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introduces a new branch-and-cut-and-price algorithm in which lower bounds are computed 

by solving through column generation the linear programming relaxation of a set 

partitioning formulation. Two pricing subproblems are considered in the column generation 

algorithm: an elementary and a non-elementary shortest path problem. Valid inequalities 

are added dynamically to strengthen the relaxations. Some of the previously proposed 

inequalities for the PDPTW are also shown to be implied by the set partitioning 

formulation. Computational experiments indicate that the proposed algorithm outperforms 
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1 Introduction

In the classical Vehicle Routing Problem (VRP), a fleet of vehicles based at a common depot
must be routed to visit exactly once a set of customers with known demand. Each vehicle
route must start and finish at the depot and the total demand of the customers visited by
the route must not exceed the vehicle capacity. In the VRP with Time Windows (VRPTW),
a time window is associated with each customer and the vehicle visiting a given customer
cannot arrive after the end of the time window. The Pickup and Delivery Problem with
Time Windows (PDPTW) is a further generalization of the VRP in which each customer
request is associated with two locations: an origin location where a certain demand must
be picked up and a destination where this demand must be delivered. Each route must also
satisfy pairing and precedence constraints: for each request, the origin must precede the
destination, and both locations must be visited by the same vehicle. The VRPTW can be
seen as a special case of the PDPTW in which all requests have a common origin which
corresponds to the depot.

The PDPTW has applications in various contexts such as urban courier services, less-
than-truckload transportation, and door-to-door transportation services for the elderly and
the disabled. In the latter case, narrow time windows are often considered and ride time
constraints are imposed to control the time spent by a passenger in the vehicle. The resulting
problem is called the Dial-a-Ride Problem (DARP).

The VRP and VRPTW are well known combinatorial optimization problems which have
received a lot of attention (see, e.g., Toth and Vigo, 2002). Since it generalizes the VRPTW,
the PDPTW is clearly NP-hard. Over the last few decades, several heuristics have been
proposed for the PDPTW. However, because of the difficulty of the problem, work on exact
methods has been somewhat limited.

Two main approaches have been used to solve the PDPTW exactly: branch-and-price
and branch-and-cut. Branch-and-price methods (see, e.g., Barnhart et al., 1998; Desaulniers
et al., 1998) use a branch-and-bound scheme in which lower bounds are computed by column
generation. The first branch-and-price algorithm for the PDPTW was proposed by Dumas
et al. (1991) who considered a set partitioning formulation of the problem in which each
column corresponds to a feasible vehicle route and each constraint is associated to a request
that must be satisfied exactly once. The resulting pricing subproblem is a shortest path
problem with time window, capacity, pairing and precedence constraints. This problem is
solvable by dynamic programming and the authors used an algorithm similar to the one
developed by Desrosiers et al. (1986) for the single-vehicle pickup and delivery problem with
time windows. Several label elimination methods are proposed to accelerate the dynamic
programming algorithm, and arc elimination rules are used to reduce the size of the problem.
The authors pointed out that their approach works well when the demand of each customer
is large with respect to vehicle capacity. The largest instance solved with their approach
contains 55 requests.

Another branch-and-price approach for the PDPTW was later described by Savelsbergh
and Sol (1998). Their approach differs from that of Desrosiers et al. in several respects:
i) whenever possible, they use construction and improvement heuristics to solve the pricing
subproblem; ii) a sophisticated column management mechanism is used to keep the column
generation master problem as small as possible; iii) columns are selected with a bias toward
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increasing the likelihood of identifying feasible integer solutions during the solution of the
master problem; iv) branching decisions are made on additional variables representing the
fraction of a request that is served by a given vehicle; and v) a primal heuristic is used at each
node of the search tree to compute upper bounds. Column generation was also used recently
by Xu et al. (2003) and Sigurd et al. (2004) to address variants of the PDPTW arising in
long-haul transportation planning and in the transportation of live animals, respectively.

The second family of exact approaches for the PDPTW is branch-and-cut. In branch-
and-cut, valid inequalities (i.e., cuts) are added to the formulation at each node of the
branch-and-bound tree to strengthen the relaxations which are usually solved by the simplex
algorithm. Relying on the previous work of Balas et al. (1995) and Ruland and Rodin (1997)
on the Precedence-Constrained Traveling Salesman Problem (PCTSP) and the TSP with
Pickup and Delivery (TSPPD), Cordeau (2006) developed a branch-and-cut algorithm for the
DARP based on a three-index formulation of the problem. This algorithm was able to solve
instances with four vehicles and 32 requests. It was later improved by Ropke et al. (2007) who
compared different formulations of the DARP and PDPTW, and introduced two new families
of inequalities for these problems. One is an adaptation of the reachability cuts introduced
by Lysgaard (2006) for the VRPTW, while the other is called fork inequalities. Both families
can also be used in the context of column generation and will be described in Section 4. Using
these inequalities, Ropke et al. were able to solve DARP instances with eight vehicles and 96
requests. Another branch-and-cut approach, based on a two-index formulation was proposed
by Lu and Dessouky (2004). This formulation contains a polynomial number of constraints,
but relies on extra variables to impose pairing and precedence constraints. Instances with
up to five vehicles and 25 requests were solved optimally with this approach.

For reviews on pickup and delivery problems, the reader is referred to the works of
Savelsbergh and Sol (1995), Desaulniers et al. (2002) and Cordeau et al. (2007).

In this paper, we introduce a new branch-and-cut-and-price algorithm for the PDPTW. It
is well known that set partitioning formulations of vehicle routing problems tend to provide
stronger lower bounds than formulations based on arc (flow) variables (see Bramel and
Simchi-Levi, 2002). Two different shortest path problems have been considered as pricing
subproblems for the PDPTW in the literature. In the first application of column generation
to the PDPTW (Dumas et al., 1991) a non-elementary shortest path problem was solved
while later implementations (Sol, 1994; Sigurd et al., 2004) have used an elementary shortest
path problem. Both shortest path problems are NP-hard. Little is known about how the
relaxations obtained by solving these two subproblems differ. The only result we are aware
of is by Sol (1994) who has shown an example where the objective of the relaxation obtained
with the non-elementary problem is half of the objective obtained with the elementary one.

The contributions of this paper are fourfold. First, we present an improved algorithm
for the elementary version of the pricing problem. Second, we show how valid inequalities
can be introduced in the formulation to improve the quality of the lower bounds. Third, we
show that some previously proposed inequalities are implied by the LP relaxation of the set
partitioning formulation and that the elementary relaxation implies more inequalities than
the non-elementary one. Fourth, we report extensive computational experiments on a large
set of instances.

The remainder of the paper is organized as follows. Section 2 defines the PDPTW and
introduces mathematical formulations of the problem. Section 3 discusses the two pricing
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subproblems that we use within the branch-and-price algorithm. Section 4 describes valid
inequalities that can be added to the formulation while Section 5 studies the relationships
between these inequalities and the set partitioning formulation of the problem. The branch-
and-cut-and-price algorithm is then described in Section 6. Finally, computational results
are reported in Section 7, followed by conclusions in the last section.

2 Mathematical Formulation

In this section, we introduce the notation that is used throughout the paper. We then present
a standard three-index model of the problem, followed by a set partitioning formulation.

2.1 Notation

Let n denote the number of requests to satisfy. We define the PDPTW on a directed graph
G = (N,A) with node set N = {0, . . . , 2n+ 1} and arc set A. Nodes 0 and 2n+ 1 represent
the origin and destination depots, while subsets P = {1, . . . , n} and D = {n + 1, . . . , 2n}
represent pickup and delivery nodes, respectively. Thus, each request i is associated with a
pickup node i and a delivery node n + i.

With each node i ∈ N are associated a load qi and a non-negative service duration di

satisfying q0 = q2n+1 = 0, qi = −qn+i (i = 1, . . . , n) and d0 = d2n+1 = 0. A time window
[ai, bi] is also associated with every node i ∈ P ∪ D, where ai and bi represent the earliest
and latest time, respectively, at which service may start at node i. The depot nodes may
also have time windows [a0, b0] and [a2n+1, b2n+1] representing the earliest and latest times,
respectively, at which the vehicles may leave from and return to the depot. Let K denote
the set of vehicles. We assume that vehicles are identical and have capacity Q. With each
arc (i, j) ∈ A are associated a routing cost cij and a travel time tij . In the remainder of the
paper, we assume that the travel time tij includes the service time di at node i. We also
assume that the triangle inequality holds both for routing costs and travel times.

2.2 Three-index formulation of the PDPTW

For each arc (i, j) ∈ A and each vehicle k ∈ K, let xk
ij be a binary variable equal to 1 if and

only if vehicle k travels directly from node i to node j. For each node i ∈ N and each vehicle
k ∈ K, let Bk

i be the time at which vehicle k begins service at node i, and Qk
i be the load

of vehicle k upon leaving node i. Using these variables, the PDPTW can be formulated as
the following non-linear mixed-integer program:

Min
∑

k∈K

∑

i∈N

∑

j∈N

cijx
k
ij (1)

subject to
∑

k∈K

∑

j∈N

xk
ij = 1 ∀i ∈ P (2)

∑

j∈N

xk
ij −

∑

j∈N

xk
n+i,j = 0 ∀i ∈ P, k ∈ K (3)
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∑

j∈N

xk
0j = 1 ∀k ∈ K (4)

∑

j∈N

xk
ji −

∑

j∈N

xk
ij = 0 ∀i ∈ P ∪D, k ∈ K (5)

∑

i∈N

xk
i,2n+1 = 1 ∀k ∈ K (6)

Bk
j ≥ (Bk

i + tij)x
k
ij ∀i ∈ N, j ∈ N, k ∈ K (7)

Qk
j ≥ (Qk

i + qj)x
k
ij ∀i ∈ N, j ∈ N, k ∈ K (8)

Bk
i + ti,n+i ≤ Bk

n+i ∀i ∈ P (9)

ai ≤ Bk
i ≤ bi ∀i ∈ N, k ∈ K (10)

max{0, qi} ≤ Qk
i ≤ min{Q,Q+ qi} ∀i ∈ N, k ∈ K (11)

xk
ij ∈ {0, 1} ∀i ∈ N, j ∈ N, k ∈ K. (12)

The objective function (1) minimizes the total routing cost. Constraints (2) and (3)
ensure that each request is served exactly once and that the pickup and delivery nodes are
visited by the same vehicle. Constraints (4)-(6) guarantee that the route of each vehicle
k starts at the origin depot and ends at the destination depot. Consistency of the time
and load variables is ensured by constraints (7) and (8). Constraints (9) ensure that for
each request i, the pickup node is visited before the delivery node. Finally, inequalities (10)
and (11) impose time windows and capacity constraints, respectively. The model is non-
linear because of inequalities (7) and (8) but it can easily be linearized by using standard
reformulation techniques.

2.3 Set partitioning formulation of the PDPTW

To formulate the problem as a set partitioning problem, let Ω denote the set of all feasible
routes satisfying constraints (3)-(12), dropping index k (as all vehicles are assumed to be
identical). For each route r ∈ Ω, let cr be the cost of the route and let air be a constant
indicating the number of times node i ∈ P is visited by r. Let also yr be a binary variable
equal to 1 if and only if route r ∈ Ω is used in the solution. The PDPTW can then be
formulated as the following set partitioning problem:

Min
∑

r∈Ω

cryr (13)

subject to

∑

r∈Ω

airyr = 1 ∀i ∈ P (14)

yr ∈ {0, 1} ∀r ∈ Ω. (15)

The objective function (13) minimizes the cost of the chosen routes while constraints (14)
ensure that every request is served once. A lower bound on the optimal value of (13)-(15)
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can be obtained by solving the linear programming (LP) relaxation which is obtained by
replacing the integrality requirements (15) with the simple constraints

yr ≥ 0 ∀r ∈ Ω. (16)

Because of the large size of set Ω, it is usually very difficult to solve or even to represent
model (13)-(15) explicitly. Instead, its LP relaxation is solved using column generation. In a
column generation approach, a restricted master problem is obtained by considering a subset
Ω̄ ⊆ Ω of routes. Additional columns of negative reduced cost are generated by solving a
pricing subproblem. Following Wolsey (1998), we call the problem defined by (13)–(15) the
integer programming master problem (IPM ) and its LP relaxation the linear programming
master problem (LPM ). The pricing problem for the PDPTW is

Min
∑

i,j∈N

dijxij (17)

subject to constraints (3)–(12) (dropping index k), where dij is defined as

dij =

{

cij − πi ∀i ∈ P, j ∈ N
cij ∀i ∈ N \ P, j ∈ N,

(18)

and πi is the dual variable associated with the set partitioning constraint (14) for node i.
We denote this problem as SP1.

The definition of dij in equation (18) ensures that dij + djk ≥ dik if j is a delivery node
as cij satisfies the triangle inequality. We say that a cost matrix that satisfies this property
satisfies the delivery triangle inequality. As will be shown in Section 3 this is computationally
convenient. The problem defined by objective (17) and constraints (3)–(12) is a constrained
shortest path problem called the Elementary Shortest Path Problem with Time Windows,
Capacity, and Pickup and Delivery (ESPPTWCPD). In Section 3 we explain how this and
related problems can be solved using label setting algorithms.

Instead of solving the shortest path problem SP1 one can solve relaxed versions of this
problem. A relaxed shortest path problem implies that a set of routes Ω′ is implicitly
considered, where Ω ⊆ Ω′. If Ω′ satisfies the property that none of the columns from the set
Ω′ \ Ω can be used in a feasible integer solution to IPM, then the set partitioning problem
solved on Ω′ will have the same set of optimal solutions as the one solved on Ω. Obviously,
the lower bound obtained by solving the LP relaxation on Ω′ may, however, be weaker. An
example of a relaxation of the elementary shortest path problem that satisfies this property
consists of allowing cycles in the path. In this case, some requests may be served more than
once. Paths containing cycles cannot, however, appear in a feasible integer solution because
of constraints (14). This relaxation was used by Dumas et al. (1991) and it is described in
more detail in Section 3.3.

Relaxations inducing sets Ω′ for which one cannot ensure that no column from Ω′ \ Ω
can belong to a feasible integer solution to IPM can also be used. In this case, however,
valid inequalities must be added to the master problem to render such solutions infeasible.
This approach was used by Ropke (2005) to solve the PDPTW using more relaxed pricing
problems.
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Valid inequalities expressed in terms of the xk
ij variables from the three-index formulation

(1)-(12) can be added to the master problem following the approach proposed by Kohl et al.
(1999) for the VRPTW. Since all vehicles are identical, we first observe that such inequalities
can be expressed in terms of xij variables and can be written in the form

2n+1
∑

i=0

2n+1
∑

j=0

αijxij ≥ β,

where αij ∈ R is the coefficient of arc (i, j) ∈ A and β ∈ R is a constant. This inequality is
transfered to the master problem as

∑

r∈Ω

φryr ≥ β,

where φr =
∑

(i,j)∈A ψijrαij , and ψijr is the number of times arc (i, j) is used in route r.
The introduction of a valid inequality in the master problem modifies the pricing problem.
Indeed, the arc costs dij are now defined as follows:

dij =

{

cij − πi − αijµ ∀i ∈ P, j ∈ N
cij − αijµ ∀i ∈ N \ P, j ∈ N,

(19)

where µ is the dual variable associated with the added inequality. Any number of inequalities
can be added in this way. Notice that unlike definition (18) this new definition of dij does
not satisfy the delivery triangle inequality.

3 Constrained Shortest Path Problems

Resource constrained shortest path problems arising in column generation approaches for
vehicle routing problems are typically solved using dynamic programming techniques called
labeling algorithms. Notice that the term “shortest path” should be interpreted carefully:
given a cost function one wishes to find the least-cost feasible path from the source node
to the sink node. An overview of constrained shortest path problems and of appropriate
solution techniques is given by Irnich and Desaulniers (2005).

In this section we show how the ESPPTWCPD introduced in Section 2.3 can be solved
using a labeling algorithm. A relaxed version of the problem is considered in Section 3.3.

3.1 Label setting shortest path algorithms

Consider a weighted directed graph G = (N,A) where N is the set of nodes, A is the set
of arcs, s is the source node and t is the sink node. We assume that no arc enters node s
and no arc leaves node t. Let γ be the number of resources in the problem. Traversing arcs
consumes resources. Let f p

ij ∈ Q denote the consumption of resource p ∈ {1, . . . , γ} for arc
(i, j) ∈ A. For every node i ∈ N lower bounds lpi ∈ Q and upper bounds up

i ∈ Q on the
resource variables p ∈ {1, . . . , γ} are given.

In label setting shortest path algorithms, a label consists of three elements: a node, the
cumulated resource consumption at that node, and a pointer to its parent label. A label
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L = (i, R, p) corresponds to a path starting at node s and ending at node i with a certain
resource consumption characterized by the vector R ∈ Qγ. The parent label p is necessary
to reconstruct the path between s and i. Resource constrained shortest path problems can
be solved using an algorithm based on the pseudo-code presented in Algorithm 1.

Algorithm 1 Pseudo code for labeling algorithm

1 Input: graph G = (N,A), source node s, sink node t
2 U = {(s, (l1s , . . . , lγs ), nil)}
3 while U 6= ∅ do

4 L = removefirst(U)
5 i = node(L)
6 if no label in Li dominates L then

7 Li = Li ∪ {L}
8 extend L along all arcs (i, j) leaving node i
9 add all feasible extensions to U
10 return path corresponding to best label in Lt

In line 2 of the algorithm, an initial label (s, (l1s , . . . , l
γ
s ), nil) corresponding to the source

node s is created. In this label, the resource consumption is set according to the lower bounds
for node s. Here, U designates the set of unprocessed labels and Li is the set of processed
labels at node i (paths ending at node i). Lines 4 to 8 are repeated as long as there are
unprocessed labels. In line 4 a new unprocessed label is selected using the removefirst

function (the function removes the label from U). In line 5 the node of the label is retrieved
and line 6 checks whether the label can be discarded (this is explained in more detail below).
If the label cannot be discarded then it is stored in the set of processed labels for node i in
line 7. In line 8, new labels are created by extending label L. Extending a label L = (i, R, p)
along arc (i, j) results in the label (j, R′, L) where the kth component R′

k of R′ is given by
either R′

k = max
{

lkj , Rk + fk
ij

}

or R′
k = Rk +fk

ij depending on the type of resource. The new
label is feasible if all resource variables are within their lower and upper bounds for node j.
All labels corresponding to feasible extensions of label L are inserted into U in line 9. In line
10, the label with the least cost at the sink node is returned.

Without the test in line 6 the algorithm is a brute-force approach that enumerates all
feasible paths. The test in line 6 removes unpromising labels based on a so called dominance
criterion. A label L1 is said to dominate label L2, written L1 �dom L2 if and only if they are
assigned to the same node and no feasible extension of the path corresponding to L2 with a
path to t has a lower cost than the best (with respect to cost) feasible extension of the path
corresponding to L1 with a path to t. If L1 �dom L2 then there is no need to consider L2,
and we need only examine extensions of L1.

Given two labels it can be difficult to determine whether one label dominates the other
as we potentially have to examine all possible augmentations of the corresponding paths to
node t. Consequently we use sufficient (but not necessary) conditions for dominance. In
Section 3.2 and 3.3 we describe examples of such conditions.
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3.2 ESPPTWCPD - SP1

The ESPPTWCPD, denoted SP1, is the natural pricing problem for the PDPTW and the one
that provides the best lower bounds. In the context of the PDPTW, it was first used by Sol
(1994) and later by Sigurd et al. (2004) for a PDPTW with additional precedence constraints.
Sigurd et al. (2004) have described a general labeling algorithm for the ESPPTWCPD and
a more efficient one that takes advantage of the additional precedence constraints. In this
section we present a new labeling algorithm for the ESPPTWCPD which contains a less
restrictive, sufficient dominance condition compared to the algorithm proposed by Sol (1994)
and the general one described by Sigurd et al. (2004). A less restrictive dominance condition
implies that more labels can be eliminated, resulting in a better performance of the shortest
path algorithm. In what follows we assume that the source and sink nodes are, respectively,
0 and 2n+ 1.

3.2.1 Label management

For each label we store the following data: η – the node of the label, t – the arrival time
at the node, l – the load of the vehicle after visiting node η, c – the accumulated cost,
V ⊆ {1, . . . , n} – the set of requests that have been started on the path (and possibly been
completed), O ⊆ {1, . . . , n} – the set of requests that have been started but not completed,
i.e., the pickup has been served but not the delivery. The requests in O are said to be open.
We also store a pointer to the parent label in each label. Our resources are t, l, c, V and O.
The notation t(L) is used to refer to the arrival time in label L and similar notation is used
for the rest of the resources (e.g., η(L), l(L), c(L), V(L) and O(L)).

When extending a label L along an arc (η(L), j), the extension is legal only if

t(L) + tη(L),j ≤ bj (20)

l(L) + qj ≤ Q. (21)

Inequality (20) ensures time window feasibility while inequality (21) ensures capacity
feasibility. Furthermore, L and j must satisfy one of the following three conditions:

0 < j ≤ n ∧ j 6∈ V(L) (22)

n < j ≤ 2n ∧ j − n ∈ O(L) (23)

j = 2n + 1 ∧ O(L) = ∅. (24)

Condition (22) states that if j is a pickup node then the node has not been visited before
on the path. Condition (23) states that if j is a delivery node then the path has already
visited the corresponding pickup node, i.e., the precedence relationship between pickups
and deliveries is satisfied. Finally, condition (24) states that if j is the sink node then
all requests that have been started have also been completed. This condition enforces the
pairing constraint: the pickup and delivery from any given request must be served on the
same path. In the presence of (23), condition (22) is sufficient to ensure that only elementary
paths are considered.
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If extension along the arc (η(L), j) is feasible then a new label L′ is created at node j.
The information in label L′ is set as follows:

η(L′) = j (25)

t(L′) = max{aj , t(L) + tη(L),j} (26)

l(L′) = l(L) + qj (27)

c(L′) = c(L) + dη(L),j (28)

V(L′) =

{

V(L) ∪ {j} if j ∈ P
V(L) if j ∈ D

(29)

O(L′) =

{

O(L) ∪ {j} if j ∈ P
O(L) \ {j − n} if j ∈ D.

(30)

Equations (25)-(28) set the current node, the time, the load and the cost of the new label,
respectively. Equation (29) updates the set of visited requests. Node j is only added if it is
a pickup node. Equation (30) updates the set of open requests. If a pickup (resp. delivery)
node is visited, the corresponding request is added to (resp. removed from) the set to indicate
that the request has been started (resp. completed).

3.2.2 Dominance criterion

The dominance criterion employed in this section, denoted by (DOM1), is the following: a
label L1 dominates a label L2 if

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2), V(L1) ⊆ V(L2), O(L1) ⊆ O(L2). (31)

Let P(L) represent the path corresponding to label L and (p1, p2) the path obtained by
concatenating paths p1 and p2.

Proposition 1. DOM1 is a valid dominance criterion when dij satisfies the delivery triangle
inequality.

Proof. The proof follows from that of Proposition 4 in Dumas et al. (1991). Let p be a feasible
path extending P(L2) to 2n + 1. If such a path does not exist then clearly one can remove
label L2. Let p′ be the path obtained from p by removing the deliveries corresponding to the
requests in O(L2)\O(L1). As (P (L2) , p) is feasible, then so is (P (L1) , p

′). Indeed, it is easy
to see that it is feasible with respect to time windows because travel times satisfy the triangle
inequality. The capacity is not violated on (P (L1) , p

′) as it was not violated on (P (L2) , p)
and P (L1) does not visit the pickups corresponding to the deliveries removed from p. It is
also easy to see that (P (L1) , p

′) is elementary and satisfies pairing constraints. The cost
of (P (L1) , p

′) is smaller than or equal to the cost of (P (L2) , p) because c(L1) ≤ c(L2) and
the cost of p′ is less than or equal to the cost of p due to the delivery triangle inequality
assumption. As a result, the best (with respect to cost) extension of label L1 to 2n+ 1 will
always be no worse than the best extension of L2 to 2n+1. Hence, label L1 dominates label
L2.
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Notice that it is not necessary to consider the load of a label in the dominance criterion:
since O(L1) ⊆ O(L2) the load of label L1 must be smaller than or equal to that of L2.

In the labeling algorithm of Sol (1994), labels contain the cost c, the arrival time t, and
the sets S+ ⊆ {1, . . . , n} and S− ⊆ {1, . . . , n}. Here, S+ is the set of requests that have
been started and S− is the set of requests that have been completed. With respect to the
sets V and O, one obtains S+ = V and S− = V \ O. In terms of S+ and S− the dominance
criterion proposed in this paper is the following: label L1 dominates label L2 if

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2),

S+(L1) ⊆ S+(L2),
(

S+(L1) \ S−(L1)
)

⊆
(

S+(L2) \ S−(L2)
)

. (32)

Sol (1994) used the following criterion:

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2),

S+(L1) = S+(L2), S−(L1) = S−(L2). (33)

Proposition 2. If label L1 dominates label L2 according to the criterion used by Sol (1994)
then it also dominates L2 using criterion (DOM1), but the converse is not true.

Proof. Obvious from conditions (32) and (33).

It follows from Proposition 2 that the criterion DOM1 is less restrictive than the one
used by Sol (1994).

Given a label L, let U(L) be the set of unreachable requests from P(L). This set is
defined as follows: U(L) = V(L) ∪

{

i ∈ P : t(L) + tη(L),i > bi
}

. Augmenting the definition
of unreachable requests by a condition on the end of the time window of the delivery of
request i as follows t(L) + tη(L),i + ti,n+i > bn+i is not necessary due to the preprocessing
steps described in Section 6.4. The preprocessing ensures that bi + ti,n+i ≤ bn+i, ∀i ∈ P .

By replacing V(L) with U(L) in (31), one obtains the new dominance criterion (DOM1’).

Proposition 3. DOM1’ is a valid dominance criterion when dij satisfies the delivery triangle
inequality.

Proof. In order to prove the validity of the new dominance criterion one has to consider the
case where a label L1 dominates a label L2 according to the new criterion, but not according
to (DOM1), i.e., when U(L1) ⊆ U(L2) but V(L1) * V(L2). Define W = V(L1) \V(L2). Any
extension of P(L1) cannot visit the requests in W . Hence, if an extension of P(L2) could
visit a request i ∈ W then an extension of P(L2) could be better than any extension of
P(L1). To see that no extension of P(L2) can visit requests in W observe that W ⊆ U(L2)
since W ⊆ V(L1) ⊆ U(L1) ⊆ U(L2). As a result, any extension of P(L2) that visits a node
from W is violating a time window because of the definition of U(L) and the assumption
that tij satisfies the triangle inequality.

Proposition 4. DOM1’ is less restrictive than DOM1
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Proof. It is easy to find examples that shows that L1 �dom L2 according to DOM1’ does
not imply L1 �dom L2 according to DOM1. On the other hand if L1 �dom L2 according to
DOM1 then L1 �dom L2 according to DOM1’ as well. To see this, note that L1 �dom L2

according to DOM1 implies, by definition, that η(L1) = η(L2) and t(L1) ≤ t(L2). This
implies that

{

i ∈ P : t(L1) + tη(L1),i > bi
}

⊆
{

i ∈ P : t(L2) + tη(L2),i > bi
}

. Since L1 �dom

L2 according to DOM1 implies that V(L1) ⊆ V(L2) we obtain that U(L1) = V(L1) ∪
{

i ∈ P : t(L1) + tη(L1),i > bi
}

⊆ V(L2) ∪
{

i ∈ P : t(L2) + tη(L2),i > bi
}

= U(L2).

The idea of considering U(L) instead of V(L) was proposed by Feillet et al. (2004) in the
context of the pricing problem for the VRPTW. In the computational experiments reported
in Section 7 of this paper, DOM1’ was used.

The dominance criteria (DOM1) and (DOM1’) are strong, but they give rise to strict
requirements on the cost structure of the underlying network. The definition of dij from
equation (19) cannot be used together with (DOM1) and (DOM1’). Indeed, one cannot
ensure that the removal of a delivery node from a subpath will not increase the cost, and
this property was used in Propositions 1 and 3. In Section 3.5 we show that this is not a
major problem as any cost matrix can be transformed into one that satisfies the delivery
triangle inequality while maintaining the cost of every feasible SP1 path. Another limitation
of these dominance criteria is that the removal of arcs from the network must be performed
very carefully. An arc (i, j) cannot be removed if the subpath (i, k, j) is valid for some
delivery node k. In this case one cannot argue that removing deliveries from a path will
yield a path with lower cost since removing the deliveries will result in an invalid route. Arc
elimination is useful within a branch-and-bound scheme that branches on the arcs in the
original formulation (1)-(12).

3.2.3 Label elimination

Dumas et al. (1991) have proposed rules for eliminating labels that cannot be extended to
node 2n + 1. The key observation is that given a label L one can examine the deliveries of
the open requests in O(L). If it is impossible to create a path from η(L) to node 2n + 1
that goes through the deliveries of O(L) and that satisfies all time windows, then label L
can be discarded because of the triangle inequality on tij . Determining whether such a path
exists can be done by solving a traveling salesman problem with time windows, which is
NP-hard. Consequently, Dumas et al. (1991) have proposed to consider only subsets of
O(L) of cardinality one and two. We use the same approach here. In addition, we also test
two subsets containing three deliveries. In the first subset, the first delivery, i1, is the one
farthest from η(L), the next delivery, i2, is the one farthest from η(L) and i1, and the last
delivery is the one farthest from η(L), i1 and i2. In the second subset we chose the deliveries
that have the earliest deadline bi.

3.3 SPPTWCPD - SP2

We now consider the Shortest Path Problem with Time Windows, Capacity, and Pickup
and Delivery (SPPTWCPD), denoted SP2, which relaxes SP1 by not requiring paths to
be elementary. In this problem we do, however, impose two conditions which help prevent
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cycles: i) after performing a pickup, the same pickup cannot be performed again before the
corresponding delivery has been performed, and ii) a delivery cannot be performed before
the corresponding pickup has been performed. These conditions ensure that any cycle in a
path will contain at least four nodes. The shortest cycle is of the form i → n + i → j → i.
One cannot go from n+ i to i as the corresponding arc does not exist in our graph. If time
windows are tight, such cycles are unlikely to arise and the SPPTWCPD should yield good
lower bounds. This shortest path problem was used as a pricing problem by Dumas et al.
(1991).

It is interesting to note that for the VRPTW the two commonly used pricing prob-
lems are the elementary shortest path problem with time windows and capacity constraints
(ESPPTWC) and the shortest path problem with time windows and capacity constraints
(SPPTWC) that relaxes ESPPTWC by allowing paths with cycles. Pseudo-polynomial al-
gorithms for the SPPTWC are known (see for example Desrochers et al. (1992)) while Dror
(1994) proved that the ESPPTWC is strongly NP-hard which implies that no pseudo poly-
nomial algorithm exists for the problem unless P = NP. For the PDPTW it was shown by
Ropke and Pisinger (2007) that both the ESPPTWCPD and the SPPTWCPD relaxation
are strongly NP-hard.

3.3.1 Label management

In the labels for the SPPTWCPD we store η, t, l, c and O together with a pointer to the
parent label, as explained in Section 3.2.1, but we do not store the set V. Determining
whether an extension of a label is feasible and creating new labels is done in a similar way
as for SP1. We do not, however, maintain the set V. Hence, equation (29) is not used and
condition (22) is replaced with

0 < j ≤ n ∧ j 6∈ O(L). (34)

Replacing condition (22) with (34) implies that non elementary paths can be generated.
When the delivery of request i has been performed, i is removed from O according to
equation (30) and the path may again visit the pickup node of request i.

3.3.2 Dominance criterion

The dominance criterion employed, denoted (DOM2), is the following: a label L1 dominates
a label L2 if

η(L1) = η(L2), t(L1) ≤ t(L2), c(L1) ≤ c(L2), O(L1) ⊆ O(L2).

Dumas et al. (1991) showed that this dominance criterion is valid. The concerns about
distance matrix and missing arcs that were discussed in Section 3.2.2 apply to DOM2 as
well. Finally, the label elimination rules described in Section 3.2.3 can also be used for the
SPPTWCPD. It is actually in this context that they were first introduced by Dumas et al.

3.4 Possible improvements

Irnich and Villeneuve (2006) have proposed a labeling algorithm that solves non-elementary
shortest path problems while ensuring that cycles of length k or smaller do not occur. Their
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approach could be used to strengthen the lower bound of the LPM when using SP2 as
a pricing problem since SP2 allows cycles containing more than two arcs. However, the
computational results presented in Section 7 show that the lower bound obtained with SP2
already are quite close to the lower bounds obtained with SP1, so it is not clear if the effort
involved with forbidding longer cycles is worthwhile.

On a different note, Righini and Salani (2006) have proposed a bi-directional approach
to shortest path problems with resource constraints. Instead of starting the label extension
only from the source node, they simultaneously extend labels both from the source and the
sink nodes. The two searches eventually meet at a point where the paths from the source
are merged with paths from the sink. This approach has shown great potential for reducing
the running time of the shortest path algorithm. Although it is out of the scope of the
current paper to apply this technique to the shortest path problems considered, it would be
a promising area for future research.

3.5 Transforming the pricing problem cost matrix

In Sections 3.2 and 3.3 it was shown how effective dominance criteria could be devised for
SP1 and SP2 when the cost matrix for the pricing problem satisfies the delivery triangle
inequality. In Section 2.3 we saw that the pricing problem cost matrix does not satisfy the
property when cuts have been added to the master problem. In this section we explain how it
is possible to transform an arbitrary cost matrix into a cost matrix that satisfies the delivery
triangle inequality while maintaining the optimal solutions of SP1 and SP2.

Lemma 1. For any vector (θ1, . . . , θ|P |) ∈ Q|P |, let the cost matrix (d̃ij) be defined by

d̃ij = dij − θi, d̃n+i,j = dn+i,j + θi ∀i ∈ P, ∀j ∈ N

d̃0j = d0j ∀j ∈ N.

Using (d̃ij) instead of (dij) does not change the cost of any feasible path in SP1 or SP2.

Proof. As any feasible path visiting node i ∈ P also has to visit node n + i ∈ D and vice
versa the sum of the θi terms sums to zero on any feasible path.

The next proposition shows how to select the modifiers θi such that d̃ij satisfies the
delivery triangle inequality.

Proposition 5. If

θj ≥ dik − (di,n+j + dn+j,k) ∀j ∈ P, ∀i, k ∈ N

then (d̃ij) defined in Lemma 1 satisfies

d̃ij + d̃jk ≥ d̃ik ∀i, k ∈ N, ∀j ∈ D.

Proof. By distinguishing between the four cases i = 0, i ∈ P , i ∈ D, i = 2n + 1 (setting
d̃2n+1,j = d2n+1,j for all j ∈ N) and substituting the definition of d̃ij into the expression
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d̃ij + d̃jk we obtain the desired result. For example for i ∈ P we obtain

d̃ij + d̃jk = dij − θi + djk + θj−n

≥ dij − θi + djk + maxi′,k′∈N{di′k′ − (di′j + djk′)}
≥ dij − θi + djk + (dik − (dij + djk))
= dik − θi

= d̃ik

for all j ∈ D and k ∈ N .

In practice one can use the modifiers θj = maxi,k∈N{dik−(di,n+j + dn+j,k)}, ∀j ∈ P which
can be calculated in O(n3) time. Note that the transformation ensures that d̃ij satisfies the
delivery triangle inequality even if the original cost matrix (cij) does not.

4 Valid Inequalities

In this section we describe several families of valid inequalities that have been used in the
branch-and-cut algorithms proposed by Cordeau (2006) and by Ropke et al. (2007). For
two of these families, rounded capacity inequalities and precedence inequalities, we provide
strengthened inequalities. We also show how the so-called 2-path cuts for the VRPTW can
be applied to the PDPTW. All of these inequalities are useful in strengthening the LP-
relaxation of two-index and three-index formulations of the PDPTW, but as will be shown
in Section 5 some of them are in fact implied by the LP relaxation of the set-partitioning
formulations considered in this paper.

To describe these inequalities, it is convenient to introduce new notation. For any node
subset S ⊆ N , let δ+(S) = {(i, j) ∈ A|i ∈ S, j 6∈ S}. We also use the notation δ+(i) to
designate the set δ+({i}). Also let π(S) = {i ∈ P |n+ i ∈ S} and σ(S) = {n+ i ∈ D|i ∈ S}
denote the sets of predecessors and successors of S. Finally, let xij =

∑

k∈K xk
ij .

4.1 Infeasible path inequalities

Cordeau (2006) and Ropke et al. (2007) have discussed infeasible path inequalities and
various strengthenings for the PDPTW. In this paper we use two types of infeasible path
inequalities. Consider an infeasible path R = (k1, . . . , kρ), then the inequality

ρ−1
∑

i=1

xki,ki+1
≤ ρ− 2 (35)

is valid.
If k1 = i and kρ = n+ i for some i ∈ P and the path is infeasible because of time windows

then Cordeau (2006) has observed that the inequality can be strengthened to

ρ−1
∑

i=1

xki,ki+1
≤ ρ− 3. (36)
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4.2 Fork inequalities

Let R = (k1, . . . , kρ) be a path in G and S, T1, . . . , Tρ ⊂ (P ∪ D) be subsets such that
kj 6∈ Tj−1 for j = 2, . . . , ρ. If for any integer h ≤ ρ and any node pair i ∈ S, j ∈ Th, the path
(i, k1, . . . , kh, j) is infeasible, then the following inequality is valid for the PDPTW:

∑

i∈S

xi,k1 +

ρ−1
∑

h=1

xkh,kh+1
+

ρ
∑

h=1

∑

j∈Th

xkh,j ≤ ρ. (37)

Similarly, let R = (k1, . . . , kρ) be a path in G and S1, . . . , Sρ, T ⊂ (P ∪D) be subsets such
that kj 6∈ Sj+1 for j = 1, . . . , ρ− 1. If for any integer h ≤ ρ and any node pair i ∈ Sh, j ∈ T ,
the path (i, kh, . . . , kρ, j) is infeasible, then the following inequality is valid for the PDPTW:

ρ
∑

h=1

∑

i∈Sh

xi,kh
+

ρ−1
∑

h=1

xkh,kh+1
+

∑

j∈T

xkρ,j ≤ ρ. (38)

Inequalities (37) and (38) were introduced by Ropke et al. (2007) and are called outfork
and infork inequalities, respectively. We refer to the paper by Ropke et al. (2007) for examples
and figures.

4.3 Rounded capacity inequalities

Rounded capacity inequalities which are often used in the context of the VRP (see, e.g.,
Naddef and Rinaldi, 2002) can also be used for the PDPTW. For any node subset S ⊆ P ∪D,
let κ(S) be a lower bound on the number of times that vehicles must enter the set. The
following inequality is then clearly valid:

x(δ+(S)) ≥ κ(S). (39)

Cordeau (2006) and Ropke et al. (2007) have proposed to use κ(S) = max
{

1,
⌈

|q(S)|
Q

⌉}

. This

lower bound can be improved to κ(S) = max
{

1,
⌈

q(π(S)\S)
Q

⌉

,
⌈

−q(σ(S)\S)
Q

⌉}

. The bound is

valid as q(π(S)\S) is a lower bound on the load of the vehicles entering set S and −q(σ(S)\S)
is a lower bound on the load of the vehicles leaving S. This new lower bound is stronger
than the previous one because

|q(S)| = |q(S ∩D) + q(S ∩ P )|
= |q(π(S)) + q(σ(S))|
= |q(π(S) \ S) + q(σ(S) \ S)|
≤ max {q(π(S) \ S),−q(σ(S) \ S)} .

and examples can be constructed where the inequality is strict. The second equality holds
because q(S ∩ D) = −q(π(S)) and q(S ∩ P ) = −q(σ(S)), the third equality holds because
q({i, n+ i}) = 0, and the inequality holds because q(π(S) \ S) ≥ 0 and q(σ(S) \ S) ≤ 0.
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4.4 2-path inequalities

2-path inequalities are a variation of the rounded capacity inequalities and were proposed
for the VRPTW by Kohl et al. (1999). When the set S ⊆ P ∪ D cannot be served by a
single path, the following inequality is valid:

x(δ+(S)) ≥ 2. (40)

To determine whether the set S can be served by a single path one can go further than
just considering capacities as in Section 4.3. Indeed, for the VRPTW Kohl et al. (1999)
proposed to solve a TSPTW on the set of nodes: if the TSPTW is infeasible then at least
two paths are needed to visit all nodes in S.

For the PDPTW a similar approach can be used. If it is impossible to find a tour serving
all nodes in S while satisfying precedence, capacity and time window constraints then any
feasible solution must use at least two arcs from the set δ+(S). The idea can be taken further
by observing that if a path serves all nodes in S by entering and leaving the set once, then the
nodes π(S)\S must be served by this path before entering S and the nodes σ(S)\S must be
served after leaving S. If such a path cannot be found then S defines a valid inequality (40)
even though there exists a tour through S satisfying precedence, capacity and time window
constraints.

4.5 Reachability inequalities

For any node i ∈ N , let A−
i ⊂ A be the minimum arc set such that any feasible path from the

origin depot 0 to node i uses only arcs from A−
i . Let also A+

i be the minimum arc set such
that any feasible path from i to the destination depot 2n+ 1 uses only arcs in A+

i . Consider
a node set T such that each node in T must be visited by a different vehicle. This set is said
to be conflicting. For any conflicting node set T , define the reaching arc set A−

T = ∪i∈TA
−
i

and the reachable arc set A+
T = ∪i∈TA

+
i . For any node set S ⊆ P ∪ D and any conflicting

node set T ⊆ S, the following two valid inequalities were introduced by Lysgaard (2006) for
the VRP with time windows:

x(δ−(S) ∩A−
T ) ≥ |T | (41)

x(δ+(S) ∩A+
T ) ≥ |T |. (42)

These inequalities are obviously also valid for the PDPTW. In this problem, however,
nodes can be conflicting not only because of time windows but also because of the interactions
with the precedence relationships and the capacity constraints.

4.6 Precedence inequalities

Let S ⊂ N be a subset such that i, 2n + 1 ∈ S and 0, n + i /∈ S for some i ∈ P . Then the
following inequality is valid:

∑

(i,j)∈δ+(S)

xij ≥ 1.

Precedence inequalities were introduced by Ruland and Rodin (1997) in the context of
the TSP with pickup and delivery.
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4.7 Strengthened precedence inequalities

Using ideas from the reachability inequalities, precedence inequalities can be strengthened
as follows.

Proposition 6. Let Ai be the set of arcs that can be used in a feasible path from i to n+ i.
Furthermore let S ⊂ N be a subset such that i, 2n+ 1 ∈ S and 0, n+ i /∈ S for some i ∈ P .
Then the following inequality is valid for the PDPTW:

∑

(i,j)∈(δ+(S)∩Ai)

xij ≥ 1. (43)

Proof. Assume that inequality (43) is violated in a feasible integer solution. This implies
that there exists a request i ∈ P and a set S ⊂ N such that i, 2n + 1 ∈ S, 0, n + i /∈ S and
∑

(i,j)∈(δ+(S)∩Ai)
xij = 0. Let p be the path in the solution that visits node i. To be part of a

feasible solution, path p must visit node n+ i after visiting node i. Let p′ be the subpath of
p that starts in i and ends in n + i. It is clear that p′ must use at least one arc from δ+(S)
because i ∈ S and n+ i /∈ S. From the definition of Ai it is also clear that the arcs in p′ all
belong to the set Ai. Consequently,

∑

(i,j)∈(δ+(S)∩Ai)
xij ≥ 1.

5 Relationship Between Set Partitioning Formulations

and Valid Inequalities

This section explores the relationship between the set partitioning formulations using SP1
and SP2 as pricing problems and the valid inequalities presented in Section 4. It turns
out that several families of valid inequalities are implied by the set partitioning formulation
with the SP1 subproblem. No such analysis was previously performed for the PDPTW, but
some results were obtained by Letchford and Salazar González (2006) for set partitioning
relaxations of the VRP and VRPTW. Such a study is not only interesting from a theoretical
point of view, but it is also useful from a practical perspective as it implies that we do not
need to consider separation procedures for certain classes of valid inequalities. Without the
results presented in this section one would not know whether the inequalities implied by
the set partitioning formulation were just inefficient for the instances considered while being
useful for other instances.

Given a solution y∗ to the LP relaxation of the set partitioning formulation given by
(13), (14) and (16) one can obtain the corresponding two-index solution x∗ given by x∗ij =
∑

r∈Ω y
∗
rψijr, ∀i, j ∈ N , where ψijr is a constant indicating the number of times arc (i, j) is

used in route r. Let Ω∗
i be the set of columns serving request i in the current solution, i.e.,

Ω∗
i = {r ∈ Ω : y∗r > 0, air ≥ 1}.

We first show that the fork inequalities are implied by SP1.

Lemma 2. Let p be a path generated by SP1 that visits q ≤ ρ nodes from the path
R = (k1, . . . , kρ). Path p can use at most q of the arcs in any valid outfork inequality defined
on path R.
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The lemma is illustrated in Figure 1. In this example the outfork inequality is defined
for the path R = (k1, k2, k3, k4) and the sets S, T1, . . . , T4. The path p = (v1, k2, k3, v2, v3)
(where v2 ∈ T3) visits two nodes from R and it uses the arcs (k2, k3) and (k3, v2) from the
outfork inequality.

S T1 T2 T3 T4

k1 k2 k3 k4

v1

v3

v2

Figure 1: Outfork inequality for R = (k1, k2, k3, k4) and the path p = (v1, k2, k3, v2, v3). Arcs
in the outfork inequality are dashed while arcs in path p are solid. The arcs (k2, k3) and
(k3, v2) are used in both the outfork inequality and in the path p

Proof. We break the path p into subpaths p1, . . . , pj by traversing p from its start and
creating a new subpath pw once a node from R is visited. We then continue to add nodes to
pw as long as p visits nodes from R. When p visits a node outside R, subpath pw is ended
and we start a new subpath pw+1 the next time p visits a node from R. Let |pw| be the
number of nodes in subpath pw (|pw| = 1 is possible). To illustrate the concept of subpaths,
consider Figure 2. In this example the paths p and R induce the subpaths p1 = (k3, k4, k6)
and p2 = (k1, k2).

k1 k2 k3 k4 k5 k6 k7 k8

v1

v2

v3

v4

Figure 2: The paths p = (v1, k3, k4, k6, v2, v3, k1, k2, v4) (solid arcs) and R = (k1, . . . , k8)
(dashed arcs).

It is clear that only the arcs used in the subpaths p1, . . . , pj along with the arcs that path
p uses before entering or after leaving path pw, w ∈ {1, . . . , j} can be present in the outfork
inequality. Consider a subpath pw that starts in node ki, i 6= 1. The arc in p that is used
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to enter path pw cannot be part of the outfork inequality (because the arcs entering ki in
the outfork inequality originate from a node in R). Hence, pw along with the arcs used to
enter and leave pw can contribute at most |pw| arcs from the outfork inequality as the path
contains |pw|−1 arcs and the arc used to leave the last node in pw can be part of the outfork
inequality. If a subpath pw starts in node k1 then the arc in p that is used to enter path
pw can be part of the outfork inequality. In that event we have to consider two cases: if
pw =

(

k1, . . . , k|pw|

)

then the arc used to leave pw cannot be part of the outfork inequality
as this would make pw infeasible. If pw skips some of the first |pw| nodes from R then the
arc used to leave pw can be part of the outfork inequality but the first arc in pw used to skip
a node in R cannot be part of the outfork inequality as p is a feasible path. Consider for
example pw = (k1, k2, k5, k6). This subpath skips node k3 and k4. If the arc used to enter pw

originates in S then (k2, k5) cannot be part of the outfork inequality as the original path p
is feasible.

We see that pw along with the arcs used to enter and leave pw contributes at most |pw|
arcs, for all w ∈ {1, . . . , j}. Finally, we may conclude that a path that visits q nodes from
path R can use at most q arcs from the outfork inequality defined on R.

Proposition 7. If a vector y∗ satisfies the inequalities (14) and (16) where Ω is defined by
SP1 then the implied two-index solution x∗ satisfies the outfork inequalities (37) defined in
Section 4.2.

Proof. Consider a vector y∗ that satisfies the conditions in the proposition and assume it
violates an outfork inequality defined by a path R = (k1, . . . , kρ) and sets S, T1, . . . , Tρ. Let
Φ∗

k be the set of paths from the solution y∗ that visit exactly k nodes from the path R. From
equation (14) we get that

∑

r∈Φ∗

1

y∗r +
∑

r∈Φ∗

2

2y∗r + . . .+
∑

r∈Φ∗

ρ

ρy∗r = ρ. (44)

From Lemma 2 we know that a path p ∈ Φ∗
k can use at most k arcs from the outfork

inequality. Thus a path pk ∈ Φ∗
k contributes at most ky∗pk

to the left-hand-side of equation
(37). The total contribution from all paths visiting nodes in R is at most

∑

r∈Φ∗

1

y∗r +
∑

r∈Φ∗

2

2y∗r + . . .+
∑

r∈Φ∗

ρ

ρy∗r ,

which is equal to ρ according to (44). Consequently, the fork inequality cannot be violated.

The set partitioning formulation using SP1 also implies all infork inequalities (38). The
proof is similar to that of Proposition 7 and Lemma 2.

It is clear that the infeasible path inequality (35) is dominated by the fork inequalities
and it is therefore implied by the set partitioning formulation using SP1. This infeasible path
inequality is, however, not implied by SP2. As an example consider the path (0, 1, n+1, 2, n+
2, 1, n+1, 2, n+2, 2n+1). This is a feasible SP2 path and it can be used with value 0.5 in a
feasible solution. In such a solution the infeasible path inequality xn+1,2 +x2,n+2 +xn+2,1 ≤ 2
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is violated as the left hand side is equal to 2.5. This also shows that the fork inequality is
not implied by SP2.

The strengthened infeasible path inequality (36) is not implied by either formulation
(small counter-examples can be constructed easily) and neither are the rounded capacity
inequalities or the 2-path inequalities. The SP1 formulation does imply the reachability
inequality as shown by the Proposition 8 below. We use the notation

τ(i) =

{

i : i ∈ P
i− n : i ∈ D

to denote the request corresponding to a node i ∈ P ∪D.

Proposition 8. If a vector y∗ satisfies the inequalities (14) and (16) where Ω is defined by
SP1 then the implied two-index solution x∗ satisfies the reachability inequalities defined in
Section 4.5.

Proof. Assume that x∗ violates the reachability inequality (41). This implies that there exists
a set of conflicting nodes T and a set S ⊆ P ∪D, T ⊆ S such that

∑

(j,k)∈(δ−(S)∩A−

T
) x

∗
jk < |T |.

Consider a node i ∈ T and a path p from Ω∗
τ(i). The subpath p′ of p that starts at node

0 and ends at node i uses only arcs from A−
i ⊆ A−

T and it crosses δ−(S) at least once as
0 /∈ S and i ∈ S. Consequently every path corresponding to a column r ∈ Ω∗

τ(i) contributes

at least y∗r to
∑

(j,k)∈(δ−(S)∩A−

T
) x

∗
jk. Because the paths are generated by SP1 we have that

∑

r∈Ω∗

τ(i)
y∗r = 1. This implies that that the paths serving i in solution y∗ contribute at least

1 to
∑

(j,k)∈(δ−(S)∩A−

T
) x

∗
jk. As no path can serve two or more nodes in T we have Ω∗

i ∩Ω∗
q = ∅

for i, q ∈ T, i 6= q and therefore
∑

(j,k)∈(δ−(S)∩A−

T
) x

∗
jk ≥ |T | which is a contradiction. The

proof for inequality (42) is similar.

A solution to the LPM using SP2 can violate reachability inequalities. The example used
when discussing the relationship between SP2 and infeasible path inequalities also shows
that reachability inequalities can be violated.

Proposition 9. If a vector y∗ satisfies the inequalities (14) and (16) where Ω is defined
by SP1 or SP2 then the implied two-index solution x∗ satisfies the precedence inequalities
defined in Section 4.6.

Proof. Assume that x∗ violates a precedence inequality. This implies that there exist a
request i ∈ P and a set S ⊂ N such that i, 2n+ 1 ∈ S, 0, n+ i /∈ S and

∑

(j,k)∈δ+(S) x
∗
jk < 1.

Every path in Ω∗
i uses at least one arc from δ+(S) for every visit to node i as the path

has to visit node n + i before reaching node 2n + 1 or visiting node i again in case of SP2.
Therefore, every column r ∈ Ω∗

i contributes at least airy
∗
r to

∑

(j,k)∈δ+(S) x
∗
jk. Because of

equation (14) we have that
∑

r∈Ω∗

i
airy

∗
r = 1 and consequently,

∑

(j,k)∈δ+(S) x
∗
jk ≥ 1 which is

a contradiction.

Proposition 10. If a vector y∗ satisfies the inequalities (14) and (16) where Ω is defined
by SP1 or SP2 then the implied two-index solution x∗ satisfies the strengthened precedence
inequalities defined in Section 4.7.
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Proof. The proof follows that of proposition 9. One should note that an SP1 or SP2 path
that visits nodes i ∈ P and n + i only uses arcs from the set Ai between nodes i and n + i
and therefore each column r ∈ Ω∗

i contributes at least airy
∗
r to

∑

(j,k)∈(δ+(S)∩Ai)
x∗jk.

6 Branch-and-Cut-and-Price Algorithm

In this section, we first describe heuristics for solving the pricing problem. This is followed
by separation procedures for the identification of violated valid inequalities in Section 6.2
and by the branching strategy used to explore the enumeration tree in Section 6.3. Column-
and cut-pool management is discussed in Section 6.4.

6.1 Pricing problem heuristics

It is well known that the running time of branch-and-price algorithms can be improved by
using heuristic algorithms for the pricing problem. As long as the heuristic algorithms are
able to find columns with negative reduced cost one can add those columns to the LPM and
solve the problem again. Ideally it should be necessary to call the exact pricing algorithm
only once for each node in the branch-and-bound tree to verify that no reduced cost column
exists. In fact, this is not even necessary if the relaxation value associated with a node is
lower than the current upper bound. In this case, the lower bound will not be used to fathom
the node and it is not necessary to find the optimal relaxation value for this node. To use
this strategy, however, one needs good pricing heuristics to avoid branching on a sub-optimal
LP solution that is significantly different from the optimal one.

Using heuristic methods generally involves setting one or more parameters. Choosing the
values for such parameters is often a trade-off between the solution quality and the running
time of the heuristic. In this section we only report the value we chose for each parameter. To
save space, we do not report on the experiments conducted in order to select these values.
As a general rule, we have set the parameters so as to minimize the running time of the
overall branch-and-cut-and-price algorithm.

We first present in Section 6.1.1 two heuristics obtained by truncating the label setting
algorithms presented in Section 3. In Sections 6.1.2 and 6.1.3 we then introduce heuristics
that follow the classic construction and improvement principle.

6.1.1 Label heuristics

It has often been proposed to turn exact labeling algorithms into heuristics by limiting the
number of labels created in different ways. For example, Dumas et al. (1991) have proposed
to reduce the network before running the pricing algorithm. They have created networks
with between 30% and 50% of the “best” arcs. Irnich and Villeneuve (2006) have used a
variant of this idea by creating reduced networks Gl where each node is connected to its l
nearest neighbors.

In this paper we construct a graph Gl in which each node i ∈ {1, . . . , 2n} is adjacent to
at most l outgoing arcs reaching a pickup node and l outgoing arcs reaching a delivery node.
We chose the arcs that are cheapest with respect to dij . After construction, all feasible arcs
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of the form (i, n + i), (0, i), (n + i, 2n + 1) for i ∈ P which are not already in Gl are added
to Gl. Our implementation uses two reduced networks: G5 and G10. If the search using
network G5 does not find any path of negative reduced cost, then it switches to network G10.
The corresponding heuristic is denoted by H1.

Dumitrescu (2002) has proposed to limit the number of unprocessed labels at any time.
In our context, this corresponds to putting a limit on U (|U | ≤ µ) in Algorithm 1. Only the
µ best (with respect to reduced cost) labels are kept, the worst labels being discarded. This
heuristic is used in a three-phase fashion. First, a limit µ = 500 is used. If the heuristic does
not find any negative cost path, then µ = 1000, and finally µ = 2000 is tried. This heuristic
is denoted by H2.

For both of the heuristics and the exact algorithms based on the labeling algorithm we
generate more than one negative reduced cost column if possible, but stop the algorithm if
100 negative reduced cost columns have been generated. All negative reduced cost columns
are added to the LPM.

6.1.2 Construction heuristics

Sol (1994) has proposed to use a cheapest insertion heuristic to solve the ESPPTWCPD. A
similar approach is implemented in this paper. Starting from a route containing only request
i, we add the request that increases the reduced cost of the path the least. During insertions
we keep track of the best route observed. The process is repeated with every request as a
starting point. This algorithm is denoted by H3.

A straightforward way to improve this heuristic is by randomizing it. This can be done
by performing insertions that are not the most promising: the possible insertions are ranked
by insertion cost and a request is chosen by a random process that tends to select insertions
with low cost. When using the randomized insertion it is worthwhile to try to construct a
route starting several times from the same initial route containing request i. This algorithm
is denoted by H4.

6.1.3 LNS heuristic

It is well known that improvement or steepest descent heuristics often produce high quality
solutions in little time. This idea has been used by Sol (1994) and Savelsbergh and Sol
(1998) to develop improvement heuristics for the pricing problem. As an initial solution to
the pricing problem, routes corresponding to columns with a null reduced cost are used. The
authors note that all columns used in the basis satisfy this condition. At each iteration in
the improvement heuristic, one node is removed and another one is inserted in the path,
thus leaving the length of the path unchanged.

In this section we describe a different improvement heuristic which is based on the Large
Neighborhood Search (LNS) introduced by Shaw (1998). Ropke and Pisinger (2006) have
shown that the LNS can be easily implemented by using simple construction heuristics, an
idea that will be used here. The LNS algorithm attempts to improve an initial path by
alternating between removing requests from the path and inserting requests into the path.
The requests to remove are chosen randomly and requests are inserted using the randomized
insertion algorithm outlined in Section 6.1.2.
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The pseudo-code for the LNS is shown in Algorithm 2. The algorithm takes a path
p and an integer σ as input. The parameter σ determines how many non-improving re-
moval/insertion iterations should be performed before stopping the algorithm.

Algorithm 2 LNS pseudo code.
1 Input: Path p, integer σ
2 for i = 1, . . . , σ
3 f = ∞;

4 while (c(p) < f)
5 f = c(p);
6 p′ = removeNodes(p);
7 p′ = randomizedInsert(p′);
8 if c(p′) < f
9 p = p′;
10 return p;

In line 3 we set f , the cost of the currently best solution. Line 4 makes the algorithm
continue as long as an improvement is found. In line 6 nodes are removed from the path.
The function removeNodes(p) returns a path where up to 50% of the nodes from p have been
removed. In line 7 nodes are inserted into the path again by a randomized procedure that
favors good insertions. In lines 8 and 9 the current solution is updated if an improvement
was found. The function randomizedInsert is dependent on the shortest path problem that
is solved (e.g., whether or not non-elementary paths are allowed).

The improvement heuristic is used in several contexts. In heuristic H5, LNS is used to
improve the paths that are selected (yr > 0) in the current LP solution and σ is set to 20.
In heuristic H6, LNS is used to improve the paths generated by the randomized insertion
heuristic described in Section 6.1.2. The LNS heuristic is applied to paths with reduced cost
greater than or equal to 0 to try to bring the reduced cost below 0. In H6, σ is set to 5.
In heuristic H7 LNS with σ = 20 is applied to all paths in the current LP solution to LPM
that has reduced cost zero.

6.1.4 Using the pricing heuristics

Experiments performed by Ropke (2005) indicated that it is worthwhile to execute the
heuristics in sequence, until a negative reduced cost path is found. The sequence should
roughly be ordered by expected computation time of the heuristic. The exact algorithm is
only called if all heuristics in the sequence fail. We use the following sequence of heuristics
(H3, H5, H4, H2, H6, H7, H1).

6.2 Separation heuristics

In our implementation we use the following families of inequalities: infeasible path inequali-
ties (36), fork inequalities, reachability inequalities, rounded capacity inequalities and 2-path
inequalities. The precedence and strengthened precedence inequalities are not used as they
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were shown to be implied by the set partitioning formulation in Section 5. We refer the
reader to Ropke et al. (2007) for a description of the separation procedures for the infeasible
path, fork and reachability inequalities. Below we describe how the new form of the rounded
capacity inequalities as well as the 2-path inequalities are separated.

6.2.1 Separating rounded capacity inequalities

Rounded capacity inequalities are separated by a constructive heuristic which is called sev-
eral times with different parameter settings in each call. The heuristic starts with a set S
containing only one node (each node is tried as start node several times). Nodes are itera-
tively added to the set, performing the addition that most increases the objective f described
below. The construction is stopped either when a violated inequality is detected or if the
current set S is far from violating inequality (39). The objective we seek to maximize with
each insertion is the following:

f(S) = λ1

(

max {q(π(S) \ S),−q(σ(S) \ S)} −Qx(δ+(S))
)

+

λ2Q

(

max

{⌈

q(π(S) \ S)

Q

⌉

,

⌈−q(σ(S) \ S)

Q

⌉}

− x(δ+(S))

)

+

λ3

(

min {q(π(S) \ S),−q(σ(S) \ S)} −Qx(δ+(S))
)

,

where λ1, λ2 and λ3 are parameters that control the importance of the three expressions.
The reasoning behind the three expressions is the following: when the second expression is
larger than 0 then we have discovered a violated inequality; the first expression can be seen
as a weakened form of the second that better reflects changes in the demand of the nodes
in S; the last expression emphasizes the part of the maximum expression that is not active
in the two other expressions (in the hope that further augmentations of S may make this
part active). In each call the parameters λ1, λ2 and λ3 are chosen randomly from a uniform
distribution on the set [1, 5]× [1, 5]× [0, 1], thus giving a higher weight to the two first terms.

6.2.2 Separating 2-path inequalities

The separation heuristic for the 2-path inequality is a randomized greedy construction heuris-
tic. Starting from a set S containing only one node the heuristic augments S by adding the
node that minimizes x(δ+(S)). In order to randomize the heuristic a random number from
the interval [0, 0.3] is added to each xij when selecting the node to add. For every set S for
which x(δ+(S)) < 2 we check whether a feasible solution can leave S exactly once. To this
purpose, we determine whether there exists a feasible path that first visits all the nodes in
π(S) \ S, then visits all nodes in S and finally visits all nodes in σ(S) \ S while satisfying
time window, capacity and precedence constraints. This is determined by a straightforward,
exact label-setting algorithm. If such a path does not exists then a valid 2-path inequality
has been found. The augmentation of S stops when x(δ+(S)) > 3. All nodes are considered
as start nodes and the heuristic is applied several times for each start node. Every time
the algorithm has checked if a set S induces a 2-path inequality, the result is stored in a
hash-table. This hash-table is examined before checking a set S for feasibility. Thereby we
ensure that the same calculation is performed only once.
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6.3 Branching strategy

When the solution of the LPM is fractional and no violated inequality can be identified,
one has to resort to branching. Branching in a column generation algorithm should be done
with care as the branching strategy should preferably be compatible with the algorithm used
for solving the pricing problem, i.e., the same type of pricing problem should be solved in
the children nodes as in the parent node. This implies that branching decisions should be
easily transferred to the subproblem and should not change its structure. In our algorithm
we use two branching rules that add a single cut on the xij variables to the master problem.
They are thus compatible with the pricing problems when applying the transformation of
the pricing problem described in Section 3.5.

The first branching rule branches on the outflow of a set of nodes as proposed for the VRP
by Naddef and Rinaldi (2002). A set of nodes S is first selected such that x(δ+(S)) is as far
as possible from the nearest integer. Two branches are then created: x(δ+(S)) ≤ bx(δ+(S))c
and x(δ+(S)) ≥ dx(δ+(S))e. In our implementation, a good candidate for the set S is found
using a simple greedy heuristic, which most often finds a set containing only two nodes.

The second branching rule calculates x(δ+(0)). If x(δ+(0)) is fractional then the two
branches x(δ+(0)) ≤ bx(δ+(0))c and x(δ+(0)) ≥ dx(δ+(0))e are created. This rule was
proposed by Desrochers et al. (1992) and is often called branching on the number of vehicles.

In our implementation we first try to branch on the number of vehicles. If this is impos-
sible because x(δ+(0)) is integer then we use the first branching rule instead. This choice
was motivated by computational experiments documented in Ropke (2005).

In our branch-and-cut-and-price algorithm, the enumeration tree is explored in a depth-
first fashion. We prefer depth-first compared to a best-bound strategy as it uses less memory
and each node in the branch-and-bound tree is evaluated slightly faster as we have to perform
less work in order to restore a valid basis and to populate the model with useful rows and
columns when moving to a new node in the branch-and-bound tree. Furthermore, the depth-
first strategy is the easiest to implement. The most significant drawback of the depth-first
strategy is that it may visit more nodes than the best-bound strategy if the initial upper
bound is poor. Our upper bounds are found using the heuristic described in Ropke and
Pisinger (2006) and are usually quite tight (See Section 7 and Table 2).

6.4 Implementation issues

Every time the LPM has been solved we are faced with a choice of either trying to generate
more variables (columns) or valid inequalities (rows). In our approach, column generation
is performed as long as the heuristics are able to identify promising variables. When the
heuristics fail, the cut generation routines take over unless the current LP value is above the
upper bound or cut generation has been tried before without success at the current branch-
and-bound node. If cut generation is tried and violated inequalities are identified, they are
added to the model and the pricing heuristics are called again to identify more variables with
negative reduced cost. If the cut generation is unsuccessful or if it is not performed (for the
reasons mentioned above) then the exact pricing algorithm is called.

Several preprocessing rules for tightening time windows in the PDPTW have been de-
scribed by Dumas et al. (1991) and Cordeau (2006). All these rules have been implemented
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here. In addition, we apply the rules proposed by Desrochers et al. (1992) for tightening
time windows in the VRPTW.

6.4.1 Cut pool management

Every time the LPM is solved the algorithm determines which of the valid inequalities
previously generated are satisfied at equality by the current solution. If an inequality has
not been binding for ten consecutive iterations, it is removed from the problem and inserted
in a cut pool. Every time the LPM is solved, the cut pool is checked for violated inequalities.
If a violated inequality is found in the cut pool, it is then added to the linear relaxation and
the problem is solved again. Once an inequality has been identified by one of the separation
procedures it is kept in memory, either explicitly in the model, or implicitly in the cut pool.
In computational experiments, a significant performance boost was observed when using this
approach compared to keeping all inequalities in the formulation.

6.4.2 Column pool management

It has been observed that keeping all columns in the LPM can be a computational burden
when solving the LP relaxation. Several authors (e.g., Sol (1994), Savelsbergh and Sol (1998)
and Lübbecke (2001)) have proposed to keep only a fraction of the generated columns in the
LPM and maintain a pool of columns that are not needed in the current LP solution, but
may be needed in the future. In order to decide whether a column should be kept in the
pool or discarded completely its reduced cost is inspected.

In our implementation we also maintain a column pool. Columns are moved to the pool
when the LPM becomes too large. When the LPM reaches 2000 columns we apply a method
that moves to the pool columns that have not been part of the basis for a certain number
of iterations and have a reduced cost larger than a certain threshold. The pool is always
checked for columns with negative reduced cost before calling the heuristic or the exact
pricing algorithms. Once a column has been generated it is thus always kept in memory,
either in the LPM or in the column pool. As new inequalities are generated dynamically the
columns that enter into the pool may differ from those that need to be retrieved from the
pool at a later stage. Consequently we store paths instead of columns in the pool. It is easy
to transform a path into the correct column, taking all currently active cuts into account.

Adding columns or rows to the LPM leaves the current solution either sub-optimal or
infeasible. We do not try to exploit this by forcing the LP solver to use either a primal or
dual simplex algorithm. Instead, for simplicity, we let the LP solver choose the appropriate
algorithm automatically.

7 Computational Experiments

This section describes the computational experiments that we have performed to assess
the performance of our branch-and-cut-and-price algorithm. The algorithm was imple-
mented in C++ and run on an AMD Opteron 250 computer (2.4 GHz) running Linux.
CPLEX 9.0 was used as LP solver and the COIN-OR Open Solver Interface
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(OSI, http://www.coin-or.org/index.html) was used as an interface to the LP solver.
In all experiments, a limit of two hours of CPU time was used unless otherwise indicated.

The algorithm was tested on two sets of instances: instances similar to those introduced
by Ropke et al. (2007) (data set one) and the instances proposed by Li and Lim (2001)
(data set two). The instances proposed by Li and Lim originate from the Solomon VRPTW
instances (Solomon, 1987). For these instances we minimize the total traveled distance in
our objective. The Li and Lim instances are divided into two series. Those in the first
series have a short planning horizon while those in the second have a longer horizon allowing
many requests to be served in the same route. We only report computational results for the
first series as only a small subset of the second one could be solved. The pricing problems
occurring in the second series are very difficult and the branch-and-cut-and-price algorithm
often times out before even obtaining a lower bound at the root node. The integrality gap,
on the other hand, was small for the instances that could be solved. See Ropke (2005) for
some results on these instances.

The instances introduced by Ropke et al. were produced with a generator initially pro-
posed by Savelsbergh and Sol (1998). As explained by Ropke et al. (2007), the generator
was modified to obtain harder instances by reducing the ratio between the travel times and
the length of the planning horizon. In addition, the new generator considers a single depot
located at the middle of a square instead of a different depot for each vehicle. In all in-
stances, the coordinates of each pickup and delivery location are chosen randomly according
to a uniform distribution over the [0, 50]× [0, 50] square. The load qi of request i is selected
randomly from the interval [5, Q], where Q is the vehicle capacity. A planning horizon of
length T = 600 is considered and each time window has width W . The time windows for
request i are constructed by first randomly selecting ai in the interval [0, T − ti,n+i] and then
setting bi = ai +W , an+i = ai + ti,n+i and bn+i = an+i +W . In all instances, the primary ob-
jective consists of minimizing the number of vehicles, and a fixed cost of 104 is thus imposed
on each outgoing arc from the depot. The instance generator used by Ropke et al. (2007)
contained a bug such that an+i was set to bi + ti,n+i instead of ai + ti,n+i. This is unfortunate
as it implies that cycling cannot occur with the SP2 algorithm on these instances because
the pickup and delivery of each request have non-overlapping time windows. Consequently,
we have generated new instances with a corrected version of the instance generator. The
new instances appear to be more difficult compared to the instances considered by Ropke
et al. (2007).

Four groups of instances were generated by considering different values of Q and W . The
characteristics of these groups are summarized in Table 1. As in Ropke et al. (2007) we
considered ten instances with 30 ≤ n ≤ 75 for each group. The name of each instance (e.g.,
AA50) indicates the class to which it belongs and the number of requests it contains. We
repeat the first letter in each instance to distinguish these instances from the ones studied
by Ropke et al. (2007). The maximum travel time between two nodes in these instances is√

502 + 502 ≈ 70.7 and the time windows are therefore relatively wide, especially for the CC
and DD instances.

For all experiments we use the same numerical precision as Ropke et al. (2007), i.e.,
travel times and costs are represented using double precision floating point numbers. Upper
bounds are found using the adaptive large neighborhood heuristic proposed by Ropke and
Pisinger (2006). Table 2 shows the solutions found by the heuristic. The table is split into
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Table 1: Characteristics of the new PDPTW instances

Class Q W
AA 15 60
BB 20 60
CC 15 120
DD 20 120

two major columns. The first major column shows results for data set one and the second
major column shows results for the second data set. The first 30 instances in data set two
contain 100 requests while the last 6 instances contain 500 requests. For each instance we
provide three numbers. 1) A lower bound (LB) on the optimal solution. If the instance has
been solved to optimality we report the optimal solution in bold, otherwise we report the
best lower bound obtained at the root node by the SP1 or SP2 relaxation. If neither the SP1
nor the SP2 relaxation obtained a lower bound then this entry is left blank. We do not report
the lower bound from the branch-and-cut procedure proposed by Ropke et al. (2007) because
it usually is quite poor for these hard instances. 2) The solution value found by the heuristic
(Heur). If the value is known to be optimal, it is shown in bold. This value, increased by
0.1, is used as an upper bound when testing the branch-and-cut-and-price algorithm in the
following sections. We increase the value by 0.1 to ensure that the branch-and-cut-and-price
algorithm finds a solution even when the heuristic value was optimal. 3) The time in seconds
(Time) the heuristic spent finding the reported solution. The time spent by the heuristic is
not included in the computation times reported in the following sections. Notice that the
there often is a quite large integrality gap for the instances from the first data set that have
not been solved to optimality (e.g. AA75). We believe that the main reason for this gap is
a poor lower bound rather than a weak upper bound.

Our computational experiments focus on three aspects. First, we wanted to measure the
impact of the valid inequalities described in Section 4. Second, we wished to investigate the
impact of the two subproblems, SP1 and SP2 described in Section 3, on the lower bound
and overall solution time. Third, we wanted to compare the performance of our branch-and-
cut-and-price algorithm to the branch-and-cut algorithm of Ropke et al. (2007).

7.1 Impact of valid inequalities

The purpose of this section is to investigate the impact of the valid inequalities on the two
set partitioning relaxations.

Table 3 reports results obtained by running the algorithm on the first data set. The
table shows results for the SP1 and SP2 relaxations. The column No cuts indicates the
value of the lower bound as a percentage of the upper bound. It is computed as 100z′/z̄
where z′ is the lower bound without adding any cuts and z̄ is the upper bound (either the
optimal solution or the best known solution if the optimal solution is unknown). The rest
of the columns report the amount of gap closed using the different families of inequalities:
IPC – Infeasible path constraints (36), CC – Rounded capacity constraints, 2PC – 2-path
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constraints, FC – Fork constraints, RC – Reachability constraints, Full – all constraints.
These values are computed as follows: 100(z− z′)/(z̄− z′) where z is the lower bound found
using the corresponding cuts. Some entries are left blank for instance AA45 because the
relaxation without cuts solved the instance to optimality. Note that in some cases the entry
in the column Full is worse than the value in one of the preceding columns (e.g., AA65,
SP1). This would not happen if all inequalities were separated by exact algorithms, but can
happen when inequalities are separated by heuristics.

The table shows a difference between the SP1 and SP2 relaxations although the difference
is rather small. One also notes that the integrality gap at the root node is quite large for
many instances (e.g., BB30). The large gap occurs because of the fixed cost on each vehicle
and because the LP relaxation is unable to estimate the number of vehicles correctly, i.e.,
x(δ+(0)) is lower in the LP relaxation than in a feasible integer solution. One sees that the
capacity and 2-path constraints are able to improve the lower bound somewhat, but none
of the inequalities are able to improve the lower bound significantly. Future research should
aim at finding valid inequalities that increase x(δ+(0)) in fractional solutions when possible.

Table 4 shows results obtained by applying valid inequalities to the Li and Lim instances
with 100 requests. We only report results for the instances for which the lower bound without
valid inequalities could be computed within 2 hours and which had a non-zero integrality
gap for both relaxations when using a pure column generation approach. When adding
valid inequalities, the computing times sometimes exceeded 2 hours. The blank entries for
instance LR1 2 6 indicate that the SP1 lower bound was optimal without adding cuts.

For this set of instances we also observe a small difference between SP1 and SP2. We
see that the valid inequalities are much more useful for this data set and the 2-path cuts are
especially beneficial. It is interesting to see that the capacity cut is ineffective on this set of
instances, the reason being that the capacity constraints are quite loose in these instances
as opposed to those in the first data set.

7.2 Branch-and-cut-and-price experiments

This section compares the two set partitioning relaxations to each other as well as to the
branch-and-cut algorithm proposed by Ropke et al. (2007). We also test the limits of the
algorithms in terms of the instance size that can be solved to optimality. All valid inequalities
presented in Section 4 and which are not implied by the relaxations are added dynamically
to the model.

The results for the first data set are shown in Table 5. The first two columns show the
instance name and the best known upper bound (the optimal solution value in the case of
instances solved to optimality and the heuristic value from Table 2 otherwise). The remaining
columns indicate z – the root node lower bound after adding cuts, Time – the total amount
of CPU time used (in seconds), Nodes – the number of nodes in the branch-and-bound tree,
and Cuts – the number of cuts added. If the problem was not solved within the time limit
the entry in the Time column is left blank. If the lower bound could not be computed within
the time limit the entry in the z column is left blank as well. The tables show results for the
branch-and-cut algorithm (B&C) and the branch-and-cut-and-price algorithms using SP1
and SP2 as pricing problems. The row Solved indicates how many instances were solved to
optimality within the time limit.
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Both SP1 and SP2 produce good results for these instances and clearly outperform the
branch-and-cut algorithm. The set partitioning formulation using SP1 and SP2 is much
better at approximating the number of vehicles in the LP relaxation. The difference in
performance between SP1 and SP2 is relatively small but we see that SP1 solves to more
instances than SP2 and in general uses fewer branch and bound nodes.

Even though the SP1 and SP2 relaxations do very well, they fail to solve the largest
instances and the instances with wide time windows prove to be difficult. Globally, 10 out of
the 40 instances are unsolved. It is our experience that the fixed costs on each vehicle made
the instances more difficult to solve. The branch-and-cut code from Ropke et al. (2007) is
clearly outperformed as it only manages to solve 12 instances within the time limit.

Table 6 shows results for Li and Lim (2001) instances in the first series and with ap-
proximately 100 requests. Li and Lim (2001) also proposed instances with 50 requests, but
the first series of these instances do not pose any difficulty for the branch-and-cut-and-price
algorithm as all instances can be solved in less than 10 minutes (see Ropke (2005)). The
instances with 100 requests are naturally harder to solve and 13 out of the 30 instances
could not be solved to optimality within the time limit. One notices that no lower bound
was found for several of these instances. This indicates that the pricing problem was too
difficult. The SP1 relaxation manages to solve one more instance to optimality compared
with the SP2 relaxation, but overall they behave similarly.

To test the algorithms on large instances we selected instances with approximately 500
requests from the Li and Lim dataset. We chose the six instances that have the tightest time
windows. The results of this experiment are shown in Table 7. Both relaxations are able to
solve three instances with 500 requests. To the best of our knowledge, these are the largest
PDPTW instances solved to optimality in the literature.

7.3 Further experiments

This section provides some insights into the inner workings of the branch-and-cut-and-price
algorithm that the two preceding sections omitted. For this purpose we select a small set of
diverse instances that we use for further testing. This set contains CC45 and DD45 from the
first data set and LR1 2 6, LR1 2 9 and LRC1 2 2 from the second data set. We also created
two new instances XX45 and YY45. Those instances were created by the instance generator
used for the first data set and both instances contain 45 requests. The XX45 instance uses
parameters Q = 15 and W = 60 while the YY45 instance uses Q = 15 and W = 120. The
demand qi of every request in both instances is set to 1 such that the capacity constraints are
very loose. These two instances were created to examine more loosely constrained instances
similar to the instances from the first data set.

The first experiment aims at determining the effect of the valid inequalities in a branch-
and-bound setting as opposed to the experiment in section 7.1 that tested the effect on the
lower bound in the root node. The results of this experiment are shown in Table 8. The
table contains three major columns. The first major column shows the lower bound at the
root node, reported as 100z/z̄, where z is the lower bound at the root node and z̄ is the
upper bound. The second one shows the time in seconds needed to solve the instance to
optimality while the last one shows the number of branch-and-bound nodes explored. For
each major column we list results for the SP1 and SP2 relaxations with cuts (+cuts) and
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without cuts (-cuts). Blank entries correspond to instances that could not be solved within
the two hour time limit. If an instance could not be solved to optimality we report the
number of branch-and-bound nodes explored within the time limit, not the number of nodes
needed to reach optimality. Each row corresponds to one of the seven instances while the
last row averages each column (we exclude instances YY45 and LR1 2 9 from the averages
in the time column).

The results show that even though the valid inequalities only improve the lower bound
at the root node slightly, they have a significant, positive effect on the running time of the
entire branch-and-cut-and-price algorithm and on the number of nodes explored as well.
Most notable is the LR1 2 9 instance that cannot be solved within the time limit without
the valid inequalities. The SP2 relaxation seems to be slightly more dependent on valid
inequalities compared to the SP1 relaxation. This is natural as the initial integrality gap is
largest for SP2.

The purpose of the second experiment is to shed light on how time is spent within
the branch-and-cut-and-price algorithm. We solved the root node for each of the seven
instances with both relaxations. The experiment is summarized in Table 9. The columns
should be interpreted as follows: PP, pricing problem used; Total time, time spent solving
the root node. Time preproc., time spent on preprocessing, this includes the time spent
tightening time windows (see Section 6.4) and calculating the sets A+

i and A−
i needed for the

reachability constraint (see Section 4.5); Time LP, time spent solving the linear programming
relaxation; Time PP heur., time spent solving the pricing problem by heuristic means; Time
PP exact, time spent solving the pricing problem by the exact method; Time sep., time
spent separating valid inequalities; #Cuts, number of violated inequalities detected; #Cols,
number of columns generated; #PP heur, number of calls to the pricing heuristic (this is
equivalent to the number of iterations in the column generation method); #PP exact, number
of calls to the exact pricing procedure; #Labels, the number of labels processed in the last
call to the exact pricing procedure. We count a label as processed when it is being retrieved
from the set of unprocessed label (line 4 in Algorithm 1). Every two lines in the table
represent information about a particular instance. The first line is for the SP1 relaxation
while the second line is for the SP2 relaxation. The last two lines provide averages.

All time measurements are in seconds. Notice that the sum of the partial time con-
sumptions does not add up to the total time consumption reported. This is because time is
spent in other parts of the algorithm (e.g. management of column and cut pools) that is not
reported in the table. We see that the SP2 relaxation spends more time on preprocessing
compared to SP1, the reason being that the reachability cuts that are turned of for SP1 as
they are implied by this relaxation. The reachability cut requires the computation of the
sets A+

i and A−
i which can be time consuming, especially for larger instances like the last

three. Running the separation procedure for the reachability constraints can also be time
consuming as it involves many maximum flow calculations (see Lysgaard (2006)). This is
especially visible for instance LRC1 2 2.

One sees that for these instances, solving the LP problems is an easy task that only
accounts for a small fraction of the entire time spent, partly because of the low number
of columns generated. The algorithm usually spends most of the time solving the pricing
problem heuristically and exactly. Solving the pricing problem to optimality can be difficult,
the best example is instance LR1 2 6. The table shows that only a few calls to the exact
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pricing algorithm are necessary, which indicates that the pricing heuristics are working well.
However, instance YY45 is an exception.

The table also shows that the SP2 relaxation usually needs more column generation
iterations and that more columns usually are generated for this model. We believe that
this is because the SP2 pricing problem is less constrained and the set of columns we are
optimizing over is larger than for the SP1 relaxation. The comparison between SP1 and SP2
in terms of number of processed labels does not provide a clear picture. A priori one might
have expected the SP2 pricing problem to be easier to solve than SP1, but as the results in
Table 9 and in Section 7.2 show, this is not always the case.

The last experiment shows the effect of the pricing heuristics. In this experiment we
compare the sequence of heuristics described in Section 6.1.4 to a single heuristic H1 (see
Section 6.1.1). The single heuristic is comparable to pricing heuristics that often are used
in the branch-and-price literature. In the experiment we solved the root node relaxation.
The results of this experiment are summarized in Table 10. The table contains three major
columns. The first reports the time for solving the root node, the next reports the number
of calls to the pricing heuristic and the last reports the number of calls to the exact pricing
procedure. The table contains four sub-columns for each major column. Here SP1 std. refers
to pricing problem SP1 and the standard sequence of heuristics while SP1 simple refers
to pricing problem SP1 solved with heuristic H1. SP2 std. and SP2 simple have similar
interpretations for SP2. Each row in the table corresponds to an instance. The blank entry
for LR1 2 6 and SP1 coupled with heuristic H1 indicates that the root node could not be
solved within the 2 hour time limit. The number of calls to the pricing heuristic and to
the exact pricing procedure for LR1 2 6 and SP1 coupled with heuristic H1 only shows the
number of calls performed within the time limit. We would have seen higher numbers if we
allowed the computation to run to the end. The last row averages each column but values
for instance LR1 2 6 are not included in that computation.

The experiment shows that the advanced pricing heuristic is worthwhile, especially for
SP1. One sees that the number of calls to the exact pricing procedure is greatly reduced
with the advanced heuristic and this clearly pays off when the pricing problem is difficult
as for instance LR1 2 6. If the test set had contained more instances with difficult pricing
problems we would have seen an even larger difference between the performance of the simple
and advanced heuristics. For some instances where the pricing problem is easy the simple
heuristic performs best. This is true for CC45, DD45 and XX45. This indicates that we
probably could do better on the first data set if we selected a sequence of heuristic that was
tailored for these instances. We have avoided this to keep the results easier to understand.
Another effect of using the simple pricing heuristic is that the number of column generation
iterations increases. This causes the number of column generated to increase (2017 on average
for SP1 std. versus 4777 on average for SP1 simple). The increased number of columns make
the linear programming relaxations harder to solve, but for the instances considered, this is
not a problem (0.7s on average for SP1 std. versus 2.1s on average for SP1 simple).
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8 Conclusions

This paper has introduced a branch-and-cut-and-price algorithm for the PDPTW. We have
proved that the most useful valid inequalities (fork and reachability inequalities) from a
recently proposed branch-and-cut algorithm (Ropke et al. (2007)) are implied by the set
partitioning relaxation SP1. Those inequalities are not implied by the SP2 relaxation, but
despite this, the SP1 and SP2 relaxations provide similar lower bounds and are roughly
equally hard to compute (for the instances considered in this paper). Even though both the
SP1 and SP2 relaxations have been used in the literature before, this paper is the first to
present a computational comparison between the two relaxations.

For the instances considered in this paper we recommend using the elementary shortest
path problem as pricing problem. The pricing problem allows stronger lower bounds and
it does not seem to be much harder to solve compared to its non-elementary counterpart.
Furthermore, it seems easier to theoretically analyze a set partitioning relaxation based on
elementary shortest paths.

In this paper we have introduced a number of significant improvements to existing al-
gorithms for the ESPPTWCPD. We have also shown how adding valid inequalities from
the 2-index formulation to the master problem interferes with the pricing algorithm. An
approach to modify the cost matrix used in the pricing algorithm was proposed to ensure
that the strongest dominance criteria could be used in the pricing algorithms while adding
valid inequalities to the master problem.

The experiments concerning valid inequalities showed that the 2-path cut was the most
successful of the valid inequalities tested. More research is needed in order to find new
families of valid inequalities that close even more of the gap between the lower and upper
bounds.

We may conclude that several large scale instances can be solved with the current ap-
proach but loosely constrained instances remain a tough challenge.
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Name z Cost Time Name z Cost Time
AA30 31119.1 31119.1 75 LR1 2 1 4819.1 4819.1 174
AA35 31299.8 31299.8 93 LR1 2 2 4093.1 4093.1 212
AA40 31515.9 31515.9 62 LR1 2 3 3484.1 3486.8 264
AA45 31759.8 31759.8 124 LR1 2 4 2830.7 411
AA50 41775.0 41775.0 159 LR1 2 5 4221.6 4221.6 182
AA55 41907.8 41907.8 185 LR1 2 6 3763.0 3763.0 238
AA60 42140.7 42140.7 118 LR1 2 7 3112.9 272
AA65 42250.2 42252.7 135 LR1 2 8 2645.4 383
AA70 42452.3 42455.0 187 LR1 2 9 3953.5 3953.5 193
AA75 43206.5 52472.7 308 LR1 2 10 3376.2 3389.2 225
BB30 31086.3 31086.3 76 LC1 2 1 2704.6 2704.6 183
BB35 31281.2 31281.2 92 LC1 2 2 2764.6 2764.6 206
BB40 31493.4 31493.4 63 LC1 2 3 2772.2 2772.2 230
BB45 41555.1 41555.1 127 LC1 2 4 2661.4 341
BB50 41701.0 41703.4 160 LC1 2 5 2702.0 2702.0 203
BB55 41885.7 41885.7 96 LC1 2 6 2701.0 2701.0 204
BB60 62420.1 62420.1 178 LC1 2 7 2701.0 2701.0 221
BB65 62639.1 62639.1 202 LC1 2 8 2689.8 2689.8 221
BB70 62951.0 62952.3 236 LC1 2 9 2724.2 2724.2 230
BB75 62232.6 63130.4 256 LC1 2 10 2734.9 2741.6 260
CC30 31087.7 31087.8 76 LRC1 2 1 3606.1 3606.1 190
CC35 31230.6 31230.6 97 LRC1 2 2 3292.4 3292.4 208
CC40 31358.5 31358.5 132 LRC1 2 3 3079.5 271
CC45 31509.1 31509.1 82 LRC1 2 4 2525.8 431
CC50 41685.3 41689.0 168 LRC1 2 5 3715.8 3715.8 208
CC55 41836.3 41836.3 196 LRC1 2 6 3360.9 3360.9 198
CC60 37839.7 42015.5 127 LRC1 2 7 3298.2 3317.7 212
CC65 39480.3 42172.1 145 LRC1 2 8 3025.8 3086.7 220
CC70 42124.5 52201.9 288 LRC1 2 9 2995.5 3058.5 229
CC75 43565.0 52375.6 325 LRC1 2 10 2837.5 248
DD30 21133.3 21133.3 49 LR1101 56744.9 56791.7 2278
DD35 31210.9 31224.0 99 LR1105 52401.2 52901.3 2403
DD40 31352.2 31352.2 136 LC1101 42488.7 42488.7 1870
DD45 31483.9 31484.0 132 LC1105 42477.4 42477.4 1880
DD50 31600.9 31600.9 105 LRC1101 48198.7 48666.4 2145
DD55 31743.3 31743.3 124 LRC1105 49287.0 2468
DD60 31466.6 41869.4 247
DD65 35313.7 42125.7 209
DD70 36690.6 42220.3 175
DD75 38762.1 42396.8 201

Table 2: Results from PDPTW Heuristic
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SP1 SP2
No cuts IPC CC 2PC Full No cuts IPC CC 2PC FC RC Full

AA30 84.10 0.00 0.00 0.17 0.17 84.10 0.00 0.00 0.17 0.00 0.00 0.17
AA35 84.22 0.00 1.10 1.43 1.42 84.22 0.00 1.02 1.34 0.00 0.00 1.34
AA40 99.97 0.00 100.00 88.32 100.00 99.97 0.00 91.22 80.72 0.00 0.00 93.35
AA45 100.00 100.00
AA50 81.61 0.00 0.05 0.20 0.20 81.58 0.03 0.05 0.18 0.13 0.14 0.32
AA55 88.26 0.00 0.04 0.08 0.08 88.25 0.00 0.03 0.12 0.13 0.14 0.21
AA60 92.28 0.00 0.13 0.14 0.14 92.20 0.00 0.07 0.12 0.88 0.88 0.97
AA65 94.71 0.00 0.16 0.27 0.16 94.14 4.86 0.92 5.39 5.63 6.49 6.70
AA70 97.14 0.00 0.44 1.58 1.87 96.94 0.96 0.51 4.76 5.04 5.04 6.44
AA75 82.26 0.00 0.09 0.43 0.46 81.91 0.68 0.79 1.17 0.92 0.92 1.58

BB30 72.79 0.00 0.00 1.71 1.71 72.58 0.00 0.00 1.76 0.06 0.01 1.77
BB35 86.50 0.00 0.00 0.49 0.49 86.32 0.00 0.00 1.59 0.06 1.28 1.77
BB40 96.22 0.00 0.00 0.03 0.03 96.18 0.00 0.00 0.24 0.26 0.28 0.57
BB45 78.82 0.00 0.00 0.02 0.02 78.55 0.00 0.00 0.30 0.00 0.00 0.30
BB50 86.16 0.00 0.00 0.04 0.04 86.12 0.00 0.00 0.00 0.03 0.23 0.26
BB55 94.98 0.00 0.00 0.00 0.00 94.67 0.00 0.00 0.03 0.07 0.00 0.08
BB60 87.99 0.00 0.00 0.00 0.01 87.99 0.00 0.00 0.00 0.00 0.00 0.00
BB65 89.26 0.00 0.00 0.00 0.01 89.26 0.00 0.00 0.00 0.00 0.00 0.01
BB70 97.75 0.00 0.01 0.32 0.34 97.75 0.00 0.01 0.33 0.00 0.00 0.35
BB75 98.58 0.00 0.00 0.30 0.31 98.58 0.00 0.00 0.30 0.00 0.00 0.30

CC30 73.37 0.00 0.00 0.09 0.09 72.54 0.00 0.00 0.43 0.00 0.00 0.44
CC35 77.64 0.00 0.00 0.14 0.14 77.09 0.00 0.00 0.14 0.06 0.00 0.17
CC40 80.65 0.00 0.00 0.07 0.07 80.41 0.00 0.00 0.13 0.00 0.00 0.18
CC45 91.84 0.00 0.00 0.00 0.00 91.41 0.00 0.00 0.00 0.05 0.62 0.72
CC50 81.70 0.00 0.00 0.00 0.00 81.66 0.00 0.00 0.03 0.00 0.00 0.02
CC55 87.07 0.00 0.08 0.14 0.14 87.03 0.00 0.04 0.05 0.05 0.00 0.10
CC60 90.06 0.00 0.02 0.01 0.02 89.89 0.00 0.00 0.00 0.00 0.00 0.00
CC65 93.62 0.00 0.00 0.00 0.00 93.38 0.00 0.26 0.29 0.00 0.24 0.40
CC70 80.68 0.00 0.08 0.01 0.08 80.50 0.00 0.04 0.05 0.00 0.03 0.09
CC75 83.17 0.00 0.03 0.03 0.03 82.96 0.00 0.05 0.05 0.00 0.00 0.05

DD30 88.50 0.00 0.03 99.78 100.00 87.92 0.00 0.00 99.57 0.00 0.00 99.85
DD35 68.97 0.00 0.00 0.98 0.98 68.43 0.00 0.00 1.28 0.17 0.07 1.38
DD40 73.80 0.00 0.00 0.18 0.18 73.40 0.00 0.00 0.06 0.06 0.06 0.18
DD45 79.00 0.00 0.13 0.10 0.13 78.75 0.00 0.05 0.13 0.15 0.15 0.29
DD50 84.13 0.00 0.09 0.11 0.13 83.83 0.00 0.48 0.03 0.00 0.00 0.29
DD55 90.83 0.00 0.07 0.10 0.18 90.66 0.00 0.11 0.15 0.00 0.00 0.17
DD60 75.13 0.00 0.03 0.08 0.08 74.94 0.00 0.11 0.11 0.01 0.00 0.12
DD65 83.83 0.00 0.01 0.01 0.01 83.50 0.00 0.00 0.02 0.23 0.22 0.23
DD70 86.90 0.00 0.00 0.00 0.00 86.58 0.35 0.00 0.75 1.15 1.30 1.34
DD75 91.42 0.00 0.00 0.07 0.07 91.04 0.00 0.01 0.11 0.66 0.86 1.00

Avg. 86.40 0.00 2.63 5.06 5.38 86.18 0.18 2.46 5.18 0.41 0.49 5.73

Table 3: Impact of valid inequalities on data set one.
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SP1 SP2
No cuts IPC CC 2PC Full No cuts IPC CC 2PC FC RC Full

LR1 2 5 99.98 100.00 0.00 0.00 100.00 99.98 100.00 0.00 0.00 0.00 0.00 100.00
LR1 2 6 100.00 99.98 68.85 0.00 100.00 100.00 0.00 100.00
LR1 2 9 99.34 2.45 0.00 72.65 72.81 99.34 2.45 0.00 68.97 0.00 0.00 71.81

LR1 2 10 99.61 0.00 0.00 2.80 2.80 99.43 0.00 0.00 8.83 2.50 2.50 10.35
LC1 2 9 99.63 0.00 0.00 14.15 14.03 99.54 0.00 0.00 2.92 0.00 0.00 2.92

LC1 2 10 99.73 0.00 0.00 10.10 10.10 99.61 0.00 11.07 37.41 3.76 19.03 38.41
LRC1 2 1 99.92 13.27 0.00 100.00 100.00 99.92 13.27 0.00 100.00 0.00 0.00 100.00
LRC1 2 2 99.14 0.00 0.00 80.03 80.03 99.14 0.00 0.00 80.03 0.00 0.00 80.03
LRC1 2 5 99.84 14.04 0.00 16.36 16.36 99.61 12.81 0.00 49.76 3.18 6.15 56.66
LRC1 2 7 99.31 0.00 0.00 14.22 14.57 98.88 0.00 6.32 8.66 7.38 15.05 22.30
LRC1 2 8 97.98 0.00 0.00 15.16 14.94 97.65 0.00 0.00 15.85 0.12 0.04 15.90
LRC1 2 9 97.51 0.00 0.00 17.03 17.03 96.97 0.36 0.48 15.28 0.72 0.97 16.05

Avg. 99.33 10.81 0.00 28.54 36.89 99.17 16.48 1.49 40.64 9.80 3.64 51.20

Table 4: Impact of valid inequalities on instances proposed by Li and Lim (2001).
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B&C SP1 SP2
Name z̄ z Time z Time Nodes Cuts z Time Nodes Cuts

AA30 31119.1 24513.3 6.0 26179.4 6.5 3 7 26179.4 11.2 3 25
AA35 31299.8 26337.5 9.1 26431.6 15.9 5 16 26427.5 34.4 5 25
AA40 31515.9 31501.5 19.3 31515.9 13.4 1 9 31515.2 47.1 5 28
AA45 31759.8 31701.0 1484.4 31759.8 15.9 1 0 31759.8 25.5 1 0
AA50 41775.0 31843.4 832.1 34108.5 72.0 7 11 34105.5 139.6 5 38
AA55 41907.8 33064.2 65.7 36992.7 65.6 3 11 36992.3 125.8 3 23
AA60 42140.7 33351.2 234.2 38892.1 235.7 5 6 38887.5 256.5 5 30
AA65 42250.2 32547.2 519.7 40020.9 349.5 9 5 39940.9 599.7 13 36
AA70 42452.3 32587.7 41262.0 2477.5 75 34 41237.5 160 78
AA75 52472.7 32599.4 43206.5 188 47 43131.4 97 85

BB30 31086.3 21129.0 63.4 22772.9 6.0 3 5 22712.0 9.0 3 8
BB35 31281.2 23659.7 13.9 27078.4 18.0 5 9 27076.2 33.2 7 16
BB40 31493.4 23782.1 32.6 30304.1 18.9 3 6 30298.5 35.8 3 17
BB45 41555.1 23891.8 32754.8 46.3 9 4 32669.7 58.2 7 9
BB50 41701.0 29072.1 482.6 35930.7 192.6 25 14 35929.6 159.9 11 16
BB55 41885.7 27863.2 39781.5 55.8 3 0 39656.8 85.5 3 3
BB60 62420.1 42605.8 54925.9 181.7 27 7 54925.5 276.7 35 6
BB65 62639.1 42901.3 55910.9 294.8 25 4 55910.9 486.2 33 6
BB70 62951.0 44114.8 61537.7 1839.4 139 15 61537.8 2182.8 117 33
BB75 63127.5 44491.3 62232.6 265 34 62232.5 200 45

CC30 31087.7 11134.5 22817.1 11.3 5 1 22588.7 19.2 5 8
CC35 31230.6 11277.9 24257.8 59.1 17 13 24087.3 80.9 11 18
CC40 31358.5 11373.3 25293.8 254.8 29 15 25224.8 658.7 39 74
CC45 31509.1 11514.1 28939.1 175.9 11 5 28822.2 843.8 27 58
CC50 41685.3 11690.2 34058.3 1962.3 137 16 34041.7 4005.2 145 98
CC55 41836.3 11812.0 36432.5 2729.2 117 15 36414.1 180 75
CC60 42015.5 11976.2 37839.7 162 22 37767.7 113 51
CC65 42172.1 12094.7 39480.3 85 21 39391.5 59 33
CC70 52201.9 12198.3 42124.5 44 12 42029.2 36 37
CC75 52375.6 12340.2 43565.0 47 7 43456.6 26 34

DD30 21133.3 11117.6 21133.3 25.2 1 25 21129.5 75.5 5 25
DD35 31210.9 11212.6 21620.2 765.1 143 38 21494.5 2266.8 261 128
DD40 31352.2 11324.1 23152.6 160.8 15 11 23028.4 687.5 37 47
DD45 31483.9 11433.9 24880.6 525.6 31 29 24811.6 1313.3 41 64
DD50 31600.9 11525.2 26593.7 1976.0 77 47 26506.4 4238.8 115 84
DD55 31743.3 11600.6 28836.5 1178.5 25 10 28782.0 3951.6 63 39
DD60 41869.4 11724.0 31466.6 88 10 31389.2 66 44
DD65 42125.7 12018.9 35313.7 59 22 35191.3 42 60
DD70 42220.3 12094.3 36690.6 55 10 36630.7 31 61
DD75 42396.8 12245.1 38762.1 42 13 38635.8 24 65

#Solved 12 30 28

Table 5: Branch-and-cut-and-price results on the first data set.
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B&C SP1 SP2
Name z̄ z Time z Time Nodes Cuts z Time Nodes Cuts

LR1 2 1 4819.1 4819.1 287.5 4819.1 5.1 1 0 4819.1 112.4 1 0
LR1 2 2 4093.1 4067.4 4093.1 84.0 1 0 4093.1 214.1 1 0
LR1 2 3 3486.9 3312.0 3484.1 2 1
LR1 2 4 2830.7 2452.8
LR1 2 5 4221.6 4215.0 1075.5 4221.6 11.7 1 1 4221.6 130.6 1 1
LR1 2 6 3763.0 3482.1 3763.0 1041.6 1 0 3763.0 2198.9 1 2
LR1 2 7 3112.9 2773.2
LR1 2 8 2645.5 2149.3
LR1 2 9 3953.5 3815.1 3946.4 418.5 25 29 3946.1 2503.9 93 153

LR1 2 10 3389.2 2879.5 3376.2 4 3

LC1 2 1 2704.6 2704.6 180.3 2704.6 4.9 1 0 2704.6 116.5 1 0
LC1 2 2 2764.6 2753.8 4979.5 2764.6 27.6 1 0 2764.6 140.2 1 0
LC1 2 3 2772.2 2561.2 2772.2 250.1 1 0 2772.2 240.6 1 0
LC1 2 4 2661.4 1944.6
LC1 2 5 2702.0 2702.0 223.9 2702.0 6.3 1 0 2702.0 89.5 1 0
LC1 2 6 2701.0 2701.0 580.9 2701.0 9.8 1 0 2701.0 96.1 1 0
LC1 2 7 2701.0 2701.0 423.0 2701.0 10.9 1 0 2701.0 100.1 1 0
LC1 2 8 2689.8 2316.8 2689.8 31.5 1 0 2689.8 118.6 1 0
LC1 2 9 2724.2 1966.8 2715.6 6628.6 91 11 2712.1 73 18

LC1 2 10 2741.6 1493.7 2734.9 9 5 2734.9 9 52

LRC1 2 1 3606.1 3569.1 2485.5 3606.1 12.6 1 3 3606.1 154.1 1 3
LRC1 2 2 3292.4 3026.6 3286.8 1440.4 3 23 3286.8 1053.3 3 21
LRC1 2 3 3079.5 2529.8
LRC1 2 4 2525.8 2103.1
LRC1 2 5 3715.8 3333.6 3710.9 517.8 17 7 3709.6 1419.8 27 99
LRC1 2 6 3360.9 3072.7 3360.9 27.7 1 0 3360.9 142.4 1 2
LRC1 2 7 3317.7 2720.4 3298.2 81 25 3289.0 40 629
LRC1 2 8 3086.7 2441.6 3025.8 2 277
LRC1 2 9 3058.6 2261.3 2995.5 2 21 2980.7 2 50

LRC1 2 10 2837.5 2074.2

Avg. 1279.5 619.3 552.0
Solved 8 17 16

Table 6: Branch-and-cut-and-price results on the second data set (instances proposed by Li
and Lim (2001)). 100 requests.
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SP1 SP2
name UB z time nodes Cuts z time nodes Cuts

LR1101 56744.9 56740.9 1682.3 3 0 56740.9 2514.8 3 0
LR1105 52901.3 52401.2 8 34 52399.9 8 49
LC1101 42488.7 42488.7 778.9 1 0 42488.7 704.8 1 0
LC1105 42477.4 42477.4 762.7 1 0 42477.4 940.9 1 0

LRC1101 48666.5 48198.7 9 59 48192.7 7 89
LRC1105 49287.1

solved 3 3

Table 7: Branch-and-cut-and-price results on the second data set (instances proposed by Li
and Lim (2001)). Instances with 500 requests and tight time windows.

Root lower bound Time (s) B&B Nodes
SP1 SP1 SP2 SP2 SP1 SP1 SP2 SP2 SP1 SP1 SP2 SP2

+cuts -cuts +cuts -cuts +cuts -cuts +cuts -cuts +cuts -cuts +cuts -cuts

CC45 91.84 91.84 91.47 91.41 176 221 845 1150 11 15 27 63
DD45 79.03 79.00 78.81 78.75 526 535 1313 2073 31 41 41 113
XX45 79.98 79.93 79.45 79.01 677 375 1022 1162 53 29 51 69
YY45 90.34 90.34 90.00 89.99 8 8 12 12

LR1 2 6 100.00 100.00 100.00 99.98 1072.9 1055.4 2230.1 4341.9 1 1 1 3
LR1 2 9 99.82 99.34 99.81 99.34 415 2496 25 1009 93 1141

LRC1 2 2 99.83 99.14 99.83 99.14 1433 2272 1048 1378 3 11 3 11

Avg. 91.55 91.37 91.34 91.09 777 892 1291 2021 19 159 33 202

Table 8: Impact of valid inequalities on a subset of instances.
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Name PP Time Time Time Time Time Time #Cuts #Cols #PP #PP #Labels
total preproc. LP PP heur. PP exact sep. heur exact

CC45
SP1 33.9 0.1 0.9 30.6 0.8 1.0 0 2306 140 4 90061
SP2 96.8 6.4 1.3 85.9 0.4 1.9 13 2763 197 5 55492

DD45
SP1 41.8 0.1 1.0 37.3 1.3 1.4 4 2084 183 6 100036
SP2 88.9 6.2 1.0 78.7 0.7 1.4 11 2192 199 5 84536

XX45
SP1 23.0 0.1 0.7 21.1 0.1 0.5 2 2094 128 1 29365
SP2 83.3 5.4 1.2 73.8 0.1 1.8 14 2575 183 2 31878

YY45
SP1 843.3 0.1 1.5 93.2 747.3 0.4 0 2843 213 15 987681
SP2 631.9 6.7 2.2 213.1 406.4 1.8 2 3242 319 22 670293

LR1 2 6
SP1 1085.0 0.3 0.5 75.4 996.6 5.4 0 1650 127 3 2905131
SP2 2226.8 90.2 0.4 80.9 2021.9 26.8 2 1679 119 3 4595936

LR1 2 9
SP1 77.4 0.3 0.4 50.0 3.4 15.9 17 1553 142 1 199984
SP2 367.1 55.3 0.4 66.7 5.6 231.2 21 1431 150 2 214272

LRC1 2 2
SP1 169.1 0.2 0.3 97.7 45.9 17.5 23 1591 152 2 729012
SP2 681.1 77.1 0.4 151.4 64.8 377.6 21 1620 197 2 922721

Avg.
SP1 324.8 0.1 0.7 57.9 256.5 6.0 6.6 2017 155 5 720181
SP2 596.6 35.3 1.0 107.2 357.1 91.8 12.0 2215 195 6 939304

Table 9: Detailed results for the root node on a subset of instances.

Name Total time (s) #calls SP heuristic #calls SP Exact
SP1 SP1 SP2 SP2 SP1 SP1 SP2 SP2 SP1 SP1 SP2 SP2
std. simple std. simple std. simple std. simple std. simple std. simple

CC45 33.9 20.1 96.8 21.5 140 232 197 282 4 64 5 82
DD45 41.8 24.2 88.9 24.9 183 367 199 414 6 64 5 83
XX45 23.0 22.7 83.3 32.4 128 497 183 601 1 58 2 60
YY45 843.3 2263.4 631.9 1078.2 213 445 319 459 15 54 22 66

LR1 2 6 1085.0 2226.8 6901.9 127 269 119 344 3 2 3 25
LR1 2 9 77.4 176.4 367.1 389.7 142 323 150 372 1 21 2 25

LRC1 2 2 169.1 2277.6 681.1 994.6 152 298 197 306 2 18 2 17

Avg. 198.1 797.4 324.9 423.5 160 360 208 406 5 47 6 56

Table 10: Comparison of pricing heuristics on a subset of instances.
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