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Abstract. This paper considers the time-dependent service network design problem with 

stochastic demand represented by scenarios. To our knowledge, this is the first attempt to 

address real life-size instances of this problem. The model integrates the balancing of 

empty vehicles, the cost of handling freight in intermediate terminals, the costs associated 

with moving freight using the selected services, and the penalty costs of not being able to 

deliver freight. A metaheuristic method is presented and computational results are 

reported on a set of large new problem instances. 
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Introduction 
Planning operations with the aid of decision support systems (DSS) can help in making better 
decisions. In industries ranging from telecommunications to various modes of transportation of 
freight and passengers, many DSS are based on service network design formulations. In the 
freight transportation industry, service network design methods provide help with deciding 
between which terminals a company should offer services, at which frequency and according to 
what schedules service should be offered, and how to deal with the empty vehicles. 
Simultaneously with the construction of the underlying service network, policies regarding 
operations at terminals have to be addressed, as well as the movement of freight from origins to 
destinations. This is usually done so that costs are minimized or profit maximized. The output of 
the process is usually denoted “transportation plan”. See Crainic (2000, 2003) for an introduction 
to service network design in freight transport.  

The last two decades have brought significant improvements in the modeling of these 
problems as well as in algorithmic and computational efficiency. Most of this work has been 
done for the deterministic case, however; the interested reader is referred to Crainic (2003) for an 
overview. Studies by Lium, Crainic, and Wallace (2007a, 2007b) indicate that cost reductions can 
be achieved when building plans based on the explicit consideration of stochastic demand 
compared to plans based on the assumption of deterministic demand. Due to combinatorial 
challenges, only small instances could be solved by the authors. This paper is based on their 
formulations and looks into how to obtain good solutions for large instances of the time-
dependent service network design problem with stochastic demand. We also extend the 
formulation proposed by Lium, Crainic, and Wallace (2007a, 2007b) to incorporate the cost of 
handling freight at intermediate terminals as well as the cost associated to movement/storage of 
the commodities (for example inventory cost of storing freight at intermediary terminals). In 
previous research, Ghamlouche, Crainic, and Gendreau (2003, 2004) used linear programming to 
optimize the commodity flow associated to a given service design. We propose instead a local 
search-based greedy heuristic able to obtain a more than tenfold increase in speed compared to 
the leading commercial solver, usually giving solutions close to optimality. 

The goal of this paper is to solve large time-dependent service network design problems with 
stochastic demand. These problems are seen as intractable and currently impossible to solve 
using exact methods. Our contribution is to provide the first attempt to solve such problems using 
metaheuristics. The paper presents computational results for 55 new test instances and shows that 
it is possible to solve such real life size problems within reasonable time. We also look at how the 
representation chosen for demand stochasticity can affect the solutions obtained. 

The paper is organized as follows. Section 1 provides the assumptions for the model, the 
mathematical formulation, and the representation of the demand stochasticity. Section 2 describes 
the main ideas and elements of the solution approach, which are then computationally evaluated 
in Section 3. As a result of this evaluation, the final metaheuristic design of the procedure we 
proposed is presented in the last sub-section of Section 3. Computational results with this 
metaheuristic are reported in Section 4 and we conclude in Section 5. 
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1. The stochastic service network design model 
Deciding how much capacity to offer and where and when to offer it so that it matches the 
demand, is one of the most important decisions being made in the transportation industry. The 
problem is that most cases, one does not know what the actual demand will be at the time when 
the plan is executed. Consequently, ad-hoc changes have to be made to the plans during 
operations to better match the offered capacity to the observed demand. Such ad-hoc changes 
usually come at a much higher cost compared to the capacity allocated in the original plan. 
Actually, the knowledge of future demand is out of reach for most practical applications, but the 
decision maker might be able to describe uncertainty with statistical distributions based, for 
example, on historical data. The best we then can do is to find a solution or a plan that minimizes 
the cost of offering services and the expected cost of possible ad-hoc changes required for 
executing the plan.  

We propose a model inspired by the time-dependent stochastic service network design 
formulation by Lium, Crainic, and Wallace (2007a, 2007b). Their model assumes the use of a 
homogeneous fleet of vehicles to move commodities. The commodities are moved from their 
origins, either in the period they become available or in later periods, and they are moved to their 
destinations within the delivery times, either directly or via one or more intermediary terminals. 
This formulation assumes that the handling of freight in terminals happens instantaneously 
(within the time period) and that there are no capacity limitations at terminals. It provides the user 
with decision support on how many vehicles to use and how to operate them. The planned 
capacity is supplemented by a high-cost ad-hoc “capacity increase”, representing the recourse to 
additional vehicles, outsourcing or demand rejection. 

The goal is to select and schedule services provided by a fleet of homogeneous vehicles, such 
that the expected total system cost is minimized. The expected total system cost consists of three 
components: 1) the cost of operating the vehicles; 2) the cost of handling and storing freight in 
intermediary terminals plus the cost of transporting freight using the vehicles; and 3) the cost of 
ad-hoc capacity increase. The schedules are to be repeated periodically. The stochasticity of 
demand is explicitly represented through scenarios. There are no restrictions on how many 
vehicles can be used. We assume that all demand must be met either using the company’s own 
vehicles or by ad-hoc capacity increases. Traveling time from one terminal to another can take 
one or more periods and no delays are assumed while traveling. Handling of freight happens 
instantaneously (within the period) and without delays. The capacity of the vehicles cannot be 
exceeded.  

We create a space-time network by repeating the set of nodes (freight terminals) N in each of 
the periods t = 0,…,T – 1. Because schedules must be periodic, we create repetitive schedules in a 
circular fashion and, thus, the issue of the end-of-horizon effects is not relevant. Assuming a T-
period planning horizon, a circular notation means that the period following period t is (t + 1) 
mod T. Each arc (i, j, t) represents either a service, if i ≠ j, or a holding activity if i = j, in period t. 
We assume that all nodes for period t can be connected to any other node in period ((t + ν) mod 
T), where ν is the number of periods required to go from one node to another. 

The stochastic demand is represented by a set of scenarios Ss∈ . To each scenario is attached 
a probability 0≥sp , with∑ = 1sp . The demand for each commodity Kk ∈ for every scenario s 
is defined as ),( skλ . A scenario is thus |K|-dimensional, as it contains one demand realization 
for each commodity Kk ∈ . We also define for each commodity its origin o(k), destination d(k), 
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and the periods σ(k) and τ(k) when it becomes available at its origin and must be delivered (at the 
latest) at its destination, respectively. The vehicle capacity is denoted Θ and is given in the same 
units as the demand. 

Let Ww∈  represent all arcs (i, j, t). Thus, the arc index w is dependent on the values of i, j, 
and t, and is calculated as jNiNtw +−+= )1(2 , where N is the set of nodes. A cost cij is 
associated with each arc (i, j, t), equal to the cost of operating a vehicle from terminal i to j if i ≠ 
j, or to the cost of holding a vehicle at the terminal i if i = j.  These arcs w can be combined to 
form paths Ll ∈ . To indicate whether an arc belongs to a path we introduce the indicator 
function )(klwδ , 

1 if arc belongs to path for commodity 
( )

0   otherwise

k

lw
w l L k

kδ
⎧ ∈

=⎨
⎩

 

Each commodity k can have several possible paths kLl ∈  from its origin o(k) to its destination 
d(k). Paths are commodity specific, but the capacity of the vehicles must be shared by the 
commodities when they have one or more arcs (services) in common. 

The use of these paths comes at a unit cost al which is made up of the following components: 
1) the cost associated with transporting a unit of freight (for example incurred by increase in the 
vehicle fuel consumption); 2) the cost associated with storing freight in a vehicle or at an 
intermediate terminal (there are no costs of storing freight at origin or destination); and, 3) the 
cost of moving freight from one vehicle to another at intermediate terminals when the path l for 
commodity k is served by two or more consecutive services (and, thus, vehicles). The latter cost 
component can also represent real-world costs associated with having freight being delayed at 
intermediate terminals. The cost of ad-hoc capacity increase of one unit is represented by b. The 
cost components cij, al, and b are not commodity specific. uw is the capacity offered on arc w that 
equals the total capacity of the vehicles traveling on the arc.  

The decision variables are: 
t
ijx :  Number of vehicles traveling from node i in period t to node j in period t + ν, where 

ν is an integer number greater than or equal to 1 representing the “traveling” time 
from i to j. This applies for all i, j and t. 

),( skfl :  Flow of commodity k on path l in scenario s. 

),( skz :  Amount of commodity k sent to its destination using the extra, ad-hoc capacity, in 
scenario s. 

The model then becomes: 
1

0
min

T
t

ij ij
i N j N t

c x
−

∈ ∈ =

⎡
⎢
⎣
∑∑∑        (1a) 

∑ ∑∑
∈ ∈ ∈

+
Ss Kk Ll

ll
s

k

skfap ),(        (1b) 

⎥
⎦

⎤
+ ∑ ∑

∈ ∈Ss Kk

s skzpb ),(        (1c) 

 
( mod ) ,  0, , 1,t t T

ij ji
i N i N

x x t T j Nυ+

∈ ∈

= = − ∀ ∈∑ ∑ K     (2) 
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ijl ∈∀∈∀∈∀∈∀∈∀≥ ,,,,,,0),,(),,(  (7) 
 

The objective function is given by the sum of (1a), (1b), and (1c) and minimizes the total 
expected system cost, where (1a) associates a cost with the vehicles moving between terminals 
plus the cost of holding them at terminals, (1b) denotes the expected cost of moving all 
commodities k on the paths l over all the scenarios, and the expected cost of adding ad-hoc 
capacity is given by (1c). Equation (2) is the conservation of flow constraint for vehicles, while 
(3) is a non-negativity and integrality constraint for vehicles. Relation (4) ensures that the flow of 
all the commodities k on an arc do not exceed its capacity. Equation (5) ensures that the demand 
of commodity k in scenario s is satisfied by using the vehicles of the company and, eventually, 
additional ad-hoc capacity. It can be noted that nothing restricts the flow splitting of a 
commodity, which can therefore use multiple paths from origin to destination. Relations (6) 
enforce that the flow of a commodity k on path kLl∈  must be equal to or lower than the 
minimum capacity of the arcs making up the path l. Relation (7) is a non-negativity constraint. 

The model makes some tacit assumptions regarding the construction of the paths for the 
commodities. One assumption is that any terminal can be used as an intermediate terminal. 
Another is that freight cannot be shipped out of such a terminal before it has arrived. We also 
make the assumption that there is a cost of having a commodity “on its way” to discourage 
excessive transportation and storage at intermediate terminals. There is no cost associated with 
storing freight at its respective origin and destination. 

The quality of our solutions can only be as good as the input used. Ideally, the distributions 
describing stochasticity in demand should be used directly.  However, the use of scenarios 
generated by sampling the scenario distributions allows us to compare our solutions to solutions 
obtained using exact methods (that cannot be obtained using continuous distributions). 
Unfortunately, the change from continuous to discrete distributions means losing of some of the 
information inherent in the underlying problem. The information loss happens during the scenario 
generation process, where the underlying distribution is being represented by relatively few 
scenarios. Scenarios are created similar to Lium, Crainic, and Wallace (2007a, 2007b) who based 
their scenario generation on triangular distributions for the demands. The use of a similar 
approach to test our algorithms is motivated by the opportunity to address real-life size instances 
of comparable but somewhat “richer” problems.  

When using scenarios in an optimization problem, one has to decide how many scenarios to 
use. There is no clear answer to this, but most researchers seem to agree that larger problems 
require a higher number of scenarios, and that the more scenarios used, the better the 
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representation of the underlying distributions. Scenarios that represent the underlying 
distributions in a good way should also give consistent results. This means that, creating multiple 
sets of scenarios from the same distribution should produce the same objective function value for 
all the sets. This is refereed to as in-sample stability by Kaut and Wallace (2007). For us, the 
consequence of having in-sample stability is that the objective function value will not depend on 
which scenario tree we choose, but on the underlying stochasticity of the demand and our ability 
to solve the problem. Experience has shown that in-sample stability improves with the use of 
more scenarios and is dependent on the number of commodities (|K|) considered. Previous work 
by Lium, Crainic, and Wallace (2007a, 2007b) shows that in-sample stability is achieved using 
approximately |K| + 10 scenarios for similar problems. Though addressing quite similar problems 
they did not integrate issues such as costs of handling and cost storing of goods. Unfortunately, 
increasing the number of scenarios implies an increase in the size of the problem. For problems 
that are difficult to solve this could mean having to choose either a poor solution to a good 
description of the problem, or a good solution to a poor description of the problem. We address 
this issue by letting each problem be represented by several sets of scenarios with different 
cardinalities. This allows us to compare how the number of scenarios affects the search time as 
well as the resulting objective function values. Ideally, this should yield good solutions either 
because the use of few scenarios provides us with a smaller problem or because the use of many 
scenarios gives a better description of the problem. Computational results are shown in Sections 3 
and 4.  

2. Proposed method 
The last two decades have seen a great increase in computation power. Nonetheless, several 
combinatorial problems are NP-hard and thus intractable for large instances using exact methods. 
For this reason, alternate techniques such as metaheuristics have received considerable attention 
from researchers as well as practitioners. Problems that earlier were considered impossible to 
solve can now be solved to near optimality within minutes or hours. 

We have developed a method for finding good solutions to the Stochastic Service Network 
Design Problem by combining exact and heuristic methods. The heuristic is based on Local 
Search and changes of neighborhood in different phases of the search. A solution is defined as a 
set of active arcs in the network which describes the possible routes of the vehicles over the time 
horizon. The search space will then be all combinations of arcs that describe a solution which can 
be served by the vehicles. The neighborhood of a solution will be all solutions that can be 
reached by performing particular transformations to the current solution (the so-called “move”). 
When evaluating a solution, one has to consider two different parts in calculating the cost. First, 
the cost of operating the vehicles according to the active arcs in the network, and second, the cost 
of delivering the commodities by moving the freight along paths, including the cost of 
outsourcing the part of the commodities which cannot be delivered by regular services. 

The heuristic we propose starts at an initial solution and moves from one solution to another 
using an initial neighborhood. Then, after a while, the search stagnates and does not improve for 
a number of iterations. The neighborhood is then changed and the search continues with the new 
neighborhood. The search may then improve for some iterations, but after a while it may stagnate 
again, and the search will swap back to the original neighborhood and continue with it. The 
search being in a different position of the search space, the initial neighborhood may yield 
possible improvements. The swapping of neighborhoods is done continuously during the search 
until a stopping criteria is fulfilled. The method utilizes the best from each neighborhood, 
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focusing the search in some promising areas with one neighborhood and exploring these new 
areas with the other neighborhood. The idea of changing neighborhoods is inspired by the 
Variable Neighborhood Search introduced by Mladenović and Hansen (1997). 

The heuristic considers possible new solutions by changing the active arcs in the network, and 
the flow of the freight has to be calculated along the possible paths for each commodity in that 
network. The optimization of the flow distribution could be done by exact methods, but this is 
very time consuming. In fact, the need for exact optimization is not very important during the 
search as most solutions are intermediary steps in the search for better solutions. To speed up 
computations, a greedy method is thus proposed to find indications of good moves, exact 
optimization being limited to solutions that are candidates for the overall best solution found 
during the search. 

2.1 Initial solutions 
Most metaheuristics require a starting solution that they can use as a basis for further 
improvement. In this paper we consider three different initial-solution procedures, all with a fixed 
number of vehicles. 

2.1.1 All vehicles parked 
Having decided on the number of vehicles to use, we start with the vehicles parked for the entire 
time horizon, evenly distributed among the terminals. In such a solution no commodities will be 
delivered and all transportation has to be outsourced. When the search starts, the solution will 
build itself from scratch with no predefined structure. 

2.1.2 Randomized initial solutions 
The second procedure lets vehicles follow randomly selected paths. Each vehicle starts at a 
randomly selected terminal, and then goes to another randomly selected terminal, where it arrives 
ν periods later, and so on. At the end of the planning horizon, each vehicle is repositioned to its 
starting point. 

2.1.3 Demand-driven initial solutions 
More sophisticated initial solutions can be created by letting the underlying demand be taken into 
account in the process. We define the commodity flow factor as the average demand for each 
commodity for all the scenarios divided by the number of periods between σ(k) and τ(k). A 
commodity with a large average demand to be delivered within a few time periods will have a 
large flow factor, while a commodity with a lesser demand and more periods available will have 
a smaller flow factor. Sorting the commodities in descending order according to this factor will 
prioritize them accordingly. 

We also define a period flow factor for each period to be the sum of the commodity flow 
factors for the commodities it is possible to send in the period. Then the periods can be sorted 
ascending according to this period flow factor to decide which periods are least demanded by the 
commodities. 

The idea behind the demand-driven initial solution is to find the most dominant commodities, 
and construct a solution that transports those commodities during the possible time periods that 
are least demanded by the other commodities. An initial solution can then be built by introducing 
direct service arcs in the network for one commodity at a time for the least demanded time period 
available. 
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The demand-driven initial solution will be constructed using the following algorithm: 

1. For each commodity k, find the commodity flow factor. 
2. Sort the commodities in descending order of their commodity flow factors. 
3. For each period, find the period flow factor. 
4. Sort the periods in ascending order of their period flow factors. 
5. Initialize all vehicles by marking them available to use in all the periods. 
6. Construct the paths for the vehicles. 

a. Loop through all commodities from the highest commodity flow factor to the 
lowest. 

b. Loop through all periods from the lowest period flow factor to the highest. 
c. If it is possible to send the current commodity in the current period, loop through 

all the vehicles. 
d. Add the direct connection from origin to destination for the current commodity to 

a possible vehicle. Connections which can be linked with other existing 
connections are prioritized. Once a connection is added, return to 6a for the next 
commodity. 

7. Go through the routes of all the vehicles and check if any of them is still not used in 
any period. If true, change the position to the same node as in an adjacent period. 

2.2 Neighborhood structure and moves 
A solution is defined as a set of active arcs in the network and the associated flow distribution. 
We represent the first part by an integer vector describing the position of each vehicle, i.e., the 
index of the terminal where the vehicle is, at each time period. Once the positions of the vehicles 
are known, the active arcs are the services between the corresponding terminals. The search space 
is then defined as all vectors of vehicle positions corresponding to feasible solutions given the 
fleet of vehicles. 

Neighborhoods condition how the search progresses and performs. Moving from one solution 
to a neighboring one is performed by changing the value of one or more variables in the vehicle-
position vector thereby obtaining a different solution by shifting capacity from some arcs 
(services) to others. The neighborhoods used are described in the following, while the evaluation 
procedures are detailed in Section 2.3. 

2.2.1 Random-period neighborhood 
One way to define a move in a service network design problem is simply to change the position 
of one of the vehicles in one time period. We have named this type of neighborhood a Two-
Terminal Swap Neighborhood (TTS). An example of this neighborhood can be seen in Figure 1 
where arcs represent the integer decision variables (the movement of a vehicle) for three different 
solutions. The solid arcs represent the services offered in the current solution, while the dashed 
and the dotted arcs represent the corresponding services in two neighboring solutions. The solid, 
the dashed, and the dotted arcs form direct paths starting in the first period in terminal 2 and 
ending at the same terminal in the last time period. By enforcing that these paths must end up in 
the same terminal they started from, we are sure that the schedule for the vehicle is feasible in all 
moves and that the constraint sets (2) and (3) are not violated. A move in this setting implies a 
shift of Θ units of capacity from the path in the current solution to a neighboring solution with the 
result of possibly closing one or more arcs if their capacity is equal to Θ. 

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2009-12 7



 
 

 
Figure 1. The current solution and two of its neighboring solutions 

The TTS neighborhood could be very large for large instances and a full evaluation of all 
possible moves would be very time consuming. Restricting the neighborhood to a subset of 
moves only would speed up the search, which we prefer even though some promising moves 
might be overlooked. 

One approach to restrict this neighborhood is to focus on one randomly selected time period 
and limit the moves to this period. Thus, every vehicle can be moved to all nodes other than the 
current one in the selected time period and the number of neighboring solutions to evaluate is 
(|N|-1) x Number of Vehicles. The type of move illustrated in Figure 1, where relatively short 
paths are considered, makes the neighborhood quite small, thereby making it relatively fast to 
evaluate all possible moves. 

The variant of the TTS-neighborhood which evaluates the possible moves in one randomly 
selected period only is called Random-Period Neighborhood (RPN). An overview of a search 
with RPN is as follows 

1. Chose one time period randomly. 
2. Loop through all vehicles. 

a. Try to change the position of the current vehicle in the chosen time period to all 
possible positions; 

b. Evaluate the neighbor solutions found in 2a; 
3. Select the best neighbor found in 2. 

A special case in the Random-Period Neighborhood is when the last time period is chosen. 
The mathematical model allows vehicles to end up at another customer than it started from as 
long as the total number of vehicles at each node is the same in the last period as it was in the 
first. In these cases the Random-period Neighborhood will have an extra control if the solution is 
feasible in the case where the last time period is chosen and only the feasible solutions will be 
evaluated.  

Notice that we did not include tabu-like mechanisms to prevent the search from cycling 
(Glover and Laguna 1997). Indeed, preliminary experimentations indicated that the high degree 
of randomness inherent to these neighborhoods made them superfluous. 

2.2.2 Demand-based neighborhood 
While the neighborhood structure described in Section 2.2.1 has the advantage of providing a 

somewhat limited neighborhood that can be evaluated quickly, it also has the drawback of being 
myopic, bearing the risk of focusing too strongly on parts of the network. We therefore explore 
an alternate neighborhood structure based on paths covering more time periods to try to 
overcome these myopic tendencies. An example of this neighborhood can be seen in Figure 2, 
where the solid arcs constitute the current solution while the dashed arcs represent one of its 
potentially many neighbors.  
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Figure 2. Neighborhood consisting of longer paths 

Enumerating and evaluating all possible neighbors is usually a daunting task due to the size of 
the neighborhood, which grows very rapidly with the number of periods and nodes. We thus 
evaluate only the most promising neighbors. 

To use this approach efficiently, we need to identify certain characteristics of neighboring 
solutions that are especially promising. Thus, adding capacity to a solution where a number of 
commodities rely heavily on “expensive” ad-hoc capacity increase would probably result in a 
better solution. One may therefore identify the terminals between which the largest number of 
commodities make use of ad-hoc capacity and insert a service (vehicle) instead. Of course, 
vehicle flow-conservation constraints must continue to be enforced. This is illustrated in Figures 
3 to 5. Figure 3 shows the case of ad-hoc capacity use between terminals 1 and 2 at period 2, 
while a vehicle is held at terminal 3. In Figure 4, the vehicle is moved to serve the commodities 
between terminals 1 and 2, removing the need for ad-hoc capacity. This move makes for an 
infeasible schedule for the vehicle. Feasibility is recovered by repositioning the vehicle in periods 
1 and 3 as illustrated in Figure 5.  

 

 
Figure 3. Ad-hoc capacity use from 

terminal 1 to terminal 2 (dotted arc), while 
a vehicle is held at terminal 3 (solid arcs) 

Figure 4. Move of vehicle to serve from 
terminal 1 to terminal 2 and elimination 

of ad-hoc capacity use 

 

 
Figure 5. Feasibility recovering by repositioning the vehicle in periods 1 and 3. 

A Metaheuristic for Stochastic Service Network Design

CIRRELT-2009-12 9



 
 
Selecting the neighbors that are to be evaluated is done by identifying the commodity with the 

highest expected ad-hoc capacity utilization cost in the current solution. Then, the demand-based 
neighborhood consists of the new direct arcs that can be inserted into the solution and service that 
commodity.  Thus, the possible moves are found by inserting an arc from the origin to the 
destination of that commodity for each of the periods the commodity is available and for each of 
the vehicles available as shown in Figures 3, 4, and 5. Figure 6 illustrates the search based on this 
neighborhood. 

 
Initialization; 
iteration = 0; 
while iteration < max iteration do 
      Find the commodity k with the highest expected 
      level of utilization of ad-hoc capacity in the current solution; 
      if no ad-hoc capacity used then 
            set k = random commodity; 
      end 
      for first vehicle to last vehicle do 
            startTime = σ(k); 
            notDeliv = τ(k); 
            if notDeliv < 0 then 
                  notDeliv = notDeliv + T; 
            end 
            while startTime ≠ notDeliv do 
                  Create candidate by: 
                     -  inserting an arc from the origin to destination at startTime; 
                     - recovering feasibility regarding vehicle flows by connecting the 

inserted arc to the path of the vehicle; 
                  Evaluate the candidate; 
                  if cost of candidate < cost of best neighbor solution then  
                        best neighbor solution = candidate; 
                  end 
                  startTime ++; 
            end 
      end 
      if cost of best neighbor solution < cost of best found solution then  
            best found solution = best neighbor solution; 
      end  
      current solution = best neighbor solution; 
      iteration ++; 
end 

Figure 6. Algorithm 1: A demand-based neighborhood search 
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2.3 Evaluating moves 
Three factors have to be considered when evaluating moves: the cost of operating the resulting 
schedule (the cost of the design), the expected cost of moving freight using this schedule, and the 
expected cost of ad-hoc capacity utilization. The cost of operating the schedule is given by (1a) 
and evaluating it is straightforward. All that has to be done is to calculate the cost of operating 
vehicles between terminals or holding them at terminals according to the given schedule.  To 
calculate the cost of moving the freight in the network (term 1b), one has to solve the flow 
distribution problem. Once the resulting path flows are known, the cost of using ad-hoc capacity 
(term 1c) may be computed directly. Evaluating the cost of the flow distribution is the potentially 
most time-consuming part of this procedure. 

The exact evaluation of the flow distribution can be done in polynomial time by formulating 
an LP with (1b) and (1c) as objective function and (3) - (9) as constraints (with fixed integer 
variables). This is, however, a computationally costly procedure: preliminary tests have shown it 
to be the most time-consuming component of the entire method. 

We therefore developed a greedy heuristic that finds good new neighboring solutions 
substantially faster than the exact method. Preliminary tests indicate that the solutions of the 
greedy method are usually almost as good as those obtained using the exact method. The greedy 
method was on average 40 times faster than the exact optimization on our test instances. 

The method proceeds as follows. For the move being evaluated, we generate a list of paths for 
each commodity from its origin to its destination. We sort the paths in increasing order of their 
cost. In addition, the commodities are sorted by dominance, i.e., the average demand from the 
scenarios divided by the number of time periods between when the commodity is available and 
when it should be delivered. The most dominant commodity is then assigned to the cheapest path 
that can be used to move it. This is continued until all demand in all scenarios is satisfied using 
this same path or the path is saturated. If demand exceeds the capacity of the path in one or more 
scenarios the exceeding freight is shifted to the second cheapest path for this commodity (and so 
on). The subsequent commodities are treated similarly until all commodities have been examined. 
Commodities that were not assigned to a path use ad-hoc capacity. The cost associated to the 
paths and the ad-hoc capacity is then computed. 

3. Evaluating the algorithmic components 
Several algorithmic components have been introduced in the previous section. The worth of each 
and of the possible combinations thereof must be evaluated to yield the final metaheuristic design 
for the class of problems we contemplate. This is the scope of this section, which also introduces 
the problem instances used throughout the experimental phases. 

3.1 The test cases 
Service network design research has, with few exceptions, focused on deterministic problem 
variants. Consequently, test instances that integrate stochasticity are to the best of our knowledge 
not publicly available. We therefore present 55 new test instances that take demand stochasticity 
into account. The instances are available online at: http://www.himolde.no/OR-problems.  

3.1.1 Nodes, planning horizon, O-D pairs, and demand 

We created instances as diverse as possible. Using from 6 to 30 terminals, we generated problem 
instances from small enough to be solved using exact methods to problems equivalent in 
dimensions to those faced by medium-sized European less-than truckload (LTL) carriers. 
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An important aspect of any time-dependent problem is the planning horizon. The more periods 

in a planning horizon, the better the solutions that can be obtained.  Unfortunately, this has the 
consequence of increasing the size of the problem. Our instances have a planning horizon of 
either 7 or 14 periods. The problem size also depends on ν, which is the number of periods 
required to travel from one node to another. The model formulation in Section 1 allows for ν 
taking any integer value 1 ≤ ν ≤ T. In our test instances, however, ν = 1, which makes our 
problems consist of |N|2 x T integer variables. 

The time span between when a commodity becomes available (σ(k)) and when it has to be 
delivered (τ(k)) at its destination typically affects the costs and the number of paths it can follow. 
This time span was randomly selected with an average of 3 or 5, according to the instance. 
Commodity demands were computed by discretizing triangular distributions. Each commodity 
has a demand lower than the vehicle capacity Θ. The test instances were constructed to avoid that 
few commodities dominate the solution through, for example, a significantly higher demand than 
the other commodities. 

3.1.2 Cost structures 
In the transportation industry, a large fraction of the costs is associated to operating a fleet of 
vehicles, trains, aircraft, ships, trucks, and can be divided into several components such as cost of 
capital, maintenance, fuel, depreciation, wage costs, wear and tear, etc. These costs are closely 
connected to the distance or travel time between the terminals. The cost (distance) for our test 
instances are given by symmetric matrices that are strongly inspired by the cost/distances found 
in the E-016-03 and E-031-09 vehicle routing test instances by Christofides, Mingozzi, and Toth 
(1981) and Hadjiconstantinou, Christofides, and Mingozzi (1995), respectively. 

The instances also include costs for handling freight at intermediary terminals, holding 
vehicles at terminals, holding freight at intermediary terminals, moving freight with the particular 
vehicles considered, and adding ad-hoc capacity. These costs were estimated as proportions to the 
traveling costs of the particular instances. 

3.1.3 Number of scenarios 
Increasing the number of scenarios to describe the underlying distributions provides a better 
description of the actual problem, ceteris paribus. Unfortunately, it also increases the size of the 
instance being solved. Experience from solving similar problems using exact methods shows that 
the number of scenarios used has a significant impact on the solution time. We therefore balance 
the quality of the problem description with the problem size by using 3 different discretizations of 
the underlying distributions consisting of 20, 60, and 90 scenarios, respectively, for each problem 
instance. Our experiments have showed that, while the number of scenarios has an impact on the 
memory and the computation time required solving a problem instance, the objective function 
values of the instance obtained with different number of scenarios do not differ very much. We 
therefore do not generate a larger number of scenarios. 

3.2 Calibration and variant evaluation 
This section presents a comparative evaluation of the algorithmic variants introduced earlier on, 
the alternative initial solution procedures and neighborhood definitions, in particular. The 
resulting heuristic that we propose is shown in Section 3.2.5. 
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3.2.1 Comparison of initial solution procedures 
Comparing the objective-function values of the initial solutions produced by the three procedures 
of Section 2.1 shows the demand-driven solution outperforming the others significantly. A 
parked initial solution implies that all the commodities use ad-hoc capacity and the costs of such 
solutions are 44.79 times higher on average than the best solutions for the problem instances 
described in Section 3.1. A randomly-created initial solution is also having most commodities 
using ad-hoc capacity. On average for the test problem instances, random-initial solutions have a 
cost 32.27 times higher than the best solutions. Demand-driven initial solutions deliver many 
commodities using the existing fleet, their costs being on average only 3.08 times worse than the 
best solutions for the instances in our test set. The experiments show, however, that the results 
change as the search progresses and the number of iterations increases. 

After 5000 iterations performed on the test instances, the results starting from the parked 
initial solutions were on average 2.86% worse than the best known solutions, compared to 3.53% 
and 5.90% worse starting from the random and demand-driven initial solutions, respectively. It 
thus seems that, the demand-driven strategy drives the search to local optima containing 
combinations of services from which the metaheuristic cannot escape easily. We conclude that 
the demand-driven initial solution should be chosen to obtain a “good” solution fast, but a parked 
initial solution is to be preferred for a longer search. We used parked initial solutions for our 
subsequent tests. 

3.2.2 Limiting the search space 
The model of Section 1 does not specify the route of each vehicle and yields the arcs (services) 
used and the loads on these arcs. It is thus possible that solutions exist where vehicles end up at 
nodes different from the ones they started, the only requirement being that the vehicle-balance 
conditions be verified at all nodes and time periods. This means that valid solutions may exist 
where vehicles swap routes from one week to another. Commodity path costs should be higher in 
this case. The evaluation of these costs would be problematic, however, without the knowledge of 
the vehicle routes. 
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Figure 8. Impact on search performance of enforcing each vehicle to end up in the same 

terminal as it started (Λ) 

These difficulties result in the described neighborhoods and moves not effectively addressing 
solutions where vehicles swap routes, generally leading to less good solutions than when vehicles 
are not permitted such swaps. We identify with the parameter Λ the limitation of the search space 
to the case where all vehicles have to end up at the same node they started from. Λ may be used 
in all neighborhoods and tests were run both with and without it. 

Figure 7 displays the difference between the results of a search with and without Λ on all 
instances listed sequentially (detailed results may be found in Tables 2 and 3 in the Appendix). 
The objective-function value obtained by the search with Λ was divided by the corresponding 
value obtained without Λ, and 1 was subtracted from the result. Then, instances with a positive 
deviation found a better result using Λ, while those with a negative deviation found the best result 
not using Λ. As we can see in the figure, the variance can be significant for some instances. On 
average the solutions found with the search limitation Λ are 2.6% better than the solutions found 
without. 

3.2.3 Number of vehicles 
The model of Section 1 does not constrain the number of vehicles to be used. Solving the model 
using an exact method would yield the optimal required number of vehicles. A heuristic cannot 
provide such a figure. We can, however, use the heuristic imposing different fixed number of 
vehicles and, thus, approximating the minimum number of vehicles required by a given instance.  

Figure 6 shows the results for the instance SND80C30N14D5T with 20, 60, and 90 scenarios 
and different numbers of vehicles. The tests show best results for this instance in the 8 to 11 
vehicle range, the lowest values being obtained, by a small margin, for 10 or 11 vehicles. We can 
also clearly see from the large improvement obtained by adding the eighth vehicle that 7 vehicles 
are not enough. This instance is typical, test results displaying a similar behavior on al instances. 
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Figure 9. Impact of the numbers of vehicles and scenarios on the solution cost 

The cost of ad-hoc capacity is relatively high compared to the cost of operating the vehicles. 
Hence, a solution where a significant part of the commodities requires ad-hoc capacity will be 
more expensive than a solution using mostly the existing vehicles. Typically, the number of 
vehicles where the graph flattens corresponds to the number needed to be able to deliver all 
commodities in a majority of scenarios. Ad-hoc capacity might still be needed in some scenarios, 
but better solutions can then be created by adding more vehicles. Thus, for the number of 
vehicles used in the best found solutions the amount of ad-hoc capacity used is normally close to 
zero for all commodities. 

A direct link from the origin to the destination terminal is the cheapest way to move the 
commodity freight. Hence, when the number of vehicles is sufficient, solutions are created with 
direct links (services) able to transport the commodities in most scenarios. Alternate paths have to 
be created, however, to cope with scenarios with large demand. When the number of vehicles is 
too small to create enough direct links, some commodities are transported using longer service 
paths. In most such situations, the vehicle routes are such that the commodities stay on the same 
vehicle for several periods before arriving at destination. Paths that include more than one vehicle 
are generally avoided because of the extra cost of transferring the goods, but for some 
commodities such paths are possible alternatives. 

For most problem instances in our test set, the number of vehicles was sufficient to create 
direct links for a majority of the commodities and most of them were transported only one period. 
Alternative paths with up to three periods were however used in some of the scenarios. Paths 
spanning more than three periods and paths including more than one vehicle were used by only 
1.2% of all the commodities and only in the scenarios with an amount much larger than the 
average.  

3.2.4 Evaluation of moves 
The greedy algorithm makes the search proceed much faster than when the exact optimization of 
the freight flow is used. Experimentally, for up to 100 iterations, no significant difference in the 
quality of the results may be observed between a search using the greedy and a search using the 
exact optimization. The results after 100 iterations are on average 3.65 times poorer than the best 
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results found for the test problem instances. In some cases, the same neighbor was selected by 
both methods but even when the search trajectories differed, the greedy method produced 
solutions with an objective value that did not differ by more than 4.24% on average above those 
found with a search using exact optimization. Comparing the computation time required by the 
two methods indicates a significant difference, however. For the instances in our test set, a search 
with the exact optimization uses on average more than 40 times more time than a search with the 
greedy method.  

Notice that, during the search, it is not vital to find the exact solution value for each temporary 
solution evaluated, but rather to find indications whether a move seems good or not and compare 
the alternative candidates. For this purpose, a greedy and fast algorithm for distributing the 
freight can be almost as useful as an exact optimization method which uses much more time. 

The exact optimization method should then be limited to particular candidate solutions only. 
In our case, we limit the exact method to the solutions found by the greedy algorithm with an 
objective-function value within 5% of the value of the best known solution and after the search 
has progressed for more than 60% of the total number of iterations. This strategy increases the 
computational time by only some 6% compared to a pure greedy search. This is considered 
acceptable to provide optimal flows for the best solutions found. 

3.2.5 Evaluation of neighborhoods and final heuristic 
The preliminary experiments have shown that a local search using the neighborhoods described 
in Sections 2.2.1 and 2.2.2 performs very differently. 

A search using the random-period neighborhood strategy for 5000 iterations is rather time 
consuming due to the size of the neighborhood being evaluated. However, it provides gradual 
improvements during all phases of the search and produce results on average 13% above the best 
known solutions. A search conducted for the same duration with the demand-based neighborhood 
converges very early in the search and the results produced are on average 44% above the best-
known solutions for our test instances. This strategy seems get often stuck in a local optimum and 
has problems escaping from it due to the limited number of possible neighbors.  

By combining these two neighborhoods, it is however possible to utilize their best features. 
The demand-based neighborhood would identify which commodities use the most ad-hoc 
capacity and focus the search around these for a limited number of iterations. When the 
improvement stagnates, the search swaps to the random-period neighborhood. Then after a given 
number of iterations without improvement, the search swaps back to the demand-based strategy, 
and so on. 

We tested this mixed-neighborhood strategy by swapping between the two neighborhood after 
100 iterations without improvement for the RPN and 10 iterations without improvement for 
DBN. This strategy gave significantly better results than using only one of the neighborhoods. 
The global best solutions to our test instances were obtained by selecting the best out of a large 
number of solutions found with a number of runs with different parameter settings. The results 
found by the mixed-neighborhood strategy were on average less than 3% above these global best 
solutions. We therefore selected the mixed-neighborhood for the final form of the metaheuristic 
we propose and for all experiments. The search using the mixed-neighborhood and switching 
between the neighborhoods corresponds to the Algorithm 2 presented in Figure 10. 
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initialization; 
RandomPeriod = true; 
iteration = 0; 
iteration RPN = 0;  // Counter for iterations with random-period Neighborhood 
iteration DBN = 0;  // Counter for iterations with demand-based Neighborhood 
while iteration < max iterations do 
      if iteration RPN > φ then 
            RandomPeriod = false; 
            Iteration DBN = 0; 
      end 
      if iteration DBN > β then 
            RandomPeriod = true; 
            iteration RPN = 0; 
      end 
      if RandomPeriod = = true then 
            search using random-period neighborhood search strategy; 
            if cost of best neighbor solution < cost of best found solution then 
                  best found solution = best neighbor solution; 
                  iteration RPN = 0; 
            else 
                  iteration RPN ++; 
            end 
      end 
      if RandomPeriod = = false then 
            search using demand-based neighborhood search strategy; 
            if cost of best neighbor solution < cost of best found solution then 
                  iteration DBN = 0; 
                  best found solution = best neighbor solution; 
            else 
                  iteration DBN ++; 
            end 
      end 
      move to best neighbor solution; 
end 

Figure 10. Algorithm 2: The mixed-neighborhood search 

The metaheuristic that we propose may then be summarized as follows: 

1. Create an initial solution where all vehicles are parked at a terminal. 
2. Set φ = 100, β = 10, and the max number of iterations = 5000. 
3. Perform a search with greedy optimization and variable neighborhoods as shown in 

algorithm 2. 
a. If iterations = ψ 

i. Perform an exact optimization of the flow of the best found solution so far. 
ii. Save the solution value in BestSolVal. 
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b. If iterations > ψ and the greedy value of the best neighbor solution is within α% of 

BestSolVal 
i. Perform an exact optimization of the flow on the best neighbor solution and 

save the solution value in BestNeighVal. 
ii. If BestNeighVal < BestSolVal, set BestSolVal = BestNeighVal and save the 

solution as the best found so far. 
4. Report best found solution and stop. 

A local search from a demand-driven initial solution with a full TTS neighborhood will 
normally find a local optimum within 30 iterations for the instances in our test set. With a parked 
initial solution and a mixed neighborhood, the local optimum is not that easy to identify because 
of the high degree of randomness in the search, but the search starts to level before 500 iterations 
even on the largest instances. Figure 11 illustrates the general observed behavior by displaying 
the improvement in the objective-function value for instance SND80C30N14D5T90S. The first 
125 iterations are omitted for scaling reasons. 

Preliminary tests show that with the mixed neighborhood, most improvements will be 
achieved before the search reaches 4000 iterations. Even though for some instances later 
improvements will be seen, this number is considered sufficient to reach sufficiently good 
solutions. As indicated previously, we run the greedy search for 4000 iterations. The search is 
then be extended by 1000 iterations, for a total number of 5000. During these 1000 iterations, all 
solutions with a greedy objective-function value within 5% of the value of the best known 
solution will be optimized to see if they are better than the best solution found earlier. We denote 
ψ, the minimum number of iterations before the exact optimization kicks in and α, the maximum 
deviation from the objective-function value of best found solution used to decide if an exact 
optimization should take place. 

 
Figure 11. Example of improvement in the objective-function value during the search 
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4. Computational Experiments 
The metaheuristic described in Section 3.2.5 was coded in C++ and run on a Pentium 4 2.40 GHz 
computer with 512 MB of RAM running Windows XP. The results are presented in Table 1 and 
in Tables 2 and 3 (in the Appendix).  

Since we present the first experiments on these problem instances comparison with other 
methods is difficult. The smallest instance, SND14C6N7D3T20S, is however solved to 
optimality by exact methods using the model in Section 2. On this small problem, the solver 
CPLEX 9.0 using the network simplex algorithm and default options required about 9.5 hours to 
find the optimum, while our heuristic used 140 seconds to run for 5000 iterations. The heuristic 
yielded an objective value of 6057.50 after 5000 iterations, representing a deviation of 5.2% with 
respect to the optimal solution of CPLEX. Running the heuristic for 10000 iterations with the 
same parameters reduced the optimality gap to 3.3% only. Testing larger instances using CPLEX 
shows the limits of exact methods. The test on SND40C16N7D3T20Sa run for one week on a 
Pentium 4, 3.2GHz, 2GB RAM without finding the optimum. The best result found by CPLEX 
during this period, was 121740.3 which is more than 5 times higher than the result achieved by 
the metaheuristic in 4288 seconds for 5000 iterations. 

Table 1 displays the results for the two instances. The table indicates the number of 
commodities (|K|), the number of terminals (|N|), the number of time periods in the planning 
horizon (T), the average available time for delivery of the commodities ( tΔ ), the number of 
scenarios (|S|), the minimum number of vehicles required to avoid ad-hoc capacity utilization 
(Min. Veh.), the number of vehicles used in the best found solution (No. Veh.) and their respective 
cost (Obj. F. Meta.), as well as the objective-function values for the metaheuristic (the value after 
10000 iterations is indicated for the first instance) and CPLEX. 

 
 

Table 1. Best found solutions by the metaheuristic and CPLEX 

Instance |K| |N| T tΔ |S| Min.
Veh.

No. 
Veh.

Obj. F. 
Meta. 

Obj. F. 
CPLEX 

SND14C6N7D3T20S 14 6 7 3 20 3 3 5948.5 5759.0 
SND40C16N7D3T20Sa 40 16 7 3 20 8 8 24264.3 121740.3

 
We do not have a comparison point for the other problem instances and it is thus hard to 

evaluate how good the solutions found by our heuristic are. We can, however, compare them to 
each other and draw some conclusions from that. The set of test instances was actually created to 
make it possible to analyze each of the parameters individually. Thus, a number of instances 
differ in the number of scenarios only, with the same expected value of the demand for all 
scenarios.  

When examining the instances with the same number of commodities, terminals, average time 
for delivery, and scenarios, but with different planning horizons, we find, as expected, that a 
seven-day planning horizon requires more vehicles than a fourteen-day one. On average, the 
minimum number of vehicles needed for the seven-day instances were 48% higher than for the 
corresponding fourteen-day instances. The differences in the length of the routes, however, made 
the solution value of the seven-day instances on average 88% of that the fourteen-day instances. 
The size of the neighborhood, which is the factor deciding most of the searching time per 
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iteration, is not affected by the number of time periods. The CPU time used for the fourteen-day 
instances is, however, about 18% above that of the instances with a seven-day horizon. 

From the point of view of the difference in time periods between the delivery deadline and the 
availability of the commodity, we find that instances with a longer difference generally need 
fewer vehicles than instances for which this difference is small. An average delivery time of five 
periods will, as a basic rule, save one vehicle and the solution value is on average 4% lower 
compared to those instances with an average of three periods delivery time. 

When examining the impact of the number of scenarios, we find that using 20 or 90 scenarios 
yields approximately the same objective-function value. With 60 scenarios, we get an objective-
function value 3.5% higher than the others. This is somewhat unexpected as previous experiences 
(Lium, 2006) show that an increase in the number of scenarios would result either in no change 
or an increase in the objective-function value.  

It is hard to find patterns regarding the limitation of the search (Λ). The instances where this is 
profitable seem to be randomly distributed among instances of all sizes. 

5. Conclusions 
We proposed a new metaheuristic approach for time-dependent stochastic service network design 
problems. We believe this to be one of the first successful metaheuristics for this class of 
problems. 

The metaheuristic is inspired by VNS principles and uses fast approximations to the move 
evaluations where appropriate. Computational experiments on a large set of problem instances 
indicate that the metaheuristic provides the means to address large instances of this complicated 
class of problems within reasonable time.  

Interesting research perspectives are now open in improving the methodology. One such 
avenue concerns the use of arc pseudo dual information to help decide where to increase/decrease 
capacity. The development of cooperative parallel mechanisms for this metaheuristic constitutes 
another way to increase the efficiency and quality of the search. We are initiating research on 
some of these ideas and will report in the near future 
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Appendix 
The following two tables display detailed results by instances described by their name (column 
1). For each instance, the following information is indicated: the number of commodities (|K|), 
the number of terminals (|N|), the number of time periods in the planning horizon (T), the average 
available time for delivery of the commodities ( tΔ ), the number of scenarios used (|S|), whether 
yes/no the vehicles must return to where they start (Λ), the minimum number of vehicles required 
to avoid ad-hoc capacity utilization (Min. Veh.), the number of vehicles used in the best found 
solution (No. Veh.) and their respective cost (Obj. F. Meta.).  
 

Table 2. Best found solutions – 7 days planning period 

Instance |K| |N| T tΔ |S| Λ Min.
Veh.

No. 
Veh. 

Obj. F. 
Meta. 

SND14C16N7D3T20S 14 16 7 3 20 Y 4 4 785.57 
SND14C16N7D5T20S 14 16 7 5 20 N 3 3 715.42 
SND14C30N7D3T20S 14 30 7 3 20 Y 4 4 780.62 
SND14C30N7D5T20S 14 30 7 5 20 N 3 4 706.96 
SND40C16N7D3T20S 40 16 7 3 20 N 8 8 2199.67 
SND40C16N7D3T90S 40 16 7 3 90 Y 8 9 2176.45 
SND40C16N7D5T20S 40 16 7 5 20 Y 7 7 2047.34 
SND40C16N7D5T60S 40 16 7 5 60 N 7 8 2071.66 
SND40C16N7D5T90S 40 16 7 5 90 N 7 8 2056.52 
SND40C30N7D3T20S 40 30 7 3 20 Y 8 8 1744.14 
SND40C30N7D3T60S 40 30 7 3 60 Y 8 8 1707.36 
SND40C30N7D3T90S 40 30 7 3 90 N 8 9 1760.65 
SND40C30N7D5T20S 40 30 7 5 20 N 7 8 1602.77 
SND40C30N7D5T60S 40 30 7 5 60 Y 7 7 1611.62 
SND40C30N7D5T90S 40 30 7 5 90 Y 7 8 1604.78 
SND80C16N7D3T20S 80 16 7 3 20 N 14 14 4138.12 
SND80C16N7D3T60S 80 16 7 3 60 N 14 14 4050.01 
SND80C16N7D3T90S 80 16 7 3 90 N 14 14 4110.83 
SND80C16N7D5T20S 80 16 7 5 20 Y 12 13 3694.77 
SND80C16N7D5T60S 80 16 7 5 60 N 12 13 3699.18 
SND80C16N7D5T90S 80 16 7 5 90 N 12 13 3724.42 
SND80C30N7D3T20S 80 30 7 3 20 Y 16 16 3941.83 
SND80C30N7D3T60S 80 30 7 3 60 N 16 16 4014.35 
SND80C30N7D3T90S 80 30 7 3 90 Y 15 16 4003.77 
SND80C30N7D5T20S 80 30 7 5 20 N 13 14 3414.57 
SND80C30N7D5T60S 80 30 7 5 60 Y 13 14 3414.37 
SND80C30N7D5T90S 80 30 7 5 90 N 13 14 3454.48 
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Table 3. Best found solutions – 14 days planning period 

Instance |K| |N| T tΔ |S| Λ Min.
Veh.

No. 
Veh. 

Obj. F. 
Meta. 

SND14C16N14D3T20S 14 16 14 3 20 Y 3 3 924.72 
SND14C16N14D5T20S 14 16 14 5 20 N 2 2 894.42 
SND14C30N14D3T20S 14 30 14 3 20 Y 3 3 844.09 
SND14C30N14D5T20S 14 30 14 5 20 Y 3 3 830.82 
SND40C16N14D3T20S 40 16 14 3 20 N 6 6 2509.48
SND40C16N14D3T90S 40 16 14 3 90 Y 6 6 2570.39
SND40C16N14D5T20S 40 16 14 5 20 Y 4 5 2289.50
SND40C16N14D5T60S 40 16 14 5 60 N 4 5 2289.63
SND40C16N14D5T90S 40 16 14 5 90 Y 4 5 2279.95
SND40C30N14D3T20S 40 30 14 3 20 N 5 6 1993.47
SND40C30N14D3T60S 40 30 14 3 60 Y 5 6 1934.19
SND40C30N14D3T90S 40 30 14 3 90 N 5 6 1974.51
SND40C30N14D5T20S 40 30 14 5 20 Y 5 5 1823.63
SND40C30N14D5T60S 40 30 14 5 60 N 5 6 1850.93
SND40C30N14D5T90S 40 30 14 5 90 N 5 5 1811.24
SND80C16N14D3T20S 80 16 14 3 20 N 9 10 4524.15
SND80C16N14D3T60S 80 16 14 3 60 N 9 11 4585.39
SND80C16N14D3T90S 80 16 14 3 90 N 9 11 4503.08
SND80C16N14D5T20S 80 16 14 5 20 Y 8 8 4099.01
SND80C16N14D5T60S 80 16 14 5 60 N 8 9 4199.84
SND80C16N14D5T90S 80 16 14 5 90 N 8 9 4222.63
SND80C30N14D3T20S 80 30 14 3 20 Y 11 11 4432.54
SND80C30N14D3T60S 80 30 14 3 60 N 11 11 4534.27
SND80C30N14D3T90S 80 30 14 3 90 N 11 12 4351.18
SND80C30N14D5T20S 80 30 14 5 20 Y 9 10 4052.64
SND80C30N14D5T60S 80 30 14 5 60 Y 9 11 3975.22
SND80C30N14D5T90S 80 30 14 5 90 Y 9 10 3994.80
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