
A Branch-and-Cut Algorithm for
the Non-Preemptive Swapping
Problem

Charles Bordenave
Michel Gendreau
Gilbert Laporte

June 2008

CIRRELT-2008-22

A Branch-and-Cut Algorithm for the Non-Preemptive
Swapping Problem

Charles Bordenave1,2,* , Michel Gendreau1,2 , Gilbert Laporte1,3

1. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

(CIRRELT)
2. Department of Computer Science and Operations Research, Université de Montréal, P.O. Box

6128, Station Centre-ville, Montréal, Canada H3C 3J7
3. Canada Research Chair in Distribution Management, HEC Montréal, 3000 Côte-Sainte-

Catherine, Montréal, Canada H3T 2A7

Abstract. In the Swapping Problem (SP), we are given a complete graph, a set of object

types and a vehicle of unit capacity. An initial state specifies the object type currently

located at each vertex (at most one type per vertex). A final state describes where these

object types must be repositioned. In general there exist several identical objects for a

given object type, yielding multiple possible destinations for each object. The SP consists

of finding a shortest vehicle route starting and ending at an arbitrary vertex, in such a way

that each object is repositioned in its final state. This article exhibits some structural

properties of optimal solutions and proposes a branch-and-cut algorithm based on a 0-1

formulation of the problem. Computational results on random instances containing up to

200 vertices and eight object types are reported.

Keywords. Swapping Problem, branch-and-cut, vehicle routing.

Acknowledgements. This research was partially supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) under grants 338816-05 and 39682-

05.This support is gratefully acknowledged.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Charles.Bordenave@cirrelt.ca

This document is also published as Publication #1320 by the Department of Computer Science
and Operations Research of the Université de Montréal.

Dépôt légal – Bibliothèque et Archives nationales du Québec,
 Bibliothèque et Archives Canada, 2008

© Copyright Bordenave, Gendreau, Laporte and CIRRELT, 2008

1 Introduction

The Swapping Problem (SP) is defined on a complete directed graph G = (V,A),
where V = {1, . . . , n} is the vertex set and A = {(i, j) | i ∈ V, j ∈ V, i 6= j} is
the arc set. Without loss of generality, vertex 1 is arbitrarily designated as a depot.
A cost matrix (cij) satisfying the triangular inequality is defined on A. We consider
a set of m object types O = {1, . . . ,m}, also referred to as products, located at
the vertices. With vertex i is associated a pair (ai, bi) of object types corresponding
to its supply and its demand. Initially, the supply object is located at the vertex.
Each object has a unit weight and appears the same number of times as a supply
object and as a demand object. In the SP, the aim is to carry the objects using a unit
capacity vehicle, in such a way that all vertices receive their demand object and the
total cost is minimized. The vehicle can perform empty trips (called deadheading),
in which case it is assumed to transport a null object denoted by 0. The version of
the SP considered in this paper is called non-preemptive because objects are non-
droppable, i.e., they cannot be dropped at temporary locations along the vehicle
route. Applications of the SP arise in robotics ([3]) and in printed circuit board
assembly ([4]).

The SP was introduced by Anily and Hassin [2] who proved it to be NP-hard by
reduction to the Traveling Salesman Problem (TSP) and derived interesting struc-
tural properties of optimal solutions. They also developed a 2.5-approximation
algorithm based on matching and patching methods. The case of a linear graph
was analyzed by Anily et al. [1] and was shown to be solvable in O(n2) time.

A problem closely related to the non-preemptive SP is the Stacker Crane Prob-
lem (SCP) in which each vertex has a supply or a demand, but not both, and each
object appears only once as a supply and as a demand. The SCP is a special case of
the asymmetric TSP and also corresponds to a special case of the non-preemptive
SP in which there exists only one object for each type. Frederickson et al. [8]
analyzed the SCP on a complete graph and proposed a 1.8-approximation heuris-
tic, based on matching and on minimum spanning trees. Atallah and Kosaraju [3]
proved that the non-preemptive SCP can be solved in O(m+nf(n)) time on a line
and in O(m + n log n) time on a circle, where f(n) is the inverse of Ackermann’s
function.

Another related problem is the Bipartite TSP (BTSP), a TSP in which the num-
ber of vertices is even, half white, and half black. The problem consists of deter-
mining a shortest Hamiltonian tour in which no two vertices of the same color are
consecutive. Chalasani and Motwani [5] have proposed a 2-approximation algo-
rithm for the undirected version of this problem. Ghiani et al. [9] have considered a
generalization of the BTSP in which the numbers of white and black vertices may
differ, and the number of white vertices between two consecutive black vertices

1

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

does not exceed a prespecified value. The authors have developed a branch-and-
cut algorithm for this NP-hard problem. The BTSP corresponds to a special case
of the non-preemptive SP in which there exist only two object types (referred to as
the simple SP in [2]).

Finally, we mention the One-Commodity Pickup-and-Delivery TSP investi-
gated by Hernández-Pérez and Salazar González [12, 13]. In this problem each
vertex has a non-negative supply or demand of a single product. The problem is to
determine a shortest Hamiltonian tour for a capacitated vehicle in such a way that
all requests are satisfied. This problem is NP-hard and was solved by branch-and-
cut for up to 100 vertices.

Our aim is to develop, for the first time, an exact branch-and-cut algorithm for
the non-preemptive SP on a general graph. The remainder of the paper is organized
as follows. In Section 2 we prove some structural properties of optimal solutions.
An integer linear programming formulation is presented in Section 3. Section 4
contains a description of the branch-and-cut algorithm. Computational results are
presented in Section 5, followed by conclusions in Section 6.

2 Structural properties of optimal solutions

In addition to the notation already introduced, we define the binary coefficients αik

and βik equal to 1 if and only if ai = k and bi = k, respectively. Multiple optimal
solutions may exist for a given instance, especially when the triangular inequal-
ity holds with equality. As in [2] we are interested in solutions having minimum
number of arcs because they induce some interesting structural properties.

Definition 1. A solution is called optimal if it has minimum cardinality among all
solutions that minimize the objective function.

Lemma 1. In any optimal solution every visited vertex i is incident to exactly one
incoming arc carrying object type bi.

Proof. Consider an optimal solution S. Suppose there exists a vertex i for which
r ≥ 2 incoming arcs (ut, i), t ∈ {1, ..., r} carry object type bi. Then there must
exist r− 1 arcs (i, vt), t ∈ {1, ..., r− 1} exiting i with object type bi (one object is
left at i to satisfy its demand). This means that a non-negative number of bi objects
are temporarily unloaded at i and carried later to another vertex. Since the problem
is non-preemptive such drops are not allowed, thus contradicting the optimality of
S.

Lemma 2. In any optimal solution every visited vertex i is incident to exactly one
outgoing arc carrying object type ai.

2

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

Proof. Similar to the proof of Lemma 1 by symmetry.

Lemma 3. In any optimal solution every vertex i satisfying one of the conditions
1) ai 6= 0 and bi = 0, 2) ai = 0 and bi 6= 0, 3) ai = bi = 0 and i = 1, has degree
two.

Proof. Consider a vertex i such that ai 6= 0 and bi = 0. The vehicle must visit i

to satisfy its demand. By Lemma 1 there exists exactly one incoming arc carrying
object type bi = 0 (i.e., a deadheading). By Lemma 2, there exists exactly one
outgoing arc carrying object type ai. Since every object type is non-droppable, no
other object can enter i and no other object can exit i. Hence i is a degree-two
vertex. The second condition where ai = 0 and bi 6= 0 follows by symmetry. For
the third condition, we can also apply Lemmas 1 and 2 on i (i.e., the depot) because
it is necessarily a visited vertex. Then there exist exactly one incoming arc carrying
object type bi = 0 and exactly one outgoing arc carrying ai = 0. Since objects are
non-droppable, no other types of arc can be adjacent to i.

Lemma 4. In any optimal solution every vertex is incident to at most one incoming
and one outgoing deadheading.

Proof. Consider an optimal solution S and consider a vertex i visited by S. Two
cases are possible: 1) Case 1: ai 6= 0 and bi = 0, ai = 0 and bi 6= 0, ai = bi = 0
and i = 1. By Lemma 3, i has degree two and therefore i is incident to at most
one incoming and one outgoing deadheading. 2) Case 2: ai 6= 0 and bi 6= 0.
Suppose there exist r ≥ 2 incoming deadheadings (ut, i), t ∈ {1, ..., r}. Since i

does not require nor supply object type 0, there exist r ≥ 2 outgoing deadheadings
(i, vt), t ∈ {1, ..., r}. By Lemmas 1 and 2, i is incident to exactly one incoming
arc carrying bi and exactly one outgoing arc carrying ai, then r + 1 arcs enter and
exit i. Since r ≥ 2 there exists at least one pair of deadheadings (up, i) and (i, vq),
for some p and q ∈ {1, ..., r}, that are traversed consecutively in S and then can
be replaced with a single arc (up, vq). This yields a new feasible solution S ′ that
is no worse than S and containing fewer arcs, thus contradicting the optimality of
S.

Lemma 5. An optimal solution can possibly pass through a vertex i such that
ai = bi and different from the depot if and only if ai 6= 0 (or equivalently bi 6= 0).
Furthermore if the solution visits such a vertex i, then i is incident to two incoming
arcs (one carrying object type bi and one deadheading) and two outgoing arcs (one
carrying object type ai and one deadheading).

Proof. We start with the first part of the lemma.
⇒ Suppose there exists a vertex i ∈ V \ {1} with ai = bi = 0 visited in an

3

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

optimal solution S. By Lemmas 1 and 2, there exist exactly one incoming arc (u, i)
carrying bi = 0 (i.e., a deadheading) and exactly one outgoing arc (i, v) carrying
ai = 0 (i.e., a deadheading). Replacing these two arcs with a unique deadheading
(u, v) yields a new feasible solution S ′ no worse than S and containing fewer arcs,
thus contradicting the optimality of S. Therefore if the vehicle can possibly visit
such i, then ai must be non-zero.
⇐ Consider the instance shown in Figure 1 containing four vertices located at the
corners of the unit square and an additional vertex at the center.

�

(2, 1)

�

(3, 4)

�

(3, 3)

�
(1, 2) �(4, 3)

Figure 1: Instance with a vertex i such that ai = bi

Object types 1, 2 and 4 have only one source and one destination, and there-
fore the vehicle must carry them from their origin to their unique destination with
no other choice, whereas there exist two alternatives for object type 3 which are
shown in Figures 2 and 3 (one passing through the center point). To construct the
corresponding solutions from these two alternatives we need to patch the two con-
nected components together using a pair of deadheadings (Figures 4 and 5). The
total cost of the first solution is 6 whereas the second one has a smaller cost equal
to 3 + 2

√
2.

To prove the second part of the lemma, consider an optimal solution S visiting
a vertex i 6= 1 with ai = bi and ai 6= 0. Suppose there exists only one arc entering
i, a deadheading (u, i). Since bi 6= 0 there exists a deadheading (i, v). Since
ai = bi we can construct a new feasible solution S ′ by simply replacing these
two arcs with a single deadheading (u, v). Again from triangular inequality S ′ is
no worse than S and contains fewer arcs, thus contradicting the optimality of S.
Suppose now that this single incoming arc (u, i) carries bi. The vehicle must exit
i with ai, following an arc (i, v). Since ai = bi, we can again replace these two
arcs with a unique arc (u, v) carrying bi, thus contradicting the optimality of S.

4

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

�

(2, 1)

�

(3, 4)

�

(3, 3)

�
(1, 2) �(4, 3)

21 43

Figure 2: Alternative 1

�

(2, 1)

�

(3, 4)

�

(3, 3)

�
(1, 2) 	(4, 3)

21 4

3

3

Figure 3: Alternative 2

(2, 1)

�

(3, 4)

�

(3, 3)

(1, 2) �(4, 3)

21 43

0

0

Figure 4: Solution 1

�

(2, 1)

�

(3, 4)

�

(3, 3)

�
(1, 2) �(4, 3)

21 4

3

3
0

0

Figure 5: Solution 2

From Lemmas 1 and 4, there exist two incoming arcs (an arc carrying bi and an
incoming deadheading) and two outgoing arcs (an arc carrying ai and an outgoing
deadheading).

Lemma 5 contradicts an observation by Anily and Hassin [2] which incorrectly
states that there always exists an optimal solution for the non-preemptive SP (called
pure no-drop case in their paper) that does not visit vertices for which the demand
equals the supply.

Theorem 1. In any optimal solution each vertex has degree zero, two or four.

Proof. Lemma 5 implies that an optimal solution may or may not visit a vertex i

with ai = bi. Therefore such a vertex may have a zero degree in an optimal solu-
tion. Every vertex i with ai 6= bi must be visited by the vehicle in order to satisfy its

5

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

demand and supply. By Lemmas 1 and 2, every visited vertex is incident to exactly
one incoming arc carrying bi and exactly one outgoing arc carrying ai, yielding a
vertex of degree two. By Lemma 4, the same vertex can possibly be incident to at
most one additional pair of arcs (incoming and outgoing deadheadings) so that it
would become a vertex of degree four.

Depot Non-depot vertex

�
(0, 0)

0 0

�
(1, 1)

1 1

�
(1, 1)1 1

0 0

�
(0, 1)

1 0

�
(1, 0)

0 1

�
(1, 2)

2 1

�
(1, 2)2 1

0 0

�
(0, 0)

�
(1, 1)

	
(1, 1)1 1

0 0

(0, 1)

1 0

�
(1, 0)

0 1

�
(1, 2)

2 1

(1, 2)2 1

0 0

ai = bi = 0

ai = bi, ai 6= 0

ai 6= bi, ai = 0

ai 6= bi, bi = 0

ai 6= bi,
ai 6= 0, bi 6= 0

Figure 6: All possible configurations for a vertex in an optimal solution.

If vertices having the same demand and supply are disallowed (which would
force the vehicle to visit each vertex at least once), then the problem can be viewed
as a particular case of the Graphical Traveling Salesman Problem (GTSP) studied
by Cornuéjols et al. [7], a variant of the TSP in which the degree constraints allow
each vertex to be visited more than once. If we denote by GTSP (n) and SP (n)

6

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

the polyhedra associated with the GTSP and this special case of non-preemptive SP
respectively, then SP (n) ⊂ GTSP (n). Therefore every known valid inequality
for the GTSP is also valid for this special case of non-preemptive SP.

Definition 2. A triplet (i, j, k), (i, j) ∈ A, k ∈ O∪{0}, is called discardable if the
transport of object type k from vertex i to vertex j will never be part of any optimal
solution. Denote by N the subset of non-discardable triplets.

Proposition 1. A triplet (i, j, k), (i, j) ∈ A, k ∈ O ∪ {0} is discardable if one of
the following conditions is satisfied: 1) ai = bi = 0, i 6= 1, 2) aj = bj = 0, j 6= 1,
3) k 6= ai, k 6= 0, 4) k 6= bj , k 6= 0, 5) k 6= bi, ai = 0, bi 6= 0, 6) k 6= ai, ai 6= 0,
bi = 0.

Proof. The first two conditions are direct consequences of Lemma 5. The third
condition comes from the definition of the problem. Indeed, since object types
are non-droppable, the vehicle is not allowed to carry an object of type k from i

to j if k is not initially located at i, except possibly for the null object (i.e., (i, j)
would be a deadheading). The fourth condition is the symmetric case of the third
condition. If ai = 0 and bi 6= 0, then by Lemma 3, i has degree two in any optimal
solution and then, by Lemma 1, the only object entering i is bi. By symmetry, from
Lemmas 2 and 3, if ai 6= 0 and bi = 0 then there exists only one arc exiting i, and
this arc carries ai. This yields the last two conditions.

To conclude this section, we summarize in Figure 6 all possible configurations
for a vertex in an optimal solution (in terms of incoming and outgoing arcs). Nu-
merical values have been added for the sake of clarity.

3 Mathematical model

The non-preemptive SP can be formulated as an integer linear program. Any fea-
sible solution is a subset of arcs where each one is associated with the object type
carried along that arc. For all triplets (i, j, k) ∈ N , let xk

ij be a binary variable
equal to 1 if and only if an object of type k is carried from i to j. The formulation
is as follows.

7

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

minimize
∑

(i,j,k)∈N

cijx
k
ij (1)

subject to
n∑

j=1

x
ai

ij = 1 , ∀ i ∈ V s.t. ai 6= bi and ai = 0 (2)

n∑

j=1

xbi

ji = 1 , ∀ i ∈ V s.t. ai 6= bi and bi = 0 (3)

n∑

j=1 | bj=ai

xai

ij = 1 , ∀ i ∈ V s.t. ai 6= bi and ai 6= 0 (4)

n∑

j=1 |aj=bi

xbi

ji = 1 , ∀ i ∈ V s.t. ai 6= bi and bi 6= 0 (5)

n∑

j=1 | bj=ai

x
ai

ij +

n∑

j=1

x0
ij ≥ 1 , ai = bi and i = 1 (6)

n∑

j=1 |aj=bi

xbi

ji +
n∑

j=1

x0
ji ≥ 1 , ai = bi and i = 1 (7)

n∑

j=1

(xk
ij − xk

ji) = αik − βik , ∀ i ∈ V , ∀k ∈ O ∪ {0} (8)

n∑

j=1

(x0
ji − xbi

ji) = 0 , ∀ i ∈ V s.t. ai = bi and i 6= 1 (9)

m∑

k=0

∑

i∈U

∑

j 6∈U

xk
ij ≥ 1 , ∀U ∈ U (10)

xk
ij ∈ {0, 1} , ∀ (i, j, k) ∈ N , (11)

where U is a family of vertex sets to be defined in Section 3.3, and N is the set of
possibly optimal arcs (see Definition 2). We now explain the various constraints
used in the formulation.

3.1 Supply and demand constraints

If i is a vertex for which ai 6= bi, then an arc carrying ai must leave i. There are
two cases: either the supply of the given vertex is null and therefore the vehicle can
carry this object to any other vertex, or the vertex has a non-zero supply and then

8

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

the supplied object type must be carried to a vertex requiring that type. In both
cases, by Lemma 1, there exists exactly one outgoing arc carrying object type ai

(constraints 2 and 4). If a given vertex has the same supply and demand, then it is
not certain that the vertex will be part of an optimal solution, except if the vertex
is the depot (see Lemma 5). In this case, the vehicle can possibly load the supplied
object and carry it to a vertex requiring that object type, and it may also leave the
vertex with a deadheading (see Lemmas 2 and 4) (constraints 6). The constraints 3,
5 and 7 associated with the demand follow by symmetry.

3.2 Flow conservation constraints

Constraints 8 represent the flow conservation constraints. They are similar to the
constraints proposed in [2] and take care of the conservation of objects at the
vertices. Relaxing the integrality requirement may yield solutions satisfying con-
straints 8 but violating Lemma 5. Such a fractional solution is depicted in Figure 7.
The numbers on the arcs show the object type carried and the associated xk

ij values
in boldface. Therefore we consider constraints 9 which ensure that if a deadhead-
ing enters a vertex i 6= 1 with ai = bi, then an arc carrying the demand bi also
enters i with the same flow.

� �

�

� �

�

(4, 2) (0, 1)

(4, 4)

(3, 4) (4, 2)

(2, 0)

0.01
0

0.02
0

0.03
0

0.97
4

0.97
4

Figure 7: Part of solution satisfying constraint 8 but violating constraint 9

3.3 Subtour elimination constraints

Standard subtour elimination constraints (SEC) for the directed TSP state that in
any optimal solution the vehicle must leave (and equivalently enter) every proper
subset of vertices at least once. As we have seen, in the non-preeemptive SP the

9

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

vertices i ∈ V \ {1} with ai = bi may or may not be part of an optimal solution.
Therefore standard SEC must be slightly modified. Actually, subtour elimination
constraints 10 are the same as in the directed TSP but the subset of vertices to
which the constraint can be applied must satisfy additional requirements.

Definition 3. A subset U ⊂ V is called SEC-compatible if it is valid to impose an
SEC on U . Denote by U the family of SEC-compatible subsets.

Proposition 2. U ∈ U if and only if it satisfies one of the two conditions 1) 1 ∈ U

and ∃ i ∈ V \ U such that ai 6= bi, or 2) 1 6∈ U and ∃ i ∈ U such that ai 6= bi.

Proof. ⇒ Let U ∈ U . The vehicle must cross the border of U (in both directions)
at least once. Therefore there must exist a vertex in U and a vertex in V \U visited
in any optimal solution. Lemma 5 shows that not all vertices are necessarily part
of the solution but by definition any solution passes through vertices i with ai 6= bi

(to satisfy their supply and demand) and also, by definition, any solution must visit
the depot. These are the two types of vertices that are guarantied to be visited. If
the depot is in U , then there exists a vertex i such that ai 6= bi that is not in U .
Otherwise, if the depot is not in U , then there exists a vertex i in U such ai 6= bi.
⇐ Let U ⊂ V . Suppose that the depot belongs to U and that there exists a vertex
i ∈ V \ U such that ai 6= bi. By definition, every feasible solution must visit the
depot and also the vertex i to satisfy its supply and demand. Therefore the solution
must contain an arc from U to V \ U , which is an SEC on U . Replacing U by its
complementary V \ U gives the second condition.

3.4 Comb inequalities

Comb inequalities are not part of the basic formulation but they will be dynam-
ically incorporated into the model during the branch-and-cut algorithm. These
inequalities were first identified by Chvátal [6] and then generalized by Grötschel
and Padberg [10]. A comb is defined by a handle H ⊂ V , and an odd number
t ≥ 3 of teeth Ti ⊂ V (i = 1, . . . , t) such that (see Figure 8):

H ∩ Ti 6= ∅ , (i = 1, . . . , t)
Ti \H 6= ∅ , (i = 1, . . . , t)
Ti ∩ Tj 6= ∅ , (1 ≤ i < j ≤ t).

For the TSP the comb inequality is the following constraint:

x(δ(H)) +

t∑

i=1

x(δ(Ti)) ≥ 3t + 1,

10

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

� � �

� � �

H

T1 T2 T3

Figure 8: Minimal comb configuration

where the notation δ(S) is the set of edges having only one endpoint in S, and
x(S) represents the sum of the values of the edges having their two endpoints in S.

In the non-preemptive SP the graph is directed and in a solution each arc is
associated with an object type. Simply replacing each arc (i, j) by an edge e =
(i, j) with value xe =

∑m
k=0(x

k
ij + xk

ji) is not sufficient to define a valid comb
inequality for the non-preemptive SP. We have to take into account the fact that
some vertices are not necessarily required to be part of the solution (i.e., vertices i

with ai = bi). The subsets H and Ti must satisfy an additional requirement which
is introduced in the next definition.

Definition 4. A subset H ⊂ V and an odd number t ≥ 3 of subsets Ti ⊂ V

(i = 1, . . . , t) such that 1) H ∩Ti 6= ∅, (i = 1, . . . , t), 2) Ti \H 6= ∅, (i = 1, . . . , t)
and 3) Ti ∩ Tj 6= ∅, (1 ≤ i < j ≤ t), is said to be comb-compatible if it is valid to
impose a comb inequality from the handle H and the teeth Ti.

Proposition 3. A comb (H,Ti) is comb-compatible if the following two conditions
are satisfied for each Ti: 1) 1 ∈ Ti \ H or ∃ i ∈ Ti \ H such that ai 6= bi, 2)
1 ∈ Ti ∩H or ∃ i ∈ Ti ∩H such that ai 6= bi.

Proof. The proof is similar to that of Proposition 2. If a vertex has the same de-
mand and supply and is not the depot, the vehicle can possibly skip it in an optimal
solution. Such a vertex is somehow unconstrained as its supply can satisfy its own
demand. On the other hand, the depot and vertices i with ai 6= bi must be visited at
least once in any solution. Since the minimal comb configuration (Figure 8) con-
sists of exactly one vertex in each Ti \H and Ti ∩H , having the depot or a vertex
i with ai 6= bi in each of these subsets forces the vehicle to cross each border an
appropriate number of times to satisfy the standard comb inequality.

11

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

4 Branch-and-cut algorithm

We have developed a branch-and-cut algorithm for the non-preemptive SP. Initially,
the subtour elimination constraints and the integrality constraints are relaxed. We
denote the current linear program by LP.

Whenever the relaxation is solved, an attempt is made to detect some violated
inequalities of a certain type. If some are detected, they are added to the current
relaxation which is solved again. The process continues until no more violated
inequalities can be identified. At this point, if the optimal LP solution satisfies
the integrality constraints, it becomes the new incumbent. Otherwise, branching
is performed by creating two child nodes and adding them to the node set of the
branch-and-cut tree which is referred to as NODEPOOL (see the following pseudo-
code of NodeTreatment).

Procedure 1 NodeTreatment
Input: LP, NODEPOOL

1: detectedCut = true
2: while detectedCut do
3: while FINDSUBTOUR do
4: detectedCut = true
5: ADDSUBTOUR

6: SOLV E

7: end while
8: if FINDCOMBS then
9: detectedCut = true

10: ADDCOMBS

11: SOLV E

12: else
13: detectedCut = false
14: end if
15: end while
16: if ISINT then
17: incumbent← x∗

18: else
19: create leftChild

20: create rightChild

21: NODEPOOL← NODEPOOL ∪ {leftChild}
22: NODEPOOL← NODEPOOL ∪ {rightChild}
23: end if

12

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

To separate subtour elimination constraints we use the Hao-Orlin algorithm
([11]) to compute a global minimum cut in the support graph of the current solu-
tion. If the value of the minimum cut is strictly less than 1, we check for SEC-
compatibility as defined in Section 3.3. If the cutset U is SEC-compatible, then the
corresponding SEC constraint is added to the LP which is solved again.

We have used two different heuristics to separate comb inequalities. The first
one comes from the publicly available package CVRPSEP developed by Lysgaard
([15]) for the Capacitated Vehicle Routing Problem ([14, 16]), and the second one
is our implementation of the heuristic proposed by Naddef and Thienel [17]. The
two heuristics are executed subsequently and each new cut is stored (in our im-
plementation we limit the number of stored cuts to 30 for a given input LP). Cuts
for which comb-compatibility is satisfied (see Proposition 3) are added to the LP
which is solved again.

We have applied the standard branching on variables. Given the current frac-
tional solution x∗, we select the variable closest to 0.5. The lexicographic order is
used to break ties. Then we generate two child nodes (leftChild and rightChild, see
the pseudo-code of NodeTreatment) by fixing the value of that variable to either 0
or 1. These two new nodes are added to the pool (NODEPOOL) which maintains
the nodes of the branch-and-cut tree as a priority stack. In our computation the
best-bound search strategy was used to explore the pool. We have tested several
branching rules (branching on variable with various selection rules, branching on
cutset) but the standard branching rule has, in general, produced the best results.

5 Computational results

The branch-and-cut algorithm was coded in C++ and integrated in a branch-and-
bound framework called OOBB, which stands for Object-Oriented Tools for Par-
allel Branch-and-Bound, currently in development at the CIRRELT in Montreal.
Our code uses the sequential mode. As for the LP solver we used ILOG CPLEX
10.1. Tests were performed on an AMD Opteron Dual Core 285 2.6GHz running
Linux.

To generate the instances, vertices were randomly distributed in the 500×500
square according to a discrete distribution. We have associated to the vertices a
random supply and a random demand within {0, . . . ,m} such that each object
type was requested and supplied at least once. Vertices i 6= 1 with ai = bi = 0
were not generated since it has been proved in Section 2 that they are not visited
in an optimal solution. We have considered instances with 50 ≤ n ≤ 200 vertices
(with an increment of 10) and 3 ≤ m ≤ 8 object types. For each pair (n,m) three
different instances were generated, yielding a total of 96 instances. Computational

13

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

results given in this paper represent the average results over these three sets of
instances. The running time limit was set to 5400 seconds.

Our results are summarized in Table 1 where we report the average number of
cuts added to the relaxation, the average number of nodes in the branch-and-cut
tree and the average running time in seconds. All instances have been solved to
optimality, and 31% were solved at the root node. In general, instances with few
object types (typically 3 or 4) were the hardest to solve. This can be explained by
the fact that the number of potential destinations (for each object) increases as the
number of object types decreases.

Cuts B&C Nodes Seconds

n \m 3,4,5 6,7,8 3,4,5 6,7,8 3,4,5 6,7,8

50, 60, 70, 80 59 8 6 1 7 1
90, 100, 110, 120 158 95 8 6 79 79

130, 140, 150, 160 212 112 11 17 239 204
170, 180, 190, 200 378 205 12 7 955 580

Table 1: Summary of computational results on random instances

Table 2 gives the average relative gap at the root which is the relative difference
between the value of the optimal solution and the value obtained at the first node
of the branch-and-cut tree. As we can see the gap was extremely small.

n \m 3 4 5 6 7 8

50, 60, 70, 80 0.0033 0.0011 0.0008 0.0000 0.0000 0.0000
90, 100, 110, 120 0.0006 0.0008 0.0001 0.0002 0.0001 0.0004
130, 140, 150, 160 0.0011 0.0003 0.0002 0.0006 0.0004 0.0002
170, 180, 190, 200 0.0003 0.0002 0.0002 0.0000 0.0004 0.0004

Table 2: Relative gap at the root of the branch-and-cut tree

Tables 3, 4, 5 and 6 show the results of our branch-and-cut algorithm on all
instances (for each pair (n,m) the reported results correspond to the average over
three different instances). The column headings are as follows. Subtours is the
number of subtour elimination constraints added to the relaxation, Combs is the
number of comb inequalities added to the relaxation, Gap is the relative gap be-
tween the solution value obtained at the root node of the search tree and the optimal
solution value, Nodes is the total number of nodes in the branch-and-cut tree, and
Seconds is the running time in seconds.

14

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

6 Conclusions

We have proposed the first ever exact algorithm for the non-preemptive Swapping
Problem on a complete graph. We have elaborated a mathematical model based
on typical arc-routing variables as well as a branch-and-cut algorithm to solve it.
Computational tests show our algorithm can solve reasonably large instances to
optimality within acceptable computation times.

Acknowledgements This research was partially supported by the Canadian Nat-
ural Sciences and Engineering Research Council under grants 338816-05 and 39682-
05. This support is gratefully acknowledged.

References

[1] S. Anily, M. Gendreau, and G. Laporte. The swapping problem on a line.
SIAM Journal on Computing, 29:327–335, 1999.

[2] S. Anily and R. Hassin. The swapping problem. Networks, 22:419–433,
1992.

[3] M.J. Atallah and S.R. Kosaraju. Efficient solutions to some transportation
problems with applications to minimizing robot arm travel. SIAM Journal on
Computing, 17:849–869, 1988.

[4] M.O. Ball and M.J. Magazine. Sequencing of insertions in printed circuit
board assembly. Operations Research, 36:192–201, 1988.

[5] P. Chalasani and R. Motwani. Approximating capacitated routing and deliv-
ery problems. SIAM Journal on Computing, 28:2133–2149, 1999.

[6] V. Chvátal. Edmonds polytopes and weakly hamiltonian graphs. Mathemati-
cal Programming, 5:29–40, 1973.

[7] G. Cornuéjols, J. Fonlupt, and D. Naddef. The traveling salesman problem
on a graph and some related integer polyhedra. Mathematical Programming,
33:1–27, 1985.

[8] G.N. Frederickson, M.S. Hecht, and C.E. Kim. Approximation algorithms
for some routing problems. SIAM Journal on Computing, 7:178–193, 1978.

[9] G. Ghiani, G. Laporte, and F. Semet. The black and white traveling salesman
problem. Operations Research, 54:366–378, 2006.

15

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

[10] M. Grötschel and M.W. Padberg. On the symmetric traveling salesman prob-
lem I: Inequalities. Mathematical Programming, 16:265–280, 1979.

[11] J. Hao and J.B. Orlin. A faster algorithm for finding the minimum cut in a
graph. In Proceedings of the Third Annual ACM-SIAM Symposium on Dis-
crete Algorithms. Orlando, Florida, 1992.

[12] H. Hernández-Pérez and J.J. Salazar González. A branch-and-cut algorithm
for a traveling salesman problem with pickup and delivery. Discrete Applied
Mathematics, 145:126–139, 2004.

[13] H. Hernández-Pérez and J.J. Salazar González. The one-commodity pickup-
and-delivery traveling salesman problem: Inequalities and algorithms. Net-
works, 50:258–272, 2007.

[14] A.N. Letchford, R.W. Eglese, and J. Lysgaard. Multistars, partial multistars
and the capacitated vehicle routing problem. Mathematical Programming,
94:21–40, 2002.

[15] J. Lysgaard. CVRPSEP package, 2004–. http://www.hha.dk/˜lys/.

[16] J. Lysgaard, A.N. Letchford, and R.W. Eglese. A new branch-and-cut algo-
rithm for the capacitated vehicle routing problem. Mathematical Program-
ming, 100:423–445, 2004.

[17] D. Naddef and S. Thienel. Efficient separation routines for the symmetric
traveling salesman problem I: General tools and comb separation. Mathemat-
ical Programming, 92:237–255, 2002.

16

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

http://www.hha.dk/~lys/

(n,m) Subtours Combs Gap Nodes Seconds

(50,3) 60 23 0.0125 7 4
(50,4) 24 0 0.0000 1 0
(50,5) 28 4 0.0032 7 2
(50,6) 5 0 0.0000 3 0
(50,7) 3 0 0.0000 1 0
(50,8) 7 0 0.0000 1 0
(60,3) 40 0 0.0000 1 2
(60,4) 31 4 0.0038 3 2
(60,5) 21 0 0.0001 5 1
(60,6) 1 0 0.0000 1 0
(60,7) 5 0 0.0000 1 0
(60,8) 1 0 0.0000 1 0
(70,3) 32 73 0.0008 9 12
(70,4) 43 33 0.0005 37 19
(70,5) 39 0 0.0000 1 4
(70,6) 15 0 0.0000 1 1
(70,7) 11 0 0.0000 1 1
(70,8) 1 0 0.0000 1 0
(80,3) 62 46 0.0000 3 14
(80,4) 70 58 0.0002 3 24
(80,5) 14 2 0.0000 1 2
(80,6) 31 0 0.0000 1 5
(80,7) 17 0 0.0000 1 3
(80,8) 1 0 0.0000 1 0

Table 3: Detailed computational results on random instances (50 ≤ n ≤ 80)

17

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

(n,m) Subtours Combs Gap Nodes Seconds

(90,3) 215 22 0.0001 7 75
(90,4) 195 24 0.0001 3 87
(90,5) 153 42 0.0049 19 84
(90,6) 7 0 0.0000 5 2
(90,7) 22 0 0.0003 9 9
(90,8) 139 20 0.0015 3 78
(100,3) 164 36 0.0012 7 70
(100,4) 34 52 0.0018 13 33
(100,5) 84 0 0.0001 5 34
(100,6) 20 0 0.0000 1 6
(100,7) 33 4 0.0001 11 21
(100,8) 160 0 0.0000 1 132
(110,3) 42 36 0.0000 7 21
(110,4) 252 71 0.0013 11 233
(110,5) 13 0 0.0000 1 4
(110,6) 182 91 0.0003 9 242
(110,7) 20 0 0.0000 1 7
(110,8) 31 0 0.0003 5 16
(120,3) 194 168 0.0010 23 269
(120,4) 66 0 0.0000 1 25
(120,5) 29 4 0.0000 3 12
(120,6) 251 12 0.0007 29 339
(120,7) 51 0 0.0000 1 28
(120,8) 100 0 0.0000 3 73

Table 4: Detailed computational results on random instances (90 ≤ n ≤ 120)

18

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

(n,m) Subtours Combs Gap Nodes Seconds

(130,3) 119 151 0.0013 33 274
(130,4) 51 0 0.0000 3 20
(130,5) 89 80 0.0003 19 129
(130,6) 62 90 0.0024 25 187
(130,7) 35 4 0.0003 3 26
(130,8) 69 55 0.0001 15 148
(140,3) 158 33 0.0018 3 121
(140,4) 154 184 0.0002 7 266
(140,5) 46 0 0.0000 1 31
(140,6) 31 5 0.0000 3 23
(140,7) 48 2 0.0000 3 43
(140,8) 41 33 0.0001 7 81
(150,3) 459 47 0.0003 11 882
(150,4) 162 42 0.0010 9 211
(150,5) 189 38 0.0006 27 346
(150,6) 79 0 0.0000 1 67
(150,7) 206 55 0.0013 29 576
(150,8) 59 0 0.0000 1 59
(160,3) 179 164 0.0012 19 418
(160,4) 119 51 0.0000 3 143
(160,5) 34 0 0.0000 1 23
(160,6) 155 42 0.0000 3 260
(160,7) 57 0 0.0002 3 64
(160,8) 78 133 0.0006 111 909

Table 5: Detailed computational results on random instances (130 ≤ n ≤ 160)

19

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

(n,m) Subtours Combs Gap Nodes Seconds

(170,3) 569 101 0.0001 5 1595
(170,4) 200 44 0.0006 15 354
(170,5) 315 50 0.0002 9 816
(170,6) 56 0 0.0000 1 57
(170,7) 235 189 0.0006 35 1467
(170,8) 116 137 0.0009 13 631
(180,3) 420 162 0.0005 11 1106
(180,4) 356 1 0.0002 3 646
(180,5) 53 71 0.0003 9 145
(180,6) 166 122 0.0001 7 487
(180,7) 291 54 0.0010 9 1097
(180,8) 45 0 0.0000 1 56
(190,3) 111 50 0.0002 5 180
(190,4) 133 69 0.0001 21 312
(190,5) 237 7 0.0001 5 589
(190,6) 99 0 0.0000 1 135
(190,7) 49 1 0.0000 1 69
(190,8) 31 7 0.0001 9 74
(200,3) 538 257 0.0006 47 3251
(200,4) 424 14 0.0000 3 1555
(200,5) 292 59 0.0001 7 911
(200,6) 247 0 0.0000 1 800
(200,7) 296 5 0.0000 3 886
(200,8) 309 10 0.0005 3 1207

Table 6: Detailed computational results on random instances (170 ≤ n ≤ 200)

20

A Branch-and-Cut Algorithm for the Non-Preemptive Swapping Problem

CIRRELT-2008-22

	CIRRELT-2008-22pp
	CIRRELT-2008-22
	1 Introduction
	2 Structural properties of optimal solutions
	3 Mathematical model
	3.1 Supply and demand constraints
	3.2 Flow conservation constraints
	3.3 Subtour elimination constraints
	3.4 Comb inequalities

	4 Branch-and-cut algorithm
	5 Computational results
	6 Conclusions

