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1 Introduction

Optimal path problems arise in several contexts and with different types of objective functions.
However, very often a single objective function cannot completely characterize a problem. Two of
the most common objective functions used in these problems are the path cost, given by an additive
function, and the path capacity, which is a bottleneck function. In 1980 Hansen [6] presented a
list of several bicriteria path problems, studied their complexity, and adapted labeling algorithms
to solve them. These problems include the MinSum-MinSum path problem (which minimizes two
cost functions) and the MinSum-MaxMin path problem (which minimizes the cost and maximizes
the capacity). Later Martins [7] generalized labeling algorithms for the MinSum path problem
with more than two objective functions, and in [8] the same author studied the MinSum-MaxMin
case and developed both an algorithm for finding the maximal set of non-dominated paths and
another algorithm for finding simply the minimum set of non-dominated paths, thus computing
the non-dominated objective values. Recently the algorithm presented by Martins [7] was extended
by Gandibleux, Beugnies and Randriamasy [4] to cope with more than a single cost function
and one bottleneck function. Other labeling algorithms [1, 10] have also been presented for the
MinSum-MinSum case.

The number of arcs in a path, or the number of hops borrowing from the telecommunications
terminology, is another common objective function with particular interest to telecommunications.
In such problems it is frequent to look for a route using the maximum available bandwidth, or
having the minimum cost (sometimes also related with the arcs bandwidth). When combining the
objective function number of hops with the cost or with the bandwidth, the MinHop-MinSum or the
MinHop-MaxMin path problems are obtained. These are particular cases of the MinSum-MinSum
or the MinSum-MaxMin path problems, since the number of hops can be seen as an additive
function where all arcs have cost equal to 1. Some problems related to these two variants can be
found in [2, 5, 9]. Still, despite their large number of potential applications, to our knowledge no
specific methods have been developed to deal with them.

This paper focuses on labeling algorithms for the MinHop-MinSum and the MinHop-MaxMin
path problems, aiming to determine the minimal and the maximal sets of non-dominated paths. It
is known that breadth-search allows to scan the nodes of a tree by order of the level they belong
to, and therefore the proposed methods use a queue to manage the labels associated with each
generated path. This results in a simplification of the labeling procedure, namely regarding the
dominance test and in the decrease of the CPU time.

The remainder of the paper is organized as follows. Section 2 introduces notation, preliminary
concepts and the problems. Section 3 proposes labeling algorithms for the minimum hop-shortest
path problem from two points of view, the determination of all non-dominated paths or simply
of those with distinct objective values, while Section 4 is devoted to the minimum hop-maximum
capacity path problem. Section 5 presents the results of computational experiments and conclusions
follow in Section 6.

2 Some bicriteria path problems

Let (N ,A) be a directed network consisting of a set N = {1, . . . , n} of nodes and of a set A =
{1, . . . ,m} of arcs. Let s, the initial node, and t, the terminal node, be two distinct nodes in (N ,A).
A path from s to t in (N ,A) is a sequence of the form p = 〈v1, . . . , vℓ〉 where v1 = s, vℓ = t, vi ∈ N ,
i = 1, . . . , ℓ, and (vi, vi+1) ∈ A, i = 1, . . . , ℓ − 1. For simplicity we write (i, j) ∈ p if i and j are
consecutive nodes and i precedes j in p. Let P denote the set of all paths from s to t in (N ,A).
With each arc (i, j) ∈ A are associated a cost cij ∈ IR and a capacity uij ∈ IR+. Then the cost of
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path p is

c(p) =
∑

(i,j)∈p

cij ,

its capacity is
u(p) = min

(i,j)∈p
{uij},

and its number of arcs is
h(p) = ℓ− 1.

Usually the functions c and h are minimized, whereas u is maximized, and these functions are
combined in some bicriteria path problems. The following sections focus on the MinHop-MinSum
path problem, where h and c are minimized, and on the MinHop-MaxMin, where h is minimized
and u is maximized.

In general, the two objective functions of a bicriteria problem are not correlated and there is
no solution optimizing them simultaneously. Instead, the set of non-dominated paths, for which
there is no other solution that improves one of the objectives without worsening the other, is
computed. In the following definitions we borrow some terminology used by Gandibleux et al. [4]
for multicriteria path problems. As we focus on the optimization of different objective functions
we present a general definition of dominance.

Definition 1. Let p1, p2 be two paths between the same pair of nodes in (N ,A) and f1, f2 two
functions defined for any path.

1. Path p1 dominates path p2 (denoted p1Dp2) if and only if fi(p1) is better than or equal to
fi(p2), i = 1, 2, and it is strictly better for at least one of the objective functions. It can also be
said that (f1(p1), f2(p1)) dominates (f1(p2), f2(p2)) (denoted (f1(p1), f2(p1))D(f1(p2), f2(p2))).

2. Path p1 strictly dominates path p2 if and only if it is better than p2 for f1 and f2. p1, p2 are
equivalent when fi(p1) = fi(p2), i = 1, 2.

Definition 2. A path p ∈ P is non-dominated, or efficient, if and only if it is not dominated by
any other. If there is no path that strictly dominates p, then p is said to be weakly non-dominated,
or weakly efficient.

Definition 3. Let PD be the subset of dominated paths in P. Then PN = P − PD denotes the
maximal complete set of non-dominated paths in P, while P̄N , the minimal complete set of non-
dominated paths denotes the largest subset of PN that contains no equivalent solutions.

3 MinHop-MinSum path problem

In labeling algorithms for bicriteria path problems several labels can be assigned to a network node.
Each label corresponds to a path in the network starting from s, and thus a tree of paths rooted
at s can be constructed. Some branches of this tree can be pruned by testing the dominance of
new nodes and of those that are already in the tree, corresponding to paths. Like for the single
criteria case, label setting and label correcting algorithms for these problems differ on the strategy
they use to pick the next label to scan. If the lexicographically smallest label is taken, in the first
case, then it is permanent, that is, non-dominated, after being scanned, while with label correcting
algorithms non-dominated paths can only be known when all labels have been scanned.

For the MinHop-MinSum path problem a label associated with a node x in the search tree of
paths from s to other nodes has the form lx = [πh

x , πc
x, ξx, βx], where

• πh
x denotes the number of arcs in the path from the root node to x,
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• πc
x denotes its cost,

• ξx is the node preceding x in that tree, and

• βx is the network node that corresponds to x.

Given βx = i ∈ N and (i, j) ∈ A, a new node y can be considered in the tree, with the label

ly = [πh
x + 1, πc

x + cij , x, j].

Denote by X the set of labels that are eligible to be scanned.
Given two labels lx, ly corresponding to a path ending at the same network node, we say that

lx is dominated by ly if and only if

(πh
x > πh

y and πc
x ≥ πc

y) or (πh
x ≥ πh

y and πc
x > πc

y). (1)

Therefore, a new label ly can be discarded if there is another node x already in the tree such that
βx = βy and

(πh
x < πh

y and πc
x ≤ πc

y) or (πh
x ≤ πh

y and πc
x < πc

y). (2)

On the other hand, whenever (1) holds for some label lx in the search tree, then lx can be replaced
by ly.

Now, considering the computation of the maximal set of non-dominated paths and assuming
X is manipulated as a First In First Out list (FIFO), the number of arcs of the analyzed paths,
i.e. the πh

x values, forms a non-decreasing sequence [3]. Thus for a new label ly condition πh
x ≤ πh

y

always holds, so that the first part of (1) is never satisfied and (1) can be replaced by

πh
x = πh

y and πc
x > πc

y. (3)

Furthermore the labels associated with a certain node have particular properties, as shown in
Lemma 1.

Lemma 1. If X is a FIFO, then for each level of the tree of paths rooted at s a tree node is
associated with several labels, if and only if all have the same objective function values.

Proof. Let lx and ly be two labels at the same level in X, that correspond to the same node, i.e.
βx = βy and πh

x = πh
y . By contradiction, assuming that πc

x 6= πc
y, then:

1. either πc
x < πc

y, which implies lxDly, so y should not belong to X,

2. or else πc
x > πc

y, therefore lyD
lx, so x should not belong to X.

Moreover, if a network node has several non-dominated labels with the same objective values, then
they share the same value of h and belong to the same paths tree level. �

This result yields a simplification of the acceptance condition of a new label ly, which can be
restated as

(πh
x < πh

y and πc
x > πc

y) or (πh
x = πh

y and πc
x ≥ πc

y), (4)

for any x ∈ X such that βx = βy, while if (3) holds for some node x ∈ X, this node can be removed
from the tree since its label is dominated. Using the FIFO data structure to represent X, and
conditions (3) and (4) as dominance rules, the following result holds.

Corollary 1. If X is a FIFO, then the sequence of labels extracted from X and associated with a
network node is in lexicographic order.
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Another consequence of Lemma 1 and Corollary 1 is that each label picked in X is non-
dominated.

Corollary 2. If X is a FIFO, then a label chosen in X is permanent.

Two conclusions can be drawn from this result. First, non-dominated paths from s to t can be
known since labels that correspond to t are chosen in X. Second, in order to check the dominance
of a new label it is sufficient to compare it with the last label inserted in X associated with the
same node. In the pseudo-code presented below this information is maintained in the n elements
array Last.

Although X is manipulated as a FIFO in the sense that new elements are inserted at the end
of the queue while the first one is scanned, an adaptation might have to be done when a new label
ly dominates a previous one, lx. If lx is the only label at level πh

x , it is sufficient to replace lx by ly.
However, if there are multiple labels associated with βx at level πh

x , then they are all dominated
and should be deleted. An alternative is to include an additional comparison between labels that
are picked in X and the correspondent Last, in order to check their dominance.

The pseudo-code of the method just described is presented in Algorithm 1.

Algorithm 1. MinHop-MinSum maximal set of paths determination

For i ∈ N Do Lasti ← 0

Lasts ← 1; nX ← 1; lnX ← [0, 0,−, s]; X ← {1}; PN ← ∅

While X 6= ∅ Do

x← first node in X ; X ←− X − {x}; i← βx

If i = t Then PN ← PN ∪ {x}

For j ∈ N such that (i, j) ∈ A Do

y ← Lastj

If (y = 0) or (y 6= 0 and πh
x + 1 > πh

y and πc
x + cij < πc

y) Then

nX ← nX + 1; lnX ← [πh
x + 1, πc

x + cij , x, j]; Insert nX at the end of X

Lastj ← nX

Else If πh
x + 1 = πh

y and πc
x + cij = πc

y Then

nX ← nX + 1; lnX ← [πh
y , πc

y, x, j]; Insert nX at the end of X

Else If πh
x + 1 = πh

y and πc
x + cij < πc

y Then

ly ← [πh
y , πc

x + cij , x, j]

Remove from X other labels associated with j with the objective values of x

EndIf

EndFor

EndWhile

If the goal is to find the non-dominated objective values, i.e. the minimal set of non-dominated
paths, it is sufficient to compute a single path for each objective values pair, which allows to make
certain modifications to the method above. The main difference now is that in such a case at
most one label is used for each node and each number of arcs, so Lemma 1 is now replaced by the
following result.

Lemma 2. If X is a FIFO, then at most one label per level is associated with a network node.

Moreover, Corollaries 1 and 2 are still valid. Thus, concerning the minimal set of paths com-
putation a new label ly should be inserted in X if and only if

(πh
x < πh

y and πc
x > πc

y) or (πh
x = πh

y and πc
x > πc

y), (5)

for any x ∈ X such that βx = βy, and in the second case, i.e., if

πh
x = πh

y and πc
x > πc

y, (6)
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lx can be discarded. The fact that there is a single label associated with each pair of objective
values also allows to replace labels, with no need for deletions, if they become dominated by others.
The pseudo-code of Algorithm 2 is a simplified version of Algorithm 1 for finding the minimal set
of paths.

Algorithm 2. MinHop-MinSum minimal set of paths determination

For i ∈ N Do Lasti ← 0

Lasts ← 1; nX ← 1; lnX ← [0, 0,−, s]; X ← {1}; P̄N ← ∅

While X 6= ∅ Do

x← first node in X ; X ←− X − {x}; i← βx

If i = t Then P̄N ← P̄N ∪ {x}

For j ∈ N such that (i, j) ∈ A Do

y ← Lastj

If (y = 0) or (y 6= 0 and πh
x + 1 > πh

y and πc
x + cij < πc

y) Then

nX ← nX + 1; lnX ← [πh
x + 1, πc

x + cij , x, j]; Insert nX at the end of X

Lastj ← nX

Else If πh
x + 1 = πh

y and πc
x + cij < πc

y Then ly ← [πh
y , πc

x + cij , x, j]

EndFor

EndWhile

The MinHop-MinSum path problem has up to n(n−2) non-dominated pairs of objective values,
if there is a path with every number of arcs between 1 and n−2 from s to any other node i. Therefore
the tree of paths obtained by Algorithm 2 can have at most n− 2 levels. In the worst case, every
of the m network arcs has to be scanned once for each of those levels. Analyzing an arc implies
the insertion and deletion of an element in X, which can be done in constant time. Therefore the
worst-case time complexity of Algorithm 2 is O(nm).

As for Algorithm 1, its theoretical complexity also depends on the number of levels the paths
tree can have and on the total number of non-dominated labels. Even though the tree can have up
to n − 2 levels, because there may be multiple labels with the same objective values, the number
of labels cannot be polynomially bounded.

4 MinHop-MaxMin path problem

The MinHop-MaxMin path problem can be viewed as a special case of the problems solved by
Martins and by Gandibleux et al. [4, 7] considering a single cost function and cij = 1 for any
(i, j) ∈ A. Like in the previous section, labeling algorithms can also be designed for the MinSum-
MaxMin path problem, by including the number of hops and the capacity values in each label
and modifying the label dominance test. However, non-dominated paths may contain weakly non-
dominated subpaths [4]. Therefore weakly non-dominated labels can be necessary to determine the
maximal set of paths. As an example, the paths 〈1, 2, 4, 5〉 and 〈1, 3, 4, 5〉 between nodes 1 and 5
in the network depicted in Figure 1 are both non-dominated with respect to the MinHop-MaxMin
path problem, although 〈1, 2, 4〉D〈1, 3, 4〉.

.

.

.

.

.

.

.

.

.

..

..
................

..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
....
..............

..
.
.
.
..
.
.
.
.
. 1

.

.

.

.

.

.

.

.

..

.

..................
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
.
..
..
...
................

..

.

.

.

.

.

.

.

.

. 2

.

.

.

.

.

.

.

..

.

..

.................
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
...
.................

..

.

.

.

.

.

.

.

.

. 3

.

.

.

.

.

.

.

.

.

..

..

................
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
....
..............

..

.

.

.

..

.

.

.

.

. 4 .
.
.
.
.
.
.
.
..
.
..
..
..
..
................

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..................
...
..
..
.
.
..
.
.
.
.
.
.
.
.5

...
..
...
...
...
..
...
...
...
..
...
...
...
...
...
...
..
...
...
...
..
...
...
...
..
...
............

..
..

..............20

................................................................................
........ ..
..
..
..
..
.
..
.

10

..............................................................................
.......... ..
..
..
..
.
..
.
..

20

...
...
...
...
...
...
..
...
...
...
..
...
...
...
..
...
...
...
..
...
...
...
..
...
...
...
........

....
..
.

..............

10

...........................................................................

.....
...
..
..
..

10
p (h(p), u(p)) p (h(p), u(p))

〈1, 2, 4〉 (2, 20) 〈1, 2, 4, 5〉 (3, 10)
〈1, 3, 4〉 (2, 10) 〈1, 3, 4, 5〉 (3, 10)

Figure 1: Efficient solutions formed by weakly efficient subpaths
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Maintaining the previous notation a label associated with a node x in the search tree of paths
from s to other nodes has now the form lx = [πh

x , πu
x , ξx, βx], where πu

x denotes the path capacity.
Furthermore, if βx = i ∈ N and (i, j) ∈ A, a new label associated with node y can be created, such
that

ly = [πh
x + 1,min{πu

x , uij}, x, j].

Now consider that instead of minimizing a cost function a capacity function is maximized.
Given lx, ly two labels correspondent to a path starting at s and ending at the same network node,
we say lx is dominated by ly if and only if

(πh
x > πh

y and πu
x ≤ πu

y ) or (πh
x ≥ πh

y and πu
x < πu

y ). (7)

Taking into account that in this problem weakly non-dominated labels can be used to obtain non-
dominated solutions, namely solutions with the same number of hops but different capacities, a
new label ly should only be discarded if there is another x in X such that βx = βy and

πh
x < πh

y and πu
x ≥ πu

y . (8)

On the other hand, lx can be replaced by ly whenever

πh
x > πh

y and πu
x ≤ πu

y . (9)

Back to the determination of the maximal set of non-dominated paths using a FIFO, as the
number of arcs of the scanned paths is non-decreasing (9) never holds, which means no label should
be deleted and the dominance test whenever a new label is formed can be replaced simply by (8).

The acceptance of weakly non-dominated labels that may be dominated implies that Corollar-
ies 1 and 2 now fail. For this reason the set PN is only known after the labeling process is over.
Moreover, it is not enough to compare a new label with the last one observed for that node, and
two cases should be distinguished:

1. πh
x = πh

y for some x in X, then node βx already has a label at level πh
y and neither lx strictly

dominates ly nor ly strictly dominates lx, therefore y is inserted in X;

2. πh
x < πh

y for every x in X, then ly belongs to a different level than lx and it should be inserted
if and only if πu

x < πu
y , that is, if and only if

max{πu
x : x ∈ X and πh

x < πh
y} < πu

y . (10)

In short, a candidate label will only be accepted if its capacity improves the capacity of the labels
that have less arcs. An auxiliary array storing the best capacity value found for each network node
until the latest scanned level, Best, is used in Algorithm 3, which summarizes the pseudo-code for
finding the maximal set of MinHop-MaxMin paths.

Algorithm 3. MinHop-MaxMin maximal set of paths determination

For i ∈ N Do

Besti ← 0; Lasti ← 0; πu
i ← 0

EndFor

Lasts ← 1; nX ← 1; lnX ← [0, +∞,−, s]; X ← {1}

While X 6= ∅ Do

x← first node in X ; X ←− X − {x}; i← βx

For j ∈ N such that (i, j) ∈ A Do

If min{πu
x , uij} > Bestj Then

7
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y ← Lastj

If (y = 0) or (y 6= 0 and πh
x + 1 > πh

y ) Then

Bestj ← πu
Lastj

If min{πu
x , uij} > Bestj Then

nX ← nX + 1; lnX ← [πh
x + 1, min{πu

x , uij}, x, j]; Insert nX at the end of X

Lastj ← nX

EndIf

Else If πh
x + 1 = πh

y Then

nX ← nX + 1; lnX ← [πh
y , min{πu

x , uij}, x, j]; Insert nX at the end of X

If min{πu
x , uij} > πu

y Then Lastj ← nX

EndIf

EndFor

EndWhile

PN ← {non-dominated paths from s to x ∈ X where βx = t}

Even though weakly non-dominated subpaths have to be generated, node t can be treated
differently from the others because only non-dominated t labels are necessary (otherwise the label
corresponds to a solution that contains a loop and is dominated). A different dominance test can
then be applied, because a new label ly, βy = t, should be discarded if and only if there is another
one lx, βx = t, such that

(πh
x < πh

y and πu
x ≥ πu

y ) or (πh
x = πh

y and πu
x > πu

y ), (11)

and it should replace lx if
πh

x = πh
y and πu

x < πu
y . (12)

This variation of Algorithm 3 ensures that t labels are non-dominated as soon as they are chosen in
X, thus allowing the generation of non-dominated paths between s and t along the labeling process.

If again the aim is the determination of the minimal set of non-dominated paths at most one
label is stored for each node in a tree level, therefore no dominated subpaths need to occur in
non-dominated solutions and the following result follows.

Proposition 1. Let p∗ ∈ PN for the MinHop-MaxMin path problem, then there is p ∈ P formed
by non-dominated subpaths from s to any node such that (h(p), u(p)) = (h(p∗), u(p∗)).

This result can be used to tighten the dominance test, as a new label ly can be discarded if
there is lx such that βx = βy and

(πh
x < πh

y and πu
x ≥ πu

y ) or (πh
x ≤ πh

y and πu
x > πu

y ),

that is, as X is manipulated as a FIFO, if

πu
x ≥ πu

y . (13)

The same label will replace lx whenever

πh
x = πh

y and πu
x < πu

y . (14)

Moreover, in this case the labels associated with a network node i correspond to a non-dominated
path from s to i, and thus a non-dominated path from s to t is obtained whenever a label associated
with t is chosen in X. The resulting method is very similar to Algorithm 2, but its pseudo-code is
shown in Algorithm 4 for the sake of completeness.
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Algorithm 4. MinHop-MaxMin minimal set of paths determination

For i ∈ N Do Lasti ← 0

Lasts ← 1; nX ← 1; X ← {1}; lnX ← [0, +∞,−, s]; PN ← ∅

While X 6= ∅ Do

x← first node in X ; X ←− X − {x}; i← βx

If i = t Then PN ← PN ∪ {x}

For j ∈ N such that (i, j) ∈ A Do

y ← Lastj

If (y = 0) or (y 6= 0 and πh
x + 1 > πh

y and min{πu
x , uij} > πu

y ) Then

nX ← nX + 1; lnX ← [πh
x + 1, min{πu

x , uij}, x, j]; Insert nX at the end of X

Lastj ← nX

Else If πh
x + 1 = πh

y and min{πu
x , uij} > πu

y Then ly ← [πh
y , min{πu

x , uij}, x, j]

EndFor

EndWhile

The complexity of Algorithms 3 and 4 can be determined as for the MinHop-MinSum path
problem.

5 Computational results

Computational experiments were carried out to evaluate the empirical performance of the methods
described in the previous sections. To this end, a set of random networks with 1 000, 3 000, 5 000
and 7 000 nodes, dn arcs, for densities d = 5, 10, 20, 30, and uniformly integer cost (capacity) values
generated in [1,M ], with M = 100 and M = 10000, was considered. The results presented in the
following were obtained on 30 different instances generated for each dimension of this data set.
Tests were executed on a Dual Core AMD Opteron at 2 GHz, with 4 Gb of RAM running over
SUSE Linux 10.3.

5.1 MinHop-MinSum path problem

In order to evaluate the methods proposed for finding the maximal set of MinHop-MinSum paths
two programs were coded in C, namely a labeling algorithm where X is as FIFO list with a standard
dominance test, F1, and Algorithm 1, A1. Similarly, when concerning only the determination of the
minimal set of paths a standard labeling algorithm using a FIFO, F2, and Algorithm 2, A2, have
been implemented.

n

1000 3000 5000 7000
Minimum 3 3 2 2
Average 4.7 4.3 3.7 4.6
Maximum 6 6 6 7

Table 1: Number of MinHop-MinSum non-dominated paths with M = 100 and d = 30

Table 1 presents the minimum, average and maximum number of non-dominated paths from
s to t, regarding the case of costs in [1, 100] and d = 30. Even though t can have n − 2 different
non-dominated labels in the worst-case, the results show the actual number of labels to be much
smaller. In the entire test set the registered average number of PN elements is always between 2
and 5, increasing slowly with density. When M = 10000 the results are very similar in general,
only with some higher minimum and average number of non-dominated paths.
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100×(F1-A1)/F1
d

n 5 10 20 30
1000 0.0 58.3 35.0 25.9
3000 37.5 32.4 40.0 41.7
5000 8.3 34.4 47.6 44.2
7000 20.9 43.0 39.4 44.5

100×(F2-A2)/F2
d

n 5 10 20 30
1000 100.0 47.1 32.0 31.7
3000 14.3 36.4 45.5 50.5
5000 57.1 39.4 46.0 50.2
7000 41.4 43.7 44.3 47.1

Table 2: Percentage average CPU times improvement of MinHop-MinSum non-dominated paths
with M = 100

A comparison between the average running times of standard versions of a labeling algorithm,
F1 and F2, and the methods introduced for finding the maximal and the minimal sets of paths,
A1 and A2, is presented in Table 2, with average values of the improvement obtained by the new
algorithms. In most cases the CPU time is approximately reduced by half, although in some
small size instances (with low density when finding the minimal set) the results are better for the
standard versions. However, for these dimensions all running times are very close to 0 second. The
algorithmic performance is very similar for the two cost ranges, although the times are slightly
greater for the wider range. It is still worth noting that the minimal set determination is easier
than that of the maximal set. The difference seems to increase with the instances dimension. The
CPU times taken by any of the implemented algorithms were very small for small size instances.
Figures 2 and 3 show the average running times for the A1 and A2 codes. The first two plots
concern the variation depending on the number of network nodes, while the other two depend on
the network density. There is an increase of running times with n as well as with d, both for A1

and A2 as the theoretical complexity bound suggests. The determination of the maximal, and of
the minimal, sets of MinHop-MinSum paths in the considered data set was made in short times.
A1 and A2 were able to solve problems with 7 000 nodes and 210 000 arcs in less than 0.043 seconds.

A1, d = 5 A1, d = 10 A1, d = 20 A1, d = 30

A2, d = 5 A2, d = 10 A2, d = 20 A2, d = 30

1 000 3 000 5 000 7 000

10

20

30

40

n

C
P
U

ti
m

es
(m

s)

M = 100

1 000 3 000 5 000 7 000
n

M = 10 000

Figure 2: Average CPU times MinHop-MinSum non-dominated paths versus n

5.2 MinHop-MaxMin path problem

The procedure followed for this problem is analogous to the one used in the previous section. Two
standard labeling algorithm using a FIFO were coded: one for finding the maximal and the other
for finding the minimal sets of MinHop-MaxMin paths, F3 and F4, as well as Algorithms 3 and 4,
A3 and A4, respectively.

A sample of the minimum, average and maximum number of solutions in the tested instances
with capacity values in [1, 100] and d = 30 is provided in Table 3. These values are greater than
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A1, n = 1000 A1, n = 3000 A1, n = 5000 A1, n = 7000

A2, n = 1000 A2, n = 3000 A2, n = 5000 A2, n = 7000
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d
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Figure 3: Average CPU times MinHop-MinSum non-dominated paths versus d

for the latter problem. On average the maximal set of paths has between 4 and 8 non-dominated
solutions, but are still far from the upperbound n− 2. For instances with M = 10000 the average
and the maximum values can increase by one to two solutions.

n

1000 3000 5000 7000
Minimum 4 2 3 3
Average 7.1 7.9 8.5 9.5
Maximum 15 14 15 18

Table 3: Number of MinHop-MaxMin non-dominated paths with M = 100 and d = 30

Table 4 shows the relation between the original algorithms, F3 and F4, and the introduced
methods, A3 and A4, for the minimal and the maximal sets determination. The improvement on
running times is around 75% for finding all non-dominated paths and between 75% and 100%
for finding the non-dominated objective values, regardless of the instance size. As expected these
values are greater than the observed for the MinHop-MaxSum path problem, as much more weakly
non-dominated labels now have to be stored. The general tendancy is the same when M = 10000,
but the improvement is around 80% for codes F3 and A3, and around 70% for F4 and A4.

100×(F3-A3)/F3
d

n 5 10 20 30
1000 69.1 73.5 78.2 83.0
3000 67.9 75.6 83.1 84.6
5000 69.0 80.1 85.0 87.2
7000 71.9 82.5 87.2 89.5

100×(F4-A4)/F4
d

n 5 10 20 30
1000 83.3 90.2 96.2 97.0
3000 86.7 93.1 96.5 97.5
5000 90.2 95.1 97.4 99.1
7000 92.2 95.4 97.8 98.5

Table 4: Percentage average CPU times improvement of MinHop-MaxMin non-dominated paths
with M = 100

The difference in performance when determining the maximal and the minimum sets of paths is
also evident on the plots in Figures 4 and 5, which show the running times of A3 and A4 variation
with n and with d, respectively. Solid lines, depicting A3 results, grow much faster than dashed
lines, for A4. The growth seems to present a linear behaviour with n and like in the previous section,
quadratic with d. For larger instances it took in average 0.374 seconds to find the maximal set of
paths and 0.076 seconds to find the minimal set of non-dominated paths.
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A3, d = 5 A3, d = 10 A3, d = 20 A3, d = 30

A4, d = 5 A4, d = 10 A4, d = 20 A4, d = 30
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Figure 4: Average CPU times MinHop-MaxMin non-dominated paths versus n

A3, n = 1000 A3, n = 3000 A3, n = 5000 A3, n = 7000

A4, n = 1000 A4, n = 3000 A4, n = 5000 A4, n = 7000
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Figure 5: Average CPU times MinHop-MaxMin non-dominated paths versus d

6 Conclusions

Labeling algorithms for bicriteria path problems minimizing the number of hops and either the
path cost or the path capacity have been described, aiming the maximal and the minimal sets
of non-dominated paths computation. These methods make use of a breadth-first search tree by
managing the set of labels as a FIFO and list node labels by non-decreasing order of the number
of hops. Tuning the dominance test according with this structure leads to an improvement of
about 50% for the MinHop-MinSum path problem running times and between 75% and 100% for
the MinHop-MaxMin path problem over randomly generated instances. Numerical results indicate
that only 0.043 seconds are necessary to find the whole set of non-dominated paths in the first case,
and 0.037 seconds are needed in the second case, for instances with 7 000 nodes and 210 000 arcs.
The determination of the non-dominated objective values was completed with 0.374 seconds for the
MinHop-MinSum and within 0.076 seconds for the MinHop-MaxMin path problems over the same
test bed.
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