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1. Introduction and general concepts

Consider the following problem

min{f(x) : x ∈ X} (P)

where X is discrete and where the objective function f is defined as follows:

f : X −→ R ∪ {+∞}

x 7−→
{

+∞ if solution x is not feasible

f(x) otherwise

Solving (P ) consists in identifying a solution x∗ ∈ X which minimizes the ob-
jective function f .

Chvátal was the first author to introduce in [4] a Resolution Search approach
to deal with binary variable problems, i.e. those where X = {0, 1}n. This
approach is an alternative to the Branch and Bound approach. Then Hanafi
and Glover [5] were the first to generalize the Resolution Search approach for
mixed integer programs. Furthermore, they provided interesting parallels with
earlier approaches like Dynamic Branch and Bound.

A few straightforward implementation attempts were then published, where
a Resolution Search approach was used to deal with problems with varying
degrees of success. Demassey et al. [1] were the first to implement a Resolution
Search approach to deal with the RCPSP. Then Palpant et al. [6], and more
recently Boussier et al. [3], applied the approach to deal with the n2-queens and
0-1 multidimensional knapsack problems, respectively. These authors focused
on finding an application for which a Resolution Search approach would be
competitive compared to the more traditional Branch and Bound approach, and
they did not develop the theoretical aspects of Resolution Search much further.
Demassey et al. [1], and Palpant et al. [6] report encouraging results despite
not being competitive with the state of the art for their respective problems.
Furthermore, Boussier et al. [3] were able to exactly solve previously unsolved
instances of the 0-1 multidimensional knapsack problem.

In this paper, we further generalize the Resolution Search approach to any
discrete optimization problem (P ). For this purpose, we have to redefine some
concepts introduced in [4], and to define new ones. We lean heavily on the ideas
presented in [4] in the context of 0-1 problems to prove convergence of the search
procedure to solve any discrete optimization problem.

1.1. Example
We now introduce a toy problem and an instance which will be used as an

example throughout this paper. Consider a decreasing curve Γ in the plane, and
suppose that its mathematical formulation is not known explicitely. However,
we know where Γ intersects the coordinate axes, and for any point (l, h) an oracle
is available to indicate if it lies below or above Γ. The objective is to determine
the rectangle with the largest area while satisfying the following constraints:
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• its extreme vertices must be (0, 0), (0, h), (l, 0) and (l, h),

• l and h must be non-negative integers,

• and (l, h) must lie below Γ.

Assume that Γ intersects the coordinate axes at (l∩, 0) and (0, h∩). If we denote
lmax = bl∩c and hmax = bh∩c, then the search space for this problem is:

X =
{

(l, h) ∈ Z2 : 0 ≤ l ≤ lmax, 0 ≤ h ≤ hmax
}
.

Furthermore, denote the objective function f to be minimized over X as follows:

f(l, h) =
{

+∞ if (l, h) lies above Γ
−lh otherwise.

An initial upper bound on the optimal value is z̄ = 0. Denote by r∗ = (l∗, h∗)
the best known solution so far.

In figure 1, the curve Γ intersects the l axis between 5 and 6 and the h axis
between 4 and 5. Accordingly, given that Γ is decreasing it follows that the
optimal upper right corner of the rectangle must belong to the following set:

X = {(l, h) ∈ Z2 : 0 ≤ l ≤ 5, 0 ≤ h ≤ 4}.

In the figure, the point (l̃, h̃) = (3, 2) lies below the curve so that f(3, 2) = −6.

l

h

(0, 0)

(l̃, h̃)

{(l, h) ∈ X : 0 ≤ l ≤ l̃, 0 ≤ h ≤ h̃}

X = {(l, h) ∈ Z2 : 0 ≤ l ≤ lmax, 0 ≤ h ≤ hmax}

Figure 1: A problem instance, and a solution (l̃, h̃) = (3, 2).

1.2. Definitions
In general, a problem of type (P ) is too difficult to be solved directly. For

this reason we often use the popular divide-and-conquer strategy: the solution
set X is partitioned into subsets X1 ∪X2 ∪ ...∪Xm = X such that the objective
function f is easily minimized on each subset. Then a minimum value z∗ of f
can be inferred on X . Note that if we consider the parts of X successively one
after the other, as we usually do, it is not always necessary to find a minimum
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on each of them. Indeed, assume that z̄ is the value of the best known solution
when the subset Xi is to be examined. If we can verify that the mimimum value
of f on Xi is greater than or equal to z̄, then we can infer that no better solution
of the problem (P ) can be found in Xi.

First we introduce some preliminary definitions.

Definition 1. A subset Xi of X is explored if one of the following alternatives
holds:

• There is no better solution in Xi; i.e. given an upper bound z̄ on the
optimum value of (P ), f(x) ≥ z̄ for all x ∈ Xi.

• x′ = arg min{f(x) : x ∈ Xi} verifies f(x′) < z̄.1

The problem (P ) is solved once X has been entirely explored.

Definition 2. A predicate γ on X is a function on X such that each element
in X is either verified by γ or is not.

Definition 3. A set C of predicates on X is called a clause. It defines a subset
X(C) of X . X(C) is called its clause cover.

X(C) = {x ∈ X : x verifies all predicates γ ∈ C}

Any solution or any set of solutions is said to be covered by a clause C if it
is included in the clause cover X(C). For the sake of consistency, X(∅) = X .
Furthermore, we assume that any predicate γ included in any clause has a
complement predicate γ̄ in the sense that any x ∈ X verifies either γ or γ̄.

Here we merely extend the concept of clauses, as presented by Chvátal [4] for
0-1 problems, and subsequently generalized to integer programming by Hanafi
and Glover [5].2

Example 1. As an example, consider the set X =
{

(l, h) ∈ Z2 : 0 ≤ l ≤ 5, 0 ≤ h ≤ 4
}

of our toy problem. Let us define a predicate γ, verified for any (l, h) ∈ X if and
only if 0 ≤ l ≤ 3. The predicate γ̄ verified for any (l, h) ∈ X such that 4 ≤ l ≤ 5
is complementary to γ. �

The notation X(C) to designate the set of solutions verifying a clause C is
borrowed from Hanafi and Glover [5].

Remark 1. Let A and B be two clauses. Then X(A∪B) = X(A)∩X(B), and
A ⊆ B implies X(B) ⊆ X(A).

Definition 4. A clause C is declared nogood if the corresponding cover X(C)
has been explored.3

1In this case x′ becomes the best known solution and z̄ is updated accordingly.
2Chvátal [4] defines his clauses as sets of literals, literals can be seen as a particular kind

of predicate.
3Note that the word ’nogood’ is borrowed from the constraint programming terminology.

Chvátal [4] would say that a specific clause is ’z̄-forcing’ instead.
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2. Outline of the Resolution Search approach

In the Branch and Bound approach, the search space X is partitioned recur-
sively. Let L be the list containing the subsets of X left to be explored (initially,
L = [X ]). An upper bound z̄ on the optimal value of (P ) corresponding to the
best known solution is available and updated during the procedure. At a specific
iteration i, a subset Xi ⊆ X is removed from the list L. A bounding procedure
is applied on Xi to generate a lower bound zi on the values in f(Xi). In doing
so the bounding procedure also updates an upper bound z̄ on the optimal value
of (P ). If zi < z̄, then the subset Xi is split into two subsets to be added to
L. The procedure then loops to the next iteration i + 1, unless L is empty, in
which case z̄ is the optimal value of (P ).

The Resolution Search approach does not rely on such a bounding proce-
dure. Instead, at each iteration of the Resolution Search, a clause U specifies
a nonempty subset X(U) ⊆ X which is to be at least partly explored using a
procedure obstacle4. This procedure generates a nogood clause S which covers
some elements of X(U) (i.e. X(S) ∩ X(U) 6= ∅), and also updates the upper
bound z̄ on the optimal value of (P ).

Note that in order to implement efficiently the Resolution Search approach
for solving an optimization problem, the definition of the obstacle procedure is
a key point, in the same way as computing a lower bound is a matter of prime
importance in a Branch and Bound scheme.

Example 2. For our toy problem, a procedure obstacle can be specified as
follows. Consider the clause U , and select (l̃, h̃) randomly among the elements
in X(U):

• If (l̃, h̃) lies above Γ, then any solution (l, h) verifying l̃ ≤ l ≤ lmax and
h̃ ≤ h ≤ hmax has a value f(l, h) = +∞.

• If (l̃, h̃) lies below Γ, then any solution (l, h) verifying 0 ≤ l ≤ l̃ and
0 ≤ h ≤ h̃ is feasible and the area of the corresponding rectangle is smaller
than or equal to the one corresponding to (l̃, h̃).

Accordingly, the nogood clause is specified as S = {l̃ ≤ l ≤ lmax, h̃ ≤ h ≤
hmax} or S = {0 ≤ l ≤ l̃, 0 ≤ h ≤ h̃}. Since (l̃, h̃) ∈ X(U), it follows that
X(S) ∩ X(U) 6= ∅. Finally, this procedure updates z̄ and r∗ = (l∗, h∗) when
required. �

The nogood clauses generated by obstacle during the search are kept in a
stack of clauses F called a family. Before outlining how Resolution Search
explores X with such a procedure obstacle, we extend the notion of cover to
families of clauses.

4This name was chosen in order to stay consistent with Chvátal’s terminology in [4].
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Definition 5. The reach5 R(F) of a family F = [C1, C2, ..., Cm] is the set of
all solutions in X covered by at least one clause in F :

R(F) =
m⋃
i=1

X(Ci).

Procedure ResolutionSearch:
Step 0.

Let F = ∅, the clause UF = ∅ and the integer m = 0.
Step 1.

Let S be the nogood clause generated by obstacle(UF ).
Step 2.

Generate F ′ using F and the clause S.
If R(F ′) = X then X has been completely explored.
The search is then completed, the optimal value of f on X is z̄.
Otherwise, generate a clause UF ′ such that its cover X(UF ′) is nonempty
and does not share any solutions with R(F ′), i.e. X(UF ′) ∩R(F ′) = ∅.

Step 3.
Increment m, replace F by F ′ and UF by UF ′ .
Return to Step 1.

The main feature of the Resolution Search is included in Step 2.
A naive way of implementing Step 2 would be as follows: generate F ′ by

adding the clause S to the existing family F . Assuming that we could generate
a suitable clause UF ′ , then the reach of the family would grow strictly at each
iteration (i.e. R(F) ( R(F ′)). Indeed, the nogood clause S has a cover X(S)
sharing some elements with X(UF ), but X(UF ) does not share any element with
R(F). If follows that X would be explored in at most |X | iterations. However,
since the family would grow as the search progresses, the generation of a suitable
UF ′ would become a problem in itself.

For this reason we impose an additional property on obstacle. It will allow
the family F to maintain a special recursive structure, to generate more easily
UF ′ at each iteration. This structure on the family is defined in the following
section.

3. Path-like structure

We first introduce the following definitions.

Definition 6. A predicate γ is said to be markable for a clause UF if:

5The reach is equivalent to the τ function of Chvátal [4], in that |R(F)| = τ(F) for 0-1
problems.
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• γ partitions the search space (i.e. X({γ}) 6= ∅ and X({γ̄}) 6= ∅), and

• γ is not in the clause UF (i.e. γ /∈ UF ).

Example 3. Consider the toy problem presented earlier. In this context, the
clauses are defined with predicates specified in terms of lower or upper bounds
on the integer decision variables l and h. For the sake of clarity, the predicates
(which are functions) are specified by the corresponding bounds on the variables.

Suppose that UF = {3 ≤ l ≤ 5, 0 ≤ h ≤ 3, 0 ≤ l ≤ 4}. The predicates
(1 ≤ h ≤ 4) and (2 ≤ l ≤ 5) are markable for this UF , whereas (0 ≤ h ≤ 3) is
not because it is in UF , nor is (0 ≤ l) because it does not partition the search
space (the predicate is verified by all (l, h) ∈ X ). �

Definition 7. A clause C is said to maintain the path-like structure for a
clause UF if for all markable predicates γ ∈ C, the intersection of X(UF ) and
X(C̄γ) is nonempty (i.e. X(UF ) ∩X(C̄γ) 6= ∅), where C̄γ = (C \ {γ}) ∪ {γ̄}.

We now define a specific recursive structure for the clause families.

Definition 8. The family F ′ = [C1, C2, ..., Cm, Cm+1] is path-like if the family
F = [C1, C2, ..., Cm] is path-like, and if there is a clause UF such that:

• Its cover is nonempty, i.e. X(UF ) 6= ∅.

• Its cover has no intersection with the reach of F ; i.e. X(UF )∩R(F) = ∅.

• The clause Cm+1 contains at least one markable predicate for UF .

• The clause Cm+1 maintains the path-like structure for UF .

In order to use the recursivity of this definition, we consider an empty family
F0 to be path-like. We assume thatR(F0) = ∅, and that UF0 = ∅. The following
proposition introduces a way to generate a clause UF ′ when the family F ′ is
path-like.

Proposition 1. Given a path-like family F ′, consider a clause UF ′ built as
follows. Choose any markable predicate µm+1 in Cm+1 for UF . Let C̄m+1 =
(Cm+1 \ {µm+1}) ∪ {µ̄m+1}, and UF ′ = UF ∪ C̄m+1. Such a clause UF ′ always
exists, its cover X(UF ′) is nonempty and has no intersection with the reach of
F ′ (i.e. X(UF ′) ∩R(F ′) = ∅).

Proof. The family F ′ being path-like, Cm+1 maintains the path-like structure
for UF , and we know there is at least one markable predicate µm+1 ∈ Cm+1 for
UF . Therefore X(UF ) ∩ X(C̄m+1) is nonempty for C̄m+1 generated with any
such µm+1.

Since X(UF ) ∩ X(C̄m+1) = X(UF ∪ C̄m+1) and since UF ′ = UF ∪ C̄m+1,
we thus have that X(UF ′) = X(UF ) ∩ X(C̄m+1). It follows that X(UF ′) is
nonempty.
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We now prove by induction that R(F ′)∩X(UF ′) = ∅. Since we consider the
reach of an empty family to be empty, the property is true for the initial family
F0 = ∅.

Now suppose that R(F) and X(UF ) have no intersection; i.e. R(F) ∩
X(UF ) = ∅. Recall that by construction, UF ′ = UF ∪ C̄m+1.

On the one hand, since C̄m+1 ⊆ UF ′ , it follows that X(UF ′) ⊆ X(C̄m+1).
Because µm+1 ∈ Cm+1 and µ̄m+1 ∈ C̄m+1, we know that the covers X(C̄m+1)
and X(Cm+1) have no intersection. Therefore, it follows that the intersection
X(Cm+1) ∩X(UF ′) is empty.

On the other hand, since UF ( UF ′ , it follows that X(UF ′) ( X(UF ).
According to the induction hypothesis, R(F) ∩ X(UF ) = ∅. Therefore the
intersection R(F) ∩X(UF ′) is also empty.

Finally, sinceR(F ′) = R(F)∪X(Cm+1), it follows thatR(F ′)∩X(UF ′) = ∅.
�

Definition 9. Let us associate a unique marked predicate µi with each no-
good clause Ci in a path-like family. Let M = [µ1, µ2, ..., µm] be the set of
marked predicates associated with F = [C1, C2, ..., Cm].

In proposition 1, we define UF ′ = UF ∪ C̄m+1, and recursively

UF ′ =
m+1⋃
i=1

C̄i

where C̄i = (Ci \ {µi}) ∪ {µ̄i}. It follows that if the family is path-like, then
we can easily build a clause that covers a nonempty subset of X having no
intersection with the reach of this family. We may then call obstacle with this
clause in order to generate a new nogood clause S.

Example 4. Returning to our toy problem, using the obstacle procedure de-
fined in example 2, we shall see that given any UF , the nogood clause S =
obstacle(UF ) always maintains the path-like structure for UF .

In this problem, the predicates in the clauses are bounds on l and h for
(l, h) ∈ X . Therefore, the cover of a clause is defined by the largest lower bound
and the lowest upper bound on l and h: l, l̄, h, h̄ respectively. This is true in
particular for the clause UF , and its cover is therefore always of the following
type:

X(UF ) =
{

(l, h) ∈ X : l ≤ l ≤ l̄, h ≤ h ≤ h̄
}
.

Next, recall that the procedure obstacle is specified by randomly selecting a
vertex (l̃, h̃) ∈ X(UF ). The procedure then infers a nogood clause S of the form
{0 ≤ l ≤ l̃, 0 ≤ h ≤ h̃} or {l̃ ≤ l ≤ lmax, h̃ ≤ h ≤ hmax} when (l̃, h̃) is below or
above Γ, respectively.

Finally, for each markable predicate γ ∈ S for UF , it follows that for S̄γ =
(S \ {γ}) ∪ {γ̄} there is at least one vertex in both X(S̄γ) and X(UF ). Indeed,
consider the following situations:
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l

h

(l̃, h̃)
X(S̄h̃≤h≤hmax

) = {(l, h) ∈ X : l̃ ≤ l ≤ lmax, 0 ≤ h ≤ h̃− 1}

X(UF )

X(S) = {(l, h) ∈ X : l̃ ≤ l ≤ lmax, h̃ ≤ h ≤ hmax}

X(S̄l̃≤l≤lmax
) = {(l, h) ∈ X : 0 ≤ l ≤ l̃ − 1, h̃ ≤ h ≤ hmax}

Figure 2: S = obstacle(UF ) maintains the path-like structure for UF .

• If γ = (l̃ ≤ l ≤ lmax) then (l̃ − 1, h̃) ∈ X(S̄γ). Indeed, X({γ̄}) 6= ∅, hence
l̃ ≥ 1. Also, since γ is not in UF , it follows that the largest lower bound
on l in UF is at most l̃−1, thus (l̃−1, h̃) ∈ X(UF ). This case is illustrated
in figure 2.

• If γ = (0 ≤ l ≤ l̃), γ = (h̃ ≤ h ≤ hmax), or γ = (0 ≤ h ≤ h̃), then using a
similar argument, it follows that (l̃ + 1, h̃), (l̃, h̃ − 1) and (l̃, h̃ + 1) are in
X(S̄γ) ∩X(UF ), respectively. �

4. Updating the family

So far, the following assumptions on obstacle are required to hold at each it-
eration. Given any clause UF , denote by S the clause generated by obstacle(UF ):

• S is a nogood clause,

• S verifies X(S) ∩X(UF ) 6= ∅.

In order to update the family F using the nogood clause S generated by
obstacle(UF ), we require the following additional assumptions to hold at each
iteration:

• F is a path-like family,

• S maintains the path-like structure for UF .

Henceforth, we require no further assumptions on the procedure obstacle.
Note that this is in contrast to previous work in [4] and [5] where the behavior
of the obstacle procedure is much more precisely specified. They assume that
there is a 1-to-1 mapping from clauses to partial solutions, i.e. vectors whose
components are not all instanciated. They also assume that the procedure
obstacle is seperable in two specific phases: a waxing phase and a waning phase,
that can be described as follows, using our terminology. First, in the waxing
phase, a clause U+ is constructed from UF , and additional predicates are added
to U+ until it becomes nogood. Then, in the waning phase, a clause S is
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constructed from U+, and predicates are removed from S one by one while
maintaining the nogood property. The obstacle procedures satisfying such a
specification are included in the set of obstacle procedures that we allow.

However, the path-like families and their update, as presented in this paper,
are direct generalizations of the notions introduced by Chvátal [4]. There are
two cases to consider: either S contains at least one markable predicate for UF ,
or it does not.

4.1. S contains at least one markable predicate for UF
In this case we can easily get a new path-like family F ′ from F and S by

adding to F the clause S in position m + 1; i.e. F ′ = [C1, C2, ..., Cm, Cm+1]
where Cm+1 = S.

Proposition 2. If S contains at least one markable predicate for UF and if
F = [C1, C2, ..., Cm] is path-like, then the family F ′ = [C1, C2, ..., Cm, S] is
path-like.

Proof. Trivially, by defining Cm+1 = S, it follows that Cm+1 contains at
least one markable predicate for UF . Since S was generated by obstacle(UF ),
it follows that Cm+1 maintains the path-like structure for UF . Hence, F ′ is
path-like by definition 8. �

In order to generate the clause UF ′ to be used with obstacle at the next
iteration, we proceed as in Proposition 1.

Example 5. Referring to our toy problem, this case can be illustrated as fol-
lows. Suppose we have

F =
[
{0 ≤ l ≤ 2, 0 ≤ h ≤ 3}
{0 ≤ l ≤ 4, 0 ≤ h ≤ 1}

]
where the underlined relations correspond to the marked predicates in M. Ac-
cordingly, UF = {3 ≤ l ≤ 5, 0 ≤ h ≤ 3, 0 ≤ l ≤ 4, 2 ≤ h ≤ 4}.

l

h

(4, 2)
R(F)

X(UF )

X(S)

Figure 3: Search state at this iteration.

To generate S, suppose that the point (4, 2) is selected randomly by obstacle
in X(UF ) = {(l, h) ∈ Z2 : 3 ≤ l ≤ 4, 2 ≤ h ≤ 3}. Note that (4, 2) lies above Γ.
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Thus S = {4 ≤ l ≤ 5, 2 ≤ h ≤ 4}, as illustrated in figure 3.

Since the predicate (4 ≤ l ≤ 5) in S is markable for UF , the family F ′ is
generated by adding to F the clause S in position 3. The predicate µS = (4 ≤
l ≤ 5) is selected as the marked predicate for the last clause, and it follows that

F ′ =

 {0 ≤ l ≤ 2, 0 ≤ h ≤ 3}
{0 ≤ l ≤ 4, 0 ≤ h ≤ 1}
{4 ≤ l ≤ 5, 2 ≤ h ≤ 4}


and UF ′ = {3 ≤ l ≤ 5, 0 ≤ h ≤ 3, 0 ≤ l ≤ 4, 2 ≤ h ≤ 4, 0 ≤ l ≤ 3, 2 ≤ h ≤ 4}, as
illustrated in figure 4. �

l

h

R(F ′)

X(UF ′)

Figure 4: Search state after this iteration.

4.2. S contains no markable predicate for UF
In this case, adding the clause S at the end of F does not infer a path-

like family. However, it is possible to deduce a new path-like family of nogood
clauses using S and F . But first, we have to introduce the notion of clause
resolution.

Definition 10. Let A and B be two clauses such that there is one and only
predicate γ such that γ ∈ A and γ̄ ∈ B. The resolvent of A and B is defined
as the clause:

A∇B = (A \ {γ}) ∪ (B \ {γ̄}).

The following result shows that the resolution operation to define the re-
solvent of two nogood clauses A and B preserves the nogood property of the
resolvent A∇B.

Proposition 3. If A and B are two nogood clauses having a resolvent A∇B,
then A∇B is also a nogood clause.

Proof. Denote A = A′ ∪ {γ} and B = B′ ∪ {γ̄}. Hence A∇B = A′ ∪B′.
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Since γ and γ̄ are complement of each other, it follows by definition that any
solution in X verifies either γ or γ̄. In particular, this is true for any solution
x ∈ X(A′ ∪B′).

Therefore, if x verifies γ, then since it also verifies A′, it also verifies A.
Otherwise, x verifies both γ̄ and B′, and hence B. It follows that any solution
x ∈ X(A′ ∪ B′) verifies A or B. The assumption that A and B are nogood
clauses implies that A∇B = A′ ∪B′ is also nogood. �

This result is a generalization of the clause resolution mechanism for inte-
ger programming problems presented in [5], which itself is a generalization of
clause resolution as presented in [4] in the context of 0-1 problems. It allows to
introduce the following procedure generating recursively a new nogood clause R
using the nogood clause S generated by obstacle(UF ) and some nogood clauses
in F .

Procedure ResolventGeneration(S,F ,M):
Step 0.

Let R = S and i = m.
Step 1.

µi ∈M is the marked predicate associated with the nogood Ci ∈ F .
If its complement µ̄i is in R, replace R by R∇Ci.

Step 2.
Decrement i.
If i = 0, then return R, else go to Step 1.

Proposition 4. Let S be the nogood clause generated by obstacle(UF ). If S
contains no markable predicate for UF , then the clause R generated by ResolventGeneration(S,F ,M)
is nogood, and R contains no markable predicate for UF either.

Proof. We prove this proposition by induction. At the beginning of the
ResolventGeneration procedure when i = m, R = S. S is a nogood clause
and contains no markable predicate for UF , hence the proposition is true for
i = m.

Suppose that at the beginning of iteration i of ResolventGeneration, R is
a nogood clause and R contains no markable predicate for UF . If µ̄i is not in
R, then R is not modified during this iteration. Now suppose that µ̄i ∈ R. We
first show that µi ∈ Ci is the unique element of Ci allowing R and Ci to have
a resolvent.

For contradiction, suppose that there is another predicate γ 6= µi such that
γ ∈ Ci and γ̄ ∈ R. On the one hand, since R contains no markable predicate
for UF , all predicates in R are either in UF or are verified for all elements in
X . We know X(Ci) 6= ∅ and we have γ ∈ Ci, it follows that γ̄ ∈ UF . On the
other hand, we have C̄i = (Ci \ {µi}) ∪ {µ̄i}. Thus since γ ∈ Ci and γ 6= µi,
we have γ ∈ C̄i. Therefore it follows that γ ∈ UF = ∪mj=1C̄j . But then γ ∈ UF
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and γ̄ ∈ UF , a contradiction because X(UF ) 6= ∅. Therefore the resolvent
R∇Ci = (R \ {µ̄i})∪ (Ci \ {µi}) exists and is a nogood clause by proposition 3.

By the induction hypothesis, (R \ {µ̄i}) contains no markable predicate for
UF . Also, because UF = ∪mj=1C̄j where C̄j = (Cj \ {µj}) ∪ {µ̄j}, we have that
(Ci \ {µi}) ( C̄i ⊆ UF . Therefore it follows that R∇Ci contains no markable
predicate for UF . �

We now show that if R does not cover the entire search space, there exists
an index k, 1 ≤ k ≤ m, such that a new path-like family can be generated by
removing all the clauses Ci, k ≤ i ≤ m, from F , and by adding the nogood
clause R.

To ease the presentation, Fi = [C1, C2, ..., Ci] denotes the sub-families for
i = 1, ...,m, and F0 = ∅. Because F is path-like, Fi is also necesseraly path-like.

Proposition 5. Let R be the nogood clause generated by ResolventGeneration(S,F ,M).
Let k be the smallest index such that R contains no markable predicate for UFk

.
If k = 0, then the search is completed, otherwise the family F ′ = [C1, C2, ..., Ck−1, R]
is path-like.

Proof. If k = 0, R contains no markable predicate for UF0 = ∅, this implies
X(R) = X and since R is a nogood clause, it follows that the search space is
completely explored.

Otherwise, we have 1 ≤ k, as well as k ≤ m since we know that R contains
no markable predicate for UF = UFm

. Furthermore, since k is the smallest
index such that R contains no markable predicate for UFk

, it also follows that
R contains at least one markable predicate for UFk−1 . To complete the proof,
we have to show that R maintains the path-like structure for UFk−1 , since the
family Fk−1 is path-like.

Since the clause R contains no markable predicate for UFk
= UFk−1 ∪ C̄k,

then it follows that all markable predicates in R for UFk−1 (there is at least one)
are in C̄k \UFk−1 . Recall that µ̄k /∈ UFk−1 , and by construction µ̄k /∈ R, thus all
markable predicates in R for UFk−1 are also in (C̄k \{µ̄k})\UFk−1 , and thus also
in Ck \ UFk−1 . Since the family Fk is path-like, Ck is a clause which maintains
the path-like structure for UFk−1 , hence R also maintains the path-like structure
for UFk−1 . �

Example 6. To illustrate this case using our toy problem, suppose that we are
at the beginning of an iteration where z̄ = −6 and

F =

 {0 ≤ l ≤ 2, 0 ≤ h ≤ 3}
{0 ≤ l ≤ 4, 0 ≤ h ≤ 1}
{4 ≤ l ≤ 5, 2 ≤ h ≤ 4}

 : C1

: C2

: C3,

the underlined relations corresponding to the marked predicates inM. Accord-
ingly, UF = {3 ≤ l ≤ 5, 0 ≤ h ≤ 3, 0 ≤ l ≤ 4, 2 ≤ h ≤ 4, 0 ≤ l ≤ 3, 2 ≤ h ≤ 4}.

To generate S, suppose that the point (3, 3) is selected randomly by obstacle
in X(UF ) = {(l, h) ∈ Z2 : 3 ≤ l ≤ 3, 2 ≤ h ≤ 3}. Note that (3, 3) lies below Γ.
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l

h

(3, 3)

R(F)

X(S)

X(UF )

Figure 5: Search state at this iteration.

Thus S = {0 ≤ l ≤ 3, 0 ≤ h ≤ 3} as illustrated in figure 5. Furthermore, since
f(3, 3) < −6, the obstacle procedure updates z̄ = −9 and r∗ = (3, 3).

Since S ⊂ UF , it follows that S contains no markable predicates for UF .
Hence we first generate R from the resolvents of S and the clauses in F =
[C1, C2, C3]. Initiate the process with R = S and i = 3.

i = 3: µ3 = (4 ≤ l ≤ 5) implies that µ̄3 = (0 ≤ l ≤ 3), and this predicate is in R.
Replace R with R∇C3 = (R\{µ̄3})∪(C3\{µ3}) = {0 ≤ h ≤ 3, 2 ≤ h ≤ 4}.

i = 2: µ2 = (0 ≤ h ≤ 1) implies that µ̄2 = (2 ≤ h ≤ 4), and this predicate is in
R. Replace R with R∇C2 = {0 ≤ h ≤ 3, 0 ≤ l ≤ 4}.

i = 1: µ1 = (0 ≤ l ≤ 2) implies that µ̄1 = (3 ≤ l ≤ 5), and this predicate is not
in R.

The resulting nogood clause is R = {0 ≤ h ≤ 3, 0 ≤ l ≤ 4}.

Now determine the rank k such that R contains no markable predicates for
UFk

. Initiate the process with k = 0 and UF0 = ∅.

k = 0: (0 ≤ h ≤ 3) ∈ R is a markable predicate for UF0 = ∅.

k = 1: (0 ≤ l ≤ 4) ∈ R is a markable predicate for UF1 = UF0 ∪ C̄1 = {3 ≤ l ≤
5, 0 ≤ h ≤ 3}.

k = 2: R contains no markable predicates for UF2 = UF1 ∪ C̄2 = {3 ≤ l ≤ 5, 0 ≤
h ≤ 3, 0 ≤ l ≤ 4, 2 ≤ h ≤ 4}.

Thus F ′ = [C1, R], and µR = (0 ≤ l ≤ 4) is selected as the marked predicate
for the clause R. It follows that

F ′ =
[
{0 ≤ l ≤ 2, 0 ≤ h ≤ 3}
{0 ≤ l ≤ 4, 0 ≤ h ≤ 3}

]
: C1

: R ,

and UF ′ = {3 ≤ l ≤ 5, 0 ≤ h ≤ 3, 5 ≤ l ≤ 5, 0 ≤ h ≤ 3}, as illustrated in figure
6. �
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R(F ′)

X(UF ′)

Figure 6: Search state after this iteration.

5. Complete algorithm and convergence

The Resolution Search approach can now be summarized in the following
procedure:

Procedure ResolutionSearch:
Step 0 - Initialization.

Let F = ∅, M = ∅, UF = ∅ and m = 0.
Step 1 - Exploration.

Let S be the clause generated by obstacle(UF ).
Step 2 - Construction.

If S ⊆ UF , go to Step 2.2.
Step 2.1 - Case S contains at least one markable predicate for UF .

Select µS ∈ S, a markable predicate for UF .
Let m′ = m+ 1, F ′ = [C1, ..., Cm, S] and M′ = [µ1, ..., µm, µS ].
Let S̄ = (S \ {µS}) ∪ {µ̄S} and UF ′ = UF ∪ S̄.
Go to Step 3.

Step 2.2 - Case S contains no markable predicate for UF .
Step 2.2.1 - Generate R.

Let R be the nogood clause generated by ResolventGeneration(S,F ,M).
Let k be the smallest index such that R contains no markable predicate for UFk

.
Step 2.2.2 - Generate F ′.

If k = 0, return the best known solution, the search is completed.
Select µR ∈ R, a markable predicate for UFk−1 .
Let m′ = k, F ′ = [C1, ..., Ck−1, R] and M′ = [µ1, ..., µk−1, µR].
Let R̄ = (R \ {µR}) ∪ {µ̄R} and UF ′ = UFk−1 ∪ R̄.

Step 3 - Update.
Replace F by F ′, M by M′, UF by UF ′ , and m by m′.
Return to Step 1.

To prove the convergence of the Resolution Search procedure, we cannot rely
on the strict increase of the reachR(F) at each iteration. Note that Chvátal also
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observes this for a 0-1 programming problem in [4]. However, the convergence
proof of the Resolution Search procedure relies on a subset of the reach R(F)
that is strictly increasing at each iteration.

Definition 11. Given F = [C1, C2, ..., Cm] a path-like family and the associ-
ated set of marked predicates M = [µ1, µ2, ..., µm], the restricted reach 6

Ř(F) of the family F is defined as follows:

Ř(F) =
m⋃
i=1

X(∪i−1
j=1C̄j ∪ Ci) =

m⋃
i=1

X(UFi−1 ∪ Ci).

Clearly, the restricted reach of any family is a subset of its reach. We consider
two different lemmas to show that the restricted reach strictly increases at each
iteration according to the way of generating the new family F ′.

Lemma 1. Let S be the nogood clause generated by obstacle(UF ). If S contains
at least one markable predicate for UF , the family F ′ generated in Step 2.1 of
the Resolution Search procedure verifies Ř(F) ( Ř(F ′).

Proof. By definition of the restricted reach and of the clause UF :

Ř(F ′) = Ř(F) ∪X(∪mj=1C̄j ∪ S) = Ř(F) ∪X(UF ∪ S).

The proof is completed if we can show that X(UF ∪ S) is nonempty and not
in Ř(F). By definitions of S and obstacle, X(UF ∪ S) = X(UF ) ∩X(S) 6= ∅.
Also, since X(UF ∪ S) ⊂ X(UF ) and since X(UF ) ∩ R(F) = ∅, it follows
that X(UF ∪ S) ∩ R(F) = ∅. Hence, since Ř(F) ⊆ R(F), it follows that
X(UF ∪ S) ∩ Ř(F) = ∅. �

Lemma 2. Let S be the nogood clause generated by obstacle(UF ). If S con-
tains no markable predicate for UF , the family F ′ generated in Step 2.2 of the
Resolution Search procedure verifies Ř(F) ( Ř(F ′).

Proof. In this case F ′ = [C1, C2, ..., Ck−1, R] is built by adding R to Fk−1.
By definitions of the restricted reach and of the clause UFk−1 :

Ř(F ′) = Ř(Fk−1) ∪X(∪k−1
j=1 C̄j ∪R) = Ř(Fk−1) ∪X(UFk−1 ∪R).

To show that Ř(F) ⊂ Ř(F ′), consider any solution x ∈ Ř(F). Then x ∈
X(UFi−1 ∪ Ci) for at least one index i, 1 ≤ i ≤ m.

• If i < k, then x ∈ Ř(Fk−1), and thus x ∈ Ř(F ′).

6The restricted reach is equivalent to the σ strength function of Chvátal [4], in that
|Ř(F)| = σ(F) for 0-1 problems.
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• If i = k, then x ∈ X(UFk−1 ∪ Ck) ( X(UFk−1 ∪ (Ck \ {µk})). However,
R contains no markable predicate for UFk

, and hence X(UFk
) ⊆ X(R).

Since neither µk nor µ̄k can belong to R, and since UFk
= UFk−1 ∪ C̄k, it

follows that X(UFk−1∪(C̄k\{µ̄k})) ⊆ X(R). Therefore x ∈ X(UFk−1∪R),
and thus x ∈ Ř(F ′).

• If i > k, then x ∈ X(UFi−1 ∪ Ci). Since i > k, we have X(UFi−1 ∪ Ci) (
X(UFk

). As seen when i = k, we also have X(UFk
) ( X(UFk−1 ∪ R).

Therefore x ∈ X(UFk−1 ∪R), and thus x ∈ Ř(F ′).

Next we show the inclusion to be strict.
The clause R contains no markable predicate for UFk

, and since UFk−1 (
UFk

⊆ UF , R contains no markable predicate for UF either, hence X(UF ) is a
subset of both X(R) and X(UFk−1). Therefore X(UF ) ⊆ X(UFk−1) ∩ X(R),
or equivalently X(UF ) ⊆ X(UFk−1 ∪ R). Then X(UF ) ⊆ Ř(F ′). However,
Ř(F) ⊆ R(F) and X(UF ) ∩ R(F) = ∅. Thus since X(UF ) is nonempty, it
follows that there exists at least one solution in the restricted reach of F ′ that
does not belong to the restricted reach of F . �

Theorem 1. The Resolution Search procedure completely explores X in at most
|X | iterations.

Proof. According to the previous lemmas, Ř(F) ( Ř(F ′) at every iteration.
Since the restricted reach of a family is included in its reach, it follows that
at each iteration, a subset of the reach of F increases strictly. In the worst
case, it increases by exactly one solution at each iteration, and thus at most |X |
iterations are needed for the search to complete. �

Having shown that the Resolution Search procedure converges, let us now
concern ourselves with the nogood clauses which are discarded from the path-
like family during the search.

6. Recycling nogood clauses

When the new family F ′ is generated via Step 2.2 of the Resolution Search
procedure, the nogood clauses Ck, ..., Cm, and S are discarded. However, some
of these clauses may have a cover intersecting X(UF ′); i.e. X(UF ′)∩X(Ci) 6= ∅
for some i = k, ...,m, or X(UF ′) ∩ X(S) 6= ∅. If one of these nogood clauses
also maintains the path-like structure for UF ′ , then it could be used in place
of the nogood clause to be generated by obstacle(UF ) at the next iteration.
The computational effort is then reduced at the next iteration, and this may
diminish the overall effort required to solve the problem.

Such a strategy is beneficial if we have an easy way to identify the discarded
nogood clauses that could potentially be used at the next iteration of the pro-
cedure. Now we introduce a partial criterion for this.
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Recall that if F ′ is generated via Step 2.2 of the Resolution Search procedure,
then there exists an index k ≤ m such that

F ′ = [C1, C2, ..., Ck−1, R].

Then a markable predicate µR ∈ (R \ UFk−1) is selected to generate R̄ = (R \
{µR}) ∪ {µ̄R} and UF ′ = UFk−1 ∪ R̄. It follows that for any i = k, ...,m

X(UF ′) ∩X(Ci) 6= ∅ =⇒ µR /∈ Ci

and
X(UF ′) ∩X(S) 6= ∅ =⇒ µR /∈ S.

Therefore µR /∈ Ci (µR /∈ S) is a necessary but not sufficient condition for Ci (S)
to be potentially used at the next iteration. For this purpose, the corresponding
nogood clauses can be included in a short-term memory C to be used in a
modified version of the Resolution Search procedure.

This modified version includes the additional Step 2.2.3 after Step 2.2.2:

Step 2.2.3.
Store the clauses Ci ∈ F , i = k, ...,m, and the clause S
in the short term memory C, if they do not contain µR.

Furthermore, Step 1 is then modified to take advantage of the short-term mem-
ory C. One possible way to do so is as follows:

Step 1.
Step 1.1 - Recycle.

If C is empty, go to Step 1.3.
Otherwise, Let S be the first clause in C, and remove S from C.

Step 1.2 - Suitability.
If S verifies X(UF ) ∩X(S) 6= ∅ and maintains the path-like structure for UF ,
go to Step 2, otherwise go back to step 1.1.

Step 1.3 - Exploration.
Let S be the clause generated by obstacle(UF ).

Naturally, nothing prevents the implementation of a more long-term memory,
which for example would store nogood clauses discarded from the short-term
memory. Such long-term memories are successfully used in most competitive
exact strategies for the k-SAT satisfiability problems [2]. Chvátal [4] already
exposed the potential of reusing discarded nogood clauses in this manner, and
also of maintaining a long-term memory. Here we merely extend those ideas
from the context of 0-1 programming to a more general framework.
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Appendix

In this appendix we apply the Resolution Search procedure on our toy prob-
lem, using the obstacle procedure introduced before. The choice of marked
predicates is arbitrary, and nogood clauses are not recycled.

The notational conventions, the symbols and and the colors are used as
previously. For instance, in the figures, the cover of UF is displayed in light
gray, the reach of F is in medium gray, and the cover of S is in dark gray.
When displaying F , the clauses are stacked from top to bottom, and the marked
predicates in each clause (i.e. the elements in M) are underlined.

The search is initialized with the empty family F = ∅, hence m = 0 and
UF = ∅. Also, the upper bound z̄ is set to +∞.

Iteration 1.

To generate S, suppose that the point (2, 3) is selected randomly by obstacle
in X(UF ) = X(∅) = X = {(l, h) ∈ Z2 : 0 ≤ l ≤ 5, 0 ≤ h ≤ 4}. This point lies
below Γ, and thus obstacle generates S = {0 ≤ l ≤ 2, 0 ≤ h ≤ 3}. Also, since
f(2, 3) < +∞, we update z̄ = −6, and r∗ = (3, 2).

l

h

Search state at iteration 1.

Since S contains markable predicates for UF , the family F ′ is generated by
adding S to F . The predicate µS = (0 ≤ l ≤ 2) is selected as the marked
predicate for that clause. It follows that

F ′ =
[
{0 ≤ l ≤ 2, 0 ≤ h ≤ 3}

]
and UF ′ = {3 ≤ l ≤ 5, 0 ≤ h ≤ 3}.

Iteration 2.

To generate S, suppose that the point (4, 1) is selected randomly by obstacle
in X(UF ) = {(l, h) ∈ Z2 : 3 ≤ l ≤ 5, 0 ≤ h ≤ 3}. This point lies below Γ, and
thus obstacle generates S = {0 ≤ l ≤ 4, 0 ≤ h ≤ 1}.
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l

h

Search state at iteration 2.

Since S contains markable predicates for UF , the family F ′ is generated by
adding S to F . The predicate µS = (0 ≤ h ≤ 1) is selected as the marked
predicate for that clause. It follows that

F ′ =
[
{0 ≤ l ≤ 2, 0 ≤ h ≤ 3}
{0 ≤ l ≤ 4, 0 ≤ h ≤ 1}

]
and UF ′ = {3 ≤ l ≤ 5, 0 ≤ h ≤ 3, 0 ≤ l ≤ 4, 2 ≤ h ≤ 4}.

Iteration 3.

To generate S, the procedure obstacle randomly selects (4, 2) in X(UF ) =
{(l, h) ∈ Z2 : 3 ≤ l ≤ 4, 2 ≤ h ≤ 3}. This point lies above Γ, and thus obstacle
generates S = {4 ≤ l ≤ 5, 2 ≤ h ≤ 4}.

l

h

Search state at iteration 3.

Since S contains a markable predicate for UF , the family F ′ is generated
by adding S to F . The predicate µS = (4 ≤ l ≤ 5) is selected as the marked
predicate for that clause. It follows that

F ′ =

 {0 ≤ l ≤ 2, 0 ≤ h ≤ 3}
{0 ≤ l ≤ 4, 0 ≤ h ≤ 1}
{4 ≤ l ≤ 5, 2 ≤ h ≤ 4}
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and UF ′ = {3 ≤ l ≤ 5, 0 ≤ h ≤ 3, 0 ≤ l ≤ 4, 2 ≤ h ≤ 4, 0 ≤ l ≤ 3, 2 ≤ h ≤ 4}.

Iteration 4.

To generate S, the point (3, 3) is selected randomly by obstacle in X(UF ) =
{(l, h) ∈ Z2 : 3 ≤ l ≤ 3, 2 ≤ h ≤ 3}. This point lies below Γ, and thus obstacle
generates S = {0 ≤ l ≤ 3, 0 ≤ h ≤ 3}. Also, since f(3, 3) < −6, we update
z̄ = −9, and r∗ = (3, 3).

l

h

Search state at iteration 4.

Since S contains no markable predicate for UF , we first generate R from the
resolvents of S and the clauses in F = [C1, C2, C3]. Initiate the process with
R = S and i = 3.

i = 3: µ3 = (4 ≤ l ≤ 5) implies that µ̄3 = (0 ≤ l ≤ 3), and this predicate is in R.
Replace R with R∇C3 = (R\{µ̄3})∪(C3\{µ3}) = {0 ≤ h ≤ 3, 2 ≤ h ≤ 4}.

i = 2: µ2 = (0 ≤ h ≤ 1) implies that µ̄2 = (2 ≤ h ≤ 4), and this predicate is in
R. Replace R with R∇C2 = {0 ≤ h ≤ 3, 0 ≤ l ≤ 4}.

i = 1: µ1 = (0 ≤ l ≤ 2) implies that µ̄1 = (3 ≤ l ≤ 5), and this predicate is not
in R.

The resulting nogood clause is R = {0 ≤ h ≤ 3, 0 ≤ l ≤ 4}.

Now determine the rank k such that R contains no markable predicate for
UFk

. Initiate the process with k = 0 and UF0 = ∅.

k = 0: (0 ≤ h ≤ 3) ∈ R is a markable predicate for UF0 = ∅.

k = 1: (0 ≤ l ≤ 4) ∈ R is a markable predicate for UF1 = UF0 ∪ C̄1 = {3 ≤ l ≤
5, 0 ≤ h ≤ 3}.

k = 2: R contains no markable predicates for UF2 = UF1 ∪ C̄2 = {3 ≤ l ≤ 5, 0 ≤
h ≤ 3, 0 ≤ l ≤ 4, 2 ≤ h ≤ 4}.
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Thus F ′ = [C1, R], and µR = (0 ≤ l ≤ 4) is selected as the marked predicate
for the clause R. It follows that

F ′ =
[
{0 ≤ l ≤ 2, 0 ≤ h ≤ 3}
{0 ≤ l ≤ 4, 0 ≤ h ≤ 3}

]
and UF ′ = {3 ≤ l ≤ 5, 0 ≤ h ≤ 3, 5 ≤ l ≤ 5, 0 ≤ h ≤ 3}.

Iteration 5.

To generate S, suppose that the point (5, 0) is selected randomly by obstacle
in X(UF ) = {(l, h) ∈ Z2 : 5 ≤ l ≤ 5, 0 ≤ h ≤ 3}. This point lies below Γ, and
thus obstacle generates S = {0 ≤ l ≤ 5, 0 ≤ h ≤ 0}.

l

h

Search state at iteration 5.

Since S contains a markable predicate for UF , the family F ′ is generated
by adding S to F . The predicate µS = (0 ≤ h ≤ 0) is selected as the marked
predicate for that clause. It follows that

F ′ =

 {0 ≤ l ≤ 2, 0 ≤ h ≤ 3}
{0 ≤ l ≤ 4, 0 ≤ h ≤ 3}
{0 ≤ l ≤ 5, 0 ≤ h ≤ 0}


and UF ′ = {3 ≤ l ≤ 5, 0 ≤ h ≤ 3, 5 ≤ l ≤ 5, 0 ≤ h ≤ 3, 0 ≤ l ≤ 5, 1 ≤ h ≤ 4}.

Iteration 6.

To generate S, suppose that the point (5, 1) is selected randomly by obstacle
in X(UF ) = {(l, h) ∈ Z2 : 5 ≤ l ≤ 5, 1 ≤ h ≤ 3}. This point lies above Γ, and
thus obstacle generates S = {5 ≤ l ≤ 5, 1 ≤ h ≤ 4}.

Since S contains no markable predicate for UF , we first generate R from the
resolvents of S and the clauses in F = [C1, C2, C3]. Initiate the process with
R = S and i = 3.

i = 3: µ3 = (0 ≤ h ≤ 0) implies that µ̄3 = (1 ≤ h ≤ 4), and this predicate is in
R. Replace R with R∇C3 = (R \ {µ̄3}) ∪ (C3 \ {µ3}) = {5 ≤ l ≤ 5, 0 ≤
l ≤ 5}.
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l

h

Search state at iteration 6.

i = 2: µ2 = (0 ≤ l ≤ 4) implies that µ̄1 = (5 ≤ l ≤ 5), and this predicate is in R.
Replace R with R∇C2 = (R\{µ̄2})∪(C2\{µ2}) = {0 ≤ l ≤ 5, 0 ≤ h ≤ 3}.

i = 1: µ1 = (0 ≤ l ≤ 2) implies that µ̄1 = (3 ≤ l ≤ 5), and this predicate is not
in R.

The resulting nogood clause is R = {0 ≤ l ≤ 5, 0 ≤ h ≤ 3}.

Now determine the rank k such that R contains no markable predicate for
UFk

. Initiate the process with k = 0 and UF0 = ∅.

k = 0: (0 ≤ h ≤ 3) ∈ R is a markable predicate for UF0 = ∅.

k = 1: R contains no markable predicates for UF1 = UF0 ∪ C̄1 = {3 ≤ l ≤ 5, 0 ≤
h ≤ 3}.

Thus F ′ = [R], and µR = (0 ≤ h ≤ 3) is selected as the marked predicate
for the clause R. It follows that

F ′ =
[
{0 ≤ l ≤ 5, 0 ≤ h ≤ 3}

]
and UF ′ = {0 ≤ l ≤ 5, 4 ≤ h ≤ 4}.

Iteration 7.

To generate S, suppose the point (2, 4) is selected randomly by obstacle in
X(UF ) = {(l, h) ∈ Z2 : 0 ≤ l ≤ 5, 4 ≤ h ≤ 4}. This point lies below Γ, and thus
obstacle generates S = {0 ≤ l ≤ 2, 0 ≤ h ≤ 4}.

Since S contains a markable predicate for UF , the family F ′ is generated
by adding S to F . The predicate µS = (0 ≤ l ≤ 2) is selected as the marked
predicate for that clause. It follows that

F ′ =
[
{0 ≤ l ≤ 5, 0 ≤ h ≤ 3}
{0 ≤ l ≤ 2, 0 ≤ h ≤ 4}

]
and UF ′ = {0 ≤ l ≤ 5, 4 ≤ h ≤ 4, 3 ≤ l ≤ 5, 0 ≤ h ≤ 4}.
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l

h

Search state at iteration 7.

Iteration 8.

To generate S, suppose the point (3, 4) is selected randomly by obstacle in
X(UF ) = {(l, h) ∈ Z2 : 3 ≤ l ≤ 5, 4 ≤ h ≤ 4}. This point lies above Γ, and thus
obstacle generates S = {3 ≤ l ≤ 5, 4 ≤ h ≤ 4}.

l

h

Search state at iteration 8.

Since S contains no markable predicate for UF , we first generate R from the
resolvents of S and the clauses in F = [C1, C2]. Initiate the process with R = S
and i = 2.

i = 2: µ2 = (0 ≤ l ≤ 2) implies that µ̄2 = (3 ≤ l ≤ 5), and this predicate is in R.
Replace R with R∇C2 = (R\{µ̄2})∪(C2\{µ2}) = {4 ≤ h ≤ 4, 0 ≤ h ≤ 4}.

i = 1: µ1 = (0 ≤ h ≤ 3) implies that µ̄1 = (4 ≤ h ≤ 4), and this predicate is in
R. Replace R with R∇C1 = (R \ {µ̄1}) ∪ (C1 \ {µ1}) = {0 ≤ h ≤ 4, 0 ≤
l ≤ 5}.

The resulting nogood clause is R = {0 ≤ h ≤ 4, 0 ≤ l ≤ 5}.

Now determine the rank k such that R contains no markable predicate for
UFk

. Initiate the process with k = 0 and UF0 = ∅.

k = 0: R contains no markable predicates for UF0 .
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Thus X(R) = X and the search is completed. The optimum is r∗ = (3, 3)
with value z̄ = −9.
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