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Abstract. Motivated by the challenges encountered in sawmill production planning, we 

study a multi-product, multi-period production planning problem with uncertainty in the 

quality of raw materials and consequently in processes yields, as well as uncertainty in 

products demands. As demand and yield own different uncertain natures, they are 

modeled separately and then integrated. Demand uncertainty is considered as a dynamic 

stochastic data process during the planning horizon which is modeled as a scenario tree. 

Each stage in demand scenario tree corresponds to a cluster of time periods, for which 

the demand has a stationary behavior. The uncertain yield is modeled as scenarios with a 

stationary probability distribution during the planning horizon. Yield scenarios are then 

integrated in each node of demand scenario tree, constituting a hybrid scenario tree. 

Based on the hybrid scenario tree for the uncertain yield and demand, a multi-stage 

stochastic programming (MSP) model is proposed which is full recourse for demand 

scenarios and simple recourse for yield scenarios. We conduct a case study with respect 

to a realistic scale sawmill. Numerical results indicate that the solution to the multi-stage 

model is far superior to the optimal solution to the mean-value deterministic and the two-

stage stochastic models. 
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1. Introduction 

Production planning is a key area of operations management. The plans have to be determined in the 

face of uncertainty in environmental and system uncertainties, namely uncertain products demands, 

processes yields, etc. An important methodology for production planning is mathematical 

programming. Traditional mathematical programming models for production planning are 

deterministic, and may result unsatisfactory production plans in the presence of uncertainty.  

The goal of this work is to address a multi-period, multi-product (MPMP) production planning 

problem in a manufacturing environment where alternative processes produces simultaneously multiple 

products from several classes of raw materials. Besides, raw materials own non-homogeneous and 

random characteristics (e.g. logs in sawmills, or crud oil in refineries). Thus, the quantities of products 

that can be produced by each process (processes yields) are random variables. Moreover, market 

demand for products is also uncertain and non-stationary during the planning horizon. The production 

planning problem we are studying includes deciding how many times each process should be run and 

which quantity of each class of raw materials should be consumed by each process in each period in the 

planning horizon. The objective is to minimize products inventory/backorder and raw material 

consumption costs, regarding fulfillment of products demands, machine capacities, and raw material 

inventory. This work is motivated by production planning for sawing units in sawmills, where the 

processes yields are random variables due to non-homogeneity in the characteristics of logs, and 

lumber demand is also uncertain. 

A review of some of the existing literature of production planning under uncertainty is provided in 

Mula et al. (2006). Stochastic programming (Dantzig, 1955; Kall and Wallace, 1994; Birge and 

Louveux 1997; Kall and Mayer, 2005) and robust optimization (Mulvey et al., 1995) has seen several 

successful applications in production planning. In Escudero et al. (1993) a multi-stage stochastic 

programming approach was used for addressing a MPMP production planning model with random 

demand. Bakir and Byrune (1998) developed a stochastic LP model based on the two-stage 

deterministic equivalent problem to incorporate demand uncertainty in a multi-period multi-product 

(MPMP) production planning model. Huang K. (2005) proposed multi-stage stochastic programming 

models for production and capacity planning under uncertainty. Alfieri and Brandimarte (2005) 

reviewed multi-stage stochastic models applied in multi-period production and capacity planning in the 

manufacturing systems. Brandimarte (2006) proposed a multi-stage programming approach for multi-
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item capacitated lot-sizing with uncertain demand. Kazemi et al. (2007) proposed a two-stage 

stochastic model for addressing MPMP production planning with uncertain yield. Khor et al. (2007) 

proposed a two-stage stochastic programming model as well as robust optimization models for capacity 

expansion planning in petroleum refinery under uncertainty. Leung and Wu. (2004) proposed a robust 

optimization model for stochastic aggregate production planning. In Leung et al. (2006) a robust 

optimization model was developed to address a multi-site aggregate production planning problem in an 

uncertain environment. Wu (2006) applied the robust optimization approach to uncertain production 

loading problems with import quota limits under the global supply chain management environment. 

Kazemi et al. (2008b) proposed two robust optimization models with different recourse cost variability 

measures to address MPMP production planning with uncertain yield.  

Adopting a two-stage approach in the uncertain multi-period production planning literature (see e.g. 

Bakir et al., 1998; Kazemi et al., 2007, 2008a, b; Khor et al., 2007) cannot model the dynamic decision 

process in such problems. In a two-stage approach, the plan for the entire multi-period planning 

horizon is determined before the uncertainty is realized, and only a limited number of recourse actions 

can be taken afterwards. In contrast, a multi-stage approach allows revision of the planning decisions as 

more information regarding the uncertainties is revealed. Consequently, the multi-stage model is a 

better characterization of the dynamic planning process, and provides more flexibility than does the 

two-stage model.  

In the existing contributions in the literature for production planning with uncertainty, either one 

uncertain parameter (e.g. either demand or yield) is taken into account (Escudero et al., 1993; Bakir et 

al., 1998; Brandimarte, 2006; Kazemi et al., 2007, 2008a, b) or one set of scenarios or a scenario tree is 

considered for all the uncertain parameters simultaneously (Leung and Wu., 2004; Huang K., 2005; 

Leung et al. 2006; Wu, 2006; Khor et al., 2007). However, when the uncertain parameters own 

different dynamics and behavior over time and each might need different sorts of recourse actions, it is 

more realistic to model them separately and then integrate them to be used in the stochastic 

programming models.  

In this paper, we propose a multi-stage stochastic program for MPMP production planning with 

uncertain yield and demand. As demand uncertainty originates from market conditions and yield 

uncertainty is due to non-homogeneity in the quality of raw materials, they are modeled separately and 

independently. We assume that the uncertain demand evolves as a discrete time stochastic process 

during the planning horizon with a finite support. This information structure can be interpreted as a 
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scenario tree. Each stage in demand scenario tree corresponds to a cluster of time periods. It is 

supposed that demand has a stationary behavior during the periods at each stage. The uncertain yields 

are modeled as scenarios with stationary probability distribution during the planning horizon. Finally, 

yield scenarios are integrated into the demand scenario tree, forming a hybrid scenario tree with two 

types of branches in each node. Depending on the availability of information on the uncertain 

parameters at the beginning of each stage in the scenario tree, different recourse actions are defined for 

them in the multi-stage stochastic model. We suppose that at the beginning of each stage in demand 

scenario tree, the decision maker has a perfect insight on the demand scenario that will be observed at 

that stage. Thus, the production plan can be adjusted for demand scenarios (full recourse). On the other 

hand, as yield scenarios are revealed after plan implementation, production plan is constant for yield 

scenarios (simple recourse). The goal of the multi-stage stochastic model is to determine 

implementable plans for production that takes into account the possible demand and yield scenarios, 

provide for recourse actions in the future, and minimize the expected cost of raw material consumption, 

holding inventory, and backorders. It should be noted that the multi-stage model was represented as 

compact formulation (see for example Alfieri and Brandimarte, 2005) based on the scenarios of the 

hybrid scenario tree, in order to have a deterministic equivalent model of manageable size that can be 

solved by CPLEX. The proposed approach is applied for sawmill production planning under the 

uncertainty in raw material (log) quality and product (lumber) demand. Regarding the large 

dimensionality of the resulted deterministic equivalent model for a realistic scale sawmill, the periods 

in the planning horizon are clustered into three stages. As a result, the original multi-stage model is 

approximated by a 4-stage one. Numerical results indicate that the solution to the multi-stage model is 

far superior to the optimal solution of the mean-value deterministic and the two-stage stochastic 

models. Furthermore, it is shown that the significance of using multi-stage stochastic programming is 

increased as the variability of random demand is augmented in the scenario tree.  

The remainder of this paper is organized as follows. In the next section, a theoretical framework for 

multi-stage stochastic programming (MSP) is provided. In section 3, we provide a multi-stage 

stochastic linear program for MPMP production planning with random yield and demand. In section 4, 

we describe one of the applications of this problem which is sawmill production planning under the 

uncertainty in raw material (log) quality and product (lumber) demand. In section 5, the 

implementation results of the multi-stage stochastic model for a prototype realistic scale sawmill are 

presented. Our concluding remarks are given in section 6. 
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2. Multi-stage stochastic programming 

In a problem where time and uncertainty play an important role, the decision model should be designed 

to allow the user to adopt a decision policy that can respond to events as they unfold. The specific form 

of the decisions depends on assumptions concerning the information that is available to the decision 

maker, when (in time) is it available and what adjustments (recourse) are available to the decision 

maker. Multi-stage stochastic programming (MSP) approach (Kall and Wallace, 1994; Birge, and 

Louveux 1997; Kall and Mayer, 2005) was proposed to address multi-period optimization models with 

dynamic stochastic data during the time. In multi-stage stochastic programming (MSP) a lot of 

emphasis is placed on the decision to be made today, given present resources, future uncertainties and 

possible recourse actions in the future. The uncertainty is represented through a scenario tree and an 

objective function is chosen to represent the risk associated with the sequence of decisions to be made 

and the whole problem is then solved as a large scale linear or quadratic program. In the following, we 

first review the characteristics of scenario trees, and then we provide a general formulation for multi-

stage stochastic programming. 

2.1. Scenario tree 

Scenario tree is a computationally viable way of discretizing the underlying dynamic stochastic data 

over time in a problem. An illustration of scenario tree is provided in Figure 1. In a scenario tree, each 

stage denotes the stage of the time when new information is available to the decision maker. Thus, the 

stages do not necessarily correspond to time periods. They might include a number of periods in the 

planning horizon. Scenario tree consists of a number of nodes and arcs at each stage. Each node n in 

the scenario tree represents a possible state of the world, associated with a set of data (stochastic 

demand, stochastic cost, etc.) in the corresponding stage. The root node of the tree represents the 

current state of the world. The branches (arcs) in the scenario tree denote the scenarios for the next 

stage. A probability is associated to each arc of scenario tree which denotes the probability of the 

corresponding scenario to that arc. It should be noted that, the probability of each node in the scenario 

tree is computed as the product of probability of the arcs from the root node to that node. Furthermore, 

the sum of probabilities of nodes at each stage is equal to 1. A path from the root node to a node n 

describes one realization of the stochastic process from the present time to the period where node n 

appears. A full evolvement of the stochastic process over the entire planning horizon, i.e., the path from 

the root node to a leaf node, is called a scenario. In the scenario tree example of figure 1, we have 4 
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stages. Each node n in the tree has two branches to the next stage which denote two possible scenarios 

for the next stage, when we are at stage n. Consequently, we have 8 scenarios by the end of stage 4. A 

review of approaches for generating the scenario trees for multi-stage stochastic programs, based on the 

underlying random data process is provided in (Dupačová et al., 2000). 

 
Figure 1. Scenario tree for multi-stage stochastic programming 

2.2. Multi-stage stochastic programming models 

We begin by abstracting the statement of a multi-period deterministic LP model: 

 

1 1 2 2

11 1 1

21 1 22 2 2

1 1

1 2

Minimize ... (1)
Subject to

.

.

.
...

0, 0,..., 0

T T

T TT T T

T

c x c x c x

A x b
A x A x b

A x A x b
x x x

+ + +

=
+ =

+ + =
≥ ≥ ≥

 

Let the scenario s correspond to a single setting of all data in this problem,  

{ , , : 1,..., , 1,..., }t t tts c b A t T t T′ ′= = =  

and a decision x corresponds to a setting of all the decision variables 
1

1:( ,..., ) R ... R Tn n
Tx x x ∈ × ×  
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Solving the deterministic LP model (1) for a given setting s of the data is equivalent to solving the 

following problem for a certain function: 

min ( , ) over all ,f x s x  

where 

1

, if satisfies all constraints in (1),
( , )

, otherwise.

T

t t
t

c x x
f x s =

⎧
⎪= ⎨
⎪+∞⎩

∑  

We next develop the stochastic model. Let us suppose that we are given a set S of scenarios. The 

decision-maker wishes to set a policy that makes different decisions under different scenarios. 

Mathematically, a policy X that assigns to each scenario s S∈  is a vector 1( ) : ( ( ),..., ( ))TX s X s X s= , 

where ( )tX s  denotes the decision to be made at stage t if encountered by scenario s. Decisions that 

depend on the individual scenarios do not hedge against the possibility that the scenario may not occur, 

leaving one vulnerable to disastrous consequences if some other scenario does happen. In other words, 

our decision process must conform to the flow of available information, which basically means the 

decisions must be non-anticipative (or implementable). A decision is said to be implementable if for 

every pair of scenarios s and s′  that are indistinguishable up to stage t  

1 1( ( ),..., ( )) ( ( ),..., ( ))t tX s X s X s X s′ ′= . 

As examples of indistinguishable scenarios, we can refer to scenarios 1, 2, 3, 4 in node 2, at stage 2 of 

scenario tree in figure 1. Implementability guaranties that policies do not depend on information that is 

not yet available. The multi-stage stochastic programming can be formulated as: 

min ( ( ), ) | is an implementable policys

s S

p f X s s X
∈

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ , 

where sp  denotes the probability of scenario s. There are two approaches to impose the non-

anticipativity constraints in the multi-stage stochastic programs which lead to split variable formulation 

and compact formulation. 

2.2.1. Split variable formulation 

In split variable formulation, we introduce a set of decision variables for each stage and each 

scenario, and then we enforce non-anticipativity constraints explicitly based on the shape of scenario 

tree. Although this representation increases the problem dimensions, it yields a sparsity structure that is 
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well suited to the interior point algorithms. Alternatively, it is possible to use a decomposition approach 

on the splitting variables formulation. Several strategies have been published in the literature for 

solving large-scale multi-stage stochastic programs (Ruszczynski 1989; Rockafellar and Wets 1991; 

Mulvey and Ruszczyński 1995; Liu and Sun 2004). 

2.2.2. Compact formulation 

In compact formulation, we associate decision variables to the nodes of scenario tree and build non-

anticipativity in an implicit way. In other words, the variables such as ( )X s  for ( ) ( )X s X s′=  are 

replaced in the model by one single variable, and redundant constraints for partially identical scenarios 

are deleted. Compact formulations are computationally cheaper when using for solving by the Simplex 

methodology in the standard solvers. 

3. Model development 

In this section, we first present a deterministic mathematical formulation for the problem under 

consideration. Then, we provide the multi-stage stochastic formulation to address the problem by 

considering the uncertain processes yields and products demands. 

3.1. A deterministic model for multi-product, multi-period production planning 

Consider a production unit with a set of products P, a set of classes of raw materials C, a set of 

production processes A, a set of machines R, and a planning horizon consisting of T periods. To state 

the deterministic linear programming model for this problem, the following notations are used: 

3.1.1. Notations 

Indices  

p    product  

t     period 

c    raw material class  

a    production process 

r    machine 

Parameters 

pth     Inventory holding cost per unit of product p in period t 

ptb     Backorder cost per unit of product p in period t 
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ctm    Raw material cost per unit of class c in period t 

0cI     The inventory of raw material class c at the beginning of planning horizon 

0pI     The inventory of product p at the beginning of planning horizon 

cts     The quantity of material of class c supplied at the beginning of period t 

ptd     Demand of product p by the end of period t 

acφ     The units of class c raw material consumed by process a (consumption factor) 

apρ     The units of product p produced by process a (yield of process a) 

arδ      The capacity consumption of machine r by process a 

rtM     The capacity of machine r in period t  

Decision variables 

atX     The number of times each process a should be run in period t 

ctI       Inventory size of raw material of class c by the end of period t 

ptI      Inventory size of product p by the end of period t 

ptB     Backorder size of product p by the end of period t 

3.1.2. The deterministic LP model 

P 1 C 1
Minimize ( ) (2)

T T

pt pt pt pt ct ac at
p t c t a A

Z h I b B m Xφ
∈ = ∈ = ∈

= + +∑∑ ∑∑∑
Subject to 

1 , 1,... , , C, (3)ct ct ac atct
a A

I I s X t T cφ−
∈

= + − = ∈∑
 

1 1 0 1 1
A

1 1
A

,

, 2,... , , P, (4)
app p p a p

a
pt pt ap at ptpt pt

a

I B I X d

I B I B X d t T p

ρ

ρ
∈

− −
∈

− = + −

− = − + − = ∈
∑

∑
 

A
, 1,... , , R, (5)ar at rt

a
X M t T rδ

∈
≤ = ∈∑

 

0, 0, 0, 0, 1,... , , P, C, . (6)at ct pt ptX I I B t T p c a A≥ ≥ ≥ ≥ = ∈ ∈ ∈  
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The objective function (2) minimizes total inventory and backorder costs for all products and raw 

material cost for all classes in the planning horizon. Constraint (3) ensures that the total inventory of 

raw material of class c at the end of period t is equal to its inventory in the previous period plus the 

quantity of material of class c supplied at the beginning of that period ( cts ) minus its total consumption 

in that period. Constraint (4) ensures that the sum of inventory (or backorder) of product p at the end of 

period t is equal to its inventory (or backorder) in the previous period plus the total production of that 

product in that period, minus the product demand for that period. Total quantity of production for each 

product in each period is calculated as the sum of the quantities yielded by each of the corresponding 

processes, regarding the yield ( apρ ) of each process. Finally, constraint (5) requires that the total 

production do not exceed the available production capacity.  

3.2. Multi-stage stochastic programming extension  

In this section, we first describe our proposed approach to model the uncertain yield and demand, and 

then provide the production planning formulation by multi-stage stochastic programming. 

3.2.1. Modeling the uncertain yield and demand  

We assume that the uncertain demand evolves as a discrete time stochastic process during the 

planning horizon with a finite support. This information structure can be interpreted as a scenario tree 

(see figure 1 in section 2). The nodes at stage t of the tree constitute the states (scenarios) of demand 

that can be distinguished by information available up to stage t. For each stage a limited number of 

demand scenarios are taken into account (e.g. high, average, low). In order to define the scenarios for 

each stage, we can either use the traditional approach of making distributional assumptions, estimating 

the parameters from historical data, or use the scenarios proposed by the experts. In order to keep the 

resulting multi-stage stochastic model within a manageable size, we assume that the planning horizon 

is clustered into N stages, where each stage includes a number of periods. In other words, it is supposed 

that the uncertain demand is stationary during the time periods at each stage. For example, if the 

demand scenario for the first period at stage n is high, it remains the same (high) for the rest of periods 

at stage n; however the demand scenario might change (e.g. to low) for the first period in the next stage 

(n+1). It should be noted that, the number of periods that can be considered at each stage depends on 

the behavior of demand in the industry, as well as the length of planning horizon.  

On the other hand, we assume that raw materials are supplied from the same supply source during the 

planning horizon. Thus, it is supposed that the uncertain yield has stationary probability distribution. 
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The probability distribution of random yield is estimated based on historical data in industry. A number 

of scenarios are taken in to account for yields by discritization of the original probability distribution. 

Regarding to the stationary distribution of yield, only one of the scenarios can take place during the 

planning horizon.  

In order to have a single stochastic production planning model that considers uncertain yield and 

demand, yield scenarios are integrated with the demand scenario tree forming a hybrid scenario tree. 

An example of a four-stage hybrid scenario tree is depicted in figure 2, where full line branches denote 

demand scenarios while dashed line branches denote yield scenarios. At each node of the tree, which 

denotes one demand scenario for the corresponding stage, different yield scenarios can take place (3 

scenarios in the example of figure 2). However, regarding the stationary behavior of uncertain yield, 

only one of the yield scenarios can be observed during the planning horizon. Thus, the total number of 

scenarios in the hybrid scenario tree can be computed as the number of leaves in demand scenario tree 

by the number of yield scenarios (in the example of figure 2, this number is equal to 24). 

 
Figure 2. A hybrid scenario tree for uncertain demand and yield 

3.2.2. Multi-stage stochastic program for MPMP production planning with uncertain yield and demand 

Let us now formulate the problem as a multi-stage stochastic (MSP) model based on the hybrid 

scenario tree for the uncertain yield and demand. The decision (control) variables of deterministic 

model (2)-(6) are production plans atX . The inventory and backorder variables ptI  and ptB  are the 

consequences (state variables) of the plan. In this problem, we assume that the decision maker can 

adjust the production plan atX  for different demand scenarios at each stage of demand scenario tree. In 
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other words, it is supposed at the beginning of each stage, enough information on demand is available 

to the decision maker to select properly among the plans proposed by the MSP model for different 

scenarios. Thus we have a model with full recourse with respect to demand scenarios. As we use 

compact formulation to represent the problem, the decision variables atX  are defined for each node of 

demand scenario tree. On the other hand, as the quality of materials is not is not known before 

production, the yield scenarios can only be revealed after implementation of production plan. Thus, the 

production plan for each node of demand scenario tree should be fixed for all the yield scenarios. In 

other words, the model becomes simple recourse with respect to yield scenarios. It is evident that the 

inventory and backorder of products in each period ( ( )i
ptI n  and ( )i

ptB n ), which are the state variables, 

depend on the demand scenarios as well as yield scenarios, thus they are indexed for yield scenarios as 

well as demand nodes. Regarding the above discussions, the following notations in addition to those 

provided in 3.1.1 are used in the multi-stage model. The compact formulation of multi-stage model 

follows by the notations.  

3.2.2.1. Notations 

Indices  

Tree    Scenario tree. 

S          Number of scenarios for random yields. 

i           Scenario of random yield. 

n,m      Node of scenario tree.  

( )a n     Ancestor of node n in the scenario tree. 

nt         Set of time periods corresponding to node n in the scenario tree. 

Parameters 

( )ptd n   Demand of product p by the end of period t at node n of the scenario tree.  

( )p n      Probability of node n of the scenario tree.  
ip          Probability of scenario i for random yield. 

Decision variables 

( )atX n   The number of times each process a should be run in period t at node n of the scenario tree. 

( )ctI n     Inventory size of raw material of class c by the end of period t at node n of the scenario tree. 

( )i
ptI n    Inventory size of product p by the end of period t for scenario i of random yield at node n of  

              the scenario tree. 
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( )i
ptB n    Backorder size of product p by the end of period t for scenario i of random yield at node n of  

               the scenario tree. 

3.2.2.2. Multi-stage stochastic model (compact formulation) 

PC 1
Minimize ( )( ( )) ( )( ( ( ( ) ( )))) (7)

Subject to
n n

S
i i i

ct ac at pt pt pt pt
t t t tn Tree n Tree pc a A i

Z p n m X n p n p h I n b B nφ
∈ ∈∈ ∈ ∈∈ ∈ =

= + +∑ ∑∑∑ ∑ ∑ ∑∑  

1

,
,

( ) ( ) ( ), , , C,

( ), 1 (8)
, 1

ct ct ac at nct
a A

n

n

I n I m s X n n Tree t t c

a n t tm
n t t

φ−
∈

⎧⎪
⎨
⎪⎩

= + − ∈ ∈ ∈

− ∉
=

− ∈

∑

 

A
( ) , , , R, (9)ar at rt n

a
X n M n Tree t t rδ

∈
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1 1
A

,
,

( ) ( ) ( ) ( ) ( ) ( ), , , P, 1,... , ,

( ), 1 (10)
, 1

i i i i i
pt pt ap at pt npt pt

a

n

n

I n B n I m B m X n d n n Tree t t p i S

a n t tm
n t t

ρ− −
∈

⎧⎪
⎨
⎪⎩

− = − + − ∈ ∈ ∈ =

− ∈
=

− ∉

∑

( ) 0, ( ) 0, ( ) 0, ( ) 0, , , , , ,
1,... , . (11)

i i
at ct pt pt nX n I n I n B n n Tree t t c C p P a A

i S
≥ ≥ ≥ ≥ ∈ ∈ ∈ ∈ ∈

=
 

The first term of the objective function (7) accounts for the expected material cost for demand nodes 

of the scenario tree. The second term is the expected inventory and backorder costs for demand nodes 

and yield scenarios. In model (7)-(11), the decision variables are indexed for each node, as well as for 

each time period, since the stages do note correspond to time periods. As it was mentioned in 3.2.1, 

each node at a stage includes a set of periods which is denoted by nt . In this model, there are coupling 

variables between different stages and these are the ending inventory and backorder variables at the end 

of each stage. As it can be observed in this model, two different node indices (n, m) are used for 

inventory/backorder variables in the inventory balanced constraints ((8) and (10)). More precisely, for 

the first period at each stage, the inventory or backorder is computed by considering the inventory or 

backorder of previous period corresponding to its ancestor node, while for the rest of periods in that 

stage, the inventory/backorder size of previous period corresponding to the same node are taken into 

account.  
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4. Case study: sawmill production planning 

In this section, we introduce one of the applications of the general problem already described in this 

paper, which is sawmill production planning. There are a number of processes that occur at a sawmill: 

log sorting, sawing, drying, planing and grading (finishing). Raw materials in sawmills are the logs 

which are transported from different districts of forest after bucking the felled trees. The finished and 

graded lumbers (products) are then transported to the domestic and international markets. Figure 3 

illustrates the typical processes. As a case study, we consider the sawing units in sawmills. In the 

sawing units, logs are classified according to some attributes namely: diameter class, species, length, 

taper, etc. Logs are broken down into different dimensions of lumbers by means of different cutting 

patterns. See figure 4 for three different cutting patterns. Each cutting pattern is a combination of 

activities that are run on a set of machines. From each log, several pieces of sawn lumber (e.g. 

2(in)×4(in)×8(ft), 2(in)×4(in)×10(ft), 2(in)×6(in)×16(ft),…) are produced depending on the cutting 

pattern. The lumber quality (grade) as well as its quantity yielded by each cutting pattern depends on 

the quality and characteristics of the input logs. Despite the classification of logs in sawmills, variety of 

characteristics might be observed in different logs in each class. In fact, due to natural variable 

conditions that occur during the growth period of trees, non-homogeneous and random characteristics 

(in terms of diameter, number of knots, internal defects, etc.) can be observed in different logs in each 

class, make it impossible to anticipate the exact yield of a log. 

 
Figure 3.Illustration of sawmills processes 

 
Figure 4. Three possible cutting patterns in a sawmill 

As it is not possible in many sawmills to scan the logs before planning, the exact yields of cutting 

patterns for different log classes cannot be determined in priori. As an example of the uncertain yields 
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in sawmills, consider the cutting pattern (s) that can produce 6 products (P1, P2, P3, P4, P5, P6) after 

sawing the logs of class (c). Table 1 represents four scenarios among all possible scenarios for the 

uncertain yields of this process.  
Table 1. Scenarios for yields of a process in a sawing unit 

Scenarios Products 
P1 P2 P3 P4 P5 P6 

1 1 0 1 0 1 1 
2 2 1 1 0 1 0 
3 1 0 0 1 1 1 
4 2 0 0 1 0 1 

 

Uncertainty in the market demand for different lumbers is another important parameter that should be 

taken into account in sawmill production planning. We focus on operational level production planning 

in a sawing unit. The decision variables include the optimal quantity of log consumption from different 

classes and selection of best cutting patterns for each log class in each period of the planning horizon, 

in order to fulfill the demand. The objective is to minimize log consumption cost, as well as products 

inventory and backorder costs. Regarding to the potential significance of yield and demand uncertainty 

on the production plan, and customer orientation which is at center of attention in the sawmills which 

are dependent on the export markets, obtaining production plans with minimum expected backorder 

size is an important goal of production planning in sawmills. 

Different approaches have been already proposed in the literature to address sawmill production 

planning. The first approach is focused on combined optimization type solutions linked to real-time 

simulation sub-systems (Mendoza et al., 1991; Maness and Adams, 1991; Maness and Norton, 2002). 

In this approach, the stochastic characteristics of logs are taken into account by assuming that all the 

input logs are scanned through an X-ray scanner, before planning. Maness and Norton (2002) 

developed an integrated multi-period production planning model which is the combination of an LP 

model and a log sawing optimizer (simulator). The LP model acts as a coordinating problem that 

allocates limited resources. The log sawing optimization models are used to generate columns for the 

coordinating LP based on the products’ shadow prices. Although the stochastic characteristics of logs 

are considered in this approach, it includes the following limitations to be implemented: logs, needed 

for the next planning horizon, are not always available in the sawmill to be scanned before planning. 

Furthermore, to implement this method, the logs should be processed in production line in the same 

order they have been simulated, which is not an easy practice. Finally scanning logs before planning is 

a time consuming process in high capacity sawmills which delays the planning process. In the second 
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approach, the randomness of the processes yields as well as demand is simplified and their expected 

value is considered in a MPMP linear programming model (Gaudreault et al., 2004). However, the 

production plans issued by these models result usually in extra inventory of products with lower quality 

and price while backorder of products with higher quality and price. In Kazemi et al. (2008a) a two-

stage stochastic program with recourse is proposed to address sawmill production planning by 

considering the random yield. The solutions of stochastic model are considerably superior to those of 

deterministic model in terms of the expected inventory and backorder costs. Among different 

contributions in the literature for sawmill production planning, we did not succeed to find any 

contribution that considers simultaneously the random demand and yield. In the next section, the 

computational results of implementing the proposed multi-stage stochastic program for a realistic scale 

sawmill example is provided. 

5. Computational results 

In this section, we report on computational experiment with the proposed multi-stage stochastic 

programming approach for a realistic scale sawmill. The objective of our experiment is to investigate 

the quality of production plans suggested by multi-stage stochastic programming comparing to those of 

deterministic LP, and two-stage stochastic programming. We also compute the value of multi-stage 

stochastic programming (VMSP) for this example. In the following, we first describe our experimental 

environment and then report on the experimental results in the light of the mentioned objectives. 

5.1. Experimental environment 

A prototype sawmill is selected to illustrate the application of the multi-stage stochastic model. The 

prototype sawmill is a typical medium capacity softwood sawmill located in Quebec (Canada). The 

sawmill focuses on sawing high-grade products to the domestic markets as well as export products to 

the USA. It is assumed that the input bucked logs into the sawing unit are categorized into 3 classes. 5 

different cutting patterns are available. The sawing unit produces 27 products of custom sizes (e.g. 

2(in)×4(in), 2(in)×6(in) lumbers) in four lengths. In other words, there are 15 processes all can 

produce 27 products with random yields. We consider two bottleneck machines: Trimmer and Bull. 

The planning horizon consists of 30 periods (days). It would be worth mentioning that the data used in 

this example are based on the gathered data from different sawmills in Quebec province (Canada). As 

the list of custom sizes, machine parameters and prices are proprietary, they are not reported in this 

paper. The hybrid scenario tree for uncertain demand and yield in this example is generated as follows. 
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Demand Scenario tree  

At each stage of scenario tree, except stage 1, based on the historical data for products demands (per 

day) in Quebec sawmill, we estimate a normal distribution for demand. We consider the same 

probability distribution for all the products. The normal distribution is then approximated by a 3 point 

discrete distribution by using Gaussian quadrature method (Miller and Rice, 1983). Since considering 

each time period as a stage leads to an extremely large number of scenarios, we need to approximate 

the scenario tree by something more manageable. In our computational experiment, we supposed that 

the demand for the next 10 days has a stationary behavior, which is a realistic assumption in the lumber 

market. Thus, we clustered the 30 periods planning horizon into 3 stages and hence the multi-stage 

decision process is approximated by a 4-stage one. The first stage consists of time period zero (present 

time), the second-stage includes periods 1-10, etc. The mentioned approximations results a scenario 

tree including 27 demand scenarios and 40 nodes. We consider three different normal distributions for 

demand with the same mean but different variances (5% mean, 20% mean, and 30% mean). Thus, three 

demand trees (DT1, DT2, DT3) and a total of 3 test problems are considered. In all the test problems 

we consider the same distribution for stages 2 to 4. However, different distributions can be considered 

for each stage without adding to the complexity of the resulted multi-stage model.  

Yield Scenarios  

As we mentioned in section 3, at each node of demand scenario tree a number of yield scenarios are 

taken into account. These scenarios are generated as follows. Based on the historical data in Quebec 

sawmills for the yields of processes, a normal distribution was estimated for the random yields (see 

Kazemi et al. 2007, 2008a, b). The normal distribution corresponding to the yield of each process was 

then approximated by three scenarios, by using Gaussian quadrature method (Miller and Rice, 1983). 

As the randomness of processes yields is the result of non-homogeneity in quality of logs, we consider 

three scenarios for yield of each log class. As we considered 3 classes of logs in this example, the total 

number of yield scenarios is equal to 33 27= . It should be noted that the same yield scenarios are 

considered in the three test problems. 

The above scenario generation approach for uncertain demand and yield in this sawmill production 

planning example results a hybrid scenario tree similar to the one in figure 2 with 40 nodes, where each 

node includes 3 branches as demand scenarios and 27 branches as yield scenarios. The total number of 

scenarios at the end of stage 4 is equal to 27×27=729. The compact multi-stage stochastic model (7)-
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(11) for this sawmill example is a linear programming (LP) model with nearly 600000 decision 

variables and 300000 constraints.  

CPLEX 10 and OPL 5.1 are used to solve the linear program (7)-(11) and to perform further analysis 

on the solutions of the test problems. All numerical experiments are conducted on an AMD AthlonTM 

64×2 dual core processor 3800+, 2.01 GHz, 3.00 GB of RAM, running Microsoft Windows Server 

2003, standard edition. 

5.2. Quality of multi-stage stochastic model solution 

In this section, for the three test problems mentioned in 5.1, we compare the solution of 4-stage 

stochastic programming model to those of a 3-stage, and 2-stage stochastic programming model as well 

as mean-value deterministic model. It should be noted that in the 3-stage model, the 30 periods 

planning horizon is clustered into 2 stages, each includes 15 periods. In other words, in order to reduce 

the size of the multi-stage model, it was supposed that the random demand has a stationary behavior 

during each 15 days. The 2-stage stochastic model corresponds to considering a static probability 

distribution for the uncertain demand during the planning horizon. In table 2 the solutions of mentioned 

models for the three test problems are compared with respect to the expected total cost, the expected 

material consumption cost, as well as the expected inventory and backorder costs. It should be noted 

that the expected inventory/backorder costs of 3-stage, 2-stage, and mean-value deterministic models 

are computed by setting the production plan variables ( atX ) in the 4-stage stochastic model (7)-(11) as 

the optimal production plan ( *
atX ) proposed by the mentioned models. In other words, the expected 

inventory/backorder costs of production plans proposed by the 3-stage, 2-stage and deterministic model 

are computed for the hybrid 4-stage scenario tree corresponding to the uncertain yield and demand in 

each test problem. As it can be observed in table 2, in all the tree test problems the solution of 4-stage 

stochastic model is significantly superior to those of deterministic model. Furthermore, if the uncertain 

demand is considered as a random variable with a static probability distribution during the planning 

horizon (as in the two-stage stochastic programming model), the expected material cost as well as the 

expected inventory/backorder costs of the production plan are considerably higher than those of multi-

stage stochastic model’s plan. Finally, by clustering the planning horizon into two stages (as in 3-stage 

stochastic programming model) the expected inventory/backorder costs of the plan are higher than 

those of 4-stage stochastic model. The last column of table 2 indicates that the high quality of multi-
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stage stochastic model owns higher computational time compared to those of deterministic and two-

stage ones. 
Table 2- Cost comparison of different production planning models 

Demand 
tree 

Production planning 
model 

Expected total 
cost 

Expected 
material cost 

Expected 
inventory/backorder costs 

CPU time 
(minutes) 

DT1 

4-Stage SLP 1957950 1737500 220450 29 
3-Stage SLP 1973563 1746415 227148 6 
2-Stage SLP 2118125 1788142 329983 2 
Mean-value 

deterministic LP 2129030 1751675 377355 0 

DT2 

4-Stage SLP 2028777 1749677 279100 29 
3-Stage SLP 2038543 1756840 281703 6 
2-Stage SLP 2391261 1889265 501996 2 
Mean-value 

deterministic LP 2432717 1751675 681042 0 

DT3 

4-Stage SLP 2163458 1766387 397071 29 
3-Stage SLP 2206165 1763839 442326 6 
2-Stage SLP 2836707 2025122 811585 2 
Mean-value 

deterministic LP 3095556 1751675 1343881 0 

 

Figures 5 and 6 illustrate better the comparison between the total expected cost as well as expected 

inventory/backorder costs of different models for three test problems which are distinguished by 

variability of demand at each stage. As the variability of demand increases at each stage, the difference 

between the expected cost of multi-stage stochastic model’s plan and deterministic and two-stage 

stochastic models’ plans increases. In other words, the significance of using a multi-stage programming 

model instead of a two-stage or deterministic model is increased as the variability of demand increases 

at each stage of scenario tree. It would be worth mentioning that by increasing the number of stages in 

the demand scenario tree, which is equivalent to reducing the number of periods at each stage, the 

uncertain behavior of demand can be captured more precisely. Thus, a production plan with lower 

expected cost can be obtained. However, as the difference between the expected cost of 4-stage and 3-

stage models in not very significant in the three test problems (see figures 5 and 6), we did not consider 

more stages in the scenario trees in the test problems. 
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Figure 5. Expected total cost comparison of different production planning models 

 
Figure 6. Expected inventory/backorder costs comparison of different production planning models 

5.3. Value of multi-stage stochastic programming 

As it was mentioned in section 3, we considered the production plan ( atX ) as full recourse with respect 

to demand scenarios. In other words, we assumed a flexible production plan that can be adjusted based 

on the demand scenarios, at different stages. However, in some manufacturing environments the 

production plan is not flexible and should be fixed at the beginning of planning horizon. Thus, a simple 

recourse multi-stage stochastic model should be used to determine the plan. In this section, we compare 

the solutions of multi-stage stochastic programs with full recourse and simple recourse, for the three 

test problems. In table 3, it can easily be verified that in all the test problems the total cost of full 

recourse problem is smaller than that of the simple recourse problem. This should come as no surprise, 

since the multi-stage model with full recourse offers more flexibility in the production plan decisions 

with respect to the uncertain states of demand. We denote the optimal objective values corresponding 

to full recourse and simple recourse multi-stage stochastic programs by FRv , and SRv , respectively. The 

value of multi-stage stochastic programming (VMSP) is defined as follows (Huang and Shabbir, 2005; 

Huang 2005): SR FRVMSP v v= − . 

 

A Multi-Stage Stochastic Programming Approach for Production Planning with Uncertainty in the Quality of Raw Materials and Demand

CIRRELT-2009-09 19



  

Table 3- Value of multi-stage stochastic programming in the three test problems 
Demand tree 4-stage stochastic model Objective function value VMSP 

DT1 Full recourse 1957950 79195 Simple recourse 1973563 

DT2 Full recourse 2028777 174076 Simple recourse 2037145 

DT3 Full recourse 2163458 300000 Simple recourse 2202853 
 

Value of multi-stage stochastic programming (VMSP) indicates the value of allowing the production 

plan to be adjusted for different scenarios at each stage of decision process instead of fixing its value at 

the beginning of planning horizon. Figure 7 compares the VMSP of the three test problems with 

different variability levels in demand. As it can be observed in figure 7, the value of multi-stage 

stochastic solution increases with the variability of demand. In other words, as the variability of 

demand increases at each stage, considering a full recourse multi-stage stochastic model becomes more 

significant. 

 
Figure 7. VMSP comparison of different test problems with different demand variability 

6. Conclusions 

In this paper, we addressed a multi-period, multi-product (MPMP) production planning problem under 

uncertainty in products demands and processes yields. We proposed a multi-stage stochastic model to 

address the problem. The uncertain demand was modeled as a dynamic stochastic process presented as 

a scenario tree. The uncertain yield was modeled as a static random variable with a stationary 

probability distribution during the planning horizon. We integrated the uncertain yield and demand into 

a hybrid scenario tree. The proposed approach was applied for sawmill production planning under the 

uncertainty in raw material (log) quality and product (lumber) demand. We presented the 

computational results using a realistic scale prototype sawmill. Our numerical results indicated that the 

quality of 4-stage stochastic model solutions is significantly higher than those of the mean-value 
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deterministic and two-stage stochastic models. Moreover, it was shown that as the variability of 

demand is augmented at each stage of the scenario tree, the significance of using the multi-stage 

stochastic programming approach is increased. As further extensions of this work, we can consider 

seasonal demand and different trends at each stage of demand scenario tree. Moreover, the proposed 

approach can be applied for production planning in other manufacturing environments with uncertain 

demand and non-homogeneous and random characteristics of raw materials which results the random 

processes yields. 
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