
SetEx
Trans
Autom
Autom

 Lucien O
 Ahmed
 Mustaph

Februar

CIRREL

xp: A Me
formatio

mata into
mata

Ouedraogo
Khoumsi
ha Nourelf

ry 2008

LT-2008-05

ethod of
on of Tim
o Finite

o

fath

med
State

SetExp: A Method of Transformation of Time Automata
into Finite State Automata

Lucien Ouedraogo1,2,*, Ahmed Khoumsi2, Mustapha Nourelfath1,3

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)
2 Département de génie électrique et de génie informatique, Université Sherbrooke, 2500, boul.

Université, Sherbrooke, Canada J1K 2R1
3 Département de génie mécanique, Université Laval, Pavillon Adrien-Pouliot, Québec, Canada

G1K 7P4
Abstract. The behavior of a discrete event system is described by the sequence of events
it can execute and can be modeled by finite state automata. Real-time discrete event
systems are discrete event systems with timing constraints, and can be modeled by timed
automata. Timed automata are convenient for modeling real-time discrete event systems,
but are not suitable for studying them, as opposed to finite state automata that are
convenient for studying non-real-time discrete event systems. To take into account the
advantages of finite state automata, an approach for studying real-time discrete event
systems is to transform the timed automata modeling them into the equivalent finite state
automata, and then make the study on the finite state automata model. In this paper, we
present a method of transforming timed automata into special finite state automata called
Set-Exp automata. The method, called SetExp, models the passing of time as real events
in two types: Set events that correspond to resets with programming of clocks, and Exp
events that correspond to expiring of clocks. The alphabet of a Set-Exp automaton is
therefore formed of the one of the timed automaton at which are added the new types of
events. SetExp allows thus to obtain a Set-Exp automaton equivalent to the original timed
automaton, such that each state of the Set-Exp automaton is defined by a location in
which the value of each clock belongs to a determined interval of time, and each transition
corresponds to either the occurrence of an event of the timed automaton simultaneously, if
necessary, to the occurrence of Set and Exp events, or only the occurrence of Exp events.
SetExp limits the state space explosion problem that occurs in similar transformation
methods, notably when the magnitudes of the constants used to express the timing
constraints are great. Moreover, SetExp is suitable, for example, in supervisory control
and conformance testing of real-time discrete event systems.

Keywords. Modeling, real-time, discrete event systems, timed automata, set-exp-
automata, transformation.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Lucien.Ouedraogo@USherbrooke.ca

Dépôt légal – Bibliothèque nationale du Québec,
 Bibliothèque nationale du Canada, 2008

© Copyright Ouedraogo, Khoumsi, Nourelfath and CIRRELT, 2008

1 Introduction

A discrete event system (DES) is described by the sequences of events it can execute, where the occurrence of each
event is instantaneous, spontaneous and asynchronous, for example as with communication protocols (events: send
message, receive message...). A real-time DES (RTDES) is a DES with timing constraints, i.e. its correctness depends
not only on the order of events but also on the time of occurrence of events, as for example for real-time protocols.
We can then, design and study a DES and a RTDES by analyzing the sequence of events it can execute. It is therefore
necessary to model the system in a suitable way for the desired study. Consequently, there exist various modeling
methods for DES. These modeling methods are classified as untimed or timed, respectively for non-real-time DES and
RTDES. A survey of some modeling and analysis methods such as Temporal Logic, Petri Nets and Minimax Algebra
can be found for example in [1]. Automata based modeling have been widely studied and used, for non-real-time
DES, for example in supervisory control [2, 3] and faults diagnosis [4]. This model of course has been extended to
RTDES, where a discrete or continuous model of time can be used. With the discrete time model in [5, 6], the time is
measured by a global clock and increase by integer values, and this model has been used in supervisory control, for
example in [7, 8], and with the dense time model in [9], the time is measured by a set of asynchronous clocks that can
be reset and that take real values, and this model has also been used in supervisory control, for example in [10, 11, 12].
A comparison of these two modeling of time can be found in [13].

Considering the automata model and the dense time approach, a non-real-time DES can be modeled by a finite state
automaton (FSA) [14, 15], and a RTDES by a timed automaton (TA) [9], that can be viewed as a FSA to which
are added timing constraints using real-valued clocks. The TA model has been extensively studied and is suitable
for describing RTDES, but the state space of a TA is infinite because it uses dense time. For the study of RTDES
(supervisory control, diagnosis, verification, testing...), it is practical to have a finite representation of the state space,
in order to be able to adapt the same methods used for non-real-time DES. It is therefore commonly admitted, for
the study of a RTDES modeled by a TA, to transform the TA into an equivalent FSA. The issue with this type of
transformation is that it results in an explosion of the state space of the equivalent FSA. The transformation of TA
into region automata (RA) [9, 16] is the first and most used transformation of TA into FSA. The basic principle of
the RA construction is to merge equivalents states, i.e. states from which we have the same progression possibilities,
determined by a suitable equivalence relation. However, the practical usefulness of the RA transformation is limited
because it induces a state space explosion. Indeed, the number of states of a RA is exponential in the number of
clocks and polynomial in the magnitudes of constants used to express the timing constraints of the TA. To reduce
this inconvenient, some methods of minimization of the state space of RA have been proposed, for example zone
automata [16] and the methods proposed in [17, 18, 19, 20, 21], as well as others transformation methods as for
example the one in [22].

In this paper, we present a new method, called SetExp, which transforms a TA into a particular FSA called Set-Exp
automaton (SEA). The basic principle of SetExp is that it allows to express the timing constraints as order constraints
of events. This is realized by the addition to the alphabet of the TA of two new types of events: Set events and Exp
events that model respectively the resets with programming of clocks and their expirations when their value reach
constants used to express the timing constraints. The alphabet of a SEA is therefore different from the one of its
corresponding TA, and each event of the SEA can have three components: an event of the alphabet of the TA, a set
of Set events and a set of Exp events, and its occurrence corresponds to the simultaneous occurrence of the events
that compose it. Therefore, in a SEA, the transition from a state to another state with the passage of time occurs
only when a clock variable reaches a value used in a timing constraint of the TA. Each state of a SEA is defined by a
location where the value of each clock respects constraints defined by the values to which it is compared in the timing
constraints of the TA. Therefore, compared to the RA construction, in SetExp, only the difference between constants
for a given clock is considered, and not the difference for each unit of time. As a consequence of this, in practice, the
state space of a SEA does not increase polynomially with the magnitudes of constants used in the timing constraints
of the TA, and this constitutes an advantage of SetExp in comparison to the RA transformation. The applicability of
SetExp has been demonstrated for supervisory control [23, 24, 12, 25, 26] and conformance testing [27, 28], for which
it offers a suitable architecture for implementation. Supervisory control, introduced by Ramadge and Wonham [2, 3],
aims at restricting the behavior of a system, called a plant, so that it conforms to a specification using a supervisor, and
conformance testing aims at checking whether an implementation conforms to a specification, using a test unit [29].

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 1

In [23, 24, 12, 25, 26, 27, 28], SetExp is used as a black-box and the focus is on its application, whereas in this paper,
we explain formally how SetExp is realized. Therefore, this paper is complementary to [23, 24, 12, 25, 26, 27, 28].

Previous versions of SetExp are presented in [30, 31] and are improved in the present paper. The main additional
contributions of [31] in comparison with [30] are:

• the generalization of SetExp to TA with location invariants;
• the taking into account of AT with marked location;
• the minimization of the state space of the generated SEA by the identification and fusion of equivalent states.

This contribution also resolves a problem of termination of SetExp in some cases where equivalent states are
constructed infinitely in the version of [30].

On the other hand, the main contributions of the present paper in comparison with [31] are:
• we provide detailed explanations such as explanations of algorithms;
• we propose, under some realistic assumptions, a method for reducing of the number of transitions of a SEA;
• we give proofs of all propositions and theorems;
• we give details of the complexity of SetExp.

The rest of the paper is organized as follows: in Section 2, we present the formal definition of TA, and in Section 3, we
present the principle of construction of the SEA, which is realized in two steps detailed in sections 4 and 5. Section 6
details the procedures of construction of states and transitions of the SEA, while section 7 summarizes some properties
and a simplification of SetExp. In Section 8, we present the application of SetExp in supervisory control of RTDES,
and in Section 9, we conclude. Note that we have opted to put the proofs of propositions and theorems in the appendix.

2 Timed automata and timed language

2.1 Timed automata

To model a RTDES, we use TA [9, 16]. More precisely, we use TA with location invariants [32, 16] defined below,
that allow to model rigorously a RTDES. We take also into account the marking of locations. This TA model that
uses dense time is suitable for modeling many real-world entities; its manipulation is relatively simple and its expres-
sivity adequate for modeling RTDES. The use of invariants allows to specify progress properties. To define TA with
invariants, we need the following definitions of Clock and Clock Constraints. In the rest of the paper, for a set X , 2X

denotes the set of subsets of X .

Definition 2.1 : Clock
A Clock is a positive real-valued variable that can be reset to 0 at any time, and such that, between two resets, its
derivative with respect to (w.r.t.) time is equal to 1. Let C = {c1, · · · , cNc

} be a finite set of Nc clocks.

Definition 2.2 : Clock Constraint
A Clock Constraint is a formula in the form “ci ∼ k”, where ci is a clock, ∼∈{<,>,≤,≥, =} and k is a positive
integer value. Let ΦC be the (infinite) set of clock constraints using clocks of C.

Note that a Clock Constraint takes a boolean value (true or false), depending on the fact that its value satisfies or not
the constraint.

Definition 2.3 : Timed Automata (TA)
A TA A is defined by A = (L, Σ, C, I, T , l0,Lm) where: L is a finite set of locations; Lm ⊆ L is the set of marked
locations; l0 ∈ L is the initial location; Σ is a finite set of events (also called alphabet); C is a finite set of clocks;
I :L 7→2ΦC associates to each location ` ∈ L a set of Clocks Constraints called invariant of `, and noted I` (I`⊂ΦC);
and T ⊂L×Σ×L×2ΦC×2C is the set of transitions.

According to Definition 2.3, a transition T of A is defined by T = 〈q; σ; r;G ; Z〉, where: q and r are the origin and
destination locations of T , σ∈Σ is the event of Tr, G⊂ΦC is a set of Clocks Constraints called guard of T and Z⊆C
is a set of clocks called reset of T . For brevity, we say that a guard or an invariant is satisfied when all its temporal

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 2

constraints are evaluated to true, otherwise it is unsatisfied. When a guard or an invariant is empty, this means that it
is evaluated to true at any time.

The semantics of a TA A=(L, Σ, C, I, T , l0,Lm) is as follows: at time τ0 = 0, A is at l0 with all clocks equal to
0. When q is the current location, a transition T = 〈q; σ; r;G ; Z〉 is enabled when G is satisfied, i.e. all its clocks’
constraints are evaluated to true (if G is empty, it is always satisfied); otherwise, Tr is disabled. From q, the event
σ can be executed only when Tr is enabled, and after the execution of σ, location r is reached and all the clocks in
Z are reset. During an execution of a TA, the invariant of the current location is always satisfied, i.e. all its clocks’
constraints are evaluated to true. In particular, the invariant of a marked location is satisfied at any time when the
location is occupied, because we consider marked location like location where the TA can stop its execution for an
unspecified duration.

A constraint “ci < k” or “ci ≤ k” in the invariant of a location ` specifies an upper time bound of clock ci after which
` must be left. In the other hand, a constraint “ci > k” or “ci ≥ k” in the invariant of ` specifies a lower time bound of
clock ci before which ` cannot be reached. A similar result can be obtained by inserting these later constraints in the
guard of any transition reaching `. We also assume that a constraint of the form “ci = k” cannot be in the invariant
of `, because in this case ` is irrelevant since it must be left at the time where it is reached. Therefore, we make the
following non restrictive hypothesis:

Hypothesis 2.1 Each constraint in an invariant is in the form “ci ∼ k” with ∼∈ {<,≤}.

As an example of TA, consider the TA P of Figure 1 representing a machine in a manufacturing system. Each node
represents a location with its invariant, if any. Nodes representing marked locations are represented by two circles and
the initial location is indicated by an arrow. Each edge linking q to r and labeled (σ;G ;Z) represents a transition
〈q;σ; r;G ; Z〉. An empty G or Z is represented by “-”. In a location, each transition can be executed only when
it is enabled, otherwise it will be never executed. For this TA, we have : Σ = {α, β, λ, µ, γ}; L = {I, W,B, R};
C = {c1, c2}; Lm = {I} and `0 = I .

λ ; − ; c2 µ ; − ; c1
I c1<100

W
c1<100
c2<50

B
c1<80

R

α ; − ; c1
β; 3<c1<100; −

γ; c1<80, c2>50 ; −

Figure 1: TA modeling a machine in a manufacturing system

Initially, the machine (or the TA P) is in location I (Idle). It can reach location W (working) by executing the event
α that means “the machine starts working” and resetting the clock c1. From the location W, the machine can reach
locations I or B (machine is broken down) by executing respectively the events β (machine finishes working) or λ
(machine breaks down). In any case, W must be left before c1 = 100, in order to respect its invariant. From the
location B, the machine can reach the location R (machine under repair) by executing the event µ (begin the repair of
the machine). B must be left before c1 = 100 and c2 = 50, as indicated by its invariant. From the location R, the
machine can reach the initial location I by executing the event γ (end of the repair of the machine). The location R
must be left before c1 = 80, in order to respect its invariant.

Let δu,v be the delay between the events u and v. The guards of the transition of P imply : 3 ≤ δα,β < 100,
δλ,γ > 50, δµ,γ < 80. Each constraint δu,v ∼ k does not guarantee the occurrence of v, but indicates that if v
occurs, this occurrence respects δu,v ∼ k, otherwise v does not occur. To guarantee the occurrence of v, we need to
use invariants. For example the invariant of B guarantees that B is left before c1 = 100 and c2 = 50, i.e. µ occurs
certainly with δα,µ < 100 and δλ,µ < 50.

2.2 Timed language of TA

Definition 2.4 : Timed Trace
A timed trace is a sequence “(e1, τ1) · · · (ei, τi) · · · ”, where e1, · · · , ei ∈ Σ are events and each τi

(0 < τ1 < · · · < τi < · · ·) is the time of occurrence of ei.

Notation 2.1 If λ is a trace, λi is the prefix of λ of length i.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 3

Definition 2.5 : Acceptance of Timed Trace
Let A = (L,Σ, C, I, T , l0,Lm) be a TA. A accepts the empty timed trace λ0 iff the invariant of l0 is satisfied
whenever all the clocks evaluate to the same value. Intuitively, A can remain forever in l0. A finite timed trace
λ = (e1, τ1) · · · (en, τn) is accepted by A iff there exists a sequence of consecutive transitions Tr1 · · ·Trn of A that
starts in l0 and such that: (i) ∀i ∈ {1, · · · , n}, the event of Tri is ei and after the execution of λi−1, Tri is enabled at
time τi and the invariant of the current location (destination location of Tri−1) is satisfied at every time τ ∈ [τi−1, τi];
and (ii) after the execution of λ, the invariant of the current location (i.e., invariant of the destination location of Trn)
is satisfied at every time τ ≥ τn. Intuitively, A can execute λ and stop forever its execution. Acceptance of an infinite
timed trace λ is defined from acceptance of finite timed trace by removing Item (ii) and replacing n by ∞.

Definition 2.6 : Marked Timed Trace
A finite timed trace accepted by a TA A is marked if its execution leads to a marked location.

Definition 2.7 : Timed Language and Timed Marked Language of TA
The timed language of a TA A, noted Lt(A), is the set of finite and infinite timed traces accepted by A. The timed
marked language of A, noted Lt

m(A) is the set of finite marked timed traces accepted by A.

For a correct execution of TA (containing invariants), we need the next three requirements.

Requirement 2.1 At the time when a location is reached, its invariant must be satisfied.

Requirement 2.2 During the execution of a TA, when the invariant of the current location is about to be unsatisfied
with elapse of time, a transition must be enabled and the invariant of its destination location must be satisfied.

Requirement 2.3 Each marked location has an empty invariant, i.e. its invariant is satisfied at any time.

Requirement 2.1 ensures that the invariant of a location is satisfied when the location is reached. Requirement 2.2
ensures that when a location must be left due to imminent dissatisfaction of its invariant, at least one enabled transition
exists. Therefore, this requirement allows to avoid situations where a location must be left imperatively (because its
invariant is about to be unsatisfied) and in the same time no transition is enabled or the destination locations of all
enabled transitions have their invariant unsatisfied. This requirement 2.2 is respected if for each location ` having a
non empty invariant I` that becomes unsatisfied at the moment τ , (i) there exists at least one transition Tr having ` as
origin location; (ii) the guard of Tr is satisfied just before moment τ and (iii) the invariant of the destination location
of Tr is satisfied just before moment τ . For example, suppose the TA uses one clock h, and at the location l1 having
the invariant h < x, we have one outgoing transition Tr whose guard is y < h < z, and the invariant of its destination
location l2 is h < w. l1 respects requirement 2.2 if y < x, x ≤ z and w ≥ x because: (i) the invariant of l1 becomes
unsatisfied when h = x; (ii) the guard of Tr is satisfied at the moment just before h = x iff y < x ≤ z; and (iii) the
invariant of l2 is satisfied at the moment just before h = x iff w ≥ x. We shall show later how to formally verify if
requirements 2.1 and 2.2 are respected in a TA. Requirement 2.3 is a logic one, because we consider marked locations
as locations where the TA can stop its execution for an unspecified duration, and this also allows to have the timed
marked language of the TA included in its timed language.

2.3 Transformation of timed automata into finite state automata

A TA is suitable to model a RTDES, but for its study, this model is not suitable. The reason is that the methods
for studying RTDES (and DES) are based on the analysis of their state space which must therefore be finite, i.e.
representable with a FSA. However, a TA has an infinite state space. This comes from the fact that a state of a TA is
defined by a pair (`, ϑ) where ` is a location and ϑ is a function that associates each clock to its current value, called
clock assignment. As the clocks have real values, the number of possible values for each clock is infinite, and therefore
the number of states is also infinite. For this reason, to study a RTDES modeled by a TA, as for example verification,
supervisory control, conformance testing or faults diagnosis, it is convenient to transform the TA into a FSA. Such
transformation allows thus to adapt methods designed for FSA to solve problems expressed with TA.

One of the most known transformation method is the one which transforms TA into region automata (RA) [9, 16].
a region is defined by an equivalence relation over clocks assignments. The RA is constructed by generating the

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 4

reachable region graph, and each state of the RA is defined by a location of the TA and a region. In a region, the value
of each clock is either equal to an integer or belongs to an interval bounded by two consecutive integer, so that the
number of state of a RA is exponential in the number of clocks and polynomial in the magnitudes of constants used
to express the timing constraints. The RA transformation induces therefore a state space explosion. To illustrate this
disadvantage of the RA transformation, let us consider the TA of Figure 2. The number of states of its corresponding
RA depends on the value of k. For example, if k = 10, the RA will have 20 states and if k = 50, the RA will have 100
states. The practical usefulness of this transformation is reduced, especially when the magnitudes of the constants in
the timing constant are big. To overcome this issue, several minimizations methods have been proposed, such as those
in [16, 17, 18, 19, 20, 21]. These methods allow to mitigate the state space explosion problem and most of them are
designed essentially for model checking and reachability analysis.

In the following sections, we present a method of transformation of TA into particular FSA called Set-Exp Au-
tomata (SEA). The transformation “TA7→SEA”, which is called SetExp, generates less states than the transforma-
tion “TA7→ RA”, in particular when the magnitudes of the constants used to express the timing constraints are big.
For example, the SEA corresponding to the TA of Figure 2 has only 6 states, whatever the value of k is. Contrary
to the minimizations methods of RA, SetExp is well suited for supervisory control and conformance testing of RT-
DES [23, 24, 12, 25, 26, 27, 28], because it provides a concrete implementation architecture. We will present an
overview of the application of SetExp in supervisory control in Section 8. We present in Section 3 the principle of
SetExp and the SEA model, and in Sections 4, 5 and 6, we present the formal computation of SEA from TA.

L0 L1 L2

e2 ; 1<c1<k ; −e1 ; − , c1

Figure 2: Simple AT to compare SetExp and Region automata transformation

3 Principle of SetExp and Set-Exp automata

SetExp transforms a TA into a FSA called Set-Exp Automaton (SEA). SetExp adds to the alphabet of the TA two new
types of events called Set and Exp, that model respectively the setting and expiring of the clocks, and thus allow to
express temporal constraints as order constraints of events. Therefore, a TA and the corresponding SEA represent two
different ways of specifying the same order and timing constraints of events.

3.1 Events Set and Exp

Let us first present the events Set and Exp. For a clock ci and a positive integer k, the events Set(ci ; k) and Exp(ci , k)
have the following meaning:

• An event Set(ci ; k) means that ci is reset to 0 and it will expire when its value is equal to k. If ci must expire
several times at the values k1, k2 · · · , kp, with k1 < k2 < · · · < kp, then the corresponding Set event is
Set(ci ; k1 , . . . , kp).

• An eventExp(ci , k) means that ci expires and its current value is k.
In a TA, a clock ci is reset in order to compare later its value to at least one constant, say k. The event Set(ci ; k) is
very convenient for that purpose, because it resets ci and programs Exp(ci , k) which is a notification when ci = k.
Therefore, Set(ci ; k) is followed, after a delay k, by Exp(ci , k), and Set(ci ; k1 , . . . , kp) is followed, after the delays
k1, k2, . . . , kp, by Exp(ci , k1),Exp(ci , k2), . . . ,Exp(ci , kp). The expression “ci expires” is equivalent to “ci reaches
a value programmed at its last reset”. Set(ci ; k) can then be seen as the programming of an alarm that must ring after
k units of time, and Exp(ci , k) corresponds to the ringing of this alarm after the delay k. When a Set(ci ; ∗) occurs,
then all expirations of ci which were foreseen before this Set(ci ; ∗) are canceled.

3.2 Intuition of SetExp

To illustrate the intuition of SetExp, let us consider the following two specifications:
Specification 1: a task ω must be realized in less than k units of time, where k is a positive integer.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 5

Specification 2: at the beginning of the task ω, an alarm is programmed so that it rings after k units of time, and ω
must be terminated before the ringing of the alarm.

The above two specifications describe the same timing constraint for the task ω. Specification 1 can be modeled by a
TA, and Specification 2 be modeled by a SEA. SetExp can be used to obtain Specification 2 from Specification 1. The
programming of the alarm corresponds to a Set event, and the ringing of the alarm corresponds to an Exp event.

3.3 Events and transitions of SEA

For a TA A over the alphabet Σ, let B = SetExp(A) be the SEA (we shall present later the formal definition of a
SEA) obtained by applying SetExp to A. In the following, σ denotes an event of Σ, S (resp. E) denotes a set of Set
(resp. Exp) events, and occurrence of S (resp. E) means the simultaneous occurrences of all the events in S (resp. E).
We can categorize the events of B into the following three types:
Type 1: an event γ = E is of type 1 if it is formed of a non empty set E of Exp events.
Type 2: an event γ = (σ,S) is of type 2 if it is formed of an event σ ∈ Σ and a set S (S can be empty) of Set events.
Type 3: an event γ = (E , σ,S) is of type 3 if it is formed of an event σ ∈ Σ, a non empty set E of Exp events and a

set S (S can be empty) of Set events. Note that type 3 is a combination of type 1 and type 2 and thus, an event
of type 3 is composed by an event of type 1 and an event of type 2.

Each event of the SEA B = SetExp(A) is therefore formed by at most an event σ ∈ Σ, by 0 to many Set events, and
0 to many Exp events. With this characterization, we can process as a unique event the simultaneous occurrences of
several events. In the sequel, Σ and Γ will refer respectively to the alphabet of TA and SEA.

In accordance with the three types of events, we have three types of transitions. Each transition has the same type as
its labeling event.

Notations 3.1 :
• If Γ is the alphabet of a SEA, then Γi denotes the set of events of type i of Γ, for i = 1, 2, 3. Therefore we have

Γ = Γ1 ∪ Γ2 ∪ Γ3.
• For an event γ ∈ Γ, γcΣ is the component of γ that belongs to Σ (one element, or the empty set in the case where

γ ∈ Γ1); γcExp the set of Exp events of γ (empty set if γ ∈ Γ2); and γcSet is the set of Set events of γ (empty set
if γ ∈ Γ1).

• An event γ = (E , σ,S) ∈ Γ will be noted (also on figures) σSE , and in a sequence of events of Γ, the events will
be separated by a “.”.

Now, let us define formally a SEA. We shall clarify some of its components later.

Definition 3.1 : Set-Exp-Automaton (SEA)
A SEA B is defined as follows: B = (Q, Γ, δ,Π, q0, Qm) where:

• Q is a set of states;
• q0 ∈ Q is the initial state;
• Qm ⊆ Q is a set of marked states;
• Γ is a set of events (i.e. an alphabet);
• δ : Q×Γ×Q is the set of transitions;
• Π : Q → 2Γ1 is a function that associates to each state q a set of events of type 1 that are preempted (see

Definition 3.2).

If we apply SetExp to the TAA of Figure 1, we obtain the SEA B = SetExp(A) of Figure 3. The construction of this
SEA will be presented later. This SEA has 12 states, named S1,S2,...,S12. S1 is the initial state and the only marked
one. The SEA has 25 transitions, each labeled by an event of its alphabet Γ. For the different types of transitions, we
have, for example, transitions between the states S1 and S2 and between S4 and S5 which are of type 2 (respectively
labeled by αSet(c1 ; 3 , 100) and β), transitions between states S2 and S4 and between S7 and S11 which are of type 1
(respectively labeled by Exp(c1 , 3) and Exp(c2 , 50)) and transitions between states S2 and S5 and between S2 and
S6 which are of type 3 (respectively labeled by βExp(c1 , 3) and λSet(c2 ; 50)Exp(1 , 3)).

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 6

S12 S11

[Exp(c1,80)]

Set(c2,50)λ
Set(c1,80)µ

Set(c1,80)µS3 S7

Exp(c1,3)

S5 S2Exp(c1,3)β

Set(c2,50)λ Exp(c1,3)

S6 [Exp(c2,50)]S4 [Exp(c1,100)] S8 [Exp(c2,50)]

S10

Set(c2,50)λ Set(c1,80)µ

Set(c1,80)µSet(c1,80)µ

S1

αSet(c1;3,100)

αSet(c1;3,100) αSet(c1;3,100)

αSet(c1;3,100)Exp(c1,80)αSet(c1;3,100) Exp(c1,100)

Exp(c1,100) γExp(c1,80)

Exp(c2,50)

Exp(c1,3)
β Exp(c1,3)

Exp(c2,50)S9[Exp(c1,100)Exp(C2,50)]
[Exp(c1,100)]
[Exp(c2,50)]

Figure 3: SEA of the TA of Figure 1

We shall show later that a state of a SEA B = SetExp(A) is defined by a location of A, some inequations on clocks
and some inequations on differences of clocks.

Recall that in a TA A, each location must be left before its invariant become unsatisfied. On the SEA B=SetExp(A),
this requirement is taken into account by preempting transitions of type 1 and 3. The preemption of a transition in a
SEA is defined as follows:

Definition 3.2 : preempted transition
A transition Tr of type 1 or 3 is said to be preempted if Tr is never executed because another transition having the
same origin state as Tr is always executed before Tr. If Tr is labeled by γ and preempted, then the event γcExp is also
said preempted. The set of preempted events at each state q of the SEA is given by Π(q).

Intuitively, a transition Tr is preempted if the system, in its execution, will not have the possibility, when the origin
location of Tr is reached, to execute Tr because it is forced to execute another transition. In other words, Tr is
preempted if the origin location of Tr is left (by executing another transition) before Tr becomes enabled. In Figure 3,
the preempted events at a given state q are indicated between square brackets near q. For this SEA, the preempted
events, given by the function Π, are the following:

• Π(S4) = {Exp(c1 , 100)};
• Π(S6) = {Exp(c2 , 50)};
• Π(S9) = {Exp(c1 , 100),Exp(c2 , 50),Exp(c1 , 100)Exp(c2 , 50)};
• Π(S11) = {Exp(c1 , 80)}.

Definition 3.3 : active clock
At a given state q of a SEA, a clock ci is active when at least an expiration of ci is expected. More precisely, while a
Set(ci ; k1 , · · · , kp) is the last Set(ci ; ∗) that has occurred, ci is active iff Exp(ci , kp) has not occurred. Otherwise,
ci is inactive.

Definition 3.4 : quiescent state
A state q of a SEA is said a quiescent state if all clocks are inactive in q, i.e. Π(q) = ∅ and q has no outgoing transition
of type 1 or 3.

For the SEA of Figure 3, only S1 is a quiescent state. Intuitively, a quiescent state is a state where it is possible to stay
indefinitely without any constraint to leave it with the evolution of time, by the occurrence of Exp events. Such states
will be useful to define the language of a SEA.

Definition 3.5 : marked state
A state q of a SEA B = SetExp(A) is marked if and only if q is a quiescent state and its location is marked in A.

For the SEA of Figure 3, only S1 is a marked state, because it is a quiescent state and its location in the TA of Figure 1,
i.e.. I, is marked. In practice, a marked state is usually a state that represents the end of a task. This can justify the

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 7

fact that this state must be a quiescent state, i.e. a state where the process can stop indefinitely its execution because
no clock expiration is expected.

Definition 3.6 : acceptance of finite and infinite sequence
Let B = (Q, Γ, δ,Π, q0, Qm) be a SEA and γ = γ1γ2· · ·γn be a finite sequence of events belonging to Γ. γ is said
accepted by B if there exists a set of states q0, q1 · · · , qn ∈ Q, starting in q0, such that: (qi−1, γi, qi) ∈ δ for
i ∈ {1, · · · , n}, and qn is a quiescent state. An infinite sequence γ = γ1γ2· · ·γi · · · of events belonging to Γ is
accepted by B if it labels a sequence of consecutive transitions in B that starts in q0.

For the SEA of Figure 3, only the finite sequences ending in S1 are accepted. For example, the sequence
αSet(c1 ; 3 , 100).βExp(c1 , 3).Exp(c1 , 100) is accepted.

Definition 3.7 : language and marked language of SEA
The language generated by a SEA B, noted L(B), is the set of finite and infinite sequences accepted by B. The marked
language of B, noted Lm(B), is the set of finite sequences accepted by B and that lead to a marked state. Note that
Lm(B)⊆L(B).

The construction of the SEA B = SetExp(A) is realized in two steps. We shall present these two steps in sections 4
and 5, respectively.

4 First step of SetExp

The first step of SetExp transforms a TA A into an automaton AI that we call Intermediate Automaton (IA). This step
does not modify the structure of A, and consists of two substeps that are:
Substep 1: it replaces resets of clocks by Set events. For example, a clock ci which is reset is replaced by Set(ci ; k)

if ci is compared to k before its next expected reset. If for the same transition, we obtain several Set(ci ; k1),
Set(ci ; k2), · · · ,Set(ci ; kn), we replace them by a single Set(ci ; k1 , k2 , · · · , kn).

Substep 2: it rewrites the guards (of transitions) and the invariants (of locations) in the form of order constraints
relatively to Exp events. More precisely, each constraint “ci ∼ k” is rewritten in the form “∼ Exp(ci , k)”,
with ∼∈ {<,≤, >,≥, =} if the constraint is in a guard, and ∼∈ {<,≤} if the constraint is in an invariant (see
hypothesis 2.1). We shall call Exp-Condition a constraint rewritten under this form.

For the formal definitions of these two substeps, we need the following definition and notations.

Definition 4.1 : path, reachable transition, reachable location
In a TA A, a path is a transition or sequence of consecutive transitions of A, and a transition T ′ is said reachable
from a transition T iff A contains a path T · · ·T ′. Similarly, a location ` is said reachable from a transition T iff A
contains a path T · · ·T ′ such that ` is the destination location of T ′.

Notations 4.1 : Let A=(L, Σ, C, I, T , l0,Lm) be a TA, and T ∈T a transition of A.
• Rt

T is the set of transitions reachable from T .
• Rl

T is the set of locations reachable from T .
• PT→T ′ is the set of paths linking the destination location of T to the origin location of T ′ ∈ T .
• PT→` is the set of paths linking the destination location of T to the location ` ∈ L.
• ZP is the set of clocks that are reset in a path P .
• ZT is the set of clocks that are reset by T .
• GT is the guard of T .
• I` is the invariant of location `, and I`(ci) is the part of I` using the clock ci.
• ZT is the set of Set events of T , and ZT (ci) is the part of ZT using the clock ci.
• GT is the set of Exp-Conditions of T , and GT (ci) is the part of GT using the clock ci.

The formal definition of the first substep is as follows, for a TA A = (L, Σ, C, I, T , l0,Lm):

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 8

1. ∀T ∈ T , ∀ci ∈ C : ZT (ci) := {Set(ci, X ∪ Y) : ci ∈ ZT ,
2. X = {k : ∃T ′ ∈ Rt

T , ∃(ci ∼ k) ∈ GT ′ , ∃P ∈ PT→T ′ , ci 6∈ ZP },
3. Y = {k : ∃` ∈ R`

T , ∃(ci ∼ k) ∈ I`, ∃P ∈ PT→`, ci 6∈ ZP }}
4. ∀T ∈ T : ZT :=

⋃
ci∈C

ZT (ci)

Explanations of the formal definition of substep 1:

Line 1-3: for each transition T of A and for each clock ci that is reset by T , we add the event Set(ci ;X ∪Y) to the
label of T and we remove ci from the reset of T , where:

• X is the set of values k such that there exists a transition T ′ reachable from T and: (i) there exists an inequation
“ci ∼ k” in the guard of T ′; (ii) there exists a trace P linking the destination location of T to the origin location
of T ′ and (iii) P contains no reset of the clock ci.

• Y is the set of values k such that there exists a location ` reachable from T and: (i) there exists an inequation
“ci ∼ k” in the invariant of `; (ii) there exists a trace P linking the destination location of T to ` and (iii) P
contains no reset of the clock ci.

Line 4: for each transition T , the set of Set events of T is the union of Set events for each clock that is reset by T .

The substep 2 is formally defined as follows:

1. ∀T ∈ T , ∀ci ∈ C : GT (ci) := {“∼ Exp(ci , k)”: (ci ∼ k) ∈ GT }
2. ∀T ∈ T : GT :=

⋃
ci∈C

Gt(ci)

3. ∀` ∈ L, ∀ci ∈ C : I`(ci) := {“∼ Exp(ci , k)”: (ci ∼ k) ∈ I`}
4. ∀` ∈ L : I` :=

⋃
ci∈C

I`(ci)

Explanations of the formal definition of substep 2:

Line 1: for each transition T and for each clock ci such that there exists an inequation “ci ∼ k” in the guard of T , we
replace this inequation by the Exp-Condition “∼ Exp(ci , k)”.
Line 2: the set of Exp-Conditions of T is the union of the Exp-Conditions of each clock, determined at line 1.
Line 3: for each location ` and for each clock ci such that there exists an inequation “ci ∼ k” in the invariant of `, we
replace this inequation by the Exp-Condition “∼ Exp(ci , k)”.
Line 4: the set of Exp-Conditions of the invariant of ` is the union of Exp-Conditions of each clock, determined at
line 3.

Notation 4.1 :
• GC is the set of Exp-Conditions using the clocks of C.
• SC is the set of Set events using the clocks of C.
• StepOne(A) denotes the step 1 (substep 1 and substep 2) applied to A, i.e. AI = StepOne(A)

Definition 4.2 : Intermediary Automaton (IA)
Let A = (L, Σ, C, I, T , l0,Lm) be a TA. AI = StepOne(A) is defined by
AI = (L, Σ, C, II , T I , l0,Lm) with L, Σ, C, l0 and Lm idem as in A. II : L → 2GC associates to each location
` ∈ L an invariant I` ∈ GC . T I ⊂ L× Σ× L× 2GC×2SC is the set of transitions.

As AI is only a different way of representation of A, it accepts the same timed trace than A. Therefore, A and AI

generate the same timed language.

If we apply StepOne to the TA of Figure 1, we obtain the IA of Figure 4. For example, since the transition T linking
location I to location W resets the clock c1, then an event Set(c1 ; ∗) (∗ will be determined) is added to the label of this
transition. The clock c1 is compared to 100 in the invariant of W and to 3 and again 100 in the guard of the transition
linking W to I, and there is no reset of c1 between the present reset of c1 and these constraints. We add therefore
Set(c1 ; 3 , 100) to the label of T. When all the Set events of c1 are recorded, we remove c1 from the reset of T .

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 9

α Set(c1,3,100)
W

<Exp(c1,100)
µ Set(c1,80)λ Set(c2,50)

<Exp(c1,100)
<Exp(c2,50)

B

<Exp(c1,80)

R

γ <Exp(c1,80) >Exp(c2,50)

β >Exp(c1,3) <Exp(c1,100)

I

Figure 4: IA corresponding to the TA of Figure 1

5 Second step of SetExp

Given the TA A and the IA AI = StepOne(A), the second step of SetExp computes the SEA B = SetExp(A),
also denoted B = StepTwo(AI). We shall present in Section 5.1 the principle of construction of the SEA B, and in
Section 5.2 the formal construction of B.

5.1 Principle of the Set-Exp Automaton construction

Each state of a SEA has three parts, that give information on the position in the TA relatively to locations, and
information on the time. The following definitions are useful to define these three parts.

Definition 5.1 : Clock-Cond
Let Set(ci ; k1 , k2 , · · · , kp) be a Set event for a given clock ci. A Clock-Cond on ci w.r.t. Set(ci ; k1 , k2 , · · · , kp) is a
clock constraint in one of the following three forms, for 1 ≤ u < p :

• 0<ci <k1, which holds between Set(ci ; k1 , · · · , kp) and Exp(ci , k1);
• ku <ci <ku+1, which holds between Exp(ci , ku) and Exp(ci , ku+1), for 1 ≤ u < p; and
• kp < ci, which holds after Exp(ci , kp).

Definition 5.2 : ExpSeq
Let Set(ci ; k1 , k2 , · · · , kp) be a Set event for a given clock ci. An ExpSeq is a sequence kuku+1 · · · kp, for 1 ≤ u ≤ p,
which specifies:

• if u > 1: the remaining values to which ci will expire after Exp(ci , ku−1);
• if u = 1: the values to which ci will expire after Set(ci ; k1 , k2 , · · · , kp).

Definition 5.3 : ∆Clock-Cond
Let ci and cj be two clocks. A ∆Clock-Cond of ci and cj is an expression in one of the following four forms, where k,
k1 and k2 are integers:

• ci − cj < k;
• k < ci − cj;
• k1 < ci − cj < k2;
• ci − cj = k.

According to Definition 5.1, a Clock-Cond indicates in which interval of time the value of the clock is. From Defini-
tion 5.2, an ExpSeq indicates the next expected expiration(s) of a clock, before its next reset. From Definition 5.3, a
∆Clock-Cond indicates in which interval of time the difference of two clocks is.

For a TA A and the SEA B = SetExp(A), the three parts of each state q of B are:
Part 1: is the location of q.
Part 2: is formed, for each clock in C, of a Clock-Cond and an ExpSeq.
Part 3: is formed, for each pair of clocks in C, of zero or one ∆Clock-Cond.

Notations 5.1 Let A = (L,Σ, C, I, T , l0,Lm) be a TA, B = SetExp(A) = (Q, Γ, δ,Π, q0, Qm) a SEA, q ∈ Q,
ci ∈ C and cj ∈ C.

• Cq(ci) denotes the Clock-Cond of ci in q, Kq(ci) denotes the ExpSeq of ci in q,CE q(ci) denotes the pair
(Cq(ci),Kq(ci)), and ∆Cq(ci, cj) denotes the ∆Clock-Cond of ci and cj in q.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 10

• Cq is the set of Clock-Conds of q, i.e. Cq =
⋃

ci∈C
Cq(ci), CE q is the set of pairs (Cq(ci),Kq(ci)), i.e. we have

CE q=
⋃

ci∈C
CE q(ci), and ∆Cq is the set of ∆Clock-Conds of q, i.e. ∆Cq =

⋃
ci∈C,cj∈C

∆Cq(ci, cj).

A state q ofB is therefore given by q = (Lq,CE q, ∆Cq), where Lq is the location of q. For a state q = (Lq,CE q,∆Cq),
if Set(ci ; k1 , k2 , · · · , kp) is the last Set event of ci before q is reached, CE q(ci) = (Cq(ci),Kq(ci)) is in one of the
following forms:

• If q is reached before Exp(ci , k1): Cq(ci) = (0 < ci < k1), Kq(ci) = k2k3 · · · kp.
• If q is reached between Exp(ci , ku) and Exp(ci , ku+1), u = 1, · · · , p− 2: Cq(ci) = (ku < ci < ku+1),

Kq(ci) = ku+2 · · · kp.
• If q is reached between Exp(ci , kp−1) and Exp(ci , kp): Cq(ci) = (kp−1 < ci < kp), Kq(ci) = ε (i.e., it is empty).
• If q is reached after Exp(ci , kp): Cq(ci) = (kp < ci), Kq(ci) = ε.

The above definition of a state, with three parts, is necessary for the construction of the SEA, but for some studies,
these parts are not useful, and then can be ignored after the construction of the SEA. For example, if the SEA is used
in language based supervisory control [3], the state definition is not used for the synthesis of a supervisor, because this
latter is based on the traces generated by the SEA. But in the case of predicate based supervisory control [8], this state
definition can be useful for checking predicate satisfaction.

For the construction of the SEA, the usefulness of the three parts of a state q can be explained as follows:
• The location Lq is used to determine the transitions of A that are the candidates of enabling in q, which are the

outgoing transitions of Lq in A.
• Cq is used to determine the transitions of A that are enabled in q among the candidate ones, and the expected

next expiration (if any) of each clock.
• Kq is used to determine the Clock-Cond and the ExpSeq of the state reached by each transition of A that is

enabled in q.
• ∆Cq is used to determine the expirations or set of simultaneous expirations that can really occur in q among the

expected ones determined from Cq .
If two clocks ci and cj are inactive in a state q, ∆Cq(ci, cj) is irrelevant, because the two clocks have no expected
expirations. ∆Cq(ci, cj) can then be removed from ∆Cq . In particular, when all the clocks are inactive in q, ∆Cq is
irrelevant, and thus, Part 3 is empty.

For a TA A, the principle of construction of B = StepTwo(AI) from the IA AI = StepOne(A), is as follows:
1. First, we construct the initial state q0 = 〈Lq0 , Cq0 , ∆Cq0〉 = 〈l0, C0, ∅〉 where:

a) l0 is the initial location of AI ;
b) C0 is a Nc − uplet (Nc is the number of clocks) of pairs (0 < ci, ε), i = 1, · · · , Nc and ε an empty ExpSeq.
c) ∆Cq0 = ∅, because all clocks are initially inactive.

2. From the initial state and iteratively, we construct transitions and states as follows:
a) For each constructed state q, we determine the set of events enabled in q;
b) For each enabled event γ, we construct the state r reached after the occurrence of γ (r is constructed only

once, then if it has been constructed in a previous iteration, no new construction of r is made) and the
transition (q, γ, r).

The iterative process terminates when no new state and new transition is constructed. Item 2a and 2b will be
detailed further.

In a state q, when an expiration (or set of expirations) can occur, we obtain an enabled transition of type 1. When an
event σ labeling a transition of A can occur, we obtain an enabled transition of type 2, and when expiration(s) and a σ
can occur simultaneously, we obtain an enabled transition of type 3. To construct iteratively the SEA B, we need then
a procedure that allows to determine the set of events enabled at each constructed state (i.e. a procedure that realizes
the above item 2a), and a procedure to construct the state reached after the occurrence of each enabled event and the
corresponding transition (i.e. a procedure that realizes the above item 2b).

In a descriptive way, an event γ ∈ Γ (of type 1, 2 or 3) is said enabled in state q if it is possible that at the same moment
τ :

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 11

• The invariant of Lq is satisfied.
• The simultaneous occurrence of each event composing γ can take place, and this without the obligation for

another event to occur before.
• The location invariant of the state reached after the occurrence of γ is satisfied.

In other words, for the event γ to be enabled, its occurrence must extend a trace, which converted into a timed trace
(each event associated with its occurrence time), gives a timed trace accepted by the TA A. In particular, if γ is of
type 2, it is enabled if the guard of the corresponding transition labeled by γcΣ in A is satisfied in q. If γ is of type 1,
it is enabled if:

• at a given moment in q, all expirations in γcExp must occurs, because the delay programmed at their resets expire;
• if r is the state reached after the occurrence of γ, the invariant of Lr is satisfied at the time of occurrence of γ.

If γ is of type 3, it is enabled if:
• the guard of the corresponding transition labeled by γcΣ in A is satisfied in q;
• the invariant of q is satisfied at the time of occurrence of γ.

We shall define more formally the enabling of each type of event in Section 6. In Section 5.2, we present formally the
iterative construction of B, supposing we have a procedure to determine which events are enabled at a given state (i.e.
a procedure that realizes item 2a), and a procedure to compute the state reached after the occurrence of each enabled
event (i.e. a procedure that realizes item 2b). These procedures will be presented in detail in Section 6.

5.2 Construction of the SEA

In this section, we shall present the formal procedure of construction of a SEA. The main contribution of this procedure
in comparison to the one in [30] is: first the support of location with invariants and second the identification and fusion
of equivalent states. Let us first present the identification of equivalent states.

Definition 5.4 : prefix and suffix
For the language L(B) of B, the set of finite prefixes of L(B), noted L(B), is the set of finite sequences of events of
Γ that can be extended to sequences belonging to L(B). Formally, the sequence s is a prefix of L(B) iff there exists
a sequence s′ of events of Γ such that ss′ ∈ L(B). The set of finite suffixes of L(B), noted L(B), is the set of finite
sequences of events of Γ that extend prefixes of L(B) to sequences belonging to L(B). Formally, the sequence s is a
suffix of L(B) iff there exists a sequence s′ of events of Γ such that s′s ∈ L(B).

Notations 5.2 : Let B = (Q, Γ, δ,Π, q0, Qm) be a SEA, q ∈ Q, γ ∈ Γ, E ∈ Γ1:
• (q, γ)! means γ is enabled in q, and (q, γ) denotes the state reached after the occurrence of γ from the state q,

when (q, γ)!..
• (q, E)1! means that the simultaneous occurrence of the Exp of E is possible in q, but would lead to a state where

an invariant is unsatisfied.
• Let s = E1E2 · · ·Em be a sequence of events belonging to Γ, (q, s)! means that s is a suffix of B starting in q,

i.e. for the states q0 = q and qi = (qi−1, Ei), i = 1, 2, ...,m, we have (qi−1, Ei)!.
• Cq ≈ ∅ if all the clocks are inactive in q.
• EXP(q) is the set of next expected expirations of clocks active in q. Therefore, if in q, c1, c2, · · · , cp are the active

clocks and Exp(ci , ki) is the next expiration of ci, for i = 1, 2, · · · , p, then
EXP (q) = {Exp(c1 , k1), · · · ,Exp(cp , kp)}.

• For a location ` of a IA AI = StepOne(A), OUT (`) is the set of events of type 2 labeling the outgoing
transitions of `.

Definition 5.5 : same future
For the SEA B = (Q, Γ, δ,Π, q0, Qm) and two states q1 and q2 in Q, q1 and q2 have the same future iff ∀s ∈ L(B):
(q1, s)! ⇔ (q2, s)!.

Definition 5.6 : location equivalent states, equivalent SEA
For B = (Q, Γ, δ,Π, q0, Qm) = SetExp(A):

• Two states q1 and q2 in Q are location equivalent relatively to B, noted q1 ' q2, if Lq1 = Lq2 and q1 and q2

have the same future.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 12

• Two SEA B1 and B2 are equivalent, noted B1 ' B2, iff L(B1) = L(B2) and Lm(B1) = Lm(B2).

Definition 5.6 states that two states of the SEA are location equivalent if they have the same location and the set of
possible sequences from these states is the same. This definition is used for detecting states that are location equivalent
during the construction of the SEA.

Remarque 5.1 If q1 ' q2, then (q1 ∈ Qm) ⇔ (q2 ∈ Qm). The reason is that if q1 and q2 have the same location and
the same future, then if q1 is a quiescent state, q2 is also a quiescent state (the events enabled at q1 are also enabled at
q2) and if q1 is marked, its location is marked in A and then q2 is also marked.

Proposition 5.1 If q1 and q2 are two states of a SEA such that: (i) Lq1 = Lq2 , (ii) Cq1 ≈ ∅ and (iii) Cq2 ≈ ∅, then q1

and q2 are location equivalent.

Proposition 5.2 If q1 and q2 are two states of a SEA B such that: (i) Lq1 = Lq2 , (ii) Cq1 = Cq2 and
(iii) ∀∆Cq1(ci, cj) ∈ ∆Cq1 , ∆Cq2(ci, cj) ∈ ∆Cq2 : (∆Cq1(ci, cj) = ∆Cq2(ci, cj)) OR (∆Cq1(ci, cj) 6= ∆Cq2(ci, cj)
AND (ci OR cj is inactive)), then q1 and q2 are location equivalent.

Proposition 5.1 states that two states are location equivalent if they have the same location and all clocks are inactive
in these states. It can thus be deduced that location equivalent states have the same future, i.e., permit the same set
of sequences. Proposition 5.2 states that if two states are differentiated uniquely by ∆Clock-Conds using one or two
inactive clocks, then they are location equivalent. This can be justified intuitively by the fact that a ∆Clock-Cond using
ci − cj allows to determine the order of occurrences of the next expirations of ci and cj , and thus if one of ci or cj is
inactive then this ∆Clock-Cond has no influence on the future because it does not influence the enabling of events.

Notation 5.1 Let B be a SEA. B∂ denotes the SEA obtained from B by merging the states that are location equivalent.

Proposition 5.3 For the SEA B and B∂ , we have: B∂ ' B.

Proposition 5.3 states that if in a SEA, we merge all the location equivalent states, the obtained SEA is equivalent
to the original one. We take into account this fact by enclosing the merging of the location equivalent states in the
procedure of construction of the SEA. This allows us to minimize the state space of the generated SEA. The merging
of two states q1 and q2 is straightforwardly made by deleting q2 and “re-directing” to q1 all the transitions leading to
q2.

Remarque 5.2 The merging of states used above do not take into account updating of the ∆Clock-Cond of the states.
This has no consequence in a study where ∆Clock-Conds are not used. For a study where the exact expressions of the
∆Clock-Conds of states are required, the merging of q1 and q2 can take into account the update of the ∆Clock-Cond
of q1, by adding to the ∆Clock-Cond of q1 the one of q2 and combining each ∆Cq1(ci, cj) and ∆Cq2(ci, cj) into one
∆Clock-Cond. This is possible because the ∆Clock-Cond using ci−cj of two equivalent states defines two contiguous
intervals.

LetAI =StepOne(A) be an IA, andB0 = (Q0,Γ0, δ0,Π0, q
0, Q0

m) = ({q0}, ∅, ∅,Π0, q
0, Q0

m) a SEA, with Q0
m = {q0}

if q0 is marked, else Q0
m = ∅, and Π0 is such that Π0(q0) = ∅. q0 has been specified in Section 5.1. Consider the

series Bi = (Qi, Γi, δi,Πi, q
0, Qi

m), defined by Bi+1 = Ω(Bi), for i ≥ 0, where the operator Ω is formally defined
below, and where the notation] denotes an empty label.

Definition of Bi+1 = Ω(Bi) :

1. Qi+1 = Qi ∪ {(q, γ) | q ∈ Qi, γ ∈ (2EXP(q) × (OUT (Lq) ∪ {]})) \ {∅,]}, (q, γ)!}
2. δi+1 = δi ∪ {(q, γ, r) | q ∈ Qi, (q, γ)!, r = (q, γ) ∈ Qi+1}
3. Γi+1 = Γi ∪ {γ | ∃(q, γ, r) ∈ δi+1}
4. Qi+1

m = Qi
m ∪ {q ∈ Qi+1 | (Lq ∈ Lm) ∧ (Cq ≈ ∅)}

5. ∀q ∈Qi+1, Πi+1(q) = {E | ((q, E)1!
)}

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 13

Explanation of the procedure of the operator Ω

Line 1: the set of states at the iteration i + 1 is equal to the set of states at iteration i to which is added the new
constructed states, which are states reached by transitions enabled in states of iteration i. Line 2: the set of transitions
at iteration i+1 is equal to the set of transitions at iteration i to which are added the new constructed transitions, which
are transitions enabled in states constructed at iteration i and that lead to states of iteration i + 1. Line 3: the alphabet
of the SEA at iteration i + 1 is equal to the alphabet at iteration i to which are added the events of the new transitions
constructed at line 2. Line 4: the set of marked states at iteration i + 1 is equal to the set of marked states at iteration i
to which are added the new marked states constructed at line 1. Line 5: at iteration i + 1, for a given state q, the set of
preempted events is the set of events of type 1 that, if they occur, can lead to a state where an invariant is unsatisfied.

Theorem 1 The operator Ω has a fixpoint obtained after a finite number of iterations. Formally: ∃p ≥ 0|∀n ≥ p :
Bn = Bp.

The SEA B = SetExp(A) is the fixpoint of Ω.

According to the semantics of a SEA, a location must be left before its invariant becomes unsatisfied. In the construc-
tion of the SEA, considering that requirements 2.1 and 2.2 are satisfied, the generation of the SEA by the operator
Ω constructs only the states where invariants are satisfied. To avoid construction of states where invariants are not
satisfied, the procedure operates as follows:

• disable every transition T of type 1 if the invariant of the location of its destination state is unsatisfied.
• disable every transition of type 3 if at the moment where its occurrence is possible, the invariant of the location

of its origin state is unsatisfied.

Notation 5.2 :
• If X is a system of linear equations and inequations using a set of variables, Sol≥0(X) denotes the set of non

negative solutions of X .
• Let q be a state of a SEA over the alphabet Γ. δ(q) ⊆ Γ is the set of events enabled in q.

During the construction of the SEA B, we can ensure the satisfaction of requirements 2.1 and 2.2 by checking at each
iteration of the operator Ω the satisfaction of the following two conditions:

1. ∀q, q′ ∈ Qi:
• If ∃γ ∈ Γ2 ∪ Γ3|((q, γ) = q′) ∧ (Sol≥0(Cq ∪ ILq) 6= ∅) ∧ (Sol≥0(Cq′ ∪ ILq′) = ∅),
• Then requirement 2.1 is not satisfied.

2. ∀q ∈ Qi:
• If

(
Πi(q) 6= ∅) ∧ (

δ(q) ∩ Γ2 = ∅) ∧ (∃γ ∈ Πi(q)|(6 ∃β ∈ δ(q) ∩ Γ3|βcExp = γ)
)
,

• Then requirement 2.2 is not satisfied.

Intuitively, for the first condition, requirement 2.1 is unsatisfied if there exists two states q and q′ = (q, γ) such that
(i) γ is of type 2 or 3 and (ii) the invariant of Lq is satisfied whereas the one of Lq′ is unsatisfied. Translated in the
TA, this means that there exists a transition which can be enabled in location Lq at a time when the invariant of its
destination location (i.e Lq′) is unsatisfied, which means that Lq′ can be reached when its invariant is unsatisfied.

For the second condition, requirement 2.2 is not satisfied if at least one event (of type 1) must be preempted but there
exists no transition able to make this preemption. Note that the transitions able to preempt an event E ∈ Γ1 are those
labeled either by an event σ ∈ Γ2 or γ ∈ Γ3 such that γcExp = E .

In the generation of the SEA B = SetExp(A), we do not construct the states having the invariants of their locations
unsatisfied, and the transitions that would lead to them are preempted. The satisfaction or dissatisfaction of the in-
variant of a location Lq of A can be checked from the inequations of the invariant and the Clock-Conds of q. If the
system of inequations XLq,Cq , formed of the invariant of Lq and the Clock-Conds of q has no positive solution, then
the invariant of Lq is not satisfied. This statement is justified by the fact that for each clock ci:

• Cq(ci) defines an interval denoted ICq(ci) which specifies the values each clock can have when in q;
• ILq

(ci) (i.e. the Clock Constraint of the invariant of Lq using ci) defines an interval denoted IILq (ci) which
specifies the values each clock can when when in Lq, and

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 14

• if ICq(ci) ∩ IILq (ci) = ∅ (i.e XLq,Cq has no positive solution), then there exists no time in q during which the
invariant of Lq is satisfied and thus, ILq is unsatisfied.

A transition of type 1 or 3 must be preempted if one of the following two conditions is satisfied:

Condition a: the location invariant of the destination state is unsatisfied;
Condition b: when the transition is enabled, the location invariant of its origin state is unsatisfied.

As only the execution of an event of Σ in a TA leads to a different location, then in a SEA, only transitions of type 2
and 3 have the locations of their origin and destination states different. When requirement 2.1 is satisfied, we can
deduce that transitions of type 2 and 3 never satisfy Condition a. Thus, without preemption, only a transition of type 1
can have a destination state with location invariant unsatisfied and then satisfies Condition a. Only transitions of type 3
can satisfy Condition b, and in this case the transition of type 1 formed of the same expirations as those of the transition
of type 3 satisfies Condition a.

To illustrate Condition a and b, let us consider the part of a TA represented on Figure 5(a). We suppose that the TA
has one clock named x. The transformation in SEA of this part of TA is represented on Figure 5(b), where preempted
transitions are represented by dashed lines. In state S1, the transition labeled by Exp(x , k1) satisfies Condition a
because the location invariant of its destination state (S3) is unsatisfied (x > k1 whereas the invariant of L1 requires
x < k1). This transition will therefore be preempted. In the same way, the transition labeled by aExp(x , k1) satisfies
Condition b because when the transition is enabled (i.e. when x = k1), the location invariant of S1 is unsatisfied
(L1 must be left before x = k1). This transition will also be preempted. In state S5, the transition labeled by
Exp(x , k2) satisfies Condition a (invariant of L3 is unsatisfied at S7) and will be preempted, but the transition labeled
by bExp(x , k2) does not satisfy Condition b (and Condition a) because of Requirement 2.1) and thus must not be
preempted (when x = k2, the invariant of L3 is still satisfied). For this example, we shall have, for the function Π:
Π(S1) = {Exp(x , k1)} and Π(S5) = {Exp(x , k2)}.

L1
x<k1 L2 L3

x<=k2 L4
a b

(a) Part of TA

0<x<k1
L1

S1 k1<x
L1

S3

Exp(x,k1)a

L2
0<x<k1

S2

k1<x
L2

S4 0<x<k2
L3

S5

Exp(x,k2)b
0<x<k2

L4

S6 k2<x
L3
S7

k2<x
L4

S8
a

Exp(x,k1)

b

Exp(x,k2)

(b) Part of SEA

Figure 5: Part of a TA and its SEA for illustration of preemption

If we apply the second step of SetExp to the IA of Figure 4, we obtain the SEA of Figure 6, which is the same as the
one of Figure 3, but where each state is defined by its three parts (see Section 3). The behavior of this SEA can be de-
scribed as follows: from the initial state S1=q0 = (I, {(0 < c1,−), (0 < c2,−)}, ∅), the process can move to the state
S2=(W, {(0 < c1 < 3, 100), (0 < c2,−)}, {0 < c2 − c1}) by the execution of the event αSet(c1 ; 3 , 100) (simulta-
neous occurrence of α and Set(c1 ; 3 , 100)). In S2, the invariant of W is always satisfied because c1 < 3, while
the invariant of W is satisfied as long as c1 < 100. In S2, four events are enabled: λSet(c2 ; 50) leading to S3,
Exp(c1 , 3) leading to S4, βExp(c1 , 3) leading to S5, and λSet(c2 ; 50)Exp(c1 , 3) leading to S6. If for example the
event λSet(c2 ; 50) occurs, the process moves to the state S3=(B, {(0 < c1 < 3, 100), (0 < c2 < 50)}, {0 <
c2 − c1 < 3}) and continues its move to S7 or S8 and so on. The occurrence of Exp(c1 , 3) in S2 leads to
S4=(W, {(3 < c1 < 100,−), (0 < c2,−)}, {0 < c2 − c1}). In S4, the expiration Exp(c1 , 100) is preempted because
if not, its occurrence would lead the process to the state S4’=(W, {(100 < c1,−), (0 < c2,−)}, {0 < c2− c1}) where
the invariant of W is unsatisfied because c1 > 100. Therefore in S4, at least one of the event β or λSet(c2 ; 50) occurs
inevitably before Exp(c1 , 100), in order to avoid the dissatisfaction of the invariant. The rest of the behavior can be
described in a similar way.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 15

Set(c2,50)λ

Set(c1,80)µ

Set(c2,50)λ Exp(c1,3)

Exp(c1,3)β

Set(c2,50)λ Set(c1,80)µ

Set(c1,80)µSet(c1,80)µ

Set(c1,80)µ

I

0<c2
0<c1

I
3<c1<100

0<c2
0<c2−c1

[Exp(c2,50)]

B

0<c2<50
3<c1<100

c1−c2=3

[Exp(c1,100)]

0<c2−c1
0<c2

W
3<c1<100

[Exp(c1,100)Exp(C2,50)]

S9

[Exp(c1,100)]
[Exp(c2,50)]

3<c1<100
0<c2<50
3<c1−c2<100

B

S10

3<c2−c1<50

0<c2<50
0<c1<80

R

S8
B

3<c1<100
0<c2<50
0<c1−c2<3

[Exp(c2,50)]

S7
R

0<c2<50

0<c1<80

0<c2−c1<3

S11

0<c1<80

R

50<c2
0<c2−c1<3

S12
I

0<c1<80
50<c2

0<c2−c1<3

α Set(c1;3,100)

α Set(c1;3,100)α Set(c1;3,100)

0<c2−c1

W

0<c2
0<c1<3,100

0<c2<50
0<c2−c1<3

B
0<c1<3,100

α Set(c1;3,100) Exp(c1,80)α Set(c1;3,100)Exp(c1,100)

S1

S2

Exp(c2,50)

γ

Exp(c1,3)β
Exp(c1,3)

Exp(c1,80)

Exp(c1,100)

Exp(c2,50)

[Exp(c1,80)]

Exp(c1,3)S3

S6S4

S5

Figure 6: SEA corresponding to the IA of Figure 4

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 16

6 Construction of States and Transitions

In the previous section, we have presented the formal construction of the SEA, but we do not show: a) how to determine
if an event is enabled in a given state, and b) how to compute the state reached by a given enabled event. In sections 6.1
and 6.2 below, we study items a) and b) respectively.

Notations 6.1 :
• Let λ = e1e2 · · · en be a sequence of events, |λ| is the length of λ (i.e. |λ| = n); λ[i] is the ith element of λ (i.e.

λ[i] = ei) and λ[6 i] is a sequence obtained from λ by removing λ[i] (i.e. λ[6 i] = e1 · · · ei−1ei+1 · · · ei).
• If ∆C1 and ∆C2 are two ∆Clock-Conds using ci − cj , where ci and cj are two clocks, then ∆C1 u ∆C2 is

a ∆Clock-Cond obtained by combining ∆C1 and ∆C2 into one ∆Clock-Cond which corresponds to the con-
junction of ∆C1 and ∆C2. For example, if ∆C1 = k1 < ci − cj < k2 and ∆C2 = k3 < ci − cj < k4, then
∆C1 u∆C2 = max(k1, k3) < ci − cj < min(k2, k4).

• Let ci and θi be two clocks, q a state and Cq(ci) the Clock-Cond of q using ci. Cq〈ci 7→ θi − ci〉 is a
∆Clock-Cond obtained from Cq(ci) by replacing ci by θi − ci. For example, if Cq(ci) = k1 < ci < k2, then
Cq〈ci 7→ θi − ci〉 = ∆Cq(ci, θi) = k1 < ci − θi < k2

• Let ∆C be a set of ∆Clock-Conds, and θi a clock used in ∆C. ∆C〈6 θi〉 is a set of ∆Clock-Conds obtained from
∆C by eliminating θi. The elimination of θi is made by firstly removing all ∆Clock-Cond in the form ∆Cq(θi, θj)
and by combining all pairs of ∆Clock-Cond using θi to form one ∆Clock-Cond. To combine two ∆Clock-Conds
∆Cq(ci, θi) and ∆Cq(cj , θi), we express the first ∆Clock-Cond using θi − ci and the second using cj − θi, and
we add member by member these two inequations to obtain one inequation using cj − ci. For example, if the
first ∆Clock-Cond is k1 < θi − ci < k2 and the second is k3 < θi − cj < k4, we rewrite the first inequation as
−k2 < ci − θi < −k1 and we add it with the second to obtain k3 − k2 < ci − cj < k4 − k1. If ∆C contains
only one ∆Clock-Cond using θi, the elimination of θi consists in removing this ∆Clock-Cond.

6.1 Processing of transition of type 1

The following system of inequations will be used to determine when an event of type 1 is enabled, for a state q and an
event E of type 1.

Xq,E = ∆Cq ∪ {ci−ki <0 |Exp(ci , ki)∈E}
∪ {ci−ki = cj−kj |Exp(ci , ki),Exp(cj , kj)∈E}
∪ {ci−ki <cj−kj |Exp(cj , kj)∈E ,Exp(ci , ki) ∈ EXP(q) \ E}

The above formula is a set of four sets of inequations: the first set ∆Cq indicates for each pair of clocks the bound of
their difference and thus in which order their expirations may occur, the second set {ci−ki <0 |Exp(ci , ki)∈E} indi-
cates that the expirations of E have not still occurred, the third set {ci−ki = cj−kj |Exp(ci , ki),Exp(cj , kj)∈E} in-
dicates that the expirations of E will occur simultaneously, and the fourth set
{ci−ki <cj−kj |Exp(cj , kj)∈E ,Exp(ci , ki) ∈ EXP(q) \ E} indicates that the expirations of E are preceded by no
other expiration. It is clear that the conjunction of these conditions indicates that E can be the next set of simultaneous
expirations.

The following proposition allows to determine when an event E ∈ Γ1 is enabled in state q while invariant of Lq is
satisfied.

Proposition 6.1 (q, E)! iff the following three conditions are satisfied:
1. E ⊆ EXP(q);
2. Sol≥0(Xq,E) 6= ∅;
3. ∀Exp(ci , k)∈E : ∃(∼Exp(ci , k ′))∈ILq

⇒k′>k, with ∼∈ {<,≤}.

Intuitively, (q, E)! if it is possible that at the same moment τ , all the expirations of E occur and without leading to
a state whose location invariant is unsatisfied. If E satisfies the first two conditions of Proposition 6.1 and does not
satisfy the last condition, then its occurrence would lead to a state violating a location invariant, which is noted (q, E)1!
(see Notation 5.2). In this case, E is preempted and we can record the preempted events in q as follows:

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 17

Π(q) = {E ⊆ EXP(q) | (Sol≥0(Xq,E) 6= ∅) ∧
(∃Exp(ci , k) ∈ E , ∃(∼Exp(ci , k ′))∈ILq | k′≤k)}

For an enabled event E in state q, the following procedure allows to compute the state r = (q, E) reached after the
occurrence of E :

1. r := q
2. ∀Exp(ci , k)∈E : |Kr(ci)| = 0 ⇒ Cr(ci) :=(k<ci);
3. |Kr(ci)|>0 ⇒ Cr(ci) :=(k<ci <Kr(ci)[1]),
4. |Kr(ci)|>0 ⇒ Kr(ci)[6 1].
5. ∀Exp(ci , ki),Exp(cj , kj) ∈ E , ∆Cr(ci, cj) := (ci − cj = ki − kj).
6. ∀Exp(ci , ki)∈E , ∀Exp(cj , kj)∈EXP(q)\E , ∆Cr(ci, cj) := ∆Cr(ci, cj)u(ki−kj <ci−cj).
7. (∀ci ∈ C, ∃k > 0, Cr(ci) = (k < ci)) ⇒ ∆Cr := ∅.

Explanation of the above procedure of computation of r = (q, E)

Line 1 : r is initialized to q.
Lines 2-4 : for each Exp(ci , k)∈E , the objective is to update Cr(ci) and Kr(ci).
Line 2 : we consider the case where Exp(ci , k)∈E is the last expiration of ci, and thus we assign k < ci to Cr(ci)
because Exp(ci , k) has occurred and no other expiration of ci is programmed.
Lines 3-4 : we consider the case where there exists Exp(ci , k ′) programmed after Exp(ci , k). At Line 3, we update
Cr(ci) considering that Exp(ci , k) has occurred and Exp(ci , k ′) is the next programmed expiration of ci. At line 4,
we remove k′ from Kr(ci) because Kr(ci) is a sequence which indicates the values to which ci will expire after its
next expiration, which is in this case Exp(ci , k ′).
Line 5 : for all Exp(ci , ki)∈E , we have the equality ci − ki = 0 at the time of occurrence of E . Thus, for all
Exp(ci , ki)∈E and Exp(cj , kj)∈E , we have ci − ki = cj − kj = 0 at the time of occurrence of E . As all the clocks
increase at the same rate, then ci − ki = cj − kj , (i.e. ci − cj = ki − kj) is true before and after the occurrence of E
and then, we replace ∆Cr(ci, cj) by this equality which is a more precise information
Line 6 : for all Exp(ci , ki)∈E , we have the equality ci − ki = 0 at the time of occurrence of E . In the same way,
for all Exp(cj , kj)∈EXP(q)\E , we have the inequality cj − kj < 0 at the time of occurrence of E . As all the clocks
increase at the same rate, then cj − kj < ci − ki (i.e. ki − kj < ci − cj) is true before and after the occurrence of E .
We combine this inequation with ∆Cr(ci, cj).
Line 7 : we empty ∆Cr if all the clocks are inactive.

6.2 Processing of transitions of type 2 and 3

Let q be a state of the SEA B = SetExp(A) = StepTwo(AI), and σ ∈ Γ2 labeling a transition T of AI . The
following proposition allows to determine when σ is enabled in q.

Proposition 6.2 (q, σ)!, for σ ∈ Γ2, iff:
1. σ ∈ OUT (Lq);
2. ∀(<Exp(ci , k)) or (≤Exp(ci , k))∈GT : ∃k′≤k,∃u< k′ such that Cq(ci) = (u<ci <k′);
3. ∀ci ∈ ZT , (=Exp(ci , k)) 6∈GT ;
4. ∀(> Exp(ci , k)) or (≥ Exp(ci , k)) ∈ GT : ∃k′ ≥ k,∃u > k′ such that (Cq(ci) = (k′<ci <u) or

Cq(ci) = (k′<ci));

Proposition 6.2 allows to determine if (q, σ)!, by checking if the guard of Transition is satisfied in state q. More
precisely:
Condition 1: means that σ labels an outgoing transition of Location Lq in AI .
Condition 2: means that if there exists an Exp-Condition in the form “<Exp(ci , k)” or “≤Exp(ci , k)” in the guard
of T , then the expiration Exp(ci , k) has not occurred yet.
Condition 3: means that there exist no Exp-Condition in the form “=Exp(ci , k)” in the guard of T .

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 18

Condition 4: means that if there exists an Exp-Condition in the form “>Exp(ci , k)” or “≥Exp(ci , k)” in the guard
of T , then the expiration Exp(ci , k) has already occurred.

If γ = (E , σ) ∈ Γ3, the following proposition allows to determine when (q, γ)!, i.e. γ is enabled, where T is the
transition labeled by σ in the IA.

Proposition 6.3 (q, γ)!, with γ = (E , σ), where E ∈ Γ1 and σ ∈ Γ2, iff:
1. σ ∈ OUT (Lq);
2. E ⊆ EXP(q) and Sol≥0(Xq,E) 6= ∅;
3. ∀(<Exp(ci , k))∈GT : Exp(ci , k) 6∈E and ∃k′≤k,∃u<k′ such that Cq(ci) = (u<ci <k′);
4. ∀(≤Exp(ci , k))∈GT : ∃k′≤k,∃u<k′ such that Cq(ci) = (u<ci <k′);
5. ∀(=Exp(ci , k))∈GT : Exp(ci , k)∈E and ∃u<k such that Cq(ci) = (u<ci <k);
6. ∀(>Exp(ci , k))∈GT : ∃k′≥k,

(∃u>k′ such that Cq(ci) = (k′<ci <u)
)

or Cq(ci) = (k′<ci);
7. ∀(≥Exp(ci , k))∈GT :

• Either ∃k′≥k, (∃u>k′ such that Cq(ci) = (k′<ci <u)) or Cq(ci) = (k′<ci);
• Or Exp(ci , k)∈E and ∃u<k such that Cq(ci) = (u<ci <k).

8. ∀Exp(ci , k) ∈ E : ∃(<Exp(ci , k ′))∈ILq ⇒ k<k′ and ∃(≤Exp(ci , k ′))∈ILq ⇒ k≤k′.
Conditions 1-7 of Proposition 6.3 allow to determine if γ may be enabled if the satisfaction of invariants is not taken
into account, and condition 8 allows to exclude the preempted events. More precisely:
Condition 1: means that σ labels an outgoing transition of the location Lq in AI .
Condition 2: means that all expirations in E can occur simultaneously in q, i.e. E satisfies the conditions for an event
of type 1 to be enabled (point 1 and 2 of Proposition 6.1), without taking account satisfaction of invariants (point 3 of
Proposition 6.1).
Condition 3: means that if there exists an Exp-Condition in the form “< Exp(ci , k)” in the guard of T , then the
expiration Exp(ci , k) has not yet occurred and is not in E .
Condition 4: means that if there exists an Exp-Condition in the form “≤ Exp(ci , k)” in the guard of T , then the
expiration Exp(ci , k) has not yet occurred.
Condition 5: means that if there exists an Exp-Condition in the form “= Exp(ci , k)” in the guard of T , then the
expiration Exp(ci , k) is in E and is the next programmed expiration of ci.
Condition 6: means that if there exists an Exp-Condition in the form “> Exp(ci , k)” in the guard of T , then the
expiration Exp(ci , k) has already occurred.
Condition 7: means that if there exists an Exp-Condition in the form “≥ Exp(ci , k)” in the guard of T , then either
Exp(ci , k) has already occurred, or it is in E and is the next programmed expiration of ci.
Condition 8: means that γ is not preempted, i.e. at the time of its occurrence, the invariant of Lq is satisfied.

When γ = (E , σ) ∈ Γ3 is enabled in accordance with Proposition 6.3, the following procedure allows to compute the
state r = (q, γ) reached after the occurrence of γ.

1. r := (q, E)1→6 /*execution of lines 1-6 of the procedure of Section 6.1*/
2. Lr := destination location of T
3. ∀Set(ci, k1, k2, · · · , km) ∈ ZT :
4. ∆Cr〈ci 7→ θi〉
5. 6 ∃Exp(ci , k)∈E⇒ ∆Cr := ∆Cr ∪ {Cr(ci)〈ci 7→θi−ci〉}
6. ∃Exp(ci , k) ∈ E ⇒ ∆Cr := ∆Cr ∪ {θi − ci = k}
7. ∀cj 6∈ ZT :
8. 6 ∃Exp(cj , k) ∈ E ⇒ ∆Cr := ∆Cr ∪ {Cr(cj)〈cj 7→ cj − ci〉}
9. ∃Exp(cj , k) ∈ E ⇒ ∆Cr := ∆Cr ∪ {cj − ci = k}
10. Cr(ci) := (0 < ci < k1)
11. Kr(ci) := k2 · · · km

12. ∀ci, cj ∈ ZT : ∆Cr := ∆Cr ∪ {cj − ci = 0}
13. ∀θi,∆Cr〈6 θi〉
14. r := (q, E)7 /*execution of line 7 of the procedure of Section 6.1*/

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 19

Explanation of the above procedure of computation of r = (q, γ)

Line 1 : we compute the intermediate state v = (q, E) which would be obtained after the occurrence of E at q,
using the procedure of Section 6.1 without executing its last line, because this later is executed at the end of the
procedure in order to finalize the computation of each state. The justification of this intermediate computation is that
the simultaneity of σ and E can be interpreted as the occurrence of E immediately followed by the one of σ. r is
initialized to this intermediary state v.
Line 2 : we update the location of r which becomes the destination location of T .
Lines 3-13 : these lines are of use to compute the effect of the resets of T . Therefore, if T has no reset, then T has no
influence on the values of the clocks and thus, r is determined by lines 1, 2 and 14.
Lines 3-11 : these lines allow to compute the effect of the resets of T , for each clock ci, on r.
Line 4 : we replace in the ∆Clock-Conds each clock ci which is reset by T by a fictitious clock θi which has the
same value as ci before its reset. This fictitious clock is not reset by T and thus, all the ∆Clock-Conds using ci remain
satisfied after the execution of T if we replace ci by θi.
Line 5 : if ci does not expire, i.e. Exp(ci , k) 6∈ E , we add to ∆Cr the ∆Clock-Conds obtained by replacing ci by
θi − ci. This is justified by the fact that if τ is the time when T occurs and ci is reset, then Cr(ci) is satisfied before
the reset of ci and at the moment τ if ci has not been reset. At τ , θi has the value that ci would have if it has not been
reset, and ci is null. We deduce that Cr(ci) is satisfied after the execution of T and before the next reset of ci, if we
replace ci by θi − ci. This information is inserted in ∆Cr.
Line 6 : if ci expires, i.e. Exp(ci , k) ∈ E ,we add to ∆Cr the ∆Clock-Cond “θi − ci = k”. This is justified by the
fact that if τ is the time of occurrence of T , we have θi = k and ci = 0 at τ . Thus θi − ci = k at τ , and this equality
remains true until the next reset of ci. This information is inserted in ∆Cr.
Line 7 : we consider every cj that is not reset by T .
Line 8 : if cj does not expire, i.e. Exp(cj , k) 6∈ E , we add to ∆Cr the ∆Clock-Conds obtained by replacing cj by
cj − ci in the Clock-Cond of r using ci. This is justified by the fact that if τ is the time when T occurs and ci is reset,
then Cr(cj) is satisfied at τ because cj is not reset by T . At τ , cj − ci has the value of ci because ci is reset at this
moment. We deduce that Cr(cj) is satisfied after the occurrence of T and before the next reset of ci, if we replace cj

by cj − ci. This information is inserted in ∆Cr.
Line 9 : if cj expires, i.e. Exp(cj , k) ∈ E , we add to ∆Cr the ∆Clock-Cond cj − ci = k. This is justified by the fact
that if τ is the time of occurrence of T , we have cj = k and ci = 0 at τ . Thus cj − ci = k at τ , and this equality
remains true before the next reset of ci. This information is inserted in ∆Cr.
Line 10 : we update Cr(ci) by its status just after the reset of ci. If Set(ci ; k1 , k2 · · · , km) is the Set event of ci

associated to T , then the new Cr(ci) indicates that ci has been reset and that its next expiration is Exp(ci , k1).
Line 11 : we update Kr(ci) by its status just after the reset of ci. If Set(ci ; k1 , k2 · · · , km) is the Set event of
ci associated to T , then the new Kr(ci) indicates that ci has been reset and that its next expirations values after
Exp(ci , k1) are k2 · · · km.
Line 12 : for two clocks ci and cj which are reset by T , the equality cj − ci = 0 is satisfied before the next reset of
one of the two clocks. This information is inserted in ∆Cr.
Line 13 : We eliminate each θi from ∆Cr, because θi has been used just to keep the information on the clocks which
have been reset. For this elimination we add each pair of ∆Clock-Cond using θi as indicated in Notation 6.1.
Line 14 : we finalize the computation of r by executing the last line of the procedure of construction for events of
type 1, i.e. we empty ∆Cr if all the clocks are inactive.

7 Correctness, properties and simplification of SetExp

We shall present in this section some ideas on the correctness of SetExp and some of its properties. Moreover, we
shall present a way of simplification of SetExp.

7.1 Correctness of SetExp

Let L(B) be the regular language of a SEA B over the alphabet Γ. By construction, L(B) respects the following
condition, called the consistency condition: each Set(c; k) and its corresponding expiration Exp(c, k) are separated

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 20

by a delay k. Recall that a trace in L(B) is a sequence in the form γ1γ2 · · · γn which terminates in a quiescent state,
where each γi ∈ Γ is the event of a transition of B.

Definition 7.1 : timed language of SEA
The timed language of a SEA B, noted Lt(B), is defined as follows, where each τi (i = 1, · · · , n) is a real value:
(γ1, τ1)(γ2, τ2) · · · (γn, τn) ∈ Lt(B) iff: γ1γ2 · · · γn ∈ L(B), 0 < τ1 < τ2 < · · · < τn, and ∀γi, γj , i < j :
If γi contains Set(c; k), γj contains Exp(c, k) and no γm (i < m < j) contains Set(c; ∗),
then τj = τi + k.

Definition 7.1 means that Lt(B) contains all the timed traces obtained from a trace of L(B) by associating a time
respecting the consistency condition to each event.

Definition 7.2 : equivalence of TA and SEA
A TA A is said equivalent to a SEA B iff Lt(A) (the timed language of A) is obtained from Lt(B) by removing all the
Set and Exp events.

Intuitively, a TA A is equivalent to a SEA B iff the behavior of A and B cannot be distinguished by an observer who
does not observe Set and Exp events.

Theorem 2 Each TA A and its corresponding SEA SetExp(A) are equivalent.

Theorem 2 ensures the correctness of SetExp. This implies that it is possible to transform the study of a RTDES
modeled by a TA A under an untimed form, by making the study on the SEA B = SetExp(A).

7.2 Properties and complexity of SetExp

We express in this section some properties of SetExp and determine its complexity in term of maximum number of
states.

Property 7.1 If in a TAA, we multiply by the same value k all the constants used to express the timing constraints, the
SEA B = SetExp(A) does not change, modulo the multiplication by k of every constants in the Set and Exp events.

Property 7.1 is justified by the fact that multiplying by the same constant all the values in the timing constraints implies
the multiplication by the same value of all the constants in the Clock-Cond and ∆Clock-Cond of the states of the SEA,
and this does not influence the solutions of these inequations. Intuitively, multiplying all the constants in the timing
constraints by the same value is equivalent to changing the unit of time. This change has no influence on the generation
of Set and Exp events. We can then switch from one unit of time to a more fine one, for example from minutes to
seconds by multiplying the constants by 60, without changes in the structure of the SEA. Property 7.1 is interesting
because: (i) state space in the obtained SEA does not increase when we multiply by the same value all the constants
used in the guards and invariants, and (ii) if SetExp has been applied to generate a SEA B from a TAA, we can deduce
straightforwardly every SEA corresponding to any TA A′ that is similar to A modulo a multiplication of constant(s)
used in guards and invariants.

Property 7.2 We consider a class of TA such that for every TA A of this class: let k1, k2, · · · , kp (where ki < ki+1,
for i = 1, 2, · · · , p−1) be all the constants used in the guards and invariants of A.
If every ki is replaced by mi such that mi < mi+1, for i = 1, 2, · · · , p−1,
Then the SEA SetExp(A) is not modified, modulo the replacement of every ki by mi.

Property 7.2 holds for certain TA for which if we change the constants in the guards and invariants but we let them in
the same order, the corresponding SEA does not change, modulo the replacement of every constant in the Set and Exp
events by its new value. The reason for which Property 7.2 cannot be satisfied for a given TAA is as follows: in a state
q where the next expirations of the clocks ci and cj (supposing only these two clocks are active in q) are respectively
Exp(ci , ki) and Exp(cj , kj), the order of occurrence of Exp(ci , ki) and Exp(cj , kj) depends on the difference ci− cj ,

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 21

i.e. the ∆Clock-Cond of q, which is defined using the constants used in the guards and invariants ofA. Then, changing
the values in guards and transitions can change the number of states and transitions because we shall not have the same
number of states and transitions in the case where only Exp(ci , ki)Exp(cj , kj) is enabled and in the case where one
or both individually of Exp(ci , ki) and Exp(cj , kj) is enabled. Therefore, in particular, Property 7.2 holds for every
TA that use one clock. Even if Property 7.2 does not hold in general, we studied several examples where the state
space of the corresponding SEA change, but its size does not increase significantly with the magnitudes of constants
used in guards and invariants. For certain examples, we even noted a decrease of the state space despite the increase
of the magnitudes of constants, and we have noted that in general, there is no relation between the magnitude of the
constants and the size of the state space.

Properties 7.1 and 7.2 and our observations in various examples show an advantage of using SEA instead of RA
because contrary to RA, in practice the state space of SEA does not increase with the magnitudes of the constants used
in timing constraints.

Definition 7.3 : deterministic TA
A TA is deterministic if:

• it has one initial location;
• two transitions having the same origin location and the same event and which can be enabled at the same time,

have the same destination location and reset the same clocks.

SetExp can be applied indifferently to deterministic and non deterministic TA.

Definition 7.4 : deterministic SEA
A SEA B is deterministic if at each state q, there exists no pair of transitions labeled by the same event which have
distinct destination states.

Property 7.3 If a TA A is deterministic, then B = SetExp(A) is also deterministic.

Justification of Property 7.3 is evident, because in the procedure of construction of a SEA, only one destination state
is constructed for each enabled event. Property 7.3 indicates that SetExp conserves determinism.

Let us now give an outline of the computational complexity of SetExp. Given a TA A, let |L|, |T |, |Σ| and |C| be
respectively the number of locations, the number of transitions, the number of events and the number of clocks of A.

Proposition 7.1 The complexity of the first step of SetExp is and thus the computational complexity of this step is
O(|T |2|C|3 + |T ||L||C|2).

In the iterative construction of the SEA B = SetExp(A), we must process each state by determining the enabled
events (and thus enabled transitions) and constructing the state reached after the occurrence of each enabled event.

Proposition 7.2 Let q be a state of B, E ∈ Γ1, σ ∈ Γ2 and γ ∈ Γ3.

1. The maximum number of ∆Clock-Conds of q is |∆C| = {2
|C| = |C|!

2(|C|−2)! = |C|(|C|−1)
2 . Then, we have

O(|∆C|) = O(|C|2).
2. The maximum number of events of type 1 that can be enabled at q, denoted |Γ1,q|, is the number of non

empty subsets in a set of |C| components. That is |Γ1,q| =
∑

i=1,...,|C|
|C|!

i!(|C|−i)! = 2|C| − 1. Then, we have

O(|Γ1,q|) = O(2|C|).
3. The complexity of checking if (q, E)! is O(|C|3).
4. The complexity of checking if (q, σ)! is O(|C|2).
5. The complexity of checking if (q, γ)! is O(|C|3).
6. The complexity of determining all the events enabled at q is O(2|C||C|2(|C|+ |Σ|)).

Proposition 7.3 Let q1, q2 and q3 be three states of B, E ∈ Γ1, σ ∈ Γ2 and γ ∈ Γ3 such that (q1, E)!, (q2, σ)! and
(q3, γ)!.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 22

1. The complexity to compute the state r = (q1, E) is O(|C|4).
2. The complexity to compute the state r = (q2, σ) is O(|C|3).
3. The complexity to compute the state r = (q3, γ) is O(|C|4).
4. The complexity to check if q is equal or equivalent to a state q′ is O(|C|4).

The iterative procedure of construction of B = SetExp(A) = StepTwo(A′) given in Section 5.2 process at each
iteration one state. The following proposition give the complexity to process a state at iteration i+1, where |Qi| is the
number of states of Bi.

Proposition 7.4 The computational complexity to process a state at each iteration of the procedure of computation of
the SEA given in Section 5.2 is O(2|C||Σ|(|C|4 + |Q|)) where |Q| is the maximum number of states of the SEA (see
Proposition 7.5).

To process a state q, we determine all the events enabled in q and for each one, we compute the state reached after its
occurrence and in the same time we construct the transition from q to the new state.

Let k be the biggest constant used in the expressions of the timing constraints of A. For each clock ci ∈ C, let Si be
the number of distinct Set events associated to ci, and let pi,j be the number of constants in each of these Set events,
for j = 1, ..., Si. Let then pi =

∑
j=1,...,Si

pi,j and p = max
i=1,...,Nc

pi.

Proposition 7.5 The number of states of B is bounded by |L|p|C|2k(2k+1)|C|2 .

Proposition 7.5 gives an upper bound of the number of states of a SEA w.r.t. its input parameters. This bound is a
theoretical one and is far from being reached in practice. The same observation apply to the computational complexity
given by Propositions 7.1, 7.2, 7.3 and 7.4.

As we can seen in the above results, the computational complexity and number of states (need of memory) of SetExp
increases with the number of clocks. It is therefore important to use in the AT the minimum necessary clocks variables.
A method of minimization of the number of clocks of a AT can be found in [33]. Generally in practice, the number of
clocks of a TA is not very big and thus the computational complexity of SetExp is not very hard.

7.3 Simplification of a SEA

We present in this section a way of simplification of SetExp, useful in some context. For this, we shall classify into
two types the transitions of type 3: conditioned transitions of type 3 and unconditioned transitions of type 3.

Definition 7.5 : conditioned and unconditioned transition
Let B = (Q, Γ, δ,Π, q0, Qm) be a SEA obtained from the TA A = (L, Σ, C, I, T , l0,Lm), i.e.
B = SetExp(A). Let AI = StepOne(A) = (L,Σ, C, II , T I , l0,Lm) and t ∈ δ be a transition of type 3 of B la-
beled by the event γ = (σ, E), with σ ∈ Γ2 and E ∈ Γ1. Let tI ∈ T I be the transition corresponding to t in the IAAI ,
i.e. t has been constructed from tI . The transition t is said conditioned iff at least one of the following two conditions
is satisfied:

• at least one Exp-Condition of the guard of tI or the invariant of its origin location has one of the following
three forms: “= Exp(c, k)”, “≤ Exp(c, k)” or “≥ Exp(c, k)”, i.e. the guard or the invariant allows the
simultaneity of the occurrence of an event and an expiration.

• tI resets a non empty subset of the clocks of C, i.e., there are at least two clocks ci and cj such that ci is reset
and cj is not reset.

In the other hand, t is said unconditioned iff it is not conditioned, i.e. the following two conditions are satisfied:
• the guard of tI and the invariant of its origin location contain only Exp-Condition in the form “< Exp(c, k)”

or “> Exp(c, k)”, if any, and
• tI resets either no clock or all the clocks of C.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 23

According to Definition 7.5, a transition t of type 3 is conditioned if it satisfies at least one of the two conditions: (i) t is
enabled because of a constraint in the execution of the TA which either requires the simultaneity of the events of t (case
where the guard of tI contains an Exp-Condition in the form “= Exp(c, k)”), or allows this simultaneity (case where
the guard of tI or the invariant of its origin location contains an Exp-Condition “≤ Exp(c, k)” or “≥ Exp(c, k)”)
and (ii) the effect of t on the values of the clocks is not uniform, i.e. some clocks are reset by t whereas others are
not. As example, on the SEA of Figure 6, the transition between S2 and S5, labeled by βExp(c1 , 3), is conditioned
because its corresponding transition in the IA of Figure 4 (transition between locations W and I) contains the Exp-
Condition “≥ Exp(c1 , 3)”. In the same way, the transition between S2 and S6, labeled by λSet(c2 ; 50)Exp(c1 , 3)
is conditioned because it resets only the clock c2 and not c1.

In the other hand, a transition of type 3 is unconditioned if (i) the simultaneity of its events is not imposed by a timing
constraint (no equality or non strict inequality in the guard or invariant), and (ii) the transition acts uniformly on the
clocks, i.e. it resets all of them or none of them. On the SEA of Figure 6, there are no unconditioned transitions.

Proposition 7.6 Let B be a SEA, q a state of B, γ = (E , σ) ∈ Γ3 with σ = (ρ,S) ∈ Γ2 such that (q, γ)! and t =
(q, γ, q′) is unconditioned.

• If γcSet = ∅, then (q, E .σ)!, (q, σ.E)! and we have (q, γ) = (q, E .σ) = (q, σ.E).
• If γcSet 6= ∅, then (q, E .σ)!, (q, σ)! and we have (q, γ) = (q, E .σ) = (q, σ).

Proposition 7.6 presents the two situations when an unconditioned transition is enabled. These two situations are
illustrated on Figure 7. The first case presents the situation when the transition resets no clock, and is illustrated
on Figure 7(a), in which the destination state of the unconditioned transition can be reached by the execution of the
sequence σ.E or E .σ from the same origin state.

The second case presents the situation when the unconditioned transition resets all the clocks (recall that an uncondi-
tioned transition resets no clock or all the clocks of C), and is illustrated on Figure 7(b), in which the destination state
of the unconditioned transition can be reached by the execution of σ or the sequence E .σ. This result is justified by
the fact that since all the clocks are reset with σ, the occurrence of the expirations in the event has no influence on
the future, and the construction of the destination state of the transition does not depend on the occurrence of these
expirations, and for this reason this state is the same in the following three cases of execution: E followed by σ, σ
simultaneous with E , and σ.

q γ
σ ε

ε σ

(a) Case 1

q
σ

γ
ε σ

(b) Case 2

Figure 7: Illustration of the behaviors for an unconditioned type 3 transition

Proposition 7.6 can be intuitively justified by the fact that if γ ∈ Γ3 is unconditioned and enabled in q, then σ is not
constrained by the expirations in E , and thus the occurrence of σ can arrive indifferently before or after the one of E ,
and this implies that σ and E are enabled at the same state. In addition, the same state is reached after the occurrence
of γ and the execution of E .σ and σ.E (respectively σ) for case 1 (respectively case 2), because the values of all the
clocks are uniformly affected during the execution of these events and sequences.

Definition 7.6 : equivalent occurrence of sequence of events
Let B be a SEA over the alphabet Γ, q a state of B, γ ∈ Γ3, σ ∈ Γ2 and E ∈ Γ1.

• In q, the occurrence of γ is equivalent to the one of σ followed by E iff: (i) γcExp = E; (ii) γcSet = σcSet ;
(iii) γcΣ = σcΣ; (iv) (q, γ)! and (q, σ.E)!; (v) (q, γ) = (q, σ.E).

• In q, the occurrence of γ is equivalent to the one of E followed by σ iff: (i) γcExp = E; (ii) γcSet = σcSet ;
(iii) γcΣ = σcΣ; (iv) (q, γ)! and (q, E .σ)!; (v) (q, γ) = (q, E .σ).

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 24

• In q, the occurrence of γ is equivalent to the one of σ iff: (i) γcSet = σcSet ; (ii) γcΣ = σcΣ; (iii) (q, γ)! and (q, σ)!;
(iv) (q, γ) = (q, σ).

If the occurrence of two events or sequences of events is equivalent, we shall say that the two transitions or sequences
of transitions labeled by these events are equivalent.

Let B be a SEA and t an unconditioned type 3 transition of B, labeled by the event γ = (σ, E). If we delete all the
traces of B containing t, all the others traces of B not containing t remain unchanged, because the deletion of t does
not imply the deletion of its destination state because the later remains reachable. Furthermore, if s and s′ are such
that the sequence s.γ.s′ is accepted by B, then the sequence s.E .σ.s′ and s.σ.E .s′ for case 1 (respectively s.σ.s′ for
case 2) is also accepted by B. We can then deduce that for any unconditioned transition t, there exists two transitions
or sequences of (two) transitions that are equivalent (following Definition 7.6) to t. By removing t, all the states of the
SEA remain reachable and this has no influence on its remaining behavior. If we consider the TA of Figure 8(a), we
obtain normally the SEA of Figure 8(b) by applying SetExp. If we do not construct the unconditioned transitions, we
obtain the SEA of Figure 8(c), which has the same number of states as the original one, but without the transition on
the event e3Exp(h, 10).

e3; − ; −

e1; − ; h

e2; h<10 ; −

(a) TA

e1Set(h,10) e2

Exp(h,10)e3

Exp(h,10)

e3

e3Exp(h,10)

Exp(h,10)

(b) SEA with unconditioned transition

e1Set(h,10) e2

Exp(h,10)

Exp(h,10)

e3

Exp(h,10)

e3

(c) SEA without unconditioned transition

Figure 8: Illustration of removing of unconditioned transitions

Remarque 7.1 If B is a SEA and B′ the SEA obtained from B by removing the unconditioned transitions, then B
and B′ are not equivalent because they do not accept the same timed language, due to the fact that every timed trace
containing the timed event corresponding to the event modeling the removed unconditioned transition become non
accepted by the SEA.

Depending on the study for which a SEA is used, the removing of unconditioned transition can has no influence on
the final results. This is particularly true in studies where for an event (σ, E) labeling an unconditioned transition,
the simultaneous occurrence of σ and E can be considered as the occurrence of σ (respectively E) followed by the
one of E (respectively σ). This is the case especially in real implementation where events occurrence detection is
not done exactly at their occurrence time. In such situation, we can simplify SetExp by not constructing the un-
conditioned transitions. This simplification allows to decrease the number of transitions of the SEA and simplify its
implementation.

8 Application of SetExp in supervisory control of RTDES

In this section, we shall first present first the principle of the supervisory control of a RTDES modeled by a TA, and
after this we shall present why and how SetExp can be used to solve supervisory control problems.

8.1 Supervisory control of RTDES

The objective of supervisory control is to design a supervisor Sup which interacts with a given DES P called plant
in order to restrict its behavior so that it respects a given specification S. When P and S are not subject to any timing
constraint and are described by two FSA over the same alphabet, a method has been proposed in order to automatically

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 25

synthesize Sup [3]. Let Sup/P be the behavior of P under supervision of Sup. When P and S are subject of timing
constraints and are modeled respectively by two TA P and K over the same alphabet Σ, the objective of supervisory
control consists in synthesizing a supervisor Sup which, by interacting with P , ensures the following two constraints:
Sup/P respects S: i.e. all timed traces accepted by Sup/P are also accepted by K.
Sup/P is non blocking: intuitively, in its evolution, Sup/P always have the possibility to reach a marked location of

P . More formally, every prefix of a timed trace of Sup/P is also a prefix of a timed marked trace of Sup/P .
Sup can be viewed as a module which observes the evolution of P , and forbids and forces some specific events in order
to ensure the respect of the above two constraints. As Sup must forbid events, we shall use the notion of controllable
event which means that Sup has the ability to forbid it, otherwise the event is classified as uncontrollable [3]. In the
same way, as Sup must force some events, we shall use the notion of forcible event which means that Sup has the
ability to force the occurrence of the event when this one is enabled, otherwise the event is said unforcible [34].

Figure 9 illustrates an architecture for supervisory control of P by Sup. The interactions between the plant (P) and the
environment (E) are modeled by the TA P . Sup forbids or forces only the outputs of P, because we suppose that Sup
has no control on E, and thus has no control on the input of P, generated by E.

Plant (P)

Supervisor ()Sup

Environment (E)

Observes/Forbids/Forces

Observes

Figure 9: Architecture of Supervisory control of a RTDES

Recall that the state space of a TA is infinite. However, in order to solve the supervisory control problem, i.e. find Sup,
it is necessary to have a finite representation of the state space of P and K. To obtain this finite representation of the
state space, we must transform the TA P and K into FSA. In [10, 35], the authors use the transformation into region
automata (RA) to solve the supervisory control problem. But, in our knowledge, this transformation into RA, and also
other transformations found in the literature, are subject to state space explosion, because among others aspects, the
state space increases with the magnitude of constants used in the timing constraints. We propose in this study the use
of the transformation SetExp : TA 7→ SEA rather than TA 7→ RA, because in practice, following all the examples
we have studied, the state space of a SEA does not increase with the magnitude of the constants used in the timing
constraints of the TA.

8.2 Supervisory control of a RTDES based on SetExp

Given two TA P and K modeling the plant and the specification respectively, as we cannot synthesize straightly Sup
from P and K, we shall use SetExp in order to bring back the synthesis in the field of SEA, by transforming the TA
P and K into SEA Ps and Ks over the same alphabet Γ. Then, we compute the supervisor SupSEA from Ps and Ks.
In the sequel SupSEA/Ps denotes the plant under the control of SupSEA. SupSEA/Ps must ensures the following
constraints:
SupSEA/Ps respects Ks: i.e. every trace accepted by SupSEA/Ps is also accepted by Ks.
SupSEA/Ps is non blocking: in its evolution, SupSEA/Ps always has the possibility to reach a marked state of Ps.

Formally, every prefix of a trace of SupSEA/Ps is also a prefix of a marked trace of SupSEA/Ps.
On Figure 10, we propose an architecture for realizing supervisory control in the field of SEA. Compared to Figure 9,
Sup is formed of two modules: a Clock-Handler (CH) and a supervisor of SEA SupSEA, which have the following
roles:
Clock-Handler (CH) : observes the interactions between P and E, generates the Set and Exp events and sends

them to SupSEA. CH can be considered as a module which sets timers at given moments determined by the
interactions between P and E, and send these sets (Set events) as well as their corresponding expirations (Exp
events) to SupSEA.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 26

Supervisor (SupSEA) : receives Set and Exp events from CH, observes the interactions between P and E, and
forbids/forces controllable/forcible events when this is necessary for the respect of the specification Ks.

Now, we shall show why the above supervisory control architecture is suited for SetExp. Recall that the objective
of the supervisory control is to synthesize a model of Sup which ensures that the plant P respects the specification S,
where P and S are modeled by two TA P and K. The transformation SetExp allows us to reformulate this objective in
another way as follows:

• the plant under supervision is the system formed of P and CH, denoted 〈P,CH〉, which is modeled by the SEA
SetExp(P);

• the specification to respect is defined by the SEA SetExp(K);
• the objective is to synthesize a model of SupSEA which ensures that the system 〈P,CH〉 respects the specification

modeled by SetExp(K).

It can be showed that this new objective guarantees the initial one. In other words:

If SupSEA forces 〈P,CH〉 to respect SetExp(K),
Then Sup forces P to respect K.

The advantage of this transformation is that we have transformed a problem of supervisory control of RTDES under
the form of a problem of supervisory control of non-real time DES. The system 〈P,CH〉 can be seen as a non-real time
DES, owing to the fact that its behavior is only defined by the sequences of events of P and CH. The use of Set and
Exp events has allowed to represent the timing constraints under the form of order constraints of events. This approach
has been used to solve centralized and modular supervisory control problem respectively in [25] and [26]. These two
papers are complementary to this one, because they illustrate the application of SetExp to supervisory control, whereas
here we present the internal mechanism of SetExp, i.e. how SetExp is realized.

Environment (E)

Plant (P)

disables, forces, observes
observes

observes
Supervisor ()SupSEA

Set(c,k) Exp(c,k)

Sup

Clock−Handler (CH)

Figure 10: Control architecture with SEA

9 Conclusion

In this paper, we have presented a method of transformation of timed automata (TA) into finite state automata (FSA)
and illustrated its application in supervisory control of real-time discrete events systems (RTDES). The method of
transformation, called SetExp, allows to transform a TA into a particular FSA called Set-Exp Automaton (SEA),
by adding to its alphabet two new events called Set and Exp. These events, which represent respectively resets
and programming of clocks and expirations of clocks, represent the progression of time and allow to express timing
constraints as order constraints on events. This representation of time progression by Set and Exp implies that the
value of each clock is considered only when it reaches a value used to express the timing constraints of the TA.
Therefore, the transition from a state to another state by the passage of time can occur only when a clock variable
reaches a considered value, unlike the region automata (RA) transformation, for which the value of each clock is
considered for each unit of time. As a consequence of this, the state space of a SEA does not increase in practice with
the magnitudes of constants used in in the timing constraints of the TA, and this constitutes an advantage of SetExp in
comparison to other transformation methods such as RA. We have illustrated the application of SetExp in supervisory
control of RTDES, and given an architecture its realization.

In comparison to other transformation methods, such as RA and its minimization methods, which is more applicable
in model checking, SetExp is suited for supervisory control and conformance testing of RTDES. This paper is an

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 27

extension and improvement of previous versions of SetExp presented in [30, 31]. [31] essentially extends [30] to TA
with location invariants. The present paper extends [31], which is written in French, by providing detailed explanations
of algorithms, proofs of propositions and theorem, and a method for reducing the number of transitions of SEA.

We have recently developed a software tool called SEAGenerator that implement SetExp. In a near future, we project
to: (i) use SEAGenerator to develop concrete applications of SetExp for the centralized and modular supervisory
control method of [12, 31]; (ii) develop a decentralized supervisory control method based on SetExp and (ii) explore
the use of SetExp for other RTDES studies such as fault diagnosis.

References

[1] E. C. Yamalidou, E. P. Patsidou, and J. C. Kantor. Modelling discrete-event dynamical systems for chemical process control
- a survey of several new techniques. Computers and Chemical Engineering, 14(3):281–299, 1990.

[2] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event processes. SIAM journal control and
optimization, 25(1):206–230, January 1987.

[3] P.J. Ramadge and W.M. Wonham. The control of discrete event systems. Proceedings IEEE, 77:81–98, January 1989.
[4] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosability of discrete-event systems.

IEEE transactions on automatic control, 40(9):1555–1575, September 1995.
[5] J.S. Ostroff and W.M. Wonham. A framework for real-time discrete event control. IEEE Transaction on Automatic Control,

35(4):386–397, 1990.
[6] J.S. Ostroff. Deciding properties of timed transition models. IEEE Transactions on Parallel and Distributed Systems,

1(2):170–183, April 1990.
[7] B.A. Brandin and W.M. Wonham. Supervisory control of timed discrete-event systems. IEEE Transactions on Automatic

Control, 39(2):329–342, 1994.
[8] T.-J Ho. A method for the modular synthesis of controllers for timed discrete-event systems. International journal of control,

76(5):520–535, 2003.
[9] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994.

[10] H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems. In Proc. of 30th IEEE Conference on
Decision and Control, pages 1527–1528, Brighton, England, December 1991.

[11] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In IFAC Symposium on System
Structure and Control, pages 469–474, 1998.

[12] A. Khoumsi. A supervisory control method for ensuring the conformance of real-time discrete event systems. Journal of
Discrete Event Dynamic Systems, 15(4):397–431, December 2005.

[13] R. Alur and T.A. Henzinger. Logic and models of real time : A survey. J.W. de Bakker, C. Huizing, W.-P. de Rover, and G.
Rozenberg, editors, Real-Time: Theory in Practice. REX Workshop Proceedings, LNCS, 600:74–106, 1991.

[14] J.E. Hopcroft and Ullman J.D. Introduction to Automata Theory, Language and Computation. Addisson-Wesley, 1979.
[15] Carroll J. and J.D. Long. Theory of Finite Automata. Printice-Hall, 1989.
[16] R. Alur. Timed automata. In 11th International Conference on Computer Aided Verification, volume 1633, pages 8–22,

Spring-Verlag, 1999. Lecture Notes in Computer Science.
[17] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi. Minimization of timed transitions systems. In CONCUR,

pages 340–354, 1992.
[18] I. Kang and I. Lee. State minimization for concurrent system analysis based on state space exploration. In Proceedings of

Conference on Computer Assurance, pages 123–134, 1994.
[19] I. Kang and I. Lee. An efficient state space generation for analysis of real-time systems. In Proceedings of International

Symposium on Software Testing and Analysis (ISSTA’96), 1996.
[20] S. Tripakis and S. Yovine. Analysis of timed systems using time-abstraction bisimulations. Formal methods in systems design,

18(1):25–68, January 2001.
[21] M. Yannakakis and D. Lee. An efficient algorithm for minimizing real-time transition systems. In Proceedings, Fifth Inter-

national Conference on Computer Aided Verification, volume 697 of LNCS, pages 210-224, Springer-Verlag, 1993.
[22] M. P. Spathopoulos. On a simplified untiming procedure for supervisory control of timed automata when the time increases

strictly monotonically. International Journal of Control, 76(17):17391748, November 2003.
[23] A. Khoumsi and M. Nourelfath. An efficient method for the supervisory control of dense real-time discrete event systems. In

Proc. 8th Intern. Conf. on Real-Time Computing Systems (RTCSA), Tokyo, Japan, March 2002.
[24] A. Khoumsi. Supervisory control of dense real-time discrete event systems with partial observation. In 6th IEEE International

Workshop on Discrete Event Systems (WODES), Zaragoza, Spain, October 2002.
[25] A. Khoumsi, L. Ouédraogo, and M. Nourelfath. Supervisory control of real-time discrete event systems modeled by timed

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 28

automata with invariants. In IASTED International Conference on Intelligent Systems and Control (ISC), Cambridge, Mas-
sachussets, USA, October 2005. http://www.gel.usherbrooke.ca/khoumsi/Research/Public/IASTED05.pdf.

[26] L. Ouédraogo, M. Nourelfath, and A. Khoumsi. A new method for centralized and modular supervisory control of real-time
discrete event systems. In IEEE International Workshop on Discrete Event Systems (WODES), Ann Arbor, Michigan, USA,
July 2006. http://www.gel.usherbrooke.ca/khoumsi/Research/Public/WODES06.pdf.

[27] A. Khoumsi. A method for testing the conformance of real-time systems. In IEEE Internatinal Symposium on Formal Technics
in Real-Time and Fault-Tolerent Systems (FTRTFT), Oldenburg, Germany, September 2002.

[28] A. Khoumsi. Complete test graph generation for symbolic real-time systems. In Brasilian Symposium on Formal Methods
(SBMF), Recife, Brazil, November 2004. http://www.gel.usherbrooke.ca/khoumsi/Research/Public/SBMF04-Test.pdf.

[29] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software-Concepts and Tools, 17(3):103–120,
1996.

[30] A. Khoumsi and L. Ouédraogo. A new method for transforming timed automata. In Proc. Brazilian Symposium on Formal
Methods (SBMF), Recife, Brazil, November 2004.
http://www.gel.usherb.ca/khoumsi/Research/Public/SBMF04-SetExp.pdf.

[31] L. Ouédraogo, A. Khoumsi, and M. Nourelfath. Méthode de transformation d’automates temporisés avec invari-
ants de localités. In Conférence francophone de Modélisation et Simulation (MOSIM), Rabat, Morroco, April 2006.
http://www.gel.usherbrooke.ca/khoumsi/Research/Public/MOSIM06.pdf.

[32] T.A Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems. Journal of Information
and Computation, 111(2):193–244, 1994.

[33] C. Daws and S. Yovine. Reducing the number of clock variables of timed automata. In Proceedings, 17th IEEE Real-Time
Systems Symposium. IEEE Computer Society Press, 1996.

[34] C.H. Golaszewski and P.J. Ramadge. Control of discrete event processes with forced events. In Proceedings 26th IEEE
Conference on Decision and Control, pages 247–251, Los Angeles, CA, December 1987.

[35] A. Gouin and J.L Ferrier. Commande supervisée de systèmes à événements discrets temporisés : synthèse basée sur les
automates de τ -regions. In conférence internationale francophone d’automatique, Lille, France, July 2000.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 29

Appendix

A Proof of Proposition 5.1

Let q1 and q2 be two states such that Lq1 = Lq2 and where all the clocks are inactive, i.e. no expirations of any clock is
expected. As q1 and q2 have the same location, it remains to show that they have the same future. Under the conditions
of Proposition 5.1, the following items are satisfied:

1. there are no events of type 1 or type 3 enabled at q1 and q2;
2. any event of type 2 enabled at q1 is also enabled at q2;
3. the destination states of two transitions labeled by the same event and enabled at q1 and q2 are either equal (i.e.

the same state) or equivalent.

The justification of the above item 1 is evident, following the fact that all clocks are inactive.

For item 2: let γ be an event of type 2 enabled at q1, and let us show that γ is also enabled at q2. For this, we must
verify that the conditions of Proposition 6.2 have the same effect in the two states.

• For item 1 of Proposition 6.2: we have Lq1 = Lq2 and as (q1, γ)!, then γ ∈ OUT (Lq2) = OUT (Lq1).
• For item 2 of Proposition 6.2: as all clocks are inactive, the condition ∃k′ ≤ k cannot be satisfied in q1 and q2,

then this condition has the same effect in q1 and q2.
• For item 3 of Proposition 6.2: as γ is enabled at q1, then there is no equality in the guard of T and thus, this

condition has no effect in q2 too.
• For item 4 of Proposition 6.2: γ enabled at q1 implies ∃k′ ≥ k such that Cq1(ci) = k′ < ci. The same condition

is satisfied in q2, because ci is also inactive at q2, and as the states have the same location implying that the
clocks are subject to the same resets in the two states, the Clock-Conds of the two states are either equal (the
states are perfectly equal in this case), or one of the state is the initial state and in this case, γ does not gave a
guard and the condition does not apply in the two states.

We can then conclude that the influence of the 4 item of Proposition 6.2 on the enabling of γ from q1 and q2 is the
same, and thus if γ is enabled at q1, then it is enabled at q2.

For item 3: this item follows from the procedure of construction of the destination state of the transition on γ given in
Section 6.2. For each event γ enabled at q1 and q2, let r1 = (q1, γ) and r2 = (q2, γ). As all the clocks are inactive, we
have that:

(i) clearly, Lr1 = Lr2 (in the TA, execution of the same event leads to one location);
(ii) the changes in the Clock-Conds of r1 and r2 are determined by the Set events of γ, and then these changed

Clock-Conds are the same in r1 and r2;
(iii) the changes in the ∆Clock-Conds of r1 and r2 are determined by the Set events of γ, and then these changed

∆Clock-Conds are the same in r1 and r2;
(iv) (i), (ii) and (iii) imply that either r1 = r2 or they satisfy Proposition 5.1 or Proposition 5.2 and thus are equivalent.

B Proof of Proposition 5.2

Let q1 and q2 be two different states satisfying the conditions of Proposition 5.2, i.e. q1 differs from q2 by one or many
∆Clock-Conds having at least one inactive clock. As q1 and q2 have the same location, it remains to show that they
have the same future. For this, we shall use the following lemma:

Lemma B.1 If two states q1 and q2 have the same location, then they have the same future iff any event enabled at q1

is also enabled at q2.

The proof of Lemma B.1 comes straightforwardly from the fact that as q1 and q2 have the same location, they have
the “same future” relatively to the original TA, and thus the only thing that can differentiate their future in the SEA
is that at least one event is enabled in one of the state and not in the other. This can arrive if the Clock-Conds or the

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 30

∆Clock-Conds of the two states are different, dues to the fact that they have been reached by the execution of two
traces that differ by their Exp events.

Let γ be an event enabled at q1. We must show that γ is also enabled at q2 to conclude that q1 and q2 have the same
future and thus, are location equivalent.

If γ ∈ Γ2, γ is enabled at q2 because its enabling depends only on the location and the Clock-Cond of q2, and these
ones are the same as those of q1. If γ ∈ Γ1, γ is enabled at q2 if the effect of the ∆Clock-Conds of q2 on its enabling
is the same as those of q1. If a clock is inactive, the ∆Clock-Conds using it have no effect on the enabling of event
of type 1, because these ∆Clock-Conds does not influence the solution of the system of inequations Xq,E defined in
Section 6.1. This comes from the fact that these ∆Clock-Conds has no interference with the second part of Xq,E ,
which clearly apply to active clocks, i.e. clocks which have programmed expirations. As the ∆Clock-Conds of q1 and
q2 differ only on those using inactive clocks, then the effect of the ∆Clock-Conds of q2 is the same as those of q1 and
thus, γ is enabled at q2. If γ ∈ Γ3, it is enabled in q2 because its enabling conditions is the composition of those of
event of type 1 and event of type 2, and this is the same as showed above. We can then conclude that any event enabled
at q1 is also enabled at q2, and following Lemma B.1, q1 and q2 have the same future.

C Proof of Proposition 5.3

From the definition of equivalent states and equivalent SEA, Proposition 5.3 is evident and can be proved straight-
forwardly. Let q1 and q2 be two states of B such that q1 ' q2. In B∂ , q1 and q2 are merged, and suppose that q1 is
conserved in B∂ . Let s1 = s′1s ∈ L(B) and s2 = s′2s ∈ L(B), where s′1 and s′2 are prefix of L(B) and s a suffix of
L(B), and such that q1 = (q0

, s′1) and q2 = (q0
, s′2) are location equivalent. In B∂ (q2 is removed and the transitions

having it as destination state are redirected on q1), s1 and s2 remain in L(B), because the only thing that change is that
(q0

, s′2) = q1 instead of q2. Also, by definition, location equivalent states have the same status with regard to marking.
We can then conclude that B ' B∂ .

D Proof of Theorem 1

We have defined the suiteBi+1 = Ω(Bi), for i ≥ 0. Let Qi, Γi, δi, Πi and Qi
m be such thatBi = (Qi,Γi, δi, Πi, q

0, Qi
m).

We have, by definition of the operator Ω (see Section 5.2): Qi+1 = Qi ∪∆Qi, Γi+1 = Γi ∪ ∆Γi, δi+1 = δi ∪ ∆δi,
Qi+1

m = Qi
m ∪∆Qi

m, where:
∆Qi = {(q, γ) | q ∈ Qi, γ ∈ (2EXP(q) × (OUT (Lq) ∪ {]})) \ {∅,]}, (q, γ)!};
∆Γi = {γ | ∃(q, γ, r) ∈ δi+1};
∆δi = {(q, γ, r) | q ∈ Qi, (q, γ)!, r = (q, γ) ∈ Qi+1};
∆Qi

m = {q ∈ ∆Qi | (Lq ∈ Lm) ∧ (Cq ≈ ∅)}.
We shall also use the notation |U | for the cardinal (i.e., number of elements) of a set U . In order to prove Theorem 1,
let us prove the following five lemmas:

Lemma D.1 ∀i ≥ 0 : Qi ⊆ Qi+1.

Lemma D.2 ∀p ≥ 0 : ((Qp = Qp+1) ⇒ (Bp+2 = Bp+1)).

Lemma D.3 ∀p ≥ 0 : ((Qp = Qp+1) ⇒ (∀n > p : Bn = Bp+1)).

Lemma D.4 ∃K finite such that ∀i ≥ 0 : |Qi| ≤ K.

Lemma D.5 limi→∞ |Qi| exists and is finite.

D.1 Proof of Lemma D.1

From the fact that ∀i ≥ 0 : Qi+1 = Qi ∪∆Qi, we deduce straightforwardly that Qi ⊆ Qi+1.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 31

D.2 Proof of Lemma D.2

(i) By definition: Qp+1 = Qp ∪∆Qp and Qp+2 = Qp+1 ∪∆Qp+1.
(ii) By definition: ∆Qp = {(q, γ) | q ∈ Qp, γ ∈ (2EXP(q) × (OUT (Lq) ∪ {]})) \ {∅,]}, (q, γ)!},

∆Qp+1 = {(q, γ) | q ∈ Qp+1, γ ∈ (2EXP(q) × (OUT (Lq) ∪ {]})) \ {∅,]}, (q, γ)!}.
(iii) Item (ii) implies that if Qp = Qp+1, then ∆Qp = ∆Qp+1.
(iv) Items (i) and (iii) imply that if Qp = Qp+1, then Qp+2 = Qp+1 = Qp.
(v) By definition: δp+1 = δp ∪∆δp and δp+2 = δp+1 ∪∆δp+1.

(vi) By definition : ∆δp = {(q, γ, r) | q ∈ Qp, (q, γ)!, r = (q, γ) ∈ Qp+1} and
∆δp+1 = {(q, γ, r) | q ∈ Qp+1, (q, γ)!, r = (q, γ) ∈ Qp+2}.

(vii) Items (iv) and (vi) imply that if Qp = Qp+1, then ∆δp = ∆δp+1.
(viii) Items (v) and (vii) imply that if Qp = Qp+1, then ∆δp+2 = ∆δp+1.

(ix) By definition: Γp+1 = Γp ∪∆Γp, and Γp+2 = Γp+1 ∪∆Γp+1.
(x) By definition: ∆Γp = {γ | ∃(q, γ, r) ∈ δp+1} and ∆Γp+1 = {γ | ∃(q, γ, r) ∈ δp+2}.

(xi) Items (viii) and (x) imply that if Qp = Qp+1, then ∆Γp = ∆Γp+1.
(xii) Items (ix) and (xi) imply that if Qp = Qp+1, then Γp+2 = Γp+1.

(xiii) Items (iv), (viii) and (xii) imply that if Qp = Qp+1, then: Bp+2 = Bp+1.

D.3 Proof of Lemma D.3

(i) Let us consider a p ≥ 0 such that Qp = Qp+1. LemmaD.2 implies that Bp+2 = Bp+1.
(ii) Let us consider a n ≥ p + 2 such that Bn = Bn−1. Therefore, Qn = Qn−1. From Lemma D.2, we deduce that

Bn+1 = Bn.
(iii) Items (i) and (ii) imply by induction that: if (Bp = Bp+1) for a given p ≥ 0, then ∀n ≥ p + 2 : Bn = Bp+1.
(iv) Item (iii) is equivalent to: if Bp = Bp+1 for a given p ≥ 0, then ∀n ≥ p + 2 : Bn = Bn−1.
(v) SinceBn = Bp+1 for n = p+1, Item (iv) can be written: ifBp = Bp+1 for a given p ≥ 0, then ∀n ≥ p + 1 : Bn = Bn−1.

D.4 Proof of Lemma D.4

Let A=(L, Σ, C, I, T , l0,Lm) be the TA from which we construct B0, B1, B2, · · · . Recall that each state of a SEA,
and thus of Bi, is defined by three parts which are:

• Part 1: a location of L.
• Part 2: a Clock-Cond and an ExpSeq for each clock of C.
• Part 3: zero or one ∆Clock-Cond for each pair of clocks of C.

(i) The cardinal of Part 1 has a finite upper bound equal to |L|.
(ii) The (integer) values to which a clock ci ∈ C is compared (i.e.., the values used in guards using ci) are finite and

their number is finite.
(iii) Item (ii) implies that the number of pairs (Clock-Cond, ExpSeq) using a clock ci ∈ C has a finite upper bound

which we denote U . For each clock ci, let us consider the distinct Set events associated to ci, and let ki,j be the
number of constants in each of these Set , for j = 1, · · · . Let pi =

∑
j=1,···

ki,j and p = max
i=1,··· ,|C|

pi. It can be

easily proved that U can be taken equal to p.
(iv) Item (iii) and the fact that the number of clocks of A is finite (= |C|) imply that p|C| is a (finite) upper bound of

the cardinal of Part 2.
(v) For each pair of clocks ci, cj ∈ C, if Mi (resp. Mj) is the greatest value to which ci (resp. cj) is compared in

the timing constraints of A, then every ∆Clock-Cond using ci − cj is expressed by using (integer) values that
fall within the interval [−Mj , Mi]. This is justified by the fact that although we make sometimes additions of the
members of two ∆Clock-Conds (for the elimination of the fictitious clock θi in the procedure of Section 6.2), the
difference ci − cj is:

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 32

a) in the interval [−Mj ,Mi] and ∆Cq(ci, cj) is in the form k1 < ci − cj < k2 or ci − cj = k in each state q
where ci and cj are active (i.e. q is reached by a path where the two clocks have been reset), because in this
case we know in which interval the value of each of the two clocks is.

b) in the interval [−Mj ,Mi] or if not, ∆Cq(ci, cj) is in the form k1 < ci − cj with k1 ∈ [−Mj ,Mi], in each
state q where ci or cj is inactive because in such state:
• either q is not in a cycle in which only one of the two clocks ci or cj is reset and in this case, the

difference ci− cj is constant and in the interval [−Mj ,Mi] (if the active clock have been reset before the
last expiration of the inactive clock) or ∆Cq(ci, cj) is in the form k1 < ci − cj (if the active clock have
been reset after the last expiration of the inactive clock).

• or q is in a cycle in which only one of the two clocks ci and cj is reset and in this case, ∆Cq(ci, cj) is either
in the form k1 < ci− cj (k1 ∈ [−Mj ,Mi]) or in the form k1 < ci− cj < k2 (k1, k2 ∈ [−Mj ,Mi]) even
if the difference ci − cj can take any value not in [−Mj ,Mi] (the cycle can be executed many times an
as only one of the two clocks is reset, their difference increase at each execution of the cycle) because of
Proposition 5.2 which ensures that when in q, ∆Cq(ci, cj) takes values not in [−Mj ,Mi], q is equivalent
to a state q′ where ∆Cq′(ci, cj) uses values in [−Mj ,Mi] and by construction, q is merged with q′.

(vi) Items (ii) and (v) imply that for each pair of clocks ci, cj ∈ C, the number of possible ∆Clock-Conds using
ci − cj has a finite upper bound which we denote V . Since the width of interval [−Mj ,Mi] is ≤ 2k, V can be
taken equal to 2k(2k + 1), where k is the greatest constant used in timing constraints, because:

• for the ∆Clock-Conds in the form k1 < ci − cj < k2 or ci − cj = k1, we have at most 2k ∗ 2k = 4k2

possibilities.
• for the ∆Clock-Conds in the form k1 < ci − cj , we have at most 2k possibilities.

(vii) Item (vi) and the fact that the number of pairs of clocks of A is finite (< |C|2
2) imply that

22k(2k+1)
|C|2
2 (= 2k(2k+1)|C|2) is a (finite) upper bound of the cardinal of Part 3.

(viii) Items (i), (iv) and (vii) imply that |L|p|C|2k(2k+1)|C|2 is a (finite) upper bound of the number of states of every
Bi.

D.5 Proof of Lemma D.5

Lemma D.1 implies that limi→∞ |Qi| exists. And from Lemma D.4, we deduce that this limi→∞ |Qi| is finite.

D.6 Proof of Theorem 1

(i) Lemmas D.1 and D.5 imply: ∃i ≥ 0 such that Qi = Qi+1.
(ii) Item (i) and Lemma D.2 imply ∃p ≥ 0 such that ∀n > p : Bn = Bp+1.

E Proof of Proposition 6.1

Item 1 of Proposition 6.1 ensures that only next remaining expirations of clocks are candidate to enabling. Let us
define: X1 ={ci−ki <0 |Exp(ci , ki)∈E}

X2 = ∪ {ci−ki = cj−kj |Exp(ci , ki),Exp(cj , kj)∈E}
X3 = ∪ {ci−ki <cj−kj |Exp(cj , kj)∈E ,Exp(ci , ki) ∈ EXP(q) \ E}

We have therefore : Xq,E = ∆Cq ∪ X1 ∪ X2 ∪ X3.

(i) Since all the clocks progress at the same rate, the system X1 ∪X2 ∪X3 has positive solution iff with the passing
of time and if no clock is reset, the following items (ii) and (iii) will be satisfied simultaneously.

(ii) ∀Exp(ci , ki) ∈ E : ci − ki = 0.
(iii) ∀Exp(cj , kj) ∈ EXP(q) \ E : cj − kj < 0.
(iv) Item (ii) holds when and only when the expirations of E occur simultaneously.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 33

(v) Item (iii) holds while and only while no expiration of EXP(q) \ E has occurred.
(vi) Items (i), (iv) and (v) mean that the system X1 ∪ X2 ∪ X3 has positive solution iff at the same future instant of

time and if no clock is reset: all the expirations of E occur and no expiration of EXP(q) \ E occurs.
(vii) Item (vi) implies that the system Xq,E = ∆Cq ∪X1∪X2∪X3 has positive solution iff ∆Cq allows that at a same

future time: all expirations of E occur and no expiration of EXP(q) \ E occurs.
(viii) Let q′ = (q, E) (i.e. the state reached after the occurrence of E). ∀Exp(ci , k) ∈ E , Cq′(ci) is in the form “k <

ci < u” or “k < ci”, where u is an integer. As ILq = ILq′ , if ∃“ ∼ Exp(ci , k ′)
′′ ∈ ILq , then ILq is satisfied

in q′ if Exp(ci , k ′) does not occur again, i.e. if k′ > k, because in q′, Exp(ci , k) has already occurred and any
other expiration of ci has occurred. Thus, ∀Exp(ci , k) ∈ E : if the condition “∃Exp(ci , k ′) ∈ ILq ⇒ k′ > k” is
satisfied, then ILq is satisfied in q′ (notes that ILq = ILq′) .

(ix) Item (vii) and (viii) imply that (q, E)! iff all expirations of E occur and no expiration of EXP(q) \ E occurs, and
the invariant of Lq remains satisfied.

F Proof of Proposition 6.2

(i) Item 3 of Proposition 6.2 means that every guard of T is in one of the following forms : “< Exp(ci , k)”,
“≤ Exp(ci , k)”, “> Exp(ci , k)”, “≥ Exp(ci , k)”.

(ii) Items 2 and 4 of Proposition 6.2 mean that every guard of T is satisfied in q if it is in one of the following forms:
“< Exp(ci , k)”, “≤ Exp(ci , k)”, “> Exp(ci , k)”, “≥ Exp(ci , k)”.

(iii) The above Items (i) and (ii) mean that every guard of T is satisfied in q.
(iv) Item 1 of Proposition 6.2 and the above Items (i) and (iii) mean that T can be executed at any time in q, without

being simultaneous to any expiration.

G Proof of Proposition 6.3

(i) Item 1 and 2 of Proposition 6.3 ensures that basically, σ is candidate to enabling in q, and this will depend on its
guard, and that E is candidate to occur simultaneously with σ.

(ii) In Item 3 of Proposition 6.3: “Cq(ci) = (u < ci < k′), for k′ ≤ k” means that every guard “< Exp(ci , k)”
of T is satisfied in q; “Exp(ci , k) 6∈ E” and Item 2 of Proposition 6.3 implies that such a guard “< Exp(ci , k)”
remains satisfied at the occurrence of E .

(iii) In Item 4 of Proposition 6.3:
a) “Cq(ci) = (u < ci < k′), for k′ ≤ k” implies that every guard “≤ Exp(ci , k)” of T is satisfied in q;
b) “Cq(ci) = (u < ci < k′), for k′ ≤ k” and Item 2 of Proposition 6.3 imply that E occurs before or contains

Exp(ci , k ′).
The above items (iiia) and (iiib) imply that every guard “≤ Exp(ci , k)” of T remains satisfied at the occurrence
of E .

(iv) Item 5 of Proposition 6.3 means that with the passing of time, every guard “= Exp(ci , k)” of T will be satisfied
when and only when ci = k, i.e. simultaneously to Exp(ci , k) ∈ E .

(v) Item 6 of Proposition 6.3 means that every guard “> Exp(ci , k)” of T is satisfied in q. This guard remains
satisfied at the occurrence of any expiration, and thus, at the occurrence of E .

(vi) In Item 7 of Proposition 6.3, for every guard “≥ Exp(ci , k)” of T :
a) “Cq(ci) = (k′ < ci < u) or Cq(ci) = (k′ < ci), for k ≤ k′” implies that “≥ Exp(ci , k)” is and remains

satisfied at the occurrence of E .
b) “Exp(ci , k) ∈ E and Cq(ci) = (u < ci < k)” implies that “≥ Exp(ci , k)” will be satisfied when and only

when ci = k, i.e. simultaneously to Exp(ci , k) ∈ E .
Item 7 of Proposition 6.3 means (via) or (vib) holds.

(vii) In the above Items (ii), (iii), (iv),(v), (via), and (vib), all the guards of T are considered.
(viii) The above items (ii), (iii), (v), and (via) correspond to the guards of T that are satisfied in q. These guards remain

satisfied at the occurrence of E .

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 34

(ix) The above items (iv) and (vib) correspond to the guards of T that will be satisfied with the passing of time. Each
of these guards will be satisfied simultaneously to an Exp event of E .

(x) Item 2 of Proposition 6.3 and the above Item (ix) mean that the guards of T that will be satisfied with the passing
of time, can all be satisfied at the same time, simultaneously to E .

(xi) The above items (vii), (viii) and (ix) mean that there is no non-satisfied guard of T that will not be satisfied with
the passing of time.

(xii) ILq is satisfied in q if ∀ci ∈ C : ∃“ ∼ Exp(ci , k ′)
′′ ∈ ILq ⇒ Cq(ci) is in the form u < ci < k with k ≤ k′, i.e.

in q, Exp(ci , k ′) still not occurs.
∀Exp(ci , k) ∈ E if:

a) ∃“ < Exp(ci , k ′)
′′ ∈ ILq , ILq become unsatisfied when the value of ci is equal to k′; and if

b) ∃“ ≤ Exp(ci , k ′)
′′ ∈ ILq , ILq become unsatisfied when the value of ci become greater than k′.

a) and b) imply that if the condition ∀Exp(ci , k) ∈ E : ∃(< Exp(ci , k ′)) ∈ ILq ⇒ k < k′ and
∃(≤ Exp(ci , k ′)) ∈ ILq ⇒ k ≤ k′ is satisfied in q, then at the moment of the simultaneous occurrence of E
and σ, the invariant of q is satisfied.

(xiii) The above items (viii), (x), (xi), (xii) and item 1 of Proposition 6.3 mean that the simultaneous executions of T
and E is possible in q and at a moment where the invariant of q is still satisfied.

H Proof of Theorem 2

Let A be a TA, AI = StepOne(A) be obtained from A by applying Step 1, and B = StepTwo(AI) be the SEA
obtained by applying Step 2 to AI .

(i) Step 1 of SetExp relabels transitions of the TA A without changing its structure. The fact to reset a clock ci in
a transition Tr1, in order to compare further in a transition Tr2 the value of ci with k, is clearly equivalent to:
resetting ci and programming it such that it expires after a delay k (Substep 1), and then checking in Tr2 whether
the expiration of ci has occurred (Substep 2). Therefore, A and AI describe exactly the same order and timing
constraints of the events other than Set and Exp events.

(ii) SetExp is realized by a fix-point method that constructs iteratively all the reachable states and the transitions of
the SEA. This fix-point method converges after a finite number of iterations (Theorem 1) and necessitates in each
iteration:
a) to determine the events enabled in every state, and
b) to construct the states reached by the occurrence of these enabled events.
Therefore, this fix-point method generates a correct result iff (iia) and (iib) are realized correctly.

(iii) Lemmas 6.1, 6.2 and 6.3 imply that the events enabled in every state are determined correctly.
(iv) The detailed explanations of the procedures in sections 6.1 and 6.2 can be considered as a proof sketch that the

states reached by the enabled labels are constructed correctly.
(v) Items (ii), (iii) and (iv) imply that the fixpoint method is correct, i.e., Step 2 of SetExp is correct. Therefore, B

accepts all and only the possible order of events that respects the specification of AI .
(vi) Item v and the fact that Lt(B) (see Definition 7.1) models the behavior of B, mean that Lt(B) contains all and

only the possible order of events that respects the specification of AI .
(vii) Items (i) and (vi) mean that Lt(A) (Definition 2.7) is obtained from Lt(B) by removing all Set and Exp events,

i.e A and B are equivalent.

I Proof of Proposition 7.1

Recall that the first step of SetExp is realized in two subsbteps. In the first substep, we construct the Set events, and
in the second substep, we rewrite the timing constraints in the form of Exp-Condition.

1. For the first substep, we make the following computations.

a) For each transition Ti (maximum |T | steps) and for each clock ci that is reset (maximum |C| steps):

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 35

(i) scan the others transitions Tj , j = 1, ... (maximum |T | steps) and locations lj , j = 1, ... (maximum
|L| steps) to record the constants;

(ii) for each scanned transition Tj , we have to find in its guard the constraint using the clock ci (maximum
|C| steps to find it) and to record its constant(s), and we have to check if ci is reset by Tj (maximum |C|
steps);

(iii) for each scanned location lj , we have to find in its invariant the constraint using the clock ci (maximum
|C| steps to find it) and to record its constant(s).

b) Items a), (i), (ii) and (iii) imply that the number of steps to process all the Set events is bounded by
|T ||C|(|T ||C|2 + |L||C|).

2. For the second substep, we make the following operations:

a) For each transition (maximum |T | steps): rewrite each inequation of its guard in the form of Exp-Condition
(maximum |C| steps);

b) For each location (maximum |L| steps): rewrite each inequation of its invariant in the form of Exp-Condition
(maximum |C| steps);

c) Items a) and b) imply that the number of step to rewrite all the constraints in the form of Exp-Condition is
bounded by |T ||C|+ |L||C|.

3. Items 1b) and 2c) imply the complexity of the first step of SetExp is: O(|T |2|C|3 + |T ||L||C|2) (complexity of
substep 2 is in a negligible order).

J Proof of Proposition 7.2

1. For Item 1 of Proposition 7.2, each ∆Clock-Cond use two different clocks and thus, the maximum number of
∆Clock-Conds is the set of combination of 2 elements among |C|.

2. For Item 2 of Proposition 7.2, the number of events of type 1 that can be enabled is the sum of combination of i

elements among |C|, for i = 1, ..., |C|. That is, |Γ1,q| =
∑

i=1,...,|C|
{i
|C| =

∑
i=1,...,|C|

|C|!
i!(|C|−i)! .

3. For Item 3 of Proposition 7.2, we have to verify the three Items of Proposition 6.1. That is:

a) For Item 1 of Proposition 6.1, i.e. check if E ∈ EXP(q), we normally check if for each Exp(ci , k) ∈ E
(maximum |C| expirations), ci is active and k is its next expiration (comparison of k and the upper bound of
Cq(ci), that is one operation). But in practice, we check if (q, E)! only for each E ⊆ EXP(q) and we do not
need to check it again. That is, we have no complexity for this Item.

b) For item 2 of Proposition 6.1, we have to check if Xq,E has a positive solution. That is, we have to check
if the four sets of Xq,E are satisfied. The second set of Xq,E is always satisfied by construction, because we
have E ∈ EXP(q). The satisfaction of the 3 others sets can be checked as follows. For each ∆Clock-Cond
∆Cq(ci, cj) ∈ ∆Cq:

(i) check if ci ∈ E (maximum |C| steps);
(ii) check if cj ∈ E (maximum |C| steps);

(iii) if ci ∈ E and cj ∈ E , check if ∆Cq(ci, cj) and the third set of Xq,E are compatible, i.e. ∆Cq(ci, cj) ∧
(ci − cj = ki − kj) is not empty. This can be done in 2 steps.

(iv) if ci ∈ E and cj ∈ EXP(q) \ E , check if ∆Cq(ci, cj and the fourth set of Xq,E are compatible, i.e.
∆Cq(ci, cj) ∧ (ci − cj < ki − kj) is not empty. This can be done in 2 steps.

The first paragraph of this Item and the above Items (i)-(iv) imply that the maximum steps needed to check
if Xq,E has a positive solution is |∆C|(2|C|+ 4).

c) For Item 3 of Proposition 6.1, we have to make the following computations: For each Exp(ci , k) ∈ E
(maximum |C| components), we have to check if there exists a constraint using ci in the location invariant
of q (maximum |C| steps) and to compare the constants k and k′. That is, the maximum number or steps to
check this Item is |C|2.

d) The above Items a), b) and c) imply that the maximum number of steps to check if (q, E)! is |∆C|(2|C| +
4) + |C|2, and thus of complexity O(|C|3) (recall that |∆C| = |C|(|C|−1)

2).

4. For Item 4 of Proposition 7.2, we have to verify the four Items of Proposition 6.2. That is, we do the following
computations:

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 36

a) For Item 1 of Proposition 6.2, we normally check if σ ∈ OUT (Lq). In practice, we check if (q, σ)! only
for every σ ∈ OUT (Lq) and thus, this condition is basically satisfied and do not imply a computational
complexity.

b) For Item 2 of Proposition 6.2, we check for each “< Exp(ci , k)” or “≤ Exp(ci , k)”∈ GT (maximum |C|
components) if k′ ≤ k (one operation). That is, this Item can be check in maximum |C| steps.

c) For Item 3 of Proposition 6.2, we check for each ci ∈ ZT (maximum |C| components) if “= Exp(ci , k)”6∈ GT

(maximum |C| components). That is, this Item can be check in maximum |C|2 steps.
d) For Item 4 of Proposition 6.2, we check for each “> Exp(ci , k)” or “≥ Exp(ci , k)”∈ GT (maximum |C|

components) if k′ ≥ k (one operation, k′ is the lower bound of Cq(ci)). That is, this Item can be checked in
maximum |C| steps.

e) The above Items a)-d) imply that the maximum number of steps to check if (q, σ)! is |C|2 + 2|C| and thus of
complexity O(|C|2).

5. For Item 5 of Proposition 7.2, we have to verify the 8 Items of Proposition 6.3. That is, we do the following
computations:

a) The computational complexity of Item 1 and 2 of Proposition 6.3 can be deduced from the one of the above
Items 3a), 3b) and 4a). That is, the maximum number of steps to check Items 1 and 2 of Proposition 6.3 is
|∆C|(2|C|+ 4).

b) For Item 3 of Proposition 6.3, we check that for each “< Exp(ci , k)”∈ GT (maximum |C| components):
Exp(ci , k) 6∈ E (maximum |C| steps) and we compare k′ (upper bound of Cq(ci) and k (one step). That is,
this Item can be checked in maximum |C|(|C|+ 1) steps.

c) For Item 4 of Proposition 6.3, we check that for each “≤ Exp(ci , k)”∈ GT (maximum |C| components) if
k′ ≤ k (one step), where is k′ the upper bound of Cq(ci). That is, this Item can be checked in maximum |C|
steps.

d) For Item 5 of Proposition 6.3, we check that for each “= Exp(ci , k)”∈ GT (maximum |C| components):
Exp(ci , k) ∈ E (maximum |C| steps) and u < k (one step) where u is the lower bound of Cq(ci). That is,
this Item can be checked in maximum |C|(|C|+ 1) steps.

e) For Item 6 of Proposition 6.3, we check that for each “> Exp(ci , k)”∈ GT (maximum |C| components) if
k′ ≥ k (one step), where k′ is the lower bound of Cq(ci). That is, this Item can be checked in maximum |C|
steps.

f) For Item 7 of Proposition 6.3, we check that for each “≥ Exp(ci , k)”∈ GT (maximum |C| components):
k′ ≥ k (one operation), where k′ is the lower bound of Cq(ci), and in case this condition is not satisfied, we
check if Exp(ci , k) ∈ E (maximum |C| steps) and if u < k (one step) where u is the lower bound of Cq(ci).
That is, this Item can be checked in maximum |C|(|C|+ 2) steps.

g) For Item 8 of Proposition 6.3, we check that for each Exp(ci , k) ∈ E (maximum |C| steps): if there exists
“< Exp(ci , k ′)” or “≤ Exp(ci , k ′)” in the location invariant of q (maximum |C| steps), then we check if
k′ < k or k′ ≤ k (one operation). That is, this Item can be checked in maximum |C|2 steps.

h) The above Items a)-g) imply that the maximum number of steps to check if (q, γ)! is 2|∆C||C| + 4|∆C| +
4|C|2 + 6|C| where |∆C| = |C|(|C|−1)

2 and thus of complexity O(|C|3).
6. For Item 6 of Proposition 7.2, we do the following computations.

a) We determine all the events of type 1 that are enabled, i.e. we check |Γ1,q| times if (q, E)! (complexity of
Item 3 of 7.2). That is, the number of steps to determine all the events of type 1 enabled in q is |Γ1,q|(|C|2 +
|∆C|(2|C|+ 4)).

b) We determine all the events of type 2 that are enabled, i.e. we check for each event σ enabled in Lq (maximum
|Σ| components) if (q, σ)! (complexity of Item 4 of of 7.2). That is, the number of steps to determine all the
events of type 2 enabled in q is |Σ|(|C|2 + 2|C|).

c) We determine all the events of type 3 that are enabled, i.e. we check for each event E ∈ Γ1 that satisfy Items
1 and 2 of Proposition 6.1 (maximum |Γ1,q| components, Items 1 and 2 of Proposition 6.1 are checked in
Item a) above) and for each event σ ∈ Γ2 enabled in Lq (maximum |Σ| events) the satisfaction of Items 3-8
of Proposition 6.3 (maximum 4|C|2 + 6|C| steps, see proof of Item 5 of Proposition 7.2). That is, the number
of steps to determine all the events of type 3 enabled in q is |Γ1,q||Σ|(4|C|2 + 6|C|).

The above Items a)-c) imply that the maximum number of steps to determine all the events enabled in q is
|Γ1,q|(|C|2 + |∆C|(2|C|+4))+ |Σ|(|C|2 +2|C|)+ |Γ1,q||Σ|(4|C|2 +6|C|) where |∆C| = |C|(|C|−1)

2 and |Γ1,q| =
2|C| − 1 and thus of complexity O(2|C||C|2(|C|+ |Σ|)).

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 37

K Proof of Proposition 7.3

1. For Item 1 of Proposition 7.3, we compute r = (q, E) as described by the procedure in Section 6.1. That is, we
do the following computations.

a) We compute lines 2-4 as follows: for each Exp(ci , k) ∈ E (maximum |C| components), we compare Kr(ci)
to 0 (one step) and we update Cr(ci) (maximum 2 steps to update the 2 bound) and Kr(ci) (one step). That
is the maximum steps to compute line 2-4 is 4|C|.

b) We compute line 5 as follows: for each Exp(ci , k) ∈ E and Exp(cj , k) ∈ E (maximum |∆C| components),
we search ∆Cr(ci, cj) (maximum |∆C| steps) and update it (4 operations to update the 2 bounds and the 2
comparison operators). That is, this line is computed in maximum |∆C|(|∆C|+ 4).

c) We compute line 6 as follows: for each Exp(ci , k) ∈ E (maximum |C| components) and for each Exp(cj , k) ∈
EXP(q) \ E (maximum |C| components), we search ∆Cr(ci, cj) (maximum |∆C| steps) and combine it
with ki − kj < ci − cj (one operation to update one bound). That is, this line is computed in maximum
|C|2(|∆C|+ 1).

d) We compute line 7 as follows: we check if the upper bound of each Cr(ci) is infinite (|C| steps) and if so we
empty ∆Cr (maximum |∆C| steps). That is, this line is computed in maximum |C|+ |∆C|.

e) The above Items a)-d) imply that the the maximum number of steps to compute r = (q, E) is 5|C| +
|∆C|(|∆C|+ 5) + |C|2(|∆C|+ 1), where |∆C| = |C|(|C|−1)

2 , and thus of complexity O(|C|4).
2. For Item 2 of Proposition 7.3, r = (q, σ) is computed by lines 2-13 of the procedure in Section 6.2. That is, we

do the following computations.

a) Line 2 is computed in one operation and thus can be ignored.

b) For the loop of line 3-11, we do for each Set event (maximum |C| components) the followings computations.

(i) For line 4, we replace ci by θi in ∆Cr, and this is done in maximum |∆C| steps (necessary to scan all
the ∆Clock-Conds. That is, the maximum number of steps necessary to compute this line is |∆C|.

(ii) For lines 5 and 6, we check if there exists Exp(ci , k) ∈ E (maximum |C| steps) and if so or not,
we create a new ∆Clock-Cond (one operation). That is, the maximum number of steps necessary to
compute these lines is |C|.

(iii) For line 7-9, we determine each cj 6∈ E (maximum |C|2 steps, because we check if each cj ∈ C, that
is for |C| components, is in ZT , done in maximum |C| steps). Then, for each cj 6∈ E that we have
determined, we check if there exists or not exists Exp(cj , k) ∈ E (maximum |C| steps) and we create a
new ∆Clock-Cond depending on the result (line 8 if Exp(cj , k) ∈ E and line 9 if Exp(cj , k) 6∈ E . That
is, the maximum number of steps to compute lines 7-9 is |C|2 + |C|.

(iv) For lines 10 and 11, we update Cr(ci) (2 operations to update the two bound) and Kr(ci) (2 operations,
supposing we affect the values in the Set event and remove the first value).

c) The above Items (i)-(iv) imply that the maximum number of steps necessary to compute the loop of lines
3-11 is |C|(|∆C|+ |C|+ |C|2 + |C|+ 4).

d) For line 12, for each pair of clocks ci and cj , both in ZT (maximum |∆C| components), we create a new
∆Clock-Cond (one step).

e) For line 13, we eliminate each θi in ∆Cq (maximum |C| θi to eliminate). For each ∆Clock-Cond using a θi,
we must combine it with all the others ∆Clock-Conds using θi (maximum |∆C| pairs of ∆Clock-Conds to
combine) and for each combination, we create a new ∆Clock-Cond (one step). That is, the maximum number
of steps to compute line 13 is |C||∆C|.

f) Line 14 is irrelevant for events of type 2 and nothing is computed at this step.
g) The above Items a)-f) imply that the maximum number of steps to compute r = (q, σ) is 2|C||∆C|+2|C|2 +
|C|3 + 5|C|, where |∆C| = |C|(|C|−1)

2 , and thus of complexity O(|C|3).
3. For Item 3 of Proposition 7.3, r = (q, γ) is computed by lines 1-14 of the procedure in Section 6.2. That is, we

do the following computations.

a) For line 1 and 14, we compute respectively lines 1-6 and line 7 of the procedure in Section 6.1 and following
the proof of Item 1 of Proposition 7.3 given in Item 1 above, these lines are computed in maximum 5|C| +
|∆C|(|∆C|+ 5) + |C|2(|∆C|+ 1) steps.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 38

b) The maximum steps necessary to compute lines 2-13 is, following the proof of Item 2 of Proposition 7.3
given in Item 2 above, bounded by 2|C||∆C|+ 2|C|2 + |C|3 + 5|C|.

c) The above Items a) and b) imply that the maximum number of steps to compute r = (q, γ) is |∆C|(|∆C| +
|C|2 + |C|+ 5) + 3|C|2 + 10|C|, and thus of complexity O(|C|4).

4. For Item 4 of Proposition 7.3, to check if q = q′, we do the following computations.

a) We check if Lq = Lq′ , and this is done in one operation and thus negligible.
b) We check if Cq = Cq′ by comparing each Cq(ci) and Cq′(ci) (|C| comparisons), where for each comparison

we make at most 2 steps (comparison of the two bounds). That is, the maximum necessary steps to check if
Cq = Cq′ is bounded by 2|C|.

c) We check if ∆Cq = ∆Cq′ by comparing each ∆Cq(ci, cj) and ∆Cq′(ci, cj). That is, for each ∆Cq(ci, cj)
(maximum |∆C| components), we search ∆Cq′(ci, cj) (maximum |∆C| steps) and we compare them (4 steps
to compare the 2 bounds and the 2 comparison operators). If ∆Cq 6= ∆Cq′ , we check if ci or cj is inactive
(2 steps and thus negligible). That is, the maximum necessary steps to check if ∆Cq = ∆Cq′ is bounded by
|∆C|(|∆C|+ 4).

d) The above Items a)-c) imply that the maximum number of steps to check if q = q′ or q ' q′ is |∆C|(|∆C|+
4) + 2|C| and thus of complexity O(|C|4).

L Proof of Proposition 7.4

To process a state q at iteration i + 1, we make the followings computations.

1. We determine all the events that are enabled in q. This can be done in maximum |Γ1,q|(|C|2 + |∆C|(2|C|+4))+
|Σ|(|C|2 + 2|C|) + |Γ1,q||Σ|(4|C|2 + 6|C|) steps following Items 6 of Proposition 7.2.

2. We compute the state reached after the occurrence of each enabled transition. We can have respectively at most
|Γ1,q|, |Σ| and |Γ1,q||Σ| events of type 1, 2 and 3 enabled in q. That is, following Items 1-3 of Proposition 7.3,
the maximum number of steps to make this computation is |Γ1,q|(5|C|+ |∆C|(|∆C|+ 5) + |C|2(|∆C|+ 1)) +
|Σ|(2|C||∆C|+ 2|C|2 + |C|3 + 5|C|) + |Γ1,q||Σ|(|∆C|(|∆C|+ |C|2 + |C|+ 5) + 3|C|2 + 10|C|).

3. We check for each new constructed state if the same state or an equivalent state has not been already constructed.
Therefore, for each new state, we scan Qi (maximum |Q| steps) and for each qi ∈ Qi, we check if q = qi or
q ' qi. Thus, following the above Item 1 and Item 4 of Proposition 7.3, the maximum steps necessary to make
this computation is bounded by (|Γ1,q|+ |Σ|+ |Γ1,q||Σ|)(|Q|+ |∆C|(|∆C|+ 4) + 2|C|).

4. The above Items 1-3 imply that the maximum number of steps to process a state q is |Γ1,q|(|C|2 + |∆C|(2|C|+
4))+|Σ|(|C|2+2|C|)+|Γ1,q||Σ|(4|C|2+6|C|)+|Γ1,q|(5|C|+|∆C|(|∆C|+5)+|C|2(|∆C|+1))+|Σ|(2|C||∆C|+
2|C|2 + |C|3 +5|C|)+ |Γ1,q||Σ|(|∆C|(|∆C|+ |C|2 + |C|+5)+3|C|2 +10|C|)+(|Γ1,q|+ |Σ|+ |Γ1,q||Σ|)(|Qi|+
|∆C|(|∆C|+4)+2|C|), where |∆C| = |C|(|C|−1)

2 and |Γ1,q| = 2|C|−1, and thus, of complexityO(2|C||Σ|(|C|4+
|Q|)).

M Proof of Proposition 7.5

See proof of Theorem 1.

N Proof of Proposition 7.6

Let γ = (E , σ) ∈ Γ3, with σ = (ρ,S) ∈ Γ2 such that (q, γ)! and t = (q, γ, r) is unconditioned.

1. For the first point of Lemma 7.6, i.e. γcSet = ∅:

(i) From Proposition 6.3, (q, γ)! implies E satisfies item 1 and 2 of Proposition 6.1 (these later are the same
as item 2 of Proposition 6.3.

(ii) The fact that (q, γ)! implies that E satisfies item 8 of Proposition 6.3 and thus satisfies item 3 of Proposi-
tion 6.1, because as t is unconditioned, 6 ∃“ ≤ Exp(ci , k)′′ ∈ ILq

.
(iii) Item (1i) and (1ii) imply that (q, E)!.
(iv) Let q′ = (q, E). As q′ is reached from q by a transition of type 1, then Lq′ = Lq and thus, σ satisfies

item 1 of Proposition 6.2 at q′.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 39

(v) As t is unconditioned, we have that 6 ∃“ ≤ Exp(ci , k)′′ ∈ Gt. As (q, γ)!, from item 3 of Proposition 6.3,
we have that ∃“ < Exp(ci , k)′′ ∈ Gt ⇒ Exp(ci , k) 6∈ E and for such ci, we have that Cq(ci) = Cq′(ci)
and the condition “∃k′ ≤ k, ∃u < k′ such that Cq′(ci) = u < ci < k′” remains satisfied at q′. Thus,
item 2 of Proposition 6.2 for σ is satisfied at q′.

(vi) As t is unconditioned, then 6 ∃“ = Exp(ci , k)′′ ∈ Gt and thus, item 3 of Proposition 6.2 is satisfied for σ
at q′.

(vii) a) As t is unconditioned, then 6 ∃“ ≥ Exp(ci , k)′′ ∈ Gt.
b) Item 6 of Proposition 6.3 implies that in q, “∀“ > Exp(ci , k)′′ ∈ Gt : ∃k′ ≥ k, ∃u > k′ such that

Cq(ci) = (k′ < ci < u) or Cq(ci) = (k′ < ci)”.
c) b) implies that at q′, ∃“ > Exp(ci , k)′′ ∈ Gt ⇒ Exp(ci , k) 6∈ E and thus, ∀“ > Exp(ci , k)′′ ∈ Gt :

Cq(ci) = Cq′(ci).
d) a) and c) imply that at q′, “∀(> Exp(ci , k)) ∈ Gt : ∃k′ ≥ k,∃u > k′ such that

Cq(ci) = (k′ < ci < u) or Cq(ci) = (k′ < ci)” and thus, item 4 of Proposition 6.2 is satisfied
for σ at q′.

(viii) (1iv), (1v), (1vi) and (1vii) imply that (q′, σ)!.
(ix) The procedure of computation of r = (q, γ) in Section 6.2 can clearly be decomposed as the computation

of q′ = (q, E) and r = (q′, σ).
(x) To have (q, σ)!, the four items of Proposition 6.2 must be satisfied for σ in q. The satisfaction of item 1 of

Proposition 6.3 for γ implies the satisfaction of item 1 of Proposition 6.2 for σ in q. As t is unconditioned
(no “∼ Exp(ci , k)” in Gt, with ∼∈ {≤,≥, =}), item 3 of Proposition 6.2 is necessarily satisfied for σ in
q, and the satisfaction of item 3 and 6 of Proposition 6.3 for γ implies the satisfaction of items 2 and 4 of
Proposition 6.2 for σ in q. Thus (q, σ)!.

(xi) Let r′ = (q, σ). As t resets any clock, from the procedure of computation of r′ in Section 6.2, we deduce
that r′ differs from q by its location, i.e. we have Lq 6= Lr′ , CEq = CEr′ , ∆Cq = ∆Cr′ (Clock-Conds
and ∆Clock-Conds change only when clocks are reset).

(xii) (1xi) implies that E satisfies items 1 and 2 of Proposition 6.1 at r′, because E satisfies item 2 of Proposi-
tion 6.3, and this depends only on Clock-Conds and ∆Clock-Conds which are the same in r′ and q.

(xiii) As (q, γ)!, for r = (q, γ), we have by semantic that ILr is satisfied after the occurrence of E . As r and
r′ are reached from q after the occurrence of σ in the IA, we have that Lr = Lr′ and thus, item 3 of
Proposition 6.1 is satisfied for E in r′, because it ensures that ILr′ remains satisfied after the occurrence
of E at r′.

(xiv) (1xii) and (1xiii) imply that (r′, E)!.
(xv) As γcSet = ∅, r = (q, γ) is constructed by the procedure of Section 6.1 without execution of line 7

(construction of a state reached after the occurrence of an event of type 1) and by line 2 and 14 of the
procedure of Section 6.2, and r′ = (q, σ) is constructed by line 2 and 14 of this later procedure.

(xvi) From (1xv), as line 2 and 14 of the procedure of Section 6.2 are independent of the others line, we deduce
that the state r = (q, γ) remains unchanged if we execute first line 2 of the procedure of Section 6.2 and
next all the lines of the procedure of Section 6.1 instead of the normal one.

(xvii) (1v) and (1xvi) imply that the state r′′ = (r′, E) is equal to r = (q, γ) because r is computed by the same
instructions as r′ and r.

(xviii) (1iii), (1viii) and (1ix) show that (q, E)!, (q′, σ)! (i.e. (q, E .σ)!), and (q, γ) = (q, E .σ). In the same way,
(1x), (1xiv) and (1xvii) show that (q, σ)!, (r′, E)! (i.e. (q, σ.E)!) and (q, γ) = (q, σ.E). thus, item 1 of
Proposition 7.6 is correct.

2. For the second point of Proposition 7.6, i.e. when γcSet 6= ∅ (all the clocks are reset by t):

(i) (1iii), (1viii) and (1ix) remain correct because they are independent of the fact that t resets or not resets
clocks, and thus, we have that (q, E)!, (q′, σ)!, with q′ = (q, E) and (q, γ) = (q, E .σ).

(ii) (1x) remains correct because it is independent of the fact that t resets or not resets clocks, and thus, we
have that (q, σ)!.

(iii) Let r′ = (q, σ) and r = (q, γ). As r and r′ are reached from q after the occurrence of σ in the IA,
we have that Lr = Lr′ . As t resets all the clocks, we have that CEr = CEr′ and ∆Cr = ∆Cr′ ,
because they are all determined by lines 10-12 of the procedure of Section 6.2, i.e. ∀ci ∈ C, with
Set(ci ; k1 · · · , kp) ∈ Zt, we have: Cr(ci) = Cr′(ci) = (0 < ci < k1), Kr(ci) = Kr′(ci) = k2 · · · kp,
∀cj ∈ C, ∆Cr(ci, cj) = ∆Cr′(ci, cj) = (ci − cj = 0). Thus r′ = r.

(iv) (2i) and (2iii) imply that (q, γ) = (q, E .σ) = (q, σ) and thus, item 2 of Proposition 7.6 is correct.

3. (1xviii) and (2iv) imply that Proposition 7.6 is correct.

SetExp: A Method of Transformation of Time Automata into Finite State Automata

CIRRELT-2008-05 40

	CIRRELT-2008-05pp
	CIRRELT-2008-05-abstract
	CIRRELT-2008-05

