previous section has shown that EAs are at the core of very competitive approaches for
the VRPTW. This is also true for the capacitated VRP. There are many VRP benchmark
instances in the literature, including those of Christofides, Mingozzi and Toth (CMT) [135],
Golden et al. (GAL) [149], van Breedam [188], Augerat et al. [130] and Li, Golden and
Wasil [158]. Some real-world VRP instances are also found in [142, 184]. In this section,
results are reported for methods that have been applied to both CMT and GAL, the two
most widely used data sets in the literature. There are 14 benchmark instances in CMT,
ranging from 50 to 199 customers, and 20 larger instances with up to 483 customers in GAL.

The best methods for minimizing the total distance on these benchmark instances are:

• DK is the solution attribute-based tabu search of Derigs and Kaiser [138]. Results are
shown for the variant DKP where the initial routes are constructed in parallel with
the savings heuristic of Clarke and Wright [136] and the variant DKS where the routes
are constructed one by one with the sequential savings heuristic.

• LGW is the record-to-record travel heuristic of Li, Golden and Wasil [158]. This
heuristic is a deterministic variant of simulated annealing, where a new solution is
accepted if its value is within an acceptable margin of the best known solution value
(the record) [140].

• MB is the AGES algorithm of Mester and Bräysy [67] (see Section 4). Both the best
results MB Best and those obtained with a fast version of this algorithm MB Fast are
shown.

• N is the GA of Nagata [70], based on the EAX crossover operator (see Section 3.1).

• P is the GA of Prins [88], where a giant tour is split into feasible routes (see Sec-
tion 3.4).

• PR is the adaptive large neighborhood search of Pisinger and Ropke [170].

• T is the tabu search with adaptive memory of Tarantilis [186].

Table 4 reports the best results obtained with these methods on the CMT and GAL
instances. The row % refers to the gap in percentage with the best known solutions at the
time of writing (this way of reporting results is the norm in the VRP literature) As in the
previous tables, row T(m) refers to the average computation time in minutes for solving an
instance and row CPU is the type of processor used. Note also that C stands for Celeron.

The GA of Nagata reaches the optimum on the CMT instances, but was applied on only
7 instances out of 14. Also, its performances degrades on the largest GAL instances. The
ES-based algorithm MB of Mester and Bräysy looks particularly attractive here. The Best
variant produces the best solution values on both data sets, if we consider only methods that
have been tested on all benchmark instances. Furthermore, the Fast variant still produces
good solutions, but in a fraction of the computation time required by the other methods
(except LGW which is also very fast).

7.3 PDPTW

The PDPTW has been included in this study, because this is a problem where EAs have
not yet convincingly demonstrated their effectiveness. In fact, not so much work is reported
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DKP DKS LGW MB Best MB Fast N P PR T
CMT

% 0.28 0.21 0.41a 0.03 0.08 0.00a 0.24 0.11 0.18
T(m) 4.54 5.84 0.32 7.72 0.27 2.37 5.19 17.50 6.60

GAL
% 0.79 0.87 1.05 0.11 1.01 2.83b 1.03 0.60 0.71
T(m) 113.34 112.14 0.97 72.94 0.63 41.37 66.90 107.67 45.48

CPU C 2.4G C 2.4G A 1G P4 2G P4 2G X 3.2G P3 1G P4 3G P2 400M

Table 4: CMT and GAL instances

aAverage on 7 out of the 14 instances
bAverage on 12 out of the 20 instances
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on the PDPTW in general. Benchmark instances for the PDPTW are typically derived
from VRPTW instances by pairing two customers (to get a pickup and a delivery node for
each customer request). For example, Nanry and Barnes [166] and Lau and Liang [157]
have generated PDPTW instances from Solomon’s instances [181] in this way. An extended
data set with 100, 200, 400, 600, 800 and 1 000 nodes is also reported by Li and Lim [159].
Recently, a new set of instances with randomly generated pickup and delivery nodes has
been produced by Ropke, Cordeau and Laporte [176].

The data set of Li and Lim has emerged as a standard in the last few years. Unfor-
tunately, a single paper reports results on a subset of these instances, thus precluding a
true assessment of EAs with the best known methods. In a number of cases, home-made
instances have been used to experiment with EAs. In other cases, dynamic variants where
new customer requests occur over time have been addressed. Furthermore, some authors
minimize the total distance only, while others minimize the number of vehicles first (as
opposed to the VRPTW, where most researchers have adopted the same objective, there
is no consensus yet). The only application of a GA on benchmark instances comes from
the work of Pankratz in [77] (see Section 3.3), where results are reported on the nine 100-
node instances of Nanry and Barnes and the 56 100-node instances of Li and Lim, with the
objective of minimizing the total distance.

On the instances of Li and Lim, the CNV and CTD of the GA of Pankratz are 410 and
58 191, respectively. On the same instances, Ropke and Pisinger [177] report 402 and 58 060,
respectively, with an adaptive large neighborhood search with fixed parameter settings, and
with the objective of minimizing the number of vehicles first. It means that they improved
upon the CTD of the GA, even if it was not their primary objective. Furthermore, the best
results reported by Ropke and Pisinger in [177] over a number of experiments with different
parameter settings, is much lower at 56 060.

8 Conclusion

This survey has shown that EAs have been applied in many different ways to address difficult
vehicle routing problems. Among EAs, genetic algorithms have been the most widely used,
although the few implementations of evolution strategies reported in the literature proved
to be very successful. The VRP and VRPTW have been the topic of most of these studies,
but recent developments are now observed for less known vehicle routing variants, like the
PDPTW. Also, a few real world applications have been reported lately.

Although this survey has focused on pure vehicle routing problems, EAs are now used
to address these problems in relation with other logistics problems. For example, the work
in [89] describes a GA for a location-routing problem, where depots for the vehicles are
located in a transportation network in addition to the optimization of their routes. EAs
are thus very well and alive and used to address an ever widening range of vehicle routing
applications.
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[15] J. Berger, M. Salois and R. Bégin. A hybrid genetic algorithm for the vehicle routing
problem with time windows. In Lecture Notes in Computer Science, R.E. Mercer and
E. Neufeld, eds., Springer, London, UK, 1418:114–127, 1998.

[16] J. Berger, M. Sassi and M. Salois. A hybrid genetic algorithm for the vehicle routing
problem with time windows and itinerary constraints. In Proceedings of the Genetic
and Evolutionary Computation Conference, W. Banhaf et al., eds., Morgan Kaufmann,
San Francisco, CA, 44–51, 1999.

[17] J.L. Blanton and R.L. Wainwright. Multiple vehicle routing with time and capacity
constraints using genetic algorithms. In Proceedings of the 5th International Confer-
ence on Genetic Algorithms, S. Forrest, ed., Morgan Kaufmann, San Mateo, CA,
451–459, 1993.

[18] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys, 35:268–308, 2003.

[19] H.C Brandao de Oliveira, J.L. Alexandrino and M. Moreira de Souza. Memetic and
genetic algorithms: A comparison among different approaches to solve vehicle routing
problem with time windows. In Proceedings of the Sixth International Conference on
Hybrid Intelligent Systems, IEEE Computer Society Press, Los Alamitos, CA, 55,
2006.
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[23] O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, Part II:
Metaheuristics. Transportation Science, 39:119–139, 2005.

[24] P. Calégari, G. Coray, A. Hertz, D. Kobler and P. Kluonen. A taxonomy of evolu-
tionary algorithms in combinatorial optimization. Journal of Heuristics, 5:145–158,
1999.

[25] A.-L. Chen, G.K. Yang and Z.M. Wu. Hybrid discrete particle swarm optimization
algorithm for capacitated vehicle routing problem. Journal of Zhejiang University
SCIENCE A, 7:607–614, 2006.

[26] A.J. Chin, H.W. Kit and A. Lim. A new GA approach for the vehicle routing problem.
In Proceedings of the 11th IEEE International Conference on Tools with Artificial
Intelligence, IEEE Press, Piscataway, NJ, 307–310, 1999.

[27] L.M.A. Drummond, L.S. Ochi and D.S. Vianna. An asynchronous parallel metaheuris-
tic for the period vehicle routing problem. Future Generation Computer Systems,
17:379–386, 2001.

[28] M. Filipec, D. Skrlec and S. Krajcar. Darwin meets computers: New approach to
multiple depot capacitated vehicle routing problem. In Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics, IEEE Press, Piscataway, NJ,
Vol. 1, 421–426, 1997.

39

Evolutionary Algorithms for Vehicle Routing

CIRRELT-2007-48



[29] M. Filipec, D. Skrlec and S. Krajcar. An efficient implementation of genetic algorithms
for constrained vehicle routing problem. In Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, IEEE Press, Piscataway, NJ, Vol. 3,
2231–2236, 1998.

[30] M. Filipec, D. Skrlec and S. Krajcar. Genetic algorithm approach for multiple depot ca-
pacitated vehicle routing problem solving with heuristic improvements. International
Journal of Modelling & Simulation, 20:320–328, 2000.

[31] K. Ganesh and T.T. Narendran. CLOVES: A cluster-and-search heuristic to solve the
vehicle routing problem with delivery and pick-up. European Journal of Operational
Research, 178:699–717, 2007.

[32] H. Gehring and J. Homberger. A parallel hybrid evolutionary metaheuristic for the
vehicle routing problem with time windows. In Proceedings of EUROGEN99 - Short
Course on Evolutionary Algorithms in Engineering and Computer Science, K. Mietti-
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[40] M. Gendreau, J.-Y. Potvin, O. Bräysy, G. Hasle and A. Løkketangen. Metaheuris-
tics for the vehicle routing problem and extensions: A categorized bibliography.
Forthcoming in The Vehicle Routing Problem: Latest Advances and New Challenges,
B.L. Golden, S. Raghavan and E. Wasil, eds., Springer.

[41] S. Han. A hybrid meta-heuristic algorithm for vehicle scheduling problem: Genetic
algorithm and tabu search. NUCB Journal of Economics and Information Science,
48:343–358, 2004.

[42] S. Han and Y. Tabata, A hybrid genetic algorithm for the vehicle routing problem with
controlling lethal gene. International Journal of Asian Pacific Management Review,
7:287-298, 2002.

40

Evolutionary Algorithms for Vehicle Routing

CIRRELT-2007-48



[43] F.T. Hanshar and B.M Ombuki-Berman, Dynamic vehicle routing using genetic algo-
rithms. Applied Intelligence, 27:89-99, 2007.

[44] W.-K. Ho, J. Chin and A. Lim, A hybrid search algorithm for the vehicle routing
problem with time windows. International Journal on Artificial Intelligence Tools,
10:431-449, 2001.

[45] J. Homberger and H. Gehring. Two evolutionary metaheuristics for the vehicle routing
problem with time windows. INFOR, 37:297–318, 1999.

[46] J. Homberger and H. Gehring. A two-phase hybrid metaheuristics for the vehicle rout-
ing problem with time windows. European Journal of Operational Research, 162:220–
238, 2005.

[47] H.-S. Hwang. An improved model for vehicle routing with time constraint based on a
genetic algorithm. Computers & Industrial Engineering, 42:361–369, 2002.

[48] A. Jaszkiewicz and P. Kominek. Genetic local search with distance preserving re-
combination operator for a vehicle routing problem. European Journal of Operational
Research, 151:352–364, 2003.

[49] W.-R. Jih and J. Yung-Jen Hsu. Dynamic vehicle routing using hybrid genetic al-
gorithms. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation, IEEE Press, Piscataway, NJ, 1:453–458, 1999.

[50] R.M. Jorgensen, J. Larsen and K.B. Bergvinsdottir. Solving the dial-a-ride problem
using genetic algorithms. Journal of the Operational Research Society, 58:1321–1331,
2007.

[51] N. Jozefowiez, F. Semet and E.G. Talbi. Parallel and hybrid models for multi-objective
optimization: Application to the vehicle routing problem. Lecture Notes in Computer
Science, J. Guervós et al., eds., Springer, Berlin, 2439:271–280, 2002.

[52] N. Jozefowiez, F. Semet and E.G. Talbi. Enhancements of NSGA-II and its applica-
tion to the vehicle routing problem with route balancing. Lecture Notes in Computer
Science, E.G. Talbi et al., eds., Springer, Berlin, 3871:131–142, 2006.

[53] S. Jung and A. Haghani. Genetic algorithm for a pickup and delivery problem with
time windows. In Transportation Research Record, 1733:1–7, 2000.

[54] S. Jung and A. Haghani. Genetic algorithm for the time-dependent vehicle routing
problem. In Transportation Research Record, 1771:164–171, 2001.

[55] S. Jung and B.-R. Moon. A hybrid genetic algorithm for the vehicle routing problem
with time windows. In Proceedings of the Genetic and Evolutionary Computation Con-
ference, W.B. Langdon et al., eds., Morgan Kaufmann, San Francisco, CA, 1309–1316,
2002.

[56] S. Krajcar, D. Skrlec, B. Pribicevic and S. Blagajac. GA Approach to Solving Multiple
Vehicle Routing Problem. Lecture Notes in Computer Science, C.A. Pinto-Ferreira and
N.J. Mamede, eds., Springer, Berlin, 990:473–481, 1995.

[57] M. Kubiak. Systematic construction of recombination operators for the vehicle routing
problem. Foundations of Computing and Decision Sciences, 29:205–226, 2004.

[58] M. Kubiak and P. Wesolek. Accelerating local search in a memetic algorithm for the
capacitated vehicle routing problem. Lecture Notes in Computer Science, C. Cotta
and J. van Hemert, eds., Springer, Berlin, 4446:96–107, 2007.

41

Evolutionary Algorithms for Vehicle Routing

CIRRELT-2007-48



[59] A. Le Bouthillier. Recherches coopératives pour la résolution de problèmes
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[133] O. Bräysy. A reactive variable neighborhood search for the vehicle routing problem
with time windows. INFORMS Journal on Computing, 15:347–368, 2003.
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