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Abstract. This paper addresses a multi-period, multi-product sawmill production planning 

problem where the yields of processes are random variables due to non-homogeneous 

quality of raw materials (logs). In order to determine the production plans with robust 

customer service level, robust optimization approach is applied. Two robust optimization 

models with different variability measures are proposed, which can be selected based on 

the tradeoff between the expected backorder/inventory cost and the decision maker risk 

aversion level about the variability of customer service level. The implementation results of 

the proposed approach for a realistic scale sawmill example highlights the significance of 

using robust optimization in generating more robust production plans in the uncertain 

environments compared with stochastic programming. 
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1. Introduction 

 

Production planning in many manufacturing environments is based on some parameters with uncertain 

values. Uncertainties might arise in product demand, yield of processes, etc. Thus, the robustness of a 

production plan, in term of fulfillment of product demand, is dependent on incorporating the uncertain 

parameters in production planning models.  

This study is concentrated on multi-period, multi-product (MPMP) production planning in the sawing 

units of sawmills where possible combinations of log classes and cutting patterns produce 

simultaneously different mix of lumbers. As logs are grown under uncertain natural circumstances, 

non-homogeneous and random characteristics (in terms of diameter, number of knots, internal defects, 

etc.) can be observed in different logs in each class. Consequently, the processes yields (quantities of 

lumbers that can be produced by each cutting pattern) are random variables. Lumber demand in each 

period is assumed as a deterministic parameter which is determined based on the received orders. In the 

sawmill production planning problem, we are looking for the optimal combination of log classes and 

cutting patterns that best fit against lumber demand. The part of demand that cannot be fulfilled on 

time, due to machine capacities and/or uncertain yield, will be postponed to the next period by 

considering a lost sale (backorder) cost. The objective is to minimize products inventory and backorder 

cost and raw material consumption cost, regarding fulfillment of product demand, machine capacities, 

and raw material (log) inventory. The uncertainty in the yields of cutting patterns in sawmills can be 

represented with uncertain yield coefficients in the coefficients of constraints matrix. Regarding to the 

potential significance of yield uncertainty on the production plan, and customer orientation which is at 

center of attention in the sawmills which are dependent on the export markets, obtaining robust plans 

with minimum backorder size (service level) variability is an important goal of production planning in 

sawmills. 

Sawmill production planning problem can be considered as the combination of several classical 

production planning problems in the literature which have been modeled by linear programming (LP). 

This problem was formulated by a deterministic LP model and was solved based on the average values 

for processes yields in Gaudrault et al. (2004). However, if decisions are made based on the 

deterministic model, there is a risk that the demand might not be met with the right products. 

Consequently, it results high inventory levels of products with low quality and price as well as extra 

levels of backorder of products with high quality and price (decreased customer service level). The 
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other approach in the literature for sawmill production planning is focused on combined optimization 

type solutions linked to real-time simulation sub-systems (Maness and Norton, 2002; Maness and 

Adams, 1991; Mendoza et al., 1991). In this approach, the stochastic characteristics of logs are taken 

into account by assuming that all the input logs are scanned through an X-ray scanner, before planning. 

Maness and Norton (2002) developed an integrated multi-period production planning model which is 

the combination of an LP model and a log sawing optimizer (simulator). The LP model acts as a 

coordinating problem that allocates limited resources. The log sawing optimization models are used to 

generate columns for the coordinating LP based on the products’ shadow prices. Although the 

stochastic characteristics of logs are considered in this approach, it includes the following limitations: 

logs, needed for the next planning horizon, are not always available in the sawmill to be scanned before 

planning. Furthermore, to implement this method, the logs should be processed in production line in the 

same order they have been simulated, which is not an easy practice. Finally scanning logs before 

planning is a time consuming process in the high capacity sawmills which delays the planning process. 

There are several techniques to incorporate uncertainty in optimization models, including stochastic 

programming (Birge and Louveux, 1997; Kall and Wallace, 1994; Kall and Mayer, 2005), and robust 

optimization (Mulvey et al., 1995). Bakir and Byrune (1998) developed a stochastic LP model based on 

the two-stage deterministic equivalent problem to incorporate demand uncertainty in a multi-period 

multi-product (MPMP) production planning model. In Escudero et al. (1993) a multi-stage stochastic 

programming approach was proposed for solving a MPMP production planning model with random 

demand. Kazemi et al. (2007b; 2008) proposed a two-stage stochastic model for sawmill production; it 

was shown in Kazemi et al. (2007b; 2008) that the proposed production plans by stochastic 

programming approach results a considerably lower expected inventory and backorder cost than the 

plans of the mean-value deterministic model. It is important to note that stochastic programming 

approach focuses on optimizing the expected performance (e.g. cost) over a range of possible scenarios 

for the random parameters. We can expect that the system would behave optimally in the mean sense. 

However, the system might perform poorly at a particular realization of scenarios such as the worst-

case scenario. More precisely, unacceptable inventory and backorder size for some scenarios might be 

observed by implementing the solution of two-stage stochastic model. To handle the tradeoff associated 

with the expected cost and its variability in stochastic programs, Mulvey et al. (1995) proposed the 

concept of robust optimization. Leung and Wu. (2004) proposed a robust optimization model for 

stochastic aggregate production planning. In Leung et al. (2006) a robust optimization model was 
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developed to address a multi-site aggregate production planning problem in an uncertain environment. 

In Kazemi et al. (2007a) robust optimization approach was proposed as one of the potential 

methodologies to address MPMP production planning in a manufacturing environment with random 

yield. 

In this paper, a robust optimization (RO) approach is proposed for multi-period sawmill production 

planning while considering random characteristics of raw materials (logs) and consequently random 

processes yields. The random yields are modeled as scenarios with a stationary discrete probability 

distribution during the planning horizon. We are studying a service sensitive company that wants to 

establish a reputation for always meeting customer service level. We also define the customer service 

level as the proportion of the customer demand that can be fulfilled on time, and we use the expected 

backorder size as a measure for evaluating the service level. Thus, the need for robustness has been 

mainly recognized in term of determining a robust customer service level by minimizing the products 

backorder size variability in the presence of different scenarios for random yields. The robustness in the 

products inventory size is also considered in this problem. Two alternative variability measures are 

used in the robust optimization model which can be selected depending on risk aversion level of 

decision maker about backorder/inventory size variability and the total cost. The proposed robust 

optimization (RO) approach is applied for a realistic-scale sawmill production planning example. The 

resulted large-scale quadratic programming models are solved by CPLEX 10 in a reasonable amount of 

time. A comparison between the backorder/inventory size variability in the two-stage stochastic model 

and the two robust optimization models is provided. Finally, the tradeoff between the 

backorder/inventory size variability and the expected total cost in the two RO models is discussed and a 

decision framework to select among them is proposed.  

The main contributions of this paper can be summarized as follows. Applying robust optimization 

approach as a robust tool for sawmill production planning, regarding to the limitations of the existing 

approaches for sawmill production planning; comparing the performance of two different robust 

optimization models in controlling the robustness of production plans through applying them for a 

prototype sawmill; proposing a framework for selecting the most appropriate robust optimization 

model depending on the risk preferences of the decision maker about service level robustness and total 

expected cost of plans. 
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The rest of this paper is organized as follows. In section 2, sawmill processes and specific 

characteristics are introduced. In section 3, the robust optimization formulation for two-stage stochastic 

programs is provided. In section 4, the proposed robust optimization model for multi-period sawmill 

production planning is presented. In section 5, the scenario generation approach for random yields is 

described. In section 6, the computational results of implementing the proposed robust optimization 

models for a prototype sawmill are provided. Our concluding remarks are given in section 7. 

2. Sawmill processes and specific characteristics 

 

There are a number of processes that occur at a sawmill: log sorting, sawing, drying, planing and 

grading (finishing). Raw materials in the sawmills are the logs which are transported from different 

districts of forest after bucking the felled trees. The finished and graded lumbers (products) are then 

transported to the domestic and international markets. Figure 1 illustrates the typical processes. In this 

paper we focus on operational level production planning in the sawing units of sawmills. In the sawing 

units, logs are classified according to some attributes namely: diameter class, species, length, taper, etc. 

Logs are broken down into different dimensions of lumbers by means of different cutting patterns. See 

figure 2 for three different cutting patterns. Each cutting pattern is a combination of activities that are 

run on a set of machines. From each log, several pieces of sawn lumber (e.g. 2(in)x4(in)x8(ft), 

2(in)x4(in)x10(ft), 2(in)x6(in)x16(ft),…) are produced depending on the cutting pattern. The lumber 

quality (grade) as well as its quantity yielded by each cutting pattern depends on the quality and 

characteristics of the input logs. Despite the classification of logs in sawmills, a variety of 

characteristics might be observed in different logs in each class. In fact, natural variable conditions that 

occur during the growth period of trees make it impossible to anticipate the exact yields of a log. As it 

is not possible in many sawmills to scan the logs before planning, the exact yields of cutting patterns 

for different log classes cannot be determined in priori. 

 
Insert figure 1 here 

 
Insert figure 2 here 
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3. Robust optimization formulation for two-stage stochastic programs 

 

The robust optimization method developed by (Mulvey et al., 1995) extends stochastic programming 

by replacing traditional expected cost minimization objective by one that explicitly addresses cost 

variability.  

Consider the following LP model that includes random parameters: 

 

Minimize (1)
   Subject to

, (2)
, (3)

0, (4)

Tc x

Ax b
Bx e
x

=
≤

≥
 

where B  and e  represent random technological coefficient matrix and right-hand side vector, 

respectively. Assume a finite set of scenarios { }1,2,...,SΩ =  to model the uncertain parameters; with 

each scenario s∈Ω  we associate the subset { }, , ,s s s sd B C e  and the probability of the scenario sp , 

(
1

1s
S

s
p

=
=∑ ). The standard two-stage stochastic linear program is formulated as follows. 

SP: 

Minimize (5)T s sT s

s
c x p d y

∈Ω
+ ∑

   Subject to
, (6)

, , (7)
, 0, , (8)

s s s s

s

Ax b
B x C y e s
x y s

=
+ = ∈Ω
≥ ∈Ω

 

where x  denotes the vector of first-stage decision variables whose optimal value is not conditioned on 

the realization of uncertain parameters, sy  denotes the vector of second-stage (recourse) decision 

variables, corresponding to scenario s, that are subject to adjustment once the uncertain parameters are 

observed. sC  and sd  denote the recourse matrix and the penalty recourse cost vector corresponding to 

scenario s, respectively. The optimal solution of model (5)-(8) will be robust with respect to optimality 

if it remains close to optimal for any of the scenarios s∈Ω . This is termed solution robustness. In 

other words, the solution robustness measures the variability of the recourse cost in model SP for any 
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of the scenarios s∈Ω . The solution is also robust with respect to feasibility if it remains almost 

feasible for all scenarios. This is termed model robustness. The robust optimization (RO) framework 

introduced by (Mulvey et al., 1995) is a goal programming approach to balance the tradeoffs between 

solution robustness and model robustness. Hence, the RO approach is to modify the objective in SP as 

follows. 

 

RO: 
1 1Minimize ( ,..., ) ( ,..., ) (9)

ubject to

T s sT s s s

s
c x p d y y y

S

λσ ωρ δ δ
∈Ω

+ + +∑

, (10)
, , (11)

, 0,  . (12)

s s s s s

s

Ax b
B x C y e s
x y s

δ+

=
+ = ∈Ω
≥ ∈Ω

 

The term ( 1( ,..., )s sT s s

s
p d y y yλσ

∈Ω
+∑ ) in the objective function denotes the solution robustness 

measure, where 0λ ≥  is a goal programming weight and 1( ,..., )sy yσ  denotes the recourse cost 

variability measure. By changing λ , the relative importance of the expectation and variability of the 

recourse cost in the objective can be controlled. The last term in the objective function 1( ,..., )sρ δ δ  is a 

feasibility penalty function, which is used to penalize the violation of constraints (11) (denoted by sδ ) 

under some of the scenarios. ω  is a goal programming weight. In the following, the recourse cost 

variability measures existing in the literature, as well as the measures that we use in this work, are 

presented.  

3.1. Variability measures in robust optimization models 

The classical approach to model the tradeoff between the expectation and the variability in RO models 

is to use mean-variance model of Markowitz (1959) which has been implemented in many applications, 

namely capacity expansion of power systems (Malcolm and Zenios, 1994), stochastic logistic problems 

(Yu and Li , 2000), stochastic aggregate production planning (Leung and Wu., 2004; Leung et al., 

2006). However, there are some exceptions against using mean-variance in some applications: variance 

is a symmetric risk measure, penalizing the cost both above and below the expected recourse cost, 

equally. As in the case of production planning it is more convenient to use an asymmetric risk measure 

that would penalize only costs above the expected value. Shabbir and Shahinidis (1998) proposed to 
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use upper partial mean of the recourse cost as the measure of variability in a robust optimization model 

for process planning under uncertainty. In List et al. (2003) an upper partial moment (UPM) of order 1 

was used in a robust optimization model for fleet planning under uncertainty. Takriti and Shabbir 

(2004) used the upper partial moment of order 2 for robust optimization of two-stage stochastic models.  

3.2. Proposed variability measures 

As we have already mentioned, in the production planning problem that we are addressing, using the 

symmetric mean-variance tradeoff for recourse cost can generate solutions that are inefficient and 

which would not be considered by a rational manager. Regarding the proposed asymmetric variability 

measures in the literature and the recent developments on optimization solvers, namely CPLEX 10, 

which have made it possible to solve the large-scale quadratic programs in a reasonable amount of 

time, we propose two variability measures of recourse costs in this problem, namely the upper partial 

moment of order 2 (UPM-2), and the upper partial variance (UPV). 

3.2.1. Upper partial moment of order 2 (UPM-2) 

The upper partial moment of order 2 (used also in Takriti and Shabbir, 2004) is defined as follows. 

 
22 , (13)s s

s
p+ +

∈Ω
Δ = Δ∑

where 

{ }*max 0,( ) , (14)s sT sd y R+Δ = −

 

and *R  is the target recourse cost. For scenario s, 2s
+Δ  is the squared positive deviation of that 

scenario’s recourse cost from the target recourse cost. In this way, 2
+Δ  is defined as the expectation of 

the squared positive deviations over all scenarios.  

3.2.2. Upper partial variance (UPV) 

The upper partial variance is the quadratic version of upper partial mean (UPM) of Shabbir and 

Shahinidis (1998). It is defined as follows. 

 
22 , (15)s s

s
p+ +

∈Ω
Δ = Δ∑

where 
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.max 0,( ) (16)s sT s s sT s

s
d y p d y+

∈Ω

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

Δ = −∑
 

For scenario s, 2s
+Δ  is the squared positive deviation of that scenario’s recourse cost from the expected 

recourse cost. In this way, 2
+Δ  is defined as the expectation of the squared positive deviations over all 

scenarios. It should be mentioned that the advantage of UPV variability measure over the (UPM-2) is 

that UPV does not require a priori specification of a target recourse cost and therefore is more flexible. 

4. Robust optimization model for multi-period sawmill production planning 

Consider a sawing unit with a set of products (lumbers) P, a set of classes of raw materials (logs) C, a 

set of production processes A, a set of machines R, a planning horizon consisting of T periods, and a 

scenario set { }1,2,...,SΩ =  for random processes yields. For modeling simplicity, we define a 

production process in a sawing unit as a possible combination of a log class and a cutting pattern. The 

(first-stage) decision variable is the number of times each process should be run in each period 

(production plan atX ). This is equivalent to finding log consumption of each log class as well cutting 

pattern selection for each log class in each period. The production plan atX  cannot anticipate the yield 

scenarios and must be feasible for all of the scenarios. Inventory ( i
ptI ) and backorder ( i

ptB ) size of each 

product in each period are the recourse decision variables that can be determined based on the first-

stage production plan and the realized scenarios for processes yields. To state the robust optimization 

model for this production planning problem, the following notations are used: 

4.1. Notations 

Indices  

p    product (lumber) 

t     period 

c    raw material (log) class  

a    production process (combination of a log class and a cutting pattern) 

r    machine 

i    scenario  

Parameters 

pth     Inventory holding cost per unit of product p in period t 
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ptb     Backorder cost (lost opportunity and goodwill) per unit of product p in period t 

ctm    Raw material cost per unit of class c in period t 

0cI     The inventory of raw material class c at the beginning of planning horizon 

0pI     The inventory of product p at the beginning of planning horizon 

cts      The quantity of raw material of class c supplied at the beginning of period t 

ptd     Demand of product p by the end of period t 

acφ     The units of class c raw material consumed by process a (consumption factor) 
i
apρ     The units of product p produced by process a (yield of process a) for scenario i 

ip       The probability of scenario i 

arδ      The capacity consumption of resource r by process a 

rtM     The capacity of resource r in period t  

N         Number of yield scenarios 

λ        Goal programming parameter ( 0λ ≥ ) 
*R       Target inventory/backorder cost 

Decision variables 

atX     The number of times each process a should be run in period t 

ctI       Inventory size of raw material of class c by the end of period t 
i
ptI      Inventory size of product p by the end of period t for scenario i (recourse decision variable) 

i
ptB     Backorder size of product p by the end of period t for scenario i (recourse decision variable) 

i
+Δ      The variability measure of inventory and backorder cost for scenario i 

4.2. The robust optimization model  

2

C 1 1 P 1 1
Minimize [ ] (17)

Subject to

T N T N
i i i i i

ct ac at pt pt pt pt
c t a A i p t i

Z m X p h I b B pφ λ +
∈ = ∈ = ∈ = =

= + + + Δ∑∑∑ ∑∑∑ ∑

 

1

Material inventory constraint
, 1,... , , C, (18)ct ct ac atct

a A
I I s X t T cφ−

∈
= + − = ∈∑
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A

Production capacity constraint
, 1,2,... , , R, (19)ar at rt

a
X M t T rδ

∈
≤ = ∈∑

 

1 1 0 1 1
A

1 1
A

Product inventory constraint
,

, 2,... , , P, 1,... , , (20)

i i i
app p p a p

a

i i i i i
pt pt ap at ptpt pt

a

I B I X d

I B I B X d t T p i N

ρ

ρ

∈

− −
∈

− = + −

− = − + − = ∈ =

∑

∑
 

P P1 1 1

*

P 1

Recourse cost variability

( ) ( ), 1,... , , (RO-UPV)  (21)

( ) , 1,... , , (RO-(UPM-2))

T N T
i i i i i i

pt pt pt pt pt pt pt pt
p pt i t

T
i i i

pt pt pt pt
p t

h I b B p h I b B i N

h I b B R i N

′ ′ ′
+

∈ ∈= = =′

+
∈ =

Δ ≥ + − + =

Δ ≥ + − =

∑∑ ∑∑∑

∑∑
 

Non-negativity of all variables
0, 0, 0, 0, 0, , , 1,... , , , 1,... , . (22)i i i

at ct pt ptX I I B c C p P t T a A i N+≥ ≥ ≥ ≥ Δ ≥ ∈ ∈ = ∈ =
 

The objective function (17) is to minimize the raw material consumption cost, the expected inventory 

and backorder costs, in addition to inventory and backorder cost variability for all scenarios in the 

planning horizon. The inventory and backorder costs are computed by multiplying the inventory and 

backorder unit cost by the inventory and backorder size, respectively. As it was mentioned in section 3, 

λ  is the goal programming parameter that models the tradeoff between the expectation and variability 

of the recourse cost in the objective function. For 0λ = , model (17)-(22) would be the two-stage 

stochastic model in Kazemi et al. (2007b; 2008). Constraint (18) ensures that the total inventory of raw 

material of class c at the end of period t is equal to its inventory in the previous period plus the quantity 

of material of class c supplied at the beginning of that period ( cts ) minus its total consumption in that 

period. It should be noted that the total consumption of each class of raw material in each period is 

calculated by multiplying material consumption factor of each process ( acφ ) by the number of times 

that process is executed in that period. Constraint (19) requires that the total production do not exceed 

the available production capacity. In other words, the sum of capacity consumption of a machine r by 

the corresponding processes in each period should not be greater than the capacity of that machine in 

that period. Constraints (20) ensure that the sum of inventory (or backorder) of product p at the end of 

period t is equal to its inventory (or backorder) in the previous period plus the total production of that 
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product in that period, minus the product demand for that period. Total quantity of production for each 

product in each period is calculated as the sum of the quantities yielded by each of the corresponding 

processes regarding the yield ( apρ ) of each process. Due to the randomness of process yields ( apρ ), 

these constraints are defined for each scenario of processes yields. Constraints (21) compute the 

inventory and backorder cost variability for each scenario. Depending on the type of variability 

measure that is used in the RO model, the mentioned cost variability is defined as follows. In the RO-

UPV model (see section 3) it is defined as the difference between the total inventory and backorder 

cost of each scenario and the expected inventory and backorder cost, while in the RO-(UPM-2) (see 

section 3) it denotes the difference between the total inventory and backorder cost of each scenario and 

a target inventory and backorder cost ( *R ). Note that constraints (21) and the non-negativity of s
+Δ  

together with the minimization in the objective function satisfy the definition of upper partial moment 

of order 2 ((13) – (14)) and upper partial variance ((15) - (16)). 

5. Scenario generation 

In this section, we explain how the scenarios for random processes yields ( i
apρ ) can be generated in the 

RO model. We define a scenario in this model as the combinations of scenarios for yields of individual 

processes. We suppose that the yields of different processes are independent. Therefore, as the first 

step, all possible scenarios for yields of each process should be determined and then these scenarios 

should be aggregated to generate the scenarios for the RO model. This approach is illustrated in figure 

3. A scenario for the yields of process (a) (combination of a log class (c) and a cutting pattern (s)) in a 

sawing unit is defined as possible quantities of lumbers that can be produced by cutting pattern (s) after 

sawing each log of class (c). As an example of the uncertain yields in sawmills, consider the cutting 

pattern (s) that can produce 6 products (P1, P2, P3, P4, P5, P6) after sawing the logs of class (c). Table 

1 represents four scenarios among all possible scenarios for the uncertain yield of this process. 

 
Insert figure 3 here 

 
Insert table 1 here 

In this work, we assume that all the logs that will be processed in the next planning horizon are 

supplied from the same discrete of forest. Hence, a stationary probability distribution can be considered 

for the quality of logs and uncertain processes yields during the planning horizon. Regarding the 

limited volume of logs and dimensions of lumbers, we assume a discrete probability distribution for 
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processes yields. Furthermore, due to the wide variety of characteristics in each log class a huge 

number of scenarios for processes yields can be expected. The scenarios for processes yields with their 

probability distribution in the sawmills can be determined as follows.  

1) Take a sample of logs in each class (e.g. 300 logs) and let them to be processed by each cutting 

pattern.  

2) Register the yield of the process (the corresponding products with their quantity) for each individual 

log and consider the result as a scenario.  

3) Having observed all the scenarios, calculate their probabilities as their proportion in the population 

of scenarios. 

It should be noted that the implementation of the above approach is very difficult in the sawmills. In 

fact, the high production speed in the sawing unit makes it difficult to track the logs through the line 

and to observe the result of sawing individual logs. In this paper we use yield scenarios generated by a 

log sawing simulator which will be discussed more in sub-section 6.2. 

6. Computational results 

In this section, we describe the characteristics of the prototype sawmill, scenario generation approach 

for uncertain processes yields, and some implementation details. We also provide the results of 

implementing the proposed robust optimization models for the sawmill example. We compare the 

recourse cost variability in the two RO models and two-stage stochastic one. We also discuss about the 

performance of the two robust optimization models in controlling backorder/inventory size variability 

and provide a framework to choose among them depending on the decision maker’s risk preference. 

6.1. Example description 

A prototype sawmill is used to illustrate the use of the two robust optimization models. The prototype 

sawmill is a typical softwood sawmill located in Quebec (Canada). The sawmill focuses on sawing 

high-grade products to the domestic markets as well as export products to the USA. It is assumed that 

the input bucked logs into the sawing unit are categorized into 3 classes based on their two ends 

diameters. 5 different cutting patterns are available. The sawing unit produces 27 products of custom 

sizes (e.g. 2(in) x4(in), 2(in) x6(in) lumbers) in four lengths. In other words, there are 15 processes all 

can produce 27 products with random yields. We consider two bottleneck machines: Trimmer and Bull. 

The planning horizon consists of 30 periods (days). Product demand in each period is assumed to be 
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deterministic which is determined based on the received orders. Lumbers that remain from one period 

to the next are subject to a unit holding cost. The unsatisfied demand is penalized by a unit backorder 

cost. We assume that the company is very service sensitive and wishes to fulfill customer demands on 

time as much as possible. Hence, the inventory costs of products are considered much lower than their 

backorder costs. The inventory holding cost is computed by multiplying the interest rate (per period) by 

the lumber price; the lumber price is considered as the backorder cost. It would be worth mentioning 

that the data used in this example are based on the gathered data from different sawmills in Quebec 

province (Canada). As the list of custom sizes, machine parameters and prices are proprietary, they are 

not reported in this paper.  

6.2. Scenario generation for the uncertain processes yields 

In the prototype sawmill that we considered in this work, due to the lack of historical data on the yields 

of processes, the yield scenarios already generated by a log sawing simulator (Optitek) were used. 

“Optitek” was developed by a research company for Canada's solid wood products industry (Forintek 

Canada Corp.). “Optitek” simulates the sawing process in the sawing units of Quebec sawmills. It was 

developed based on the characteristics of a sample of logs in different log classes, as well as sawing 

rules available in Quebec sawmills. The inputs to this simulator include log class, cutting pattern, and 

the number of logs to be processed. The simulator considers the logs in the requested class with random 

physical and internal characteristics; afterwards it generates different quantity of lumbers for each log 

based on the sawing rules of the requested cutting pattern. The yielded lumbers of each log can then be 

considered as a scenario for the yields of the corresponding process.  

Recall from section 4 that a yield scenario in the RO model is the combination of yield scenarios of all 

the processes in the problem. In this example we have 15 processes, each can produce 27 products. 

Thus, the RO model (17)-(22) includes 405 (27x15) yield coefficients apρ . If we assume that each 

yield coefficient can take 5 different values, the number of scenarios for random yields in the RO 

model can be estimated as 405 2835 1.2 10≈ × . As solving the robust optimization model (17)-(22) for all 

scenarios of random yields is far beyond present computational capacities, a random sample of such 

scenarios is considered. Thus, we generated 250 scenarios by Monte Carlo sampling among the 

scenarios generated by “Optitek” for the same log classes and cutting patterns that we considered in 

this example. It should be noted that the same sample size for yield scenarios was used in a two-stage 

stochastic model for production planning in the same prototype sawmill in Kazemi et al. (2007b; 2008). 
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Based on the sample average approximation (SAA) scheme which was applied in Kazemi et al. (2007b; 

2008), by considering 250 scenarios a good approximate solution with an acceptable optimality gap can 

be obtained.  

6.3. Implementation details 

By considering 250 scenarios for process yields in this example, the quadratic programming model 

(17)-(22) consists of 202900 constraints and 405790 decision variables. Both of the quadratic robust 

optimization models (RO-UPV and RO-(UPM-2)) were solved by CPLEX 10 barrier solver and all the 

calculations of the recourse cost variability for different values of goal programming parameter (λ ) as 

well as threshold values ( *R ) were performed by scripts in OPL Studio 5.1. All computations were 

carried out on a Pentium(R) IV 1.8 GHz PC with 512 MB RAM running Windows XP. 

6.4. Results of robust optimization approach for the sawmill example 

In this section, we report the results of the implementation of the two robust optimization models for 

the prototype sawmill described in sub-section 6.1.  

6.4.1. RO-(UPM-2) model results 

Remember from section 3 that RO-(UPM-2) model requires a target recourse cost *R . It should be 

noted that the target cost can be determined based on the desired service level. In this sawmill example, 

we provide the target cost as a percentage of the optimal expected backorder and inventory cost when 

0λ =  (the standard two-stage stochastic program). For example, the expected backorder and inventory 

cost for this prototype sawmill, by considering 250 yield scenarios, without any penalty on recourse 

cost variability is 379367. As we mentioned before, a range of robust optimal solutions can be 

generated in the robust model as we change the robustness parameter λ . This parameter reflects the 

decision maker level of concern with exceeding the target cost for all scenarios of random yield. Table 

2 presents the results of RO-(UPM-2) model for various *R λ−  combinations for the sawmill example.  

 

Insert table 2 here 

 

When table 2 provides the value of 80% in column “ *R ”, the target cost is 379367 x 80% = 303494. In 

the second column in table 2 the values of λ  are provided in multiples of 510−  since * 379367R =  and 

a quadratic variability measure is used in the RO-(UPM-2) model. The recourse cost variability 
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measure in column 7 is presented as the square root of (13) used in RO-(UPM-2) model. The last 

column of table 2 includes CPU time (on minutes) for finding the optimal solution of RO-(UPM-2) 

model by CPLEX 10. As expected, for a given value of *R , increasing λ  reduces the 

backorder/inventory cost (size) variability. Thus, we can expect more control on the exceeding of each 

scenario’s backorder/inventory cost over the target cost ( *R ) as well as decreased expected backorder 

cost (size), although at the expense of increased raw material cost and the expected inventory cost 

(size). In other words, by enforcing the backorder/inventory cost variability measure in the objective 

function of model (17)-(22) (see section 4), the production level and consequently raw material 

consumption is increased in order to minimize the exceeding of backorder/inventory cost of all 

scenarios over the target cost. Furthermore, the increased inventory cost (size) is also the result of 

increasing the production level and raw material consumption. Figure 4 illustrates better the tradeoff 

between the backorder/inventory cost variability and raw material cost for different values of λ  for 

each *R . Figure 5 illustrate the tradeoff between the expected backorder and inventory cost by 

enforcing the robustness parameter in RO-(UPM-2) model for * 100%R = .  

 

Insert figure 4 here 
 

Insert figure 5 here 
 

As it can be observed from the results presented in table 2, decreasing the target recourse cost *R  in 

this example does not necessarily decrease the variability measure. This implies that the control on the 

exceeding of the backorder/inventory cost of scenarios over a target cost might be limited depending on 

the yield scenarios as well as problem constraints (i.e. raw material inventory and machine capacity 

constraints). In other words, by imposing a target cost on the variability measure in the RO model it 

might not be feasible to achieve a plan with small recourse cost variability. In this example, for the 

target costs *R  below or equal to the two-stage stochastic model expected recourse cost, by enforcing 

the value of λ  the recourse cost variability can be decreased into a limited value. On the other hand, 

for higher values of *R  (120% and 140%) more robust production plans with less variable 

backorder/inventory cost (size) can be achieved at the expense of lower service level (higher expected 

backorder size). 

From the above discussions, it can be concluded that, if the decision maker wishes to use RO-(UPM-2) 

model to obtain a robust production plan, he/she should choose a value of λ  which reflects his/her risk 
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aversion about backorder/inventory cost (size) variability as well as increased raw material 

consumption and expected inventory cost (size). Moreover, it might not be feasible to achieve a 

completely robust production plan by considering any desirable service level (target cost *R ), 

depending on the yield scenarios and problem constraints.  

6.4.2. RO-(UPV) model results 

Table 3 presents the results of RO-(UPV) models as well as the two-stage stochastic LP (2-stage 

stochastic LP) for the sawmill example. In the second column in table 3 the values of λ  are provided in 

multiples of 510−  since a quadratic variability measure is used in the RO-(UPV) model. The recourse 

cost variability measure in column 7 is presented as the square root of (15) used in RO-(UPV) model. 

The last column of table 3 includes CPU time (on minutes) for finding the optimal solution of RO-

(UPV) model by CPLEX 10. 

Insert table 3 here 

 

In the RO-(UPV) model, as it can be observed from table 3, by increasing the value of parameter λ , 

the backorder/inventory cost variability decreases significantly, while the expected backorder cost is 

augmented considerably and the expected inventory cost and the raw material cost is decreased. In 

other words, by enforcing the backorder/inventory cost variability measure in the objective function of 

model (17)-(22) (see section 4), a higher expected backorder/inventory cost is determined by the model 

to minimize the exceeding of backorder/inventory cost of all scenarios over the expected 

backorder/inventory cost. Thus, the expected backorder size is increased and consequently production 

level and raw material consumption are decreased. Furthermore, the decreased expected inventory cost 

is also the result of decreasing the production level and raw material consumption. Figure 6 illustrates 

the tradeoff between the backorder/inventory cost variability and the expected backorder/inventory cost 

in RO-(UPV) model.  

Insert figure 6 here 

 

From the above discussions, it can be concluded that if the decision maker wishes to have a robust 

production plan by using RO-UPV model, he/she should choose a value of λ  which reflects his/her 

risk aversion about backorder size variability as well as increased expected backorder cost (size). Since 

the customer service level is defined in this work as the proportion of customer demand that can be 

fulfilled, the increased expected backorder cost (size) leads to decreased customer service level. 
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It should be noted that, setting a value for λ  and *R  in the above robust optimization models requires 

explicit managerial input regarding the degree of risk aversion that is appropriate for a given situation. 

In practical sense, it is probably most effective to run the model with a substantial range of λ , and *R  

values, creating a set of solutions like the set graphed in table 2, and 3 and figures 4 and 6 and let the 

mangers pick a desired solution from that set, rather than trying to specify the most appropriate value of 

λ  and *R  in priori. 

6.4.3. Comparison between RO-(UPM-2) and RO-UPV models performances 

As the expected recourse cost is not limited by a target value in RO-UPV model, the 

backorder/inventory cost (size) variability can be controlled as much as possible by increasing the 

value of λ . On the other hand, in RO-(UPM-2) model, the control over recourse cost variability 

depends on the target cost (target service level) as well as yield scenarios and problem constraints. 

Figure 7 illustrates the difference between the robustness of optimal solutions in RO-(UPM-2) model 

and RO-UPV model for different values of *R  and λ . In figure 7, as the target cost *R  increases (the 

service level decreases) in RO-(UPM-2) model, the robustness of plans proposed by this model gets 

closer to those of RO-UPV model. However, more robust solution of RO-UPV model might own larger 

expected backorder cost (size) (lower customer service level) compared with those of RO-(UPM-2) 

model. The comparison between the total costs of both RO models is presented in figure 8. Finally, as 

it is shown in tables 2 and 3, the execution time of RO-UPV model is also larger than that of RO-

(UPM-2) one. 

Insert figure 7 here  
 

Insert figure 8 here 
 

In a very service-sensitive company that wants to establish a reputation for always meeting customer 

service level, the robust optimization formulation allows a decision maker to see explicitly what 

possible tradeoffs between backorder/inventory cost (size) variability and the expected cost exists, and 

to choose a solution that is consistent with his/her willingness to accept risk. In the sawmill example, 

the following decision framework can be proposed. If the decision maker prefers to determine a robust 

customer service level that remains near optimal as much as possible for all scenarios of random yield, 

he/she should select the solution of RO-UPV model which results in less backorder/inventory cost 

(size) variability. However, the solution of this model might result high expected backorder cost (size) 
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which reduces customer service level. Thus, in the case of choosing the RO-UPV model, a value of 

robustness term λ  should be selected that reflects appropriately the tradeoff between risk aversion 

level of the decision maker about the robustness of customer service level and the expected backorder 

cost (size). By choosing the smaller values of λ , lower expected backorder size and consequently 

better service level can be promised to the customer while this service level is not completely robust. 

On the other hand, larger values of λ  result in promising lower service level to the customer which is 

considerably robust. In a company where the variability of backorder size (customer service level) is 

less crucial for the decision-maker, the solution of RO-(UPM-2) can be selected which results an 

expected backorder size (service level) close to a target one. However the desired robustness level of 

the plans might not be necessarily achieved depending on the problem constraints and yield scenarios. 

In this case, λ  should be selected that reflects appropriately the tradeoff between the risk aversion level 

of the decision maker about the robustness of customer service level and raw material and expected 

inventory cost. 

7. Conclusions 

In this paper, two robust optimization models with different variability measures were proposed to 

address multi-period sawmill production planning by considering the uncertainty in quality of raw 

materials (logs). The computational results of addressing a prototype sawmill by this approach provides 

evidence supporting the advantages of robust optimization approach in generating more robust 

production plans over the 2-stage stochastic programming approach. Furthermore, the tradeoff between 

the plan’s robustness (backorder/inventory cost (size) variability) and raw material consumption and 

expected backorder/ inventory cost (size) for different values of robustness term is discussed for both 

models. The robust optimization models are compared in terms of their performance in controlling 

backorder size (customer service level) variability for all scenarios in addition to their total cost (raw 

material and the expected backorder/inventory cost). A decision framework is also proposed to select 

among two RO models based on risk aversion level of decision maker for the robustness of backorder 

size (customer service level) and the increased total cost. Although these results are found for sawmill 

production planning, the proposed approach in this work can be applied for production planning in 

other manufacturing environments where non-homogeneous and random characteristics of raw 

materials result in random yield. Future research will consider also the products demands as random 

variables in order to obtain more realistic production plans. 
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10. Tables 

 
Table 1. Scenarios for yields of a process in a sawing unit 

Scenarios Products 
P1 P2 P3 P4 P5 P6 

1 1 0 1 0 1 1 
2 2 1 1 0 1 0 
3 1 0 0 1 1 1 
4 2 0 0 1 0 1 
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Table 2. Results of RO-(UPM-2) model for sawmill example - The values of λ  are in multiples of 510− . 

*R  λ  
Raw 

material 
cost 

Expected recourse 
(backorder/inventory) 

cost 

Expected 
backorder 

cost 

Expected 
inventory 

cost 

Recourse 
(backorder/inventory) 
cost variability ( +Δ ) 

CPU 
time 

(min.) 
- 0 155473 379367 378560 807 - 3.3 

60% 

1 218392 343974 342942 1032 178009 4.5 
2 236984 340742 339662 1080 176136 4.5 
5 259574 339013 337895 1118 175070 4.5 

10 275420 338259 337121 1138 174592 4.5 
20 285092 338041 336900 1141 174474 4.5 

80% 

1 210971 346041 345031 1009 137648 4.5 
2 228366 342169 341110 1059 135700 4.5 
5 252038 339526 338420 1106 134252 4.5 

10 269560 338756 337640 1116 133738 4.5 
20 280942 338406 337285 1121 133533 4.5 

100% 

1 201327 349348 348369 979 98539 4.5 
2 219352 343931 342896 1035 96124 4.5 
5 242070 340381 339292 1089 94284 4.5 

10 258540 339528 338435 1093 93611 4.5 
20 272871 338812 337702 1110 93195 4.5 

120% 

1 191259 354018 353074 944 62844 4.5 
2 205886 348158 347165 993 60523 4.5 
5 227558 342977 341925 1052 58490 4.5 

10 243688 340873 339787 1085 57644 4.5 
20 257247 340047 338962 1085 57145 4.5 

140% 

1 181544 359445 353074 944 42515 4.5 
2 194034 353158 347165 993 41033 4.5 
5 213167 346798 341925 1052 39364 4.5 

10 227432 344132 339787 1085 38532 4.5 
20 240147 342989 338962 1085 38091 4.5 

 

 

Table 3. Results of RO-(UPV) model for sawmill example - The values of λ  are in multiples of 510− . 

λ  
Raw 

material 
cost 

Expected recourse 
(backorder/inventory) 

cost 

Expected 
backorder 

cost 

Expected 
inventory 

cost 

Recourse 
(backorder/inventory) 
cost variability ( +Δ ) 

CPU 
time 

(min.) 
0 155473 379367 378560 807 111627 3.3 
1 134286 537009 536298 711 50000 12 
2 137009 628833 628118 715 25000 12 
5 129062 751170 750492 678 10000 12 

10 118655 831630 831004 626 5000 12 
20 102452 923633 923089 544 2500 12 
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11. Figures  

 
Figure 1.Illustration of sawmills processes 

 

 
Figure 2. Three possible cutting patterns in a sawmill 

 

 
Figure 3. Scenario generation approach 
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* 60%R =
* 80%R =
* 100%R =
* 120%R =
* 140%R =

 
Figure 4. Raw material cost and backorder/inventory cost variability tradeoff in RO-(UPM-2) model for different values of λ  and *R  

 

51*10λ −=
52*10λ −=
55*10λ −=

510*10λ −=
520*10λ −=

 
Figure 5. Tradeoff between the expected backorder and inventory costs for different values of λ  ( * 100%R = ) in RO-(UPM-2) model 

 

51*10λ −=
52*10λ −=
55*10λ −=

510*10λ −=
520*10λ −=

+
Δ

 
Figure 6. Expected backorder/inventory cost and backorder/inventory cost variability tradeoff in RO-(UPV) model for different  

values of λ  
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* 60%R =
* 80%R =
* 100%R =
* 120%R =
* 140%R =

λ

+
Δ

 
Figure 7. Comparison between the performance of two robust optimization models in controlling recourse cost variability 

 

* 60%R =
* 80%R =
* 100%R =
* 120%R =
* 140%R =

λ
 

Figure 8. Comparison between the total cost resulted by two robust optimization models 
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