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Abstract. In this paper, the gradient method for adjusting a single class origin-destination 

matrix by using observed flows is extended to consider a reference matrix and to adjust 

simultaneously the O-D matrices for several classes of traffic. The importance of using a 

reference matrix is demonstrated with computational results that are carried out with two 

networks originating from practice. The conclusion reached is that, in order to maintain the 

structure of the O-D matrices that are adjusted, it is highly desirable to include a demand 

term in the objective function of the adjustment model. 
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Introduction 
 

The purpose of this paper is to point out some relevant facts related to the use of recent 
current observed flows to update (or adjust, estimate) origin-destination (O-D) demand 
matrices which are “out-of-date”. The updating of such matrices by using counts is a 
common practice for achieving short term forecasts without the use of a full scale update 
of a demand forecasting model in the absence of new survey data. The practice is quite 
common and several O-D adjustment methods are available in some commercial 
packages used in practice. A short survey of the methods that have been developed for 
matrix adjustment follows. 
 
Due to its practical importance, the adjustment of an origin-destination (O-D) matrix by 
using observed flows (counts) on the links and turns of a transportation planning network 
has attracted the attention of many researchers. The methods proposed may be subdivided 
into two categories, depending whether the network considered is assigned constant 
travel times (uncongested) or flow-dependent (congested) travel times.  
 
Some of the contributions made for O-D matrix adjustment on uncongested networks 
include those of Van Zuylen and Willumsen (1980), Maher (1983), Cascetta (1984), Bell 
(1984), Spiess (1987), Tamin and Willumsen (1989), Willumsen (1984), Bell (1991) and 
Bierlaire and Toint (1994).  
 
When the network considered for the O-D matrix adjustment is subject to congestion the 
underlying route choice method is an equilibrium assignment. Some of the numerous 
contributions made for this version of the problem are those of LeBlanc and Farhangian 
(1982), Nguyen (1984), Fisk (1988, 1989), Spiess (1990), Kawakami et al (1992), Florian 
and Chen (1995), Yang et al (1992) and Yang et al (1994). In this case the O-D matrix 
adjustment method may be formulated as a bi-level optimization problem or, as others 
denote such problems, a mathematical programming problem with equilibrium 
constraints (MPEC). 
 
Several of these methods have been implemented in practice (see for instance Van Vliet, 
1982, and Spiess, 1990, INRO, 2007), and are used on a regular basis for the adjustment 
of an out-of-date O-D matrix for the evaluation of contemplated network changes for a 
short term planning horizon. 
 
In the following a multi-class O-D adjustment model is formulated, a solution algorithm 
is developed and numerical results are reported. The inclusion of the demand term into 
the simultaneous class formulation and the resulting gradient based algorithm are new 
developments. 
 
The paper is organized as follows. The next section states the formulation of the model 
that includes a demand term and considers multiple classes of traffic.  Section 3 presents 
the development of the solution algorithm and Section 4 presents computational results 
obtained on two networks with single and multi-class adjustments. A short conclusion 
ends this article.  
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1. The multi-class O-D adjustment model formulation  
 
In this section, the notation used in order to state the mathematical formulation for the 
multi-class O-D adjustment problem is introduced. The nodes of the road network are 
denoted n , n N∈  and the links are denoted a , a A∈  where N  is the set of nodes and 
A  is the set of links. The set of O-D pairs is denoted by I  and it is convenient to refer to 
the O-D pair with index ( , ),  ,i p q i I= ∈  where ( ),   ( )p origin q destination N∈ .  There 
are several classes of traffic which are denoted ,  m m M∈ . The demand for travel by user 
class m M∈  for the O-D pair i  is denoted m

ig . ˆ mA A∈  is the set of links where counts 
are available for  class m . The O-D demands may use paths m

iK K∈  where K  is the set 
of all routes 

( )

m
i

i m

K K=U  and k  is a path index. The path flow of class m  on the route k  

is denoted m
kh  and gives rise to link flows m

av  of classes ,  1,..,| |m m M=  on link 

,  a a A∈ ; the total link flow av  on link a  is the sum of the class flows  m
a a

m

v v=∑ , for 

1,...,  | |m M= . The counts by class are denoted as  ˆˆ ,  m m
av a A∈  . And finally, ( )a as v  is 

the travel time (cost) function of link a  for a total link flow av . The adjusted demand by 
class should yield assigned flows which are close to the observed link flows and remain 
close of the original values ˆ m

ig  for all the O-D pairs ˆmI I∈ . 

 

A compact formulation of the bi-level (or Mathematical Programming with Equilibrium 
Constraints) multi-class O-D adjustment problem is given by 
 

2 2

ˆ ˆ

(1 )ˆ ˆ ( , ) ( ( ) ) ( )
2 2m m

m m m m
a a i i

m M m Ma A i I

Min Z v g v g v g gα α
∈ ∈∈ ∈

−
= − + −∑ ∑ ∑ ∑   (1)  

 Subject to 
        ( ) ( )v g assign g= .       (2) 
        
Where α  is the weight associated to the link flows term and ( )assign g  is the notation 
used to indicate that the vector of flows v  is the result of the multi-class equilibrium 
assignment of demand g . This assignment problem is:  

0

 ( ) ( )
av

a
a A

Min F v s v dv
∈

=∑ ∫        (3) 

 Subject to 
m

a a
m M

v v
∈

= ∑   a A∈       (4) 

 

m
i

m m m
a ak k

i I k K

v hδ
∈ ∈

=∑ ∑  ,    a A m M∈ ∈     (5) 
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m
i

m m
k i

k K

h g
∈

=∑   ,    i I m M∈ ∈      (6) 

 
0m

kh ≥    ,    m
ik K m M∈ ∈     (7) 

 
1 if  for mode 
0 otherwise

m
ak

a k m
δ

∈⎧
= ⎨
⎩

     (8) 

 
The formulation of the model allows the consideration of both the matrix to be adjusted 
ˆ m

ig  and the observed counts  ˆ m
av . By varying the weight α  between 1 and values less 

than 1 one can obtain an adjustment that reduces the importance of the link flow term and 
increases the importance of the demand term. This would ensure that the adjusted 
(estimated) O-D matrix is not “too different” than the matrix that is being adjusted. In the 
adjustment process judgment is usually exercised to determine if an adjusted matrix is 
“reasonable” so there is quite a bit of art that complements the use of a rigorous model in 
order to judge the results. The aim of this paper is to test the sensitivity of the results to 
various values of the parameter α . 
 
 
2. The solution algorithm 
 
The solution algorithm is based on an adaptation of the gradient approach developed by 
Spiess (1990). The main difference, apart the multi-class generalization, is the addition of 
the demand term in the objective function. Since the details are not trivial the derivation 
of the gradient and the solution algorithm are presented in detail. 
 
In order to develop a solution algorithm of this bi-level optimization problem, based on a 
descent approach, it is necessary to derive the local gradient of the objective function. 
This is approximated by assuming that the path proportions m

kp , resulting from the 
equilibrium assignment of demand mg , are locally constant and can be used to derive an 
analytical relation between ( )mv g  and mg . This would facilitate the derivation of an 
analytical expression for the gradient. 

 

Using the path proportions m
kp , 

m
m k
k m

i

hp
g

= , ,  m
ik K m M∈ ∈ , m

av  can be rewritten as: 

 
 

m
i

m m m m
a ak k i

i I k K

v p gδ
∈ ∈

=∑ ∑                                                                         (9) 

           
m
i

m m m
i ak k

i I k K

g pδ
∈ ∈

=∑ ∑   ,    a A m M∈ ∈             (10) 

 
As a consequence:  
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m
i

m
m ma
ak km

k Ki

v p
g

δ
∈

∂
=

∂ ∑   ,    ,    a A i I m M∈ ∈ ∈            (11)  

 
The gradient of (1) consists of two parts: the term that corresponds to the flows, 

 2
1

ˆ
ˆ( ) ( )

2 m

m m m
a a

m M a A

Z v v vα
∈ ∈

= −∑ ∑ , and the term that corresponds to the demand, 

2
2

ˆ

(1 ) ˆ( ) ( )
2 m

m m m
i i

i I

Z g g gα

∈

−
= −∑ . The derivative of the first term is obtained by applying 

the chain rule: 
 

1 1( ) ( ) *
mm m
a

m m m
i a i

vdZ v Z v
dg v g

∂∂
=

∂ ∂
 

  
ˆ

ˆ( )
m m

i

m m m m
a a ak k

a A k K

v v pα δ
∈ ∈

= −∑ ∑  

     
ˆ

ˆ( )
m m
i

m m m m
k ak a a

k K a A

p v vα δ
∈ ∈

= −∑ ∑               (12) 

 
The derivative of the second term is simply: 
 

           2 ( ) ˆ(1 )*( )
m

m m
i im

i

dZ g g g
dg

α= − − . 

Hence, 

ˆ

( , ) ˆ ˆ( , ) ( ) (1 )*( )
m m
i

m m
m m m m m m
k ak a a i im

k K a Ai

dZ v gZ v g p v v g g
dg

α δ α
∈ ∈

∇ = = − + − −∑ ∑ , ,   i I m M∈ ∈         

                   (13) 
 
The descent direction is usually obtained as the negative of the gradient ( , )Z v g−∇ . In 
order to ensure that the cells with a zero demand remain unchanged, it is convenient to 
multiply ( , )Z v g−∇  by the demand g  in order to obtain the descent direction (this 
assumes that there are no major land sue changes in the short term). 
 

  

ˆ

( , )( , ) * , ,   ,  hence

ˆ ˆ( ( ) (1 )*( )),  ,             (14)
m m
i

m m

m
i

m m m m m m m m
i i k ak a a i i

k K a A

dZ v gd g Z v g g i I m M
dg

d g p v v g g i I m Mα δ α
∈ ∈

= − ∇ = − ∈ ∈

= − − + − − ∈ ∈∑ ∑
             

                                          
 
The descent direction applies directly to the demands g  and indirectly to the flows v . By 
using the path proportions m

kp  one can determine the rate of change of the flows as a 
consequence of a change in the O-D matrix given by (14). The assignment of the gradient 
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matrix to the paths of the network by using the path proportions produces the rate of 
change of the link flows that yields the direction (15) for changing the link flows. 
 

ˆ
ˆ ˆ( ) ( ( ) (1 )*( ))( )

m m m
i i

m
m m m m m m m m m m m ma
a i i i k ak a a i i ak km

i I i I k K a A k Ki

vy d d g p v v g g p
g

α δ α δ
∈ ∈ ∈ ∈ ∈

∂
= = − − + − −

∂∑ ∑ ∑ ∑ ∑           

       ,    ,    a A i I m M∈ ∈ ∈         (15)                               
 
The optimal step length by class, *mλ , is obtained by solving: 
 
                  ( , , ) ( , )

m

m m m m m m m m mMin Z v g Z v y g d
λ

λ λ λ= + +              (16) 

 
where my  is the vector with components given by (15) and md  is a vector with 
components given by (14). 

 
 The derivative of (16) with respect to mλ  is computed by the chain rule as: 
 

ˆ ˆ

( ) ( ) ( )*
m m

mm m m
a

m m m m
a A i Ia i

dvdZ Z Z
d d v g
λ λ λ
λ λ∈ ∈

∂ ∂
= +

∂ ∂∑ ∑ .             (17)  

 
Since the objective function (1) is quadratic the optimal step sizes *mλ  may be computed 
by annulling the derivatives (17). Some algebraic manipulation yields  
    

 ˆ ˆ*
2 2

ˆ ˆ

ˆ ˆ( ) (1 )* ( )

( ) (1 )* ( )
m m

m m

m m m m m m
a a a i i i

m a A i I
m m
a i

a A i I

v v y g g d

y d

α α
λ

α α
∈ ∈

∈ ∈

− + − −
=

+ −

∑ ∑
∑ ∑

 ,  m M∈ .          (18)            

 
It is important to note that the optimal step size is different for each class of traffic. 
 
 
The statement of the algorithm is given next. 
 
 
 
 
 
 
Step 0. Initialization. Iteration 0l =  
 
Step 1. Multi-class assignment. Multi-class assignment of demand ,m lg  ( m M∀ ∈ ) to 
 obtain link volumes ,m l

av  for ,    a A m M∈ ∈  
 

The Multi-Class O-D Adjustment Algorithm 
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Step 2. Link derivatives and objective function. Computation of the link derivatives 
 , ,ˆ( )m l m l

a av v−  for ˆ ,  ma A m M∈ ∈ and the objective function: 
 

 2,  2 ,

ˆ ˆ

(1 )ˆ ˆ( ) ( )
2 2m m

m l m m l m
a a i i

m M m Ma A i I

v v g gα α
∈ ∈∈ ∈

−
− + −∑ ∑ ∑ ∑  

  
 If the maximum number of iterations L  is reached go to Step 7. 
 
Step 3. Assignment to compute the gradient matrix. Carry out a multi-class assignment 
with path analysis to compute the gradient matrices; then add the demand term.  
     

 
,

, , , , ,
,

ˆ

( , ) ˆ ˆ( , ) ( ) (1 )*( )
m l m
i

m m l
m l m l m l m l m m l m

k ak a a i im l
k K a Ai

dZ v gZ v g p v v g g
dg

α δ α
∈ ∈

∇ = = − + − −∑ ∑  

 
Step 4. Assignment to obtain the derivatives. Carry out a multi-class assignment with path 
analysis to obtain the descent direction:  

 
 

,

, , , , , ,( )  ( , ) ( )
m l
i

m l m l m l m l m l m l
a i i ak k

i I k K

y d g Z v g pδ
∈ ∈

= − ∇∑ ∑  

Step 5. Update of the demand matrices. For each class m M∈ : 
 

Computation of the optimal step length as: 
 

 

, , , ,

ˆ ˆ, *
, 2 , 2

ˆ ˆ

ˆ ˆ( ) (1 )* ( )

( ) (1 )* ( )
m m

m m

m m l m l m m l m l
a a a i i i

m l a A i I
m l m l
a i

a A i I

v v y g g d

y d

α α
λ

α α
∈ ∈

∈ ∈

− + − −
=

+ −

∑ ∑
∑ ∑

 

 
Update of the demand matrix: 
 

, 1 , ,  * ,min( ,1)* ( , )m l m l m l m l
i ig g Z v gλ+ = + ∇    

  
Step 6. Iteration counter. Update the iteration counter 1l l= +  and return to Step 1. 
 
Step 7. End. 
 
 
The implementation of the algorithm was done by using the Emme 3 (INRO, 2007) 
transportation planning software. The assignment algorithm used is the linear 
approximation method of Frank and Wolfe (1956), which is still the most common 
method for computing equilibrium flows. The critical part of the algorithm, which is the 
computation of the path proportions m

kp , ,  m
ik K m M∈ ∈ , is achieved by using implicitly 

the step sizes generated at each iteration of the linear approximation algorithm. 
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4.  Numerical results: the effect of the parameter α  
 
The O-D adjustment algorithm was used in several experiments to test the effect of the 
values of the parameter α  on the resulting flows and changes in the O-D matrix. 
 
The first test was carried out with a network originating from the city of Winnipeg, 
Canada. This is a relatively modest size network of 154 zones, 903 nodes, 752 turns and 
2975 links. The network is displayed in Figure 1; the 70 available counts on the links are 
shown in blue. The total assigned demand consists of 56,219 vehicles; it corresponds to 
the AM peak. The volume-delay functions used are of the BPR type and there is only one 
class of traffic.  
 
The parameter α  was varied to be 1, 0.95, 0.90 and 0.80 (appropriate values ofα depend 
on the relative magnitude of the demand term and the network term of the objective 
function (1)). Tables 1 and 2 below give the fit of the flows and the deviations from the 
original O-D matrix for 5 iterations of the demand adjustment algorithm. It is easy to note 
that as the demand term is given more weight the deviations from the original O-D matrix 
are smaller. When the demand term is not considered the deviations  from  the original  
O-D matrix are rather large. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The Winnipeg road network 
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    Regression coefficients   
Iterations α  A  B   R2  RSTD  Obj. Function 

0   -    84.47          1.02          0.82        248.7     

5 

1.00 -    15.39          1.01          0.96        111.1               847   
0.95 -    60.30          1.00          0.92        156.3            1 801   
0.90 -    68.28          1.00          0.90        173.8            2 126   
0.80 -    74.15          1.01          0.88        195.4            2 355   

 
Table 1. Winnipeg flows comparison regression coefficients 

 
 

    Regression coefficients     
Iterations α  A  B   R2  RSTD To adjust  Adj. demand 

5 

1.00        0.05          1.00          0.81          3.89           56 219              57 611   
0.95        0.01          1.00          0.95          1.77           56 219              56 118   
0.90        0.00          0.99          0.97          1.34           56 219              55 863   
0.80 -      0.00          0.99          0.99          0.90           56 219              55 797   

 
Table 2. Winnipeg demand deviations regression coefficients  

 
 

 
 

Figure 2. Winnipeg demand deviations for 1.00α = , 5 iterations 
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Figure 3. Winnipeg demand deviations for 0.95α = , 5 iterations 
 
 

 
 

Figure 4. Winnipeg demand deviations for 0.90α = , 5 iterations 
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Figure 5. Winnipeg demand deviations for 0.80α = , 5 iterations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Winnipeg flows comparison (a), 5 iterations adjustment 
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Figure 7. Winnipeg flows comparison (b), 5 iterations adjustment 
 
 
The computation time was approximately 1 min. for each of the 5 iterations of 
adjustment. The tests were carried out on a desk top PC with 2 Intel ® Core (TM) CPU 
6400 @ 2.13GHz, 3.25 Gb of RAM. 
 
Another set of computational tests was carried out by using a network data set originating 
from the Metropolitan Region of Montreal. The corresponding network is displayed in 
Figure 8 (536 link counts in bleu). The network has 1,425 zones, 13,019 nodes and 
32,284 links. The considered Montreal network uses 3 classes of traffic: private car, 
regular trucks (one unit, 2 or 3 axles) and heavy trucks (one unit, 4 axles or more than 
one unit). The day is divided in 5 periods: Night, AM peak, Off day peak, PM peak and 
Off night peak. Presented results correspond to the Off day peak period. 
 
A set of logistic volume delay functions were calibrated for all the links of the network 
by the “Service de la modélisation des systèmes de transport” of the Ministry of 
Transportation of Quebec. The logistic functions are continuous positive non decreasing 
functions of the flow.  
 
The results presented in the following correspond to three different values of the 
parameter α ; 0.9997, 0.9999 and 1.00; the same α  value was used for all the classes. In 
each case 5 adjustment iterations were carried out. Table 3 lists the regression 
coefficients that result from the comparison of the observed vs. the simulated flows 
before and after the adjustments. The coefficients of the adjusted demand deviations are 
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shown in Table 4. Figures 9 to 12 show the scattergrams comparing the observed versus 
the simulated flows obtained before and after the adjustments for the Auto class. The 
demand variations after the adjustment for the three values of α  and the three classes of 
vehicles are presented in Figures 13 to 22.  
 
 

 
 

Figure 8. The Off day peak Montreal Network 
 

 
 

Iterations α   Class Regression coefficients Objective  
function A  B   R2  RSTD 

0   
Auto        35.56             0.93            0.94     1 232.27    

  

Regular truck -      69.65             0.94            0.94        151.52    

Heavy truck -        7.23             0.96            0.96          80.81    

5       1.00    

Auto -      28.96             1.00            0.99        543.46    
      266 101    Regular truck -      55.41             0.98            0.96        131.71    

Heavy truck -        8.31             0.96            0.97          69.54    

5   0.9999   

Auto -        4.45             0.98            0.98        674.31    
      368 812    Regular truck -      67.88             1.01            0.95        144.21    

Heavy truck -        9.84             0.98            0.97          70.27    

5   0.9997   

Auto        28.77             0.95            0.96        940.46    
      647 024    Regular truck -      78.69             1.01            0.95        145.74    

Heavy truck -      10.47             0.99            0.97          71.54    
 

Table 3. Montreal Off day peak; flows comparison regression coefficients 
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Iterations   Class Regression Coefficients  Original  Adjusted 
A  B   R2  RSTD 

0   
Auto             1 905 037      
Regular truck                 84 091      

Heavy truck                 42 157      

5       1.00  

Auto -        0.01            1.06            0.97            2.29        1 994 162    
Regular truck -        0.00            1.16            0.93            0.51             95 252    

Heavy truck -        0.00            1.04            0.95            0.20             42 860    

5   0.9999  

Auto -        0.00            1.04            0.99            1.41        1 968 722    

Regular truck -        0.00            1.13            0.97            0.32             93 144    

Heavy truck -        0.00            1.05            0.96            0.17             43 050    

5   0.9997  

Auto          0.00            1.01            1.00            0.53        1 932 420    

Regular truck -        0.00            1.08            0.99            0.18             89 904    

Heavy truck -        0.00            1.03            0.99            0.10             42 702    
 

Table 4. Montreal Off day peak; demand deviations regression coefficients  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9. Montreal flows comparison; Auto; 1.00α =  
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Figure 10. Montreal flows comparison; Auto; 0.9999α =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Montreal flows comparison; Auto; 0.9997α =  
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Figure 12. Montreal flows comparison; Auto; without adjustment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Montreal demand deviations; Auto; Off day peak; 1.00α =  
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Figure 14. Montreal demand deviations; Auto; Off day peak; 1.00α = ;  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Montreal demand deviations; Auto; Off day peak; 0.9999α = ;  
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Figure 16. Montreal demand deviations; Auto; Off day peak; 0.9997α = ;  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Montreal demand deviations; Regular truck; Off day peak; 1.00α =  
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Figure 18. Montreal demand deviations; Regular truck; Off day peak; 0.9999α =  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19. Montreal demand deviations; Regular truck; Off day peak; 0.9997α =  
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Figure 20. Montreal demand deviations; Heavy truck; Off day peak; 1.00α =  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 21. Montreal demand deviations; Heavy truck; Off day peak; 0.9999α =  
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Figure 22. Montreal demand deviations; Heavy truck; Off day peak; 0.9997α =  
 
 

The choice of the α  values, in the multi-class case, should be done carefully because all 
the classes share the facilities and variations in the demand of one class could affect the 
demand of the other classes. In this particular test main improvements were obtained for 
the classes Auto and Heavy truck. 
 
Figures 14 to 22 show visibly the effect of including the demand term in the objective 
function for the multi-class case. 
 
The computation time was near 2.25 hours for every 5 iterations adjustment. The tests 
were carried out on a laptop with 2 Intel ® Core (TM) CPU T7400 @ 2.16GHz, 2.00 Gb 
of RAM. 
 
 
5. Conclusions 
 
The development of a more general O-D adjustment model that considers both demand 
term differences and simultaneous multi-class adjustment is a new tool that is available 
for analyzing short term changes in demand based on current link flow counts. The 
numerical results obtained with the method show that it is both computationally feasible 
and useful. 
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