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Abstract. Motivated by sawmill production planning, this paper investigates multi-period, 

multi-product (MPMP) production planning in a manufacturing environment with non-

homogeneous raw materials, and consequently random processes yields. A two-stage 

stochastic linear program with recourse is proposed to address the problem. The random 

yields are modeled as scenarios with stationary probability distributions during the 

planning horizon. The solution methodology is based on the sample average 

approximation (SAA) scheme. The stochastic sawmill production planning model is 

validated through Monte Carlo simulation. The computational results for a real medium 

capacity sawmill highlight the significance of using the stochastic model as a viable tool for 

production planning instead of the mean-value deterministic model, which is a traditional 

production planning tool in many sawmill. 
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1. Introduction 

Most of the production environments are characterized by multiple types of uncertainties. When 

planned production quantities are released, the outputs are often variable. These uncertainties affect and 

complicate the production planning and control.  

The goal of this work is to address a multi-period, multi-product (MPMP) sawmill production planning 

problem. In sawmills, raw materials (logs) are classified based on some attributes namely: diameter 

class, species, length, taper, etc. Logs are broken down into different pieces of lumbers (e.g. 2(in)×

4(in)×8(ft), 2(in)×4(in)×10(ft),…) by means of different cutting patterns. However, due to the non-

homogeneity in characteristic of logs, the quantities of lumbers sawn by different cutting patterns 

(processes yields) are random variables. In fact, due to natural variable conditions that occur during the 

growth period of trees, it is impossible to anticipate the exact yields of a log. Moreover, as it is not 

possible in many sawmills to scan the logs before planning, the exact yields of cutting patterns for 

different log classes cannot be determined in priori. Product demand is considered as a deterministic 

parameter which is determined based on the received orders. Production planning in sawmills is to 

determine the optimal quantity of log consumption from different classes and the selection of 

corresponding cutting patterns to fit against products demands. The part of the demand that cannot be 

fulfilled on time due to machine capacities, log inventory, and random yield will be postponed to the 

following periods by considering a backorder cost. The objective is to minimize log consumption cost, 

as well as products inventory/backorder costs. We are studying a very customer orientated 

manufacturing environment that wishes to fulfill the demand as much as possible. Regarding to the 

potential significance of yield uncertainty on the production plan and consequently on the realized total 

backorder size, obtaining the plans with minimum total backorder size is an important goal of 

production planning in sawmills. 

This production planning problem can be considered as the combination of several classical production 

planning problems in the literature which have been modeled by linear programming (LP). Product mix 

problem and a special case of process selection problem (Johnson and Montgomery, 1974; Sipper and 

Bulfin, 1997) are the two main building blocks of this problem. In Gaudreault et al. (2004), a 

deterministic LP model was proposed for sawmill production planning by considering the expected 

values of random processes yields. The production plan proposed by the deterministic model results 
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usually extra inventory of products with lower quality and price while backorder of products with 

higher quality and price. Another approach for sawmill production planning is focused on combined 

optimization type solutions linked to real-time simulation sub systems (Mendoza et al., 1991; Maness 

and Adams, 1991; Maness and Norton, 2002). In this approach, the stochastic characteristics of logs are 

taken into account by assuming that all the input logs are scanned through an X-ray scanner, before 

planning. Maness and Norton (2002) developed an integrated multi-period production planning model 

which is the combination of an LP model and a log sawing optimizer (simulator). The LP model acts as 

a coordinating model that allocates limited resources. A series of dynamic programming sub-problems, 

titled in the literature as “log sawing optimization models” are used to generate activities (columns) for 

the coordinating LP based on the products’ shadow prices. Although the stochastic characteristics of 

logs are considered in this approach, it includes the following limitations to be implemented in many 

sawmills: logs, needed for the next planning horizon, are not always available in sawmills to be 

scanned before planning. Furthermore, to implement this method, the logs should be processed in 

production line in the same order they have been simulated, which is not an easy practice. Finally, 

scanning logs before planning is a time consuming process in the high capacity sawmills, which delays 

the planning process.  

It has been shown in the literature (see for example Kall and Wallace, 1994; Birge and Louveaux, 

1997; Kall and Mayer, 2005) that in mathematical programming models which include random 

parameters in their right-hand–side and/or technological coefficients, stochastic programming approach 

results higher quality solutions compared with the mean-value deterministic model. Most of the works 

in the literature on uncertain production planning are focused on considering random products 

demands. In Escudero et al. (1993), a multi-stage stochastic programming approach was proposed to 

address a MPMP production planning model with random demand. Sox and Muckstadt (1996) 

provided a formulation and solution algorithm for the finite-horizon capacitated production planning 

problem with random demand for multiple products. Using Lagrangian relaxation, they developed a 

sub gradient optimization algorithm to solve the problem. In Bakir and Byrune (1998), demand 

uncertainty in a MPMP production planning model was studied. They developed a demand stochastic 

LP model based on the two-stage deterministic equivalent problem. In Kazemi et al. (2007), stochastic 

programming was proposed as one of possible methodologies to address sawmill production planning, 

while considering random characteristics of logs. 
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In this paper, a two-stage stochastic program with recourse (Kall and Wallace, 1994; Birge and 

Louveaux, 1997; Kall and Mayer, 2005) is proposed for sawmill production planning, while 

considering random characteristics of raw materials and consequently random processes yields. We 

also propose an approach to model the random processes yields in sawmills. Due to the astronomic 

number of scenarios for random yields in the two-stage stochastic model, a Monte Carlo sampling 

strategy, the sample average approximation (SAA) scheme (cf. Shapiro and Hommem-de-Mello, 1998, 

2000; Mak et al., 1999) is implemented to solve the stochastic model. The confidence intervals on the 

optimality gap for the candidate solutions are constructed based on common random number (CRN) 

streams (Mak et al., 1999). Through Monte Carlo simulation, we compare the stochastic and 

deterministic sawmill production planning models in terms of the realized backorder size and precision 

of proposed models. Our computational results involving one medium capacity sawmill, with different 

demand levels, indicate that the proposed stochastic programming approach serves as a viable tool for 

sawmill planning by considering random characteristics of logs.  

The remainder of this paper is organized as follows. In the next section, we propose a two-stage 

stochastic linear program for sawmill production planning under uncertainty of processes yields. In 

section 3, the proposed approach for modeling random processes yields in sawmills is provided. In 

section 4, we provide the solution methodology for the two-stage stochastic model. In section 5, the 

proposed validation approach to compare the stochastic and deterministic sawmill production planning 

models is presented. In section 6, the implementation results of the stochastic model and solution 

strategy for a realistic scale sawmill are presented. The results of comparison between the plans of 

stochastic and mean-value deterministic LP models are also reported in this section. Our concluding 

remarks are given in section 7. 

2. Problem formulation by mathematical programming  

In this section we first describe the deterministic linear program (LP) formulation for sawmill 

production planning. Then we develop the proposed stochastic model to address the problem by 

considering the uncertainty of processes yields. 

2.1. The deterministic LP model for sawmill production planning 

Consider a sawmill with a set of products (lumbers) P, a set of classes of raw materials (logs) C, a set 

of production processes A, a set of resources (machines) R, and a planning horizon consisting of T 

periods. For modeling simplicity, we define a process as a combination of a log class and a cutting 
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pattern. To state the deterministic linear programming model for this production planning problem, the 

following notations are used: 

2.1.1. Notations 

Indices  

p    product (lumber) 

t     period 

c    raw material (log) class  

a    production process 

r    resource (machine) 

Parameters 

pth     Inventory holding cost per unit of product p in period t 

ptb     Backorder cost per unit of product p in period t 

ctm    Raw material cost per unit of class c in period t 

0cI     The inventory of raw material class c at the beginning of planning horizon 

0pI     The inventory of product p at the beginning of planning horizon 

cts     The quantity of material of class c supplied at the beginning of period t 

ptd     Demand of product p by the end of period t 

acφ     The units of class c raw material consumed by process a (consumption factor) 

apρ     The units of product p produced by process a (yield of process a) 

arδ      The capacity consumption of resource r by process a 

rtM     The capacity of resource r in period t  

Decision variables 

atX     The number of times each process a should be run in period t 

ctI       Inventory size of raw material of class c by the end of period t 

ptI      Inventory size of product p by the end of period t 

ptB     Backorder size of product p by the end of period t 
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2.1.2. The LP model 

P 1 C 1
Minimize ( )

T T

pt pt pt pt ct ac at
p t c t a A

Z h I b B m Xφ
∈ = ∈ = ∈

= + +∑∑ ∑∑∑       (1) 

Subject to 

1

Material inventory constraint
, 1,... , , C,ct ct ac atct

a A
I I s X t T cφ−

∈
= + − = ∈∑      (2) 

1 1 0 1 1
A

1 1
A

Product inventory constraint
,

, 2,..., , P,

app p p a p
a

pt pt ap at ptpt pt
a

I B I X d

I B I B X d t T p

ρ

ρ

∈

− −
∈

− = + −

− = − + − = ∈

∑

∑
     (3) 

A

Production capacity constraint
, 1,..., , R,ar at rt

a
X M t T rδ

∈
≤ = ∈∑      (4) 

Non-negativity of all variables
0, 0, 0, 0, 1,..., , P, C, .at ct pt ptX I I B t T p c a A≥ ≥ ≥ ≥ = ∈ ∈ ∈     (5) 

The objective function (1) is a linear cost minimization equation. It consists of total inventory and 

backorder costs for all products and raw material cost for all material classes in the planning horizon. 

Constraint (2) ensures that the total inventory of raw material of class c at the end of period t is equal to 

its inventory in the previous period plus the quantity of material of class c supplied at the beginning of 

that period ( cts ) minus its total consumption in that period. Constraint (3) ensures that the sum of 

inventory (or backorder) of product p at the end of period t is equal to its inventory (or backorder) in 

the previous period plus the total production of that product in that period, minus the product demand 

for that period. Finally, constraint (4) requires that the total production do not exceed the available 

production capacity.  

2.2. The Two-stage stochastic model with recourse for sawmill production planning with random yield 

To include the random nature of processes yields in sawmill production planning, we expand the model 

(1)-(5) to a two-stage stochastic linear program with recourse. It is assumed that the random processes 

yields are modeled as scenarios with known probability distributions. We represent the random yield 

vector by ξ
%

, where { | A, P}ap a pξ ρ= ∈ ∈
%

. We also represent each realization (scenario) of random 

processes yields by ( )apρ ξ
%

. We denote the total number of yield scenarios by N, and the probability of 

each scenario i by ip , respectively. It should be emphasized that the stages of the two-stage stochastic 
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problem do not refer to time periods. They correspond to steps in the decision making. In the first-stage 

(planning stage), the decision maker does not have any information about the processes yields due to 

lack of complete information on the characteristic of raw materials. However, the production plan 

should be determined before the complete information is available. Thus the first-stage decision 

variable is the production plan. In the second stage (plan implementation stage) when the realized 

yields are available, based on the first-stage decision, the recourse actions (inventory or backorder 

sizes) can be computed. The objective of the two-stage stochastic program with recourse would be to 

minimize the material consumption cost, plus the expected inventory and backorder costs (recourse 

costs) for all yield scenarios. The resulting deterministic equivalent formulation for the two-stage 

stochastic model is as follows: 

PC 1 1 1
Minimize [ ]

T N T
i i i

ct ac at pt pt pt pt
pc t a A i t

Z m X p h I b Bφ
∈∈ = ∈ = =

= + +∑∑∑ ∑∑∑      (6) 

1

Subject to

, 1,..., , C,ct ct ac atct
a A

I I s X t T cφ−
∈

= + − = ∈∑
     (7) 

1 1 0 1 1
A

1 1
A

( ) ,

( ) , 2,..., , P, 1,..., ,

i i i
app p p a p

a

i i i i i
pt pt ap at ptpt pt

a

I B I X d

I B I B X d t T p i N

ρ ξ

ρ ξ

∈

− −
∈

− = + −

− = − + − = ∈ =

∑

∑

%

%

    (8) 

A
, 1,2,..., , R,ar at rt

a
X M t T rδ

∈
≤ = ∈∑      (9) 

0, 0, 0, 0, , , 1,..., , , 1,..., .i i
at ct pt ptX I I B c C p P t T a A i N≥ ≥ ≥ ≥ ∈ ∈ = ∈ =   (10) 

In the two-stage stochastic program (6)-(10), i
ptI  and i

ptB denote the inventory and backorder sizes of 

product p in period t under yield scenario i, respectively.  

3. Modeling the random processes yields in sawmills 

To apply the proposed two-stage stochastic model (6)-(10) for sawmill production planning, as the first 

step, we should generate the scenarios for random processes yields. A scenario for the yields of process 

(a) (combination of a log class (c) and a cutting pattern (s)) in a sawmill is defined as possible 

quantities of lumbers that can be produced by cutting pattern (s) after sawing each log of class (c). As 

an example of the uncertain yields in sawmills, consider the cutting pattern (s) that can produce 6 
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products (P1, P2, P3, P4, P5, P6) after sawing the logs of class (c). Table 1 represents four scenarios 

among all possible scenarios for the uncertain yields of this process. 

Table 1. Scenarios for yields of a process in sawmills 

Scenarios Products 
P1 P2 P3 P4 P5 P6 

1 1 0 1 0 1 1 
2 2 1 1 0 1 0 
3 1 0 0 1 1 1 
4 2 0 0 1 0 1 

 

In this work, we assume that all the logs that will be processed in the next planning horizon are 

supplied from the same discrete of forest. Hence, a stationary probability distribution can be considered 

for the quality of logs and uncertain processes yields during the planning horizon. We propose to 

consider the average yield of a random sample of logs in each log class as a scenario and to estimate 

the probability distribution for the average yields. Such scenarios with their probability distribution in 

sawmills can be determined as follows. 

1) Take a sample of logs in each log class (e.g. 3000) and let them be processed by each cutting 

pattern. Compute the average yield for the sample.  

2) Repeat step 1 for a number of replications (e.g. 30). 

3) By the Central Limit Theorem (CLT) in statistics, the average yield has a normal distribution. 

Thus, based on the average yields computed for each replication in step 2, estimate the mean 

and variance of normal distribution corresponding to the average yield of each process. 

It should be noted that, the implementation of step 1 in this approach is very difficult in sawmills. In 

fact, the high production speed in sawmills makes it almost impossible to track the logs through the line 

and to observe the result of sawing individual logs. As a more feasible alternative, we propose to use 

the set of yield scenarios generated by a log sawing simulator (Optitek). “Optitek” was developed by a 

research company for Canada's solid wood products industry (Forintek Canada Corp.). It was 

developed based on the characteristics of a large sample of logs in different log classes, as well as 

sawing rules available in Quebec sawmills. The inputs to this simulator include log class, cutting 

pattern, and the number of logs to be processed. The simulator considers the logs in the requested class 

with random physical and internal characteristics; afterwards it generates different quantity of lumbers 

(yields) for each log based on the sawing rules of the requested cutting pattern. Thus, in order to 
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implement step 1 in the proposed scenario generation approach, a sample (e.g. 3000) of yields can be 

randomly taken among the set of scenarios already generated by Optitek, and the average yield for the 

sample can be computed. 

4. Solution strategy 

The two-stage stochastic model (6)-(10) can be solved by the linear programming solvers, namely 

CPLEX LP solver. However, regarding to the variety of characteristics in each log class in sawmills, a 

huge number of scenarios for processes yields can be expected. Thus, solving this model would be far 

beyond the present computational capacities. We can however use Monte Carlo sampling techniques, 

which consider only randomly, selected subsets of the set { }1 2, ,... , Nξ ξ ξ
% % %

 to obtain approximate 

solutions. The sample average approximation (SAA) scheme (cf. Shapiro and Hommem-de-Mello, 

1998, 2000; Mak et al., 1999), is selected as the solution approach in this work, which is described as 

follows. 

Sample average approximation (SAA) scheme 

In the SAA scheme, a random sample of n scenarios of the random vector ξ
%

 is generated and the 

expectation 
P1 1

[ ]
N T

i i i
pt pt pt pt

pi t
p h I b B

∈= =
+∑∑∑  is approximated by the sample average function 

1 P 1

1 [ ]
n T

i i
pt pt pt pt

i p t

h I b B
n = ∈ =

+∑∑∑ . In other words, the “true” problem (6)-(10) is approximated by the sample 

average approximation (SAA) problem (11). 

C 1 1 P 1

1ˆMinimize [ ]
T n T

i i
ct ac at pt pt pt pt

c t a A i p t
Z m X h I b B

n
φ

∈ = ∈ = ∈ =

= + +∑∑∑ ∑∑∑      (11) 

Subject to 

Constraints (7)-(10). 

It can be shown that under mild regularity conditions, as the sample size n increases, the optimal 

solution vector ˆ
nX  and optimal value ˆ

nZ of the SAA problem (11) converge with probability one to 

their true counterparts, and moreover ˆ
nX  converges to an optimal solution of the true problem with 

probability approaching one exponentially fast (Shapiro and Hommem-de-Mello., 1998 and 2000). 

This convergence analysis suggests that a fairly good approximate solution to the true problem (6)-(10) 
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can be obtained by solving an SAA problem (11) with a modest sample size. The mentioned regularity 

conditions include: 1) the objective function of the stochastic model has finite mean and variance, 2) 

the independent identically distributed (i.i.d.) observations of vector ξ
%

 can be generated, 3) instances 

of SAA problem can be solved for sufficiently large n to generate “good” bounding information, and 4) 

the objective function of the stochastic model can be evaluated exactly for specific values of atX  and 

realizations of vector ξ
%

. It is evident that the mentioned regularity conditions are satisfied for our 

problem, especially due to considering a normal distribution for the random yields. In practice, the 

SAA scheme involves repeated solutions of the SAA problem (11) with independent samples. 

Statistical confidence intervals are then derived on the quality of the approximate solutions (Mak et al., 

1999). According to the work of Mak et al. (1999), an obvious approach to test solution quality for a 

candidate solution ( X ) is to bound the optimality gap, defined as *[ ( , )]E f X zξ ξ −
% %

 using standard 

statistical procedures, where ( , )f X ξ
%

 and *z are the true objective value for X  and the true optimal 

solution to the problem (6)-(10), respectively, and [ ( , )]E f Xξ ξ
% %

 is the expected value of ( , )f X ξ
%

. In 

our work, a sampling procedure based on common random numbers (CRN) is used to construct the 

optimality gap confidence interval which provides significance variance reduction over naive sampling, 

as shown in (Mak et al., 1999). This approach is described next. 

The SAA algorithm (with common random number streams) 

Step 1- Generate gn  independent identically distributed (i.i.d.) batches of samples each of size n from 

the distribution of ξ
%

, i.e., { }1 2, ,... , n
j j jξ ξ ξ
% % %

 for 1,... , gj n= . For each sample, solve the corresponding 

SAA problem (11). Let ˆ j
nZ  and ˆ j

nX , 1,... , gj n= , be the corresponding optimal objective value and an 

optimal solution, respectively.  

Step 2- Compute  

,
1

1 ˆ , and
g

g

n
j

n n n
g j

Z Z
n =

= ∑            (12) 

,

2 2
,

1

1 ˆ( ) .
( 1)

g

g gn ng

n
j

n n nZ
g g j

s Z Z
n n =

= −
− ∑          (13) 
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It is well known that the expected value of ˆ
nZ  is less than or equal to the optimal value *z  of the true 

problem (see e.g., Mak et al., 1999). Since , gn nZ is an unbiased estimator of ˆ[ ]nE Z , we obtain that 

*
,[ ]

gn nE Z z≤ . Thus , gn nZ  provides a lower statistical bound for the optimal value *z of the true problem 

(6)-(10) and 
,

2
n ngZs  is an estimate of the variance of this estimator. 

Step 3- Choose a candidate feasible solution X  of the true problem, for example, a computed ˆ j
nX ′  by 

using a sample size ( n′ ) larger than used for lower bound estimation ( n ). Estimate the true objective 

function value ( )f X  for all batches of samples ( 1,... , gj n= ) as follows. 

C 1 1 P 1

1Minimize ( ) [ ] .
T n T

j i i
n ct ac pt pt pt pt

c t a A i p t

f X m X h I b B
n

φ
∈ = ∈ = ∈ =

= + +∑∑∑ ∑∑∑%      (14) 

Subject to 

Constraints (7)-(10). 

Step 4- Compute the observations of the optimality gap j
nG  for the candidate solution X  for all 

1,... , gj n=  as follows. 

ˆ( ) .j j j
n n nG f X Z= −%            (15) 

It has been shown in Mak et al. (1999) that: 

*.ˆ( ) [ ( , )]

n

n n

G

E f X Z E f X zξ ξ⎡ ⎤
⎢ ⎥⎣ ⎦

− ≥ −
%1442443

%
%

         (16) 

where ( , )f X ξ
%

 and *z  are the true objective value for X  and the true optimal solution to the problem 

(6)-(10), respectively, and ( *[ ( , )]E f X zξ ξ −
% %

) is the true optimality gap for the candidate solution X . 

We also have:  

2

2

N(0, ) as  

where = var .  
gg n n g g

g n

n G EG n

G

σ

σ

⎡ ⎤− ⇒ →∞⎣ ⎦  

Step 5- Compute the sample mean and sample variance for the optimality gap j
nG  as follows. 
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1

1 ,and
g

g

n
j

n n
g j

G Gn =
= ∑            (17) 

2 2

1
.1 ( )

( 1)
g

j gn

n
j

n nG
g g j

s G Gn n =
= −

− ∑  

Step 6- Compute the approximate (1 )α− -level confidence interval for the optimality gap of X  as 

(( ) 0), ( )
g gn g n gG Gε ε⎡ ⎤− ∨ +⎣ ⎦% % , where 1,  

jg nn G
g

g

t s

n
αε −

=% .      (18) 

5. Validation of the stochastic sawmill production planning model by Monte Carlo simulation  

In this section, we compare the plans proposed by the stochastic and deterministic sawmill production 

planning models. As we mentioned before, we assume that the company is very service sensitive, i.e., 

the realized total backorder size after implementation of production plan is more crucial than the 

realized inventory size. Thus, the following key indicators of performance are considered to compare 

the deterministic and stochastic models:  

1) Backorder gap (BO gap): the gap between the realized total backorder size of the deterministic 

and the stochastic models’ plans, after implementing the mentioned plans.  

2) Plan precision: the gap between the planned total backorder size determined by the production 

planning model and the realized total backorder size, after implementing the model’s plan. This 

indicator evaluates also the extent to which the yield scenarios considered in the stochastic model 

are close to the scenarios that can be observed in the real production process. 

In order to compute the total backorder size after implementing the plans, we propose to use Monte 

Carlo simulation. The main objective of this simulation is to implement the production plans virtually, 

by considering the yield scenarios that might be realized during the plan implementation in the realistic 

scale sawmills. Hence, the following features are considered for the simulator: 

1) To get the production plans proposed by the deterministic and stochastic models as well as the 

products demand, as the inputs. 

2) To simulate the production plan implementation based on the received production plan as 

follows: 
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 2.1) To determine a sample size equal to the number of times each process should be run in 

each period (production plan). 

 2.2) To generate randomly a sample of scenarios (with the size determined in 2.1) for the yields 

of each process, from the set of possible scenarios for the yields of that process. It should be 

mentioned that this step is equivalent to select a random sample of logs in each class to be sawn 

by each cutting pattern, while implementing the production plan in sawmills. 

3) To compute the total production size of each product at the end of each period, after simulating 

the plan implementation for that period (step 2). 

4) To compute the backorder or inventory size of each product in each period based on the total 

production size of that product (computed in step 3) and its demand for that period. 

Figure 1 illustrates the main features of the simulator which is designed to simulate the plans 

implementation in sawmills. 

Production Plan:
For all processes: 1,.., A 

(X(1),…, X(A))

Monte Carlo 
sampling

Total production 
size per product 

per period

Total backorder size per product per 
period

Demand
per product per period

Scenarios for the uncertain 
yields of process #1

Scenarios for the uncertain 
yields of process #2

Scenarios for the uncertain 
yields of process # A

...

Set of scenarios for the 
uncertain yields of 

processes 

Monte Carlo 
sampling

Monte Carlo 
sampling

Random yield 1
Random yield 2

…
Random yield X(1)

Random yield 1
Random yield 2

…
Random yield X(2)

Random yield 1
Random yield 2

…
Random yield X(A)

...

Inputs:

Output:

(Sample size : X(1))

(Sample size : X(2))

(Sample size : X(A))

 

Figure 1. Simulation of the production plans implementation in sawmills 

6. Computational results 

In this section, we describe the numerical experiments using the proposed two-stage stochastic model 

to address a medium capacity sawmill production planning problem. We first describe the 

characteristics of the test industrial problem and some implementation details; then, we comment on 
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the quality of the stochastic model solutions determined by the SAA scheme; finally, we compare the 

stochastic and mean-value deterministic models’ plans by the proposed Monte Carlo simulation 

approach (see section 5), for different demand levels. 

6.1. Data and implementation 

The proposed two-stage stochastic program with recourse in this paper is applied for a prototype 

sawmill. The prototype sawmill is a typical medium capacity softwood sawmill located in Quebec 

(Canada). The sawmill focuses on sawing high-grade products to the domestic markets as well as 

export products to the USA. It is assumed that the input bucked logs into the sawmill are categorized 

into 3 classes. 5 different cutting patterns are available. The sawmill produces 27 products of custom 

sizes (e.g. 2(in)×4(in), 2(in)×6(in) lumbers) in four lengths. In other words, there are 15 processes able 

to produce 27 products with random yields. We consider two bottleneck machines: Trimmer and Bull. 

The planning horizon consists of 30 periods (days). Product demand in each period is assumed to be 

deterministic which is determined based on the received orders. Lumbers that remain from one period 

to the next are subject to a unit holding cost. The unsatisfied demand is penalized by a unit backorder 

cost. We assume that the company is very service sensitive and wishes to fulfill customer demands on 

time as much as possible. Hence, the inventory costs of products are considered much lower than their 

backorder costs. The inventory holding cost is computed by multiplying the interest rate (per period) by 

the lumber price; the lumber price is considered as the backorder cost. It would be worth mentioning 

that the data used in this example are based on the gathered data from different sawmills in Quebec 

province (Canada). As the list of custom sizes, machine parameters and prices are proprietary; they are 

not reported in this paper. 

Recall from section 4 that the SAA method calls for the solution of gn  instances of the approximating 

stochastic program (11), each involving n sampled scenarios. Statistical validation of a candidate 

solution is then carried out by evaluating the objective function value using the same n sampled 

scenarios in each batch. In our implementation test, we used n=30 and 100; and 30gn = . Our candidate 

solutions are computed by solving the SAA problem (11) with 100 and 150n =′ . To illustrate the 

complexity of solving (11) within the SAA scheme, we present the sizes of the deterministic 

equivalents of the SAA problems corresponding to the different values of n  in Table 2. 
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Table 2. Size of the deterministic equivalent of the SAA problem 
n  Number of constraints Number of variables 
1 960 2160 

30 24450 49140 
100 81150 162540 
150 121650 243540 

 

The SAA scheme was implemented in OPL Studio 3.7.1. CPLEX 9 LP solver is used for solving the 

deterministic equivalents for different instances of SAA problems as well as for calculating the true 

objective function value for the candidate solutions. The simulator is programmed by Java. All 

computations were carried out on a Pentium(R) IV 1.8 GHz PC with 512 MB RAM running Windows 

XP. 

6.2. Quality of the stochastic solutions 

In this section, we present the results of applying the SAA scheme for our test problem and the 

evaluation of quality of candidate approximate solutions. Point estimates (see (12) and (13)) of the 

lower statistical bound for the optimal value of the stochastic problem are reported in table 3. They are 

computed based on 30 batches of sampled scenarios with 2 different batch sizes. Table 4 displays the 

quality of 2 candidate solutions and contains the 95% confidence intervals on their optimality gaps 

based on CRN method (see section 4). The candidate solutions 100 150,X X  for the CRN strategy are 

computed by solving the approximating problem (11) that includes 100 and 150 scenarios. The CPU 

times for computing each candidate solution are also reported in table 4. 

Table 3. Lower bound estimation results for the optimal value ( gn = 30 batches) 

Batch size (n) 30 100 
Average ( , gn nZ ) 1,923,901 1,924,380 

SD (
,n ngZs ) 4,730 4,068 

 
Table 4. Optimality gaps for candidate solutions  

Candidate solution 100X 150X
Batch size (n) 30 100 
No. of batches ( gn ) 30 30 

Point estimate (
gnG ) 1710 918 

Error estimate ( 95%α = ) ( gε% ) 737 284 
Confidence interval (95%) [0 , 2447] [0 , 1202] 
CPU time (minutes) 20 25 
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As it can be observed from Table 4, by increasing the sample size, the quality of approximate solutions 

improves and the tighter confidence intervals for the optimality gaps of candidate solutions are 

constructed. Finally we can conclude that, by considering a moderate number of scenarios (150 

scenarios) among the potential enormous number of scenarios, we obtain an approximate solution in a 

reasonable amount of time with an optimality gap of [0, 1202] which is about 0.006% of the lower 

bound of the real optimal value (see Tables 3). Thus, this solution can be accepted as a good 

approximation to the optimal solution of the original stochastic model (6)-(10). 

6.3. Comparison between the stochastic and deterministic sawmill production planning models 

In this section, the results of comparison between the two-stage stochastic and mean-value 

deterministic sawmill production planning models, through Monte Carlo simulation (see section 5), are 

provided. The comparison is carried out for the sawmill example described in 6.1. Four different 

demand levels (D1, D2, D3, D4) are considered, where D2=2×D1, D3=3×D1, D4=4×D1. For each 

demand level, 60 demand scenarios are generated randomly which are distinguished by the distribution 

of total demand between different products. Hence, a total of 240 (4×60) test problems are solved by 

the deterministic LP and stochastic models. The simulation of implementing the production plans is run 

for 1000 replications. The expected total backorder size computed in 1000 replications is used to 

compute the key indicators of performances (see section 5) for the test problems. Table 5 includes the 

mean and standard deviation (SD) of the backorder gap (BO gap) as well as the plan precision 

computed for the 60 test problems, corresponding to the 60 demand scenarios, in each of the 4 demand 

levels. It would be worth mentioning that the values of BO gap and plan precision presented in table 5 

are computed as follows: 

BO gap = 100 ( ) /D s DBO BO BO× −  

Plan precision = 100 ( ) /sim plan simBO BO BO× −  

where 

:DBO  The expected realized total backorder size of the deterministic model after plan implementation 

(computed through Monte Carlo simulation) 

:SBO  The expected realized total backorder size of the stochastic model after plan implementation 

(computed through Monte Carlo simulation) 
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:simBO  The expected realized total backorder size after plan implementation (computed through Monte 

Carlo simulation) 

:planBO  Total backorder size determined by the production planning model  

To illustrate how the results in table 5 can be interpreted, the following examples are provided. The 

mean and the standard deviation (SD) of BO gap for the demand level D1, determined as 75% and 

21%, respectively, in table 5 can be interpreted as follows: the realized total backorder size of 

stochastic model plan is 54% to 96% smaller than the realized total backorder size of deterministic 

model plan. Thus, it can be concluded that the stochastic model outperforms the deterministic model in 

proposing the production plans with lower total backorder size. 

Table 5. Comparison between the deterministic and stochastic sawmill production planning models 

Sawmill  production 
planning model 

D1 D2 D3 D4 

BO gap Plan  
precision BO gap Plan 

precision BO gap Plan 
precision BO gap Plan 

precision 

M
ean (%

) 

SD
 (%

) 

M
ean (%

) 

SD
 (%

) 

M
ean (%

) 

SD
 (%

) 

M
ean (%

) 

SD
 (%

) 

M
ean (%

) 

SD
 (%

) 

M
ean (%

) 

SD
 (%

) 

M
ean (%

) 

SD
 (%

) 

M
ean (%

) 

SD
 (%

) 

Deterministic - - 145 350 - - 35 138 - - 7 93 - - -13 40 
Two-stage 
Stochastic  75 21 -40 19 58 33 -34 15 39 25 -26 16 31 21 -19 10 

 

The mean and standard deviation of plan precision for the demand level D3 in the stochastic model, 

indicated as -26% and 16%, respectively, can be interpreted as follows: The realized total backorder 

size of production plan proposed by the stochastic model is 10% to 26% smaller than the total 

backorder size that was initially determined by this model. A positive value for plan precision indicates 

that the realized total backorder size through Monte Carlo simulation is larger than the planned total 

backorder size, as in the case of deterministic model for demand levels D1, D2 and D3.  

We next analyze the results provided in table 5 to compare the performance of the deterministic and the 

stochastic sawmill production planning models in terms of their total backorder size as well as their 

plan precision. Figure 2 compares the mean backorder gap (BO gap) between the stochastic and the 

deterministic models, for the four demand levels. As it can be observed in table 5 and figure 2, the 

production plan proposed by the stochastic model results smaller realized total backorder size (after 

implementing the plan) than the deterministic model plan, for the four demand levels. However, the 
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gap between the total backorder size of the stochastic and the deterministic models’ plans decreases, as 

the demand is increased. This should make no surprise. As we mentioned before, the sawmill example 

is a medium capacity sawmill where thousands of logs are sawn in each period in the planning horizon. 

By the law of large numbers (LLN) in statistics, as the demand is increased, the average yields of each 

process in each period, observed through Monte Carlo sampling in the plan implementation simulator, 

will be closer to their expected values which are considered in the deterministic model. 

 
Figure 2. Mean backorder gap (BO gap) of the stochastic and deterministic sawmill production planning models 

Figure 3 compares the mean of plan precision of the stochastic and the deterministic model, for the four 

demand levels. As it can be observed in table 5 and figure 3, the precision of production plan proposed 

by the stochastic model is higher than the deterministic one, for the four demand levels. As the demand 

increases, the average yields observed after implementing the plan through Monte Carlo simulation, get 

close to the average yield scenarios considered in the stochastic model. Hence the precision of plans of 

the stochastic model improves for the larger volumes of demand. For the lower demand levels, the 

stochastic model proposes relatively pessimistic plans. On the other hand, the deterministic model 

provides the optimistic plans for demand levels D1, D2 and D3, since it does not take into account 

different scenarios for random yield. However, as the demand increases, the average yields of each 

process in each period observed through Monte Carlo simulation get closer to their expected values 

which are used in the deterministic model (LLN). Thus, the precision of deterministic model plan 

increases, as the demand is increased. 
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Figure 3. Mean plan precision comparison of deterministic and stochastic sawmill production planning models 

Regarding the above comparisons, it is clear that the two-stage stochastic model provides more realistic 

production plans in sawmills, in terms of the realized backorder size, than the mean value deterministic 

LP model. The deterministic model provides the optimistic plans, since it considers the deterministic 

yields (expected values). On the other hand, as the stochastic model considers different scenarios for 

random yields and finds a production plan with minimum expected backorder and inventory size for all 

the yield scenarios, the production plans provided by this model are more realistic. 

7. Conclusions 

In this paper, we developed a two-stage stochastic programming model for multi-period sawmill 

production planning under the uncertainty of processes yields. The SAA method was implemented to 

solve the stochastic model which provided us an efficient framework for identifying and statistically 

testing a variety of candidate production plans. We also proposed a validation approach to compare the 

plans proposed by the stochastic and deterministic sawmill production planning models, which is based 

on Monte Carlo simulation. We provided the empirical results for production planning in a medium 

capacity prototype sawmill and we identified the candidate plans in a reasonable amount of time by 

solving the approximate SAA problem. Furthermore, the confidence intervals for the optimality gap of 

candidate solutions were constructed by common random number (CRN) streams. The comparison 

between the two-stage stochastic and deterministic sawmill production planning models was carried out 

for 4 demand levels. Our results revealed that the production plans proposed by the stochastic model 

are considerably superior to those obtained by traditional mean-value deterministic model. Although 

these results are found for sawmill production planning, the proposed approach in this work can be 

applied for production planning in other manufacturing environments where non-homogeneous and 

random characteristics of raw materials result random yield. Future research will consider the products 

demands as random variables in order to obtain more realistic production plans. 
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