
 
 

           
 

   
    

___________________________ 
    
A Parallel Between Two Classes 
of Pricing Problems in 
Transportation and Economics 
  
      

       Géraldine Heilporn 
       Martine Labbé 
       Patrice Marcotte 
       Gilles Savard 
        

                                
January 2009 
 
 

CIRRELT-2009-01 
 
 
 
 
 
 
 
 
 



 

A Parallel Between Two Classes of Pricing Problems  
in Transportation and Economics 

Géraldine Heilporn1,2, Martine Labbé3, Patrice Marcotte1,4, Gilles Savard1,5 

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation  
(CIRRELT) 

2 Department of Management Sciences, HEC Montréal, 3000 Côte-Sainte-Catherine, Montréal, 
Canada H3T 2A7 

3 Département d’Informatique, Université Libre de Bruxelles, Boulevard du Triomphe, C.P. 210-
01, B-1050 Brussels, Belgium 

4 Department of Computer Science and Operations Research, Université de Montréal, P.O. Box 
6128, Station Centre-ville, Montréal, Canada H3C 3J7 

5 Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal, P.O. 
Box 6079, Station Centre-ville, Montréal, Canada H3C 3A7 

            

Abstract. In this work, we establish a parallel between two classes of pricing problems 

that have attracted the attention of researchers in economics, theoretical computer 

science and operations research, each community addressing issues from its own 

vantage point. More precisely, we contract the problems of pricing a network or a product 

line, in order to achieve maximum revenue, given that customers maximize their individual 

utility. Throughout the paper, we focus on problems that can be formulated as mixed 

integer programs. 
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1 Introduction

In this paper, we contrast two families of pricing models that have lived in parallel for some time.

The former one is a semi-classical product pricing problem in economics, where the design and pricing

policy of a firm must take into account the purchasing behavior of utility-maximizing customers. More

recently, Labbé et al. [27] set the problem of devising revenue-maximizing tolls on a multi-commodity

transportation network within the framework of bilevel programming, a branch of optimization that

deals with mathematical programs whose constraint set is described by an auxiliary problem, and is

closely related to Stackelberg games in economics. The aim of this presentation is to provide an overview

of results, either theoretical (worst-case complexity), methodological (applications) or numerical (exact

or heuristic algorithms), associated with both the original models and variants thereof. Throughout,

we highlight the relationships between these models, as well as their treatment by the communities of

researchers in operations research, economics, and even theoretical computer science. Focusing on models

that can be formulated as mixed-integer programs, we provide their general definition, their framework

of application, a summary of their main properties, and their interrelationships.

2 Designing and pricing a set of products

2.1 Three paradigms

This first family of problems that we consider is concerned with the design and pricing of a set of products

in a market, for which three paradigms have emerged in the literature: buyer welfare, seller welfare and

share-of-choices. All three models fit the following framework: given a set K of purchasers and a set I

of products, the purchasers’ preferences for the various products are described by a utility matrix whose

elements are uk
i : k ∈ K, i ∈ I. Each purchaser selects the product with the largest utility, so far as this

utility is positive; otherwise he refrains from buying.

The Buyer Welfare Problem consists of determining which subset of products S ⊆ I should be

introduced into the market so as to maximize the sum of the purchasers’ utilities. Given a budget Y ,

and upon the introduction of binary variables yi that specify whether a product i is introduced into the

market, and xk
i that specify whether product i is selected by purchaser k, the problem can be formulated
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as the mixed integer program:

(BWP) max
x

∑
k∈K

∑
i∈I

uk
i x

k
i

subject to:∑
j∈I

uk
jx

k
j ≥ uk

i yi ∀k ∈ K,∀i ∈ I (1)

∑
i∈I

xk
i ≤ 1 ∀k ∈ K (2)

xk
i ≤ yi ∀k ∈ K,∀i ∈ I (3)∑

i∈I
yi ≤ Y (4)

xk
i , yi ∈ {0, 1} ∀k ∈ K,∀i ∈ I. (5)

Constraints (1) ensure that each purchaser selects a product that maximizes itw own utility, constraints

(2) force each purchaser to select at most one product, constraints (3) impose that the products selected

are available, while constraint (4) provides an upper bound on the number of products that can be

introduced into the market.

Now consider additional parameters vk
i representing the income perceived by a seller if purchaser

k ∈ K buys product i ∈ I. The Seller Welfare Problem consists of determining which subset of

products S ⊆ I should be introduced into the market so as to maximize the seller’s revenue, again under

the assumption that purchasers maximized their utilities, so far as the latter is positive. This yields the

mathematical program

(SWP) max
x

∑
k∈K

∑
i∈I

vk
i x

k
i

subject to constraints (1) to (5).

In the Share-of-Choices Problem one considers a set A of attributes associated with the various

products, and a set Ja of levels associated with each attribute a. A product profile is defined as the assign-

ment of a level to each attribute for each product, and is represented by the vector p = (j1, j2, ..., j|A|) of

its attribute levels. Further, each purchaser k assigns a value wk
aj to each level j of each attribute a, which

are normalized to lie between −1 and 1. Purchaser k selects the product whose profile p = (j1, j2, ..., j|A|)

has the largest utility wk(p) = wk
1j1

+wk
2j2

+ ...+wk
|A|j|A| , provided that the latter is positive. The Share-

of-Choices Problem consists of determining a product profile p so as to maximize the number of satisfied
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purchasers. While customer behavior could be cast within the framework of probabilistic discrete choice

theory, we will not consider models that involve explicitly a probabilistic structure. The interested reader

could refer to Krieger and Green [26], Shioda et al. [35] or Maddah and Bish [29] for further details on

this topic.

2.2 Literature review

For the Buyer Welfare Problem, Green and Krieger [16] restrict the products considered to lie in a subset

S ⊆ I, so that constraint (4) is expressed as
∑

i∈I yi = |S|. In view of the intractability of enumerating

all feasible solutions, the authors propose heuristics based on a greedy approach, as well as Lagrangian

relaxation.

Referring to a theoretical study by Cornuéjols et al. [9] for an equivalent Plant Location Problem,

the ratio of the greedy over the optimal income (the ‘performance ratio’) is, in the worst case, ZG/ZO =

1 −
(
(|S| − 1)|S|−1

)|S|. Hence, as |S| → ∞, the performance ratio is approximately 63%, and will be

higher for smaller values of |S|. Green and Krieger ran simulations on small problems, randomly generated

with |K| = 100, |I| = 10 and |S| = 4 or 5. In all cases, the greedy heuristic provided solutions within 8%

of optimality, and the optimal solution was obtained in over 50% of the instances.

Whereas these methods are effective for the Buyer Welfare Problem, they do not perform well for the

Seller Welfare Problem. According to the authors, neither Lagrangian relaxation nor an exact method

can address with some success instances of realistic sizes. Moreover, the greedy heuristic approach can

yield very poor results. In the worst case, the performance ratio is |S|−1, and becomes arbitrarily bad

when |S| → ∞. Better results are obtained when the parameters vk
i are not too different from each

other, for all k ∈ K, i ∈ I. Tests on randomly generated instances involving 100 purchasers, 10 products

and |S| = 4, show that the seller’s greedy heuristic is within 5% of optimality, and provides the optimal

solution in 78% of the simulations.

Kohli and Krishnamurti [22] propose a dynamic programming heuristic to solve the Share-of-Choices

problem involving a single product. In order to highlight the efficiency of this new approach, tests were

run on randomly generated instances involving 100 to 400 purchasers, 4 to 8 attributes, and 2 to 5 levels

per attribute. The results are obtained very quickly, and the solution values were always within 9%, and

on average within 2%, of the optimum, with an optimal solution identified in 46% cases. The authors

also compare their approach to an alternative Lagrangian relaxation heuristic. They conclude that the

dynamic programming heuristic outperforms the Lagrangian approach in terms of both computational

time and solution values, the Lagrangian results being sometimes as far as 42% from optimality. Their

dynamic programming heuristic is also significantly faster than an enumeration procedure.
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In [23], Kohli and Krishnamurti prove the NP-hardness of the single-product Share-of-Choices Prob-

lem. Based upon a graph representation of the problem, they develop two heuristics based, respectively,

on dynamic programming and shortest path computations. Whereas both heuristics have arbitrarily bad

worst-case bounds, the dynamic programming solution achieved on average within 2% of optimality (at

worst within 12%), while the shortest path solution achieved on average within 6% of optimality (at worst

within 13%).

Kohli and Sukumar [24] present dynamic programming heuristics for the Buyer Welfare, Seller Welfare

and Share-of-Choices problems, assuming multi-product sets for the latter problem, and a multi-attribute

structure similar to that of the Share-of-Choices problem for Buyer and Seller welfare (levels have to be

determined for each attribute of each product). The heuristics have been tested on randomly generated

instances involving 50 to 150 purchasers, 2 to 4 products, 4 to 6 attributes and 2 to 4 levels per attribute.

Empirical results are near-optimal, with performance ratios within 2%, 5% and 2% of optimality , and

worst ratios within 4%, 15% and 8%. Optimal solutions were found in 10%, 12% and 30% of cases,

respectively.

For multi-attribute Buyer Welfare, Seller Welfare and Share-of-Choices problems, Nair et al. [32]

implemented a beam search heuristic, i.e., breadth first search with no backtracking, and breadth limited

to a given number of promising nodes in the enumeration tree. On random instances generated as in

[24], performance ratios fell within 1% of optimality for all the three problems, and optimal solutions

were found in 38%, 58% and 66% cases, respectively. Computing times were roughly half those presented

in [24].

Keeping with meta-heuristics, Alexouda and Paparrizos [1] consider genetic algorithms for solving the

multi-attribute Seller Welfare Problem, and tested it on random instances involving 100 to 150 purchasers,

2 to 3 products, 3 to 7 attributes and 3 to 6 levels per attribute. The method outperformed the beam

search heuristic of Nair et al., both in terms of quality (solution improved by 8% on average, optimal

solutions found in 74% of cases) and computing time (three times faster).

Finally, observing that constraints (1) are only active when there exists j ∈ I such that xk
j = 1 and

uk
j < uk

i (then one must have yi = 0), McBryde and Zufryden [31] propose to replace constraints (1) in

the Seller Welfare problem by the equivalent:

yi + xk
j ≤ 1 ∀k ∈ K,∀i, j ∈ I : i 6= j, uk

i > uk
j .

Using a generic mathematical solver, they solved randomly generated instances involving 50 to 100

purchasers and 16 products (Y = 10) to optimality very quickly. They also obtained good results for a
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particular case in which the seller’s income vk
i : k ∈ K, i ∈ I does not depend on the products selected

by the purchasers, which actually corresponds to a set covering problem. Randomly generated instances

involving 100 to 300 purchasers and 64 to 512 products (Y = 10) could then be solved to proven optimality

in less than three seconds.

2.3 Profit and Bundle Pricing Problems

In a seminal paper, Dobson and Kalish [14] consider an extension of the Seller Welfare Problem, where

price variables πi : i ∈ I are endogenous, and where the introduction of a product i into the market

induces a fixed cost fi for the seller. The population of purchasers is partitioned into segments, each

segment being characterized by its total demand ηk : k ∈ K and reservation prices rk
i : k ∈ K, i ∈ I which

provide a measure of the value of a given product to the customer of a given segment. The utility uk
i

attached to a segment k ∈ K and product i ∈ I is defined as the difference between the reservation price

rk
i and the product price πi, simply. The Profit Problem consists of determining a subset of products

S ⊆ I and the corresponding product prices leading to a maximum profit for the seller. Note that, in

contrast with the model of Green and Krieger [16], the subset of products S is endogenous. In order to

manage the case in which a segment would not buy any product (i.e., if all utilities for a given segment

are negative), a ‘null’ product is introduced. This yields the mixed integer program:

(PP) max
p,x,y

∑
k∈K,i∈I

ηkπix
k
i −

∑
i∈I

fiyi

subject to:∑
j∈I

(rk
j − πj)xk

j ≥ (rk
i − πi)yi ∀k ∈ K,∀i ∈ I (6)

∑
i∈I

xk
i = 1 ∀k ∈ K (7)

xk
i ≤ yi ∀k ∈ K,∀i ∈ I (8)∑

i∈I
yi ≤ Y (9)

π0 = 0 (10)

xk
i , yi ∈ {0, 1} ∀k ∈ K,∀i ∈ I. (11)

To solve this problem, the authors propose a ‘reverse greedy heuristic’ that exploits the underlying

structure of the problem. If variables xk
i , yi : k ∈ K, i ∈ I are fixed (i.e., the subset of offered products

and the flows are known), then optimal prices can be found in polynomial time by solving shortest path
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problems. The procedure is initialized by setting xk
i , yi : k ∈ K, i ∈ I to the values that maximize the

utility of each segment. At each iteration, a segment is reassigned to another product or removed from the

market, and prices are updated. The procedure stops when no further improvement can be achieved. The

selection criterion for choosing the segment to reassign at each iteration is the seller’s profit, i.e., among

all segments that prevent the seller from increasing its prices, one selects the one which would lead to the

largest improvement of the objective function. The authors evaluate the heuristic performances on small

randomly generated instances involving 5 purchaser segments and 4 products, and obtain profit ratios,

i.e., ratios of (heuristic profit - worst profit) to (best profit - worst profit), within 10% of optimality.

In a related paper, Dobson and Kalish [15] consider the Buyer Welfare and Profit Problems, and

extend their previous work to these variants. First, they formally show that the Buyer Welfare and

the Plant Location Problems are equivalent, hence the former is NP-hard. Next, the authors propose

heuristics for this problem, including greedy (starts with an empty subset S of products and adds products

one at a time in S), greedy interchange (greedy assignment of purchasers to products, followed by pair-

wise product interchanges until no improvement is possible), reverse greedy (see above, [14]) and reverse

greedy interchange. These are tested on randomly generated problems involving from 20 to 800 purchaser

segments and 10 to 80 products. All heuristics perform well, with average ratio of heuristic to Lagrangian

upper bound within 10% of optimality, and within 1% in most cases. The greedy and greedy interchange

approaches perform better than the reverse greedy interchange method, with optimal solutions found

for almost all problems, and worst case ratios always within 1% of optimality. Computing times are

negligible.

Next, Dobson and Kalish show that the Profit Problem is NP-hard through a reduction involving the

Vertex Cover Problem. For this problem, they consider the reverse greedy heuristic introduced in [14].

They also devise a greedy heuristic that inserts in S, at each iteration, the product that yields the largest

improvement of the objective, and where products are considered in a decreasing order of their utilities.

Each time a product is introduced in S, corresponding prices are computed for all products so as to

maximize the objective function. The procedure halts when no further improvement can be achieved.

Evaluated on the same instances as those of Buyer Welfare Problem, the second greedy heuristic performs

better on, with ratio of heuristic to Lagrangian upper bound within 8% to 22% of optimality. On large

instances, however, it runs slower than the greedy heuristic.

Shioda et al. [36] consider the Full Profit Problem in which all products are available (Y = ∞,

S = I and yi = 1 for all i in I), and without fixed costs for the introduction of a product into the market.

The authors adapt the algorithms of Dobson et Kalish [14, 15]. They also derive a linear mixed integer

model for the problem, for which they produce valid inequalities. The methods seem quite effective, even
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if the authors do not provide any quantitative conclusion concerning their preliminary results.

Hanson and Martin [19] consider the Profit Problem (with no fixed costs) for ‘global elements’, such

as data-processing software, possessing several components. The 2n− 1 products are then identified with

the various component subsets of the global element, where n denotes the number of components. For

this Bundle Pricing Problem, the notation is similar to that of Dobson and Kalish [14]. Further, they

assume that product prices are sub-additive, i.e., whenever product i ∈ I is the union of other products,

then its price is lower than the sum of the prices of these other products:

πi ≤
∑
j∈S

πj ∀i ∈ I,∀S ⊆ I : i = ∪j∈Sj (12)

Based on a mixed integer formulation of the problem, problems involving 5 to 10 purchaser segments and

4 components (thus 15 products) have small integrality gaps (2 to 4%) and are solved to optimality very

quickly. Whenever the number of components n is large, the authors propose a formulation involving but

a limited number of subsets. Indeed they observe that, in this case, there often exists a ‘key component’

that belongs to all subsets offered in the market, and to which additional components could be appended.

Based on a more complex mixed integer formulation adapted to this feature, instances involving up to

4 purchaser segments and 20 components (in addition to the key component) are solved very quickly.

This behavior might be a consequence of the limited number of purchaser segments considered in the

numerical experiments.

In Guruswani et al. [18], all products of the Bundle Pricing Problem are offered, and sub-additivity

is not assumed. The problem is shown to be APX -hard through a reduction to Vertex Cover and a log-

arithmic approximation algorithm is proposed. Approximation or polynomial time algorithms, together

with other theoretical results, are also provided for specific cases. Unfortunately, no numerical results

are provided.

Finally, Nichols and Venkataramanan [33] consider a formulation of the Conjoint Buyer Welfare

and Profit Problem similar to the one suggested by Dobson and Kalish [14, 15], but that involves

a weighted objective function including both seller profit and purchaser utility. Three heuristics are

proposed for its solution. The first one is a ‘pure’ genetic algorithm used for comparison purposes. Next,

a genetic procedure is used to generate product prices, while utility-maximizing flows xk
i : k ∈ K, i ∈ I are

obtained by applying a partial enumeration (branch-and-bound) procedure. A third heuristic randomly

selects the products to be introduced into the market. Next, for a given set of flows, corresponding prices

are obtained by solving an inverse problem. The three heuristics, applied to instances involving 20 to

1000 purchaser segments and 10 to 100 products, show that the modified genetic methods outperform
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Buyer’s Welfare 
Problem

Formulation with 
|S| exogenous

Formulation with 
|S| endogenous

Exact Inexact

Other

Greedy (interchange) 
heuristic (Green 85)

Dynamic-programming 
heuristic (Kohli 90)

Solution 
approaches

Lagrangian relaxation 
(Green 85)

Equivalent to the 
Plant Location 

Problem (Dobson 
93) NP-hard

Solution 
approaches

Exact Inexact

Greedy heuristic 
(Dobson 93)

Dynamic-programming 
heuristic (Kohli 90)

Figure 1: Main contributions to the Buyer’s Welfare Problem

the ‘pure’ one. The results also show that the relaxation methods perform better, on large instances,

than a pure genetic algorithm, thus prompting the development approaches where only a subset of ‘hard’

variables is genetically treated. The authors do not provide further details concerning the performance

ratios or the computing times of their algorithms.

We close this section with three figures (Figures 2, 3 and 4) that illustrate a taxonomy of research

pertaining to the Buyer Welfare, Seller Welfare and Share-of-Choices Problems, respectively.

3 Network Pricing

In this section, we establish a parallel between the design and pricing problems presented in Section 2

and a network pricing family of problems.

3.1 Highway Network Pricing Problems

In a transportation context, we assume that each purchaser segment k ∈ K, also called commodity in

the sequel, represents a set of users travelling from one node ok to another dk in the network while

minimizing their costs. Then the set of products a ∈ A is the set of all possible paths that could be

chosen by commodities. In addition to a fixed cost cka that depends on the commodity k and on the path
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Seller’s Welfare 
Problem

Formulation with fixed cost 
for a product introduction in 

the market

Formulation without fixed 
cost for a product 

introduction in the market

Exact Inexact

(Reverse) Greedy heuristic 
(Dobson 88, Dobson 93)

Profit Problem: models 
including price variables 
(Dobson 88, Dobson 93)

Solution 
approaches

Exact Inexact

Greedy heuristic 
(Green 85)

Dynamic-programming 
heuristic (Kohli 90)

Using X-system 
(McBryde88)

Solution 
approachesOther

NP-hard 
(Dobson 93)

Problem structure study when 
the reservation matrix satisfies 
Monge properties (Gunluk 06)

Similar to:

Bundle Pricing
(Hanson 90, 

Guruswani 05)

Conjoint Buyer’s and 
Profit Problem

(Nichols 05)

Figure 2: Main contributions to the Seller’s Welfare Problem

Share-of-Choices 
Problem

Solution 
approaches Other

Exact Inexact NP-hard (Kohli 89)

Greedy heuristic 
(Kohli 89)

Dynamic-programming 
heuristic (Kohli 89, 

Kohli 90)

Figure 3: Main contributions to the Share-of-Choices Problem
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a, each path a is subject to a toll ta imposed by an authority which seeks to maximize its revenue. For

each commodity k, we assume that an alternative toll free path also exists. Being only subject to a fixed

cost ckod, this path allows to set an upper bound ckod − cka on the toll level that commodity k would be

willing to pay for travelling on the toll path a rather than on the toll free path. These upper bounds

correspond to the reservation prices rk
a in the design and pricing family of problems presented in Section

2.

This fits the framework of a toll highway where tolls are determined with respect to given entry and

exit points. We assume that commodities who have left the highway are not allowed to reenter, which

implies that paths are uniquely determined by their respective entry and exit nodes. The Highway

Network Pricing Problem consists of devising the toll levels that should be imposed on the paths of

the network so as to maximize the authority’s revenue. Reacting to the tolls, each commodity travels on

the shortest path from its origin to its destination, with respect to a cost equal to the sum of toll and

initial cost.

The work of Dewez [11] and Heilporn [20] focuses on topologies that reflect the features of an actual

toll highway. More specifically, they consider structured networks composed by a toll path (the highway)

and toll free arcs linking the origin and destination nodes together, as well as to and from the highway.

Commodities either travel on the shortest toll free path from their origin to their destination, or take

the highway, using shortest toll free paths to and from it. As toll levels are frequently determined with

respect to given entry and exit points on the highway, the authors consider a complete toll subgraph

where every single feasible path from any origin to any destination in the network contains exactly one

toll arc.

Some notation is in order. Consider a multi-commodity network defined by a node set N , an arc set

A∪B and a set of origin-destination pairs {(ok, dk) : k ∈ K} for the commodities, each one endowed with

a demand ηk. For each toll arc a ∈ A, let t(a), h(a) ∈ N denote its tail and head nodes respectively. For

each commodity k ∈ K and for each toll arc a ∈ A, let cka denote the fixed cost on the corresponding path

ok → t(a)→ h(a)→ dk, where t(a), h(a) ∈ N are the entry and exit nodes on the highway, respectively.

The fixed cost on the toll free path ok → dk is denoted by ckod, while the corresponding flow variable

is xk
od. For each commodity k ∈ K and for each toll arc a ∈ A, variable xk

a represents the flow on the

corresponding path ok → t(a) → h(a) → dk. Further, variable ta denotes the toll on path a (i.e., toll

arc a), while variable pk
a represents the actual revenue corresponding to commodity k and path a. This
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yields the mixed integer linear model (Dewez [11], Heilporn [20]):

(HP) max
p

∑
k∈K

∑
a∈A

ηkpk
a

subject to:∑
a∈A

xk
a ≤ 1 ∀k ∈ K (13)

∑
a∈A

(pk
a + ckax

k
a) + ckod(1−

∑
a∈A

xk
a) ≤ ckb + tb ∀k ∈ K,∀b ∈ A (14)

pk
a ≤Mk

ax
k
a ∀k ∈ K,∀a ∈ A (15)

ta − pk
a ≤ Na(1− xk

a) ∀k ∈ K,∀a ∈ A (16)

pk
a ≤ ta ∀k ∈ K,∀a ∈ A (17)

pk
a ≥ 0 ∀a ∈ A (18)

xk
a ∈ {0, 1} ∀k ∈ K,∀a ∈ A, (19)

where Mk
a : k ∈ K, a ∈ A and Na : a ∈ A are large constants. By the flow constraints (13), each

commodity k ∈ K chooses at most one toll path a. By constraints (14), the cost of the optimal path for

a commodity k ∈ K is smaller than the cost of any other path for this commodity. Next, constraints (15)

to (17) ensure that the actual revenue is consistent with the commodity revenue, i.e., pk
a = tax

k
a for all

k ∈ K, a ∈ A.

Further, for the sake of realism, triangle and monotonicity constraints (20), (21) can be appended to

the problem. The former ensure that it cannot be profitable to leave and re-enter the highway, while the

latter forbid the toll along a path to be less than the toll of any subpath, i.e.,

ta ≤ tb + tc ∀a, b, c ∈ A :

t(a) = t(b), h(b) = t(c), h(c) = h(a) (20)

ta ≥ tb ∀a, b ∈ A :

t(a) = t(b) < h(a) = h(b) + 1 or t(a) = t(b)− 1 < h(a) = h(b)

or t(a) = t(b) > h(a) = h(b)− 1 or t(a) = t(b) + 1 > h(a) = h(b) (21)

For single commodity problems and in the absence of Monotonicity constraints, the above problem can

be solved trivially. Indeed, the toll arc yielding the largest potential revenue for the leader can be found in

O(n)-time, and the optimal solution consists in setting its toll to the maximum value compatible with the
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toll-free path. Other tolls are set to arbitrarily large values. For multi-commodity problems, Dewez [11]

proposes a solution approach based on the enumeration of the lower level solutions. Unfortunately, the

time required to solve the problem to optimality grows exponentially with the number of commodities and

the number of nodes in the network. Alternatively, the author proposes several flow selection heuristics.

Once flows are determined, optimal tolls can be recovered through the solution of an inverse problem,

which consists of determining revenue maximizing tolls compatible with a given flow assignment. We

briefly describe the three most interesting heuristics:

1) For each commodity k ∈ K, select the toll arc with the largest upper bound Mk
a : a ∈ A. Next,

solve the inverse optimization problem.

2) For each commodity k ∈ K, select the toll arc with the largest upper bound Mk
a : a ∈ A. Observe

that, if two commodities use the same toll arc, the leader could take advantage to force the use of

another toll arc for one of both commodities (with respect to the demand ηk and the upper bounds

Mk
a ). Next, solve the inverse optimization problem.

3) For each commodity k ∈ K and for each toll arc a ∈ A, set xk
a = 0 if the upper bound on the

revenue Mk
a is “small” with respect to the upper bound for other commodities. For instance,

Mk
a < αmaxk′ 6=k M

k′

a with α ∈ (0, 1). Next, solve the restricted problem.

When tested on random grids instances, the best heuristics produced solutions within 5% of optimality

very quickly.

More recently, Heilporn [20] proves the NP-hardness of the Highway Network Pricing Problem, and

derives strong valid inequalities. Next, focusing on two-commodity problems, she show that classes of

valid inequalities, as well as classes of constraints in the original formulations, define facets of the convex

hull of feasible solutions. In the absence of triangle and monotonicity constraints, a complete description

of the convex hull of feasible solutions was obtained for single-commodity problems.

Grigoriev et al. [17] consider a network pricing situation where commodities select at most one toll

arc. Since the resulting topology is that of bridges crossing a river, they refer to it as the Cross River

Network Pricing Problem. The authors prove that this particular problem is NP-hard. They show

that uniform pricing yields an n-approximation scheme, where n is the number of toll arcs. Under further

assumptions, uniform pricing yields an O(log n)-approximation algorithm.

3.2 A generic Network Pricing Problem

In this section, we address the issue of pricing the arcs of a general transportation network. Specifically,

let A be a subset of toll arcs and B the complementary subset of toll free arcs. Assuming that, for a
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given toll policy t = (ta)a∈A, network users travel on shortest paths with respect to the sum of tolls and

fixed costs c = (ca)a∈A, the Network Pricing Problem consists of devising a revenue maximizing toll

policy.

Since tolls are set before flows are assigned, the problem belongs to a class of hierarchical, sequential

and non cooperative bilevel optimization programs, where a leader (the authority) integrates within its

optimization process the reaction of a follower (the users) to its decisions. Bilevel programming and the

related mathematical programs with equilibrium constraints have been the topic of several studies. For

recent reviews, we refer to Dempe [10], Marcotte and Savard [30], Colson et al. [8] and Luo et al. [28].

Upon the introduction of vectors xk = (xk
a)k∈K,a∈A that specify the flows on commodities k ∈ K (i.e.,

xk
a = 1 if commodity k travels on toll arc a, and xk

a = 0 otherwise), the Network Pricing Problem can be

formulated as the bilevel program (Labbé et al. [27])):

(NP) max
t,x

∑
k∈K

∑
a∈A

ηktax
k
a

subject to:

ta ≥ 0 ∀a ∈ A (22)

x ∈ arg min
x

∑
k∈K

(∑
a∈A

(ca + ta)xk
a +

∑
a∈B

cax
k
a

)
(23)

subject to:

∑
a∈i−∩A

xk
a +

∑
a∈i−∩B

xk
a −

∑
a∈i+∩A

xk
a −

∑
a∈i+∩B

xk
a =


−1 if i = ok

1 if i = dk

0 otherwise

∀k ∈ K,∀i ∈ N (24)

xk
a ∈ {0, 1} ∀k ∈ K,∀a ∈ A, (25)

where i− (resp. i+) denotes the set of arcs having node i as their head (resp. tail).

In view of the unimodularity of the constraint matrix associated with the shortest path problem, one

may drop the integrality requirements for the flow variables x. The lower level problem can then be

replaced by its primal-dual optimality conditions, yielding a single-level program involving complemen-

tarity constraints. Through the introduction of actual revenue variables pk
a, Labbé et al. [27] derive the
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mixed integer linear formulation

(NP2) max
∑
k∈K

∑
a∈A

ηkpk
a

subject to:

∑
a∈i−∩A

xk
a +

∑
a∈i−∩B

xk
a −

∑
a∈i+∩A

xk
a −

∑
a∈i+∩B

xk
a =


−1 if i = ok

1 if i = dk

0 otherwise

∀k ∈ K,∀i ∈ N (26)

λk
h(a) − λ

k
t(a) ≤ ca + ta ∀k ∈ K,∀a ∈ A (27)

λk
h(a) − λ

k
t(a) ≤ ca ∀k ∈ K,∀a ∈ B (28)∑

a∈A
(caxk

a + pk
a) +

∑
a∈B

cax
k
a = λk

dk
− λk

ok
∀k ∈ K (29)

pk
a ≤Mk

ax
k
a ∀k ∈ K,∀a ∈ A (30)

ta − pk
a ≤ Na(1− xk

a) ∀k ∈ K,∀a ∈ A (31)

pk
a ≤ ta ∀k ∈ K,∀a ∈ A (32)

pk
a ≥ 0 ∀k ∈ K,∀a ∈ A (33)

xk
a ∈ {0, 1} ∀k ∈ K,∀a ∈ A (34)

xk
a ≥ 0 ∀k ∈ K,∀a ∈ B, (35)

where h(a), t(a) correspond to the head and tail of toll arc a ∈ A, while Mk
a and Na are large constants.

Constraints (26) describe flows on commodities. (27), (28) and (29) are the primal dual constraints and

optimality conditions of the lower level problem. Constraints (30), (31) and (32) ensure that pk
a = tax

k
a

for all k ∈ K, a ∈ A.

Alternatively, Heilporn et al. [21] show that the optimality of the lower level problem can be expressed

in terms of path flows, without resorting to dual variables. Upon introduction of the sets Pk of paths

associated with commodity k ∈ K, the primal-dual optimality conditions (27), (28) and (29) of (NP2)

can be replaced by

∑
a∈A

(caxk
a + pk

a) +
∑
a∈B

cax
k
a ≤

∑
a∈A∩p

(ca + ta) +
∑

a∈B∩p

ca ∀k ∈ K,∀p ∈ Pk, (36)

which impose that the cost of an optimal path for a commodity k ∈ K is smaller than the cost of any
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other path for the associated commodity.

The Network Pricing Problem has been investigated by several researchers. From the theoretical

standpoint, Roch et al. [34] and Grigoriev et al. [17] have proved itsNP-hardness, under various restrictive

conditions. However, some particular cases are polynomially solvable, such as the Network Pricing

Problem with a single toll arc (see Brotcorne et al. [4]). Actually, Van Hoesel et al. [37] showed that,

when the number of toll arcs is bounded, the optimal solution can be obtained by solving a polynomial

number of linear programs. The latter authors also consider other polynomially solvable variants.

In contrast with the ‘arc formulation’ (NP2), Bouhtou et al. [2] and Didi Biha et al. [13] have proposed

formulations involving path flow variables. These are based on a graph reduction whose size is in practice

much smaller than that of the original graph, and allows for the exact solution of medium-size instances

(up to 80 commodities, 100 toll arcs and 4000 toll-free arcs) within a couple of seconds. Note however

that the randomly generated instances involved on average less than 2 to 3 paths per origin-destination

pairs, thus making for combinatorially ‘easy’ problems.

Unfortunately, no off-the-shelf software can address the above formulations for large scale instances,

mainly due to the poor quality of the upper bound obtained by relaxing the integrality requirements

in the single-level formulations. To overcome this difficulty, several avenues have been investigated.

By computing upper bounds on the toll arcs, Dewez et al. [12] obtain tight values for the constants

Mk
a , Na : k ∈ K, a ∈ A in formulation (NP2), while simultaneously introducing valid inequalities for both

the arc and path formulations. Numerical tests have been performed on randomly generated instances

involving grid graphs, where high number of available paths, together with their interactions, increase the

numerical challenge. The authors show that the proposed bounds allow to halve the duality gap at the

root node of the branch-and-bound tree, whereas the valid cuts allow a further reduction of the number

of explored nodes as well as the computing time.

Other improvements can be achieved by focusing on the efficient resolution of the inverse problem,

which consists of finding revenue maximizing tolls compatible with a given flow assignment. Since the

latter possesses the structure of a side-constrained flow problem, it is amenable to column generation

(see Cirinei [7]). Tests on random grid networks indicate that the method significantly speeds up the

solution process. Coupled with an efficient generation of the lower level solutions and a clever use of data

structures, the algorithm also improves sharply the upper bounds on the revenue.

For larger instances, Brotcorne et al. [5] presents two heuristics: a quick and greedy method that

sets tolls sequentially over the arcs, and a primal-dual approach based on penalizing the complemen-

tarity constraints that occur when the lower level problem is replaced by its primal-dual optimality

conditions. Tested on random grids, these approaches yielded solutions that lied between 7% and 1% of
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Network Pricing 
Problem

Arc formulation Path formulation

Exact solution 
approaches: Labbé 98, 

Cirinei 06, Heilporn 06, 
Dewez 07

Inexact solution 
approaches: Brotcorne 01, 

Roch 05, Cirinei 06

Exact solution approaches: Didi 
99, Bouhtou 03, Dewez 07

C-Complete Toll 
Network Pricing Problem

Inexact solution 
approaches: Dewez 07

Exact solution 
approaches: Dewez 07, 

Heilporn 07

G-Complete or Cross River 
Network Pricing Problem

Inexact solution 
approaches: Grigoriev 05

Exact solution 
approaches: Heilporn 07

Figure 4: Main contributions to the Network Pricing Problem

optimality, respectively. A similar approach was applied by Brotcorne et al. [4] in the framework of a

single-commodity transportation problem. From a different perspective, Cirinei [7] implemented a tabu

metaheuristic that exploits the network structure of the lower level problem, and could produce solution

within 1% of optimality in reasonable computing time.

Let us also mention the approximation algorithm of Roch et al. [34] for the single-commodity Network

Pricing Problem, that achieves a performance guarantee of 1
2 log n+ 1, where n is the number of toll arcs

in the network.

Finally, Brotcorne et al. [6] address an extension of the Network Pricing Problem where the leader

must simultaneously determine which toll arcs belong to the network. They propose for its solution

a Lagrangian based heuristic, and obtain near-optimality solutions for random generated instances of

medium sizes.

We close this literature review with a schematic view (see Figure 1) of contributions to the Network

Pricing Problem.
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4 Relationships between models

The common thread to welfare, profit and toll problems lies in the explicit consideration of rational,

utility-maximizing customers. While, in most models presented in Section 2, the set of products is

exogenous, this is not the case for the network pricing problem where products corresponds to paths,

whose number is exponentially large. This has an impact both on the model formulation and on the

numerical resolution. However, there is a clear parallel between the Seller Welfare Problem and the

Highway Network Pricing Problem. Both problems involve revenue maximization in the face of either

utility-maximizing purchasers or cost-minimizing travellers. Next, the Full Profit Problem, where all

products are offered, is equivalent to the Highway Network Pricing Problem. Indeed, one can match

purchaser segments with commodities, and products with toll arcs. The product prices πi : i ∈ I then

correspond to the tolls ta : a ∈ A, while the reservation price rk
i of purchaser k for obtaining product

i corresponds to the taxation window ckod − cka. This is summarized in Table 1 below. Hence, while a

purchaser segment buys the product that maximizes its utility rk
i − πi, a commodity travels on the toll

arc that maximizes the difference ckod − cka − ta, i.e., that minimize its travel cost cka + ta.

Modified Profit Problem Highway Network Pricing Problem

Purchaser segments k ∈ K Commodities k ∈ K
Products i ∈ I Toll arcs a ∈ A
Reservation prices rk

i : k ∈ K, i ∈ I Gains ckod − cka : k ∈ K, a ∈ A

Prices pi : i ∈ I Tolls ta : a ∈ A
Flows xk

i : k ∈ K, i ∈ I Flows xk
a : k ∈ K, a ∈ A

Table 1: Links between notations for the Full Profit Problem and the Highway Network Pricing Problem

Similar relationships can be established between the Bundle Pricing Problem, where each product

to be priced represents a subset of components of a ‘global element’, and the Network Pricing Problem,

where each arc can be considered to be the component of a path (product). However, the connection is

not as direct as for the previous two problems.

The two families of problems have inspired different algorithmic approaches. While exact resolution

methods are often proposed for the Network Pricing Problem and its variants, those are almost nonexistent

in the field of product pricing. In the network pricing family, several authors have proved valid inequalities

or related polyhedral results for the problem, together with numerical tests proving the efficiency of such

optimization tools. They also consider that the problem involves two hierarchical decision levels, yielding
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a bilevel model that can be transformed in a single mixed integer program. In the Product Pricing family,

the authors have focused on heuristic methods, with the only exceptions of McBryde and Zufryden [31]

and Shioda et al. [36], although these authors do not go so far in the polyhedral structure of the problem.

Finally, from a theoretical viewpoint, the complexity of both families of problems has been investigated

by several researchers. Table 2 provides an overview of the complexity results obtains for the various

classes of problem.

Network Pricing Problem (NPP) NP-hard (Grigoriev et al. [17], Roch et al. [34])

with lower bounded tolls NP-hard (Labbé et al. [27])

with unrestricted tolls NP-hard (Roch et al. [34])

with a single commodity NP-hard (Roch et al. [34])

with a single toll arc Polynomial (Brotcorne et al. [5])

with number of toll arcs upper bounded Polynomial (van Hoesel et al. [37])

Cross River NPP NP-hard (Grigoriev et al. [17])

Highway NPP NP-hard (Heilporn et al. [20])

with a single commodity Polynomial (Dewez [11])

Buyer’s Welfare Problem NP-hard (Dobson and Kalish [15])

Profit Problem NP-hard (Dobson and Kalish [15])

Share-of-Choices Problem NP-hard (Kohli and Krishnamurti [23])

Bundle Pricing Problem APX -hard (Guruswani et al. [18])

5 Conclusion

In this paper we have highlighted the close relationship between two related problems that have been

studied in economics, operations research and theoretical computer science, in the hope that breakthrough

achieved in either field will lead to improved algorithms for addressing design and pricing problems in

fields such as industrial economics or revenue management. For instance, Triangle and Monotonicity

inequalities that occur naturally in highway pricing could be integrated in the general product pricing

problem. Indeed, when prices are assigned to product with different product formats, it would make

sense, whenever the product quantity X satisfies the relationship X = Y + Z, to require the triangle

inequality πX ≤ πY + πZ , for the sake of market consistency. In the same vein, one would expect that

πX ≤ πY if X ≤ Y , i.e., Monotonicity inequalities are satisfied.
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