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Abstract. This paper deals with a tricriteria path problem involving two bottleneck 
objective functions and a cost. It presents two methods for computing shortest paths in 
subnetworks, obtained by restricting the set of arcs according to the bottleneck values in 
order to find the minimal complete set of Pareto-optimal solutions. These procedures are 
enhanced by using the objective values of the determined shortest paths to reduce the 
number of considered subnetworks, and thus the number of solved shortest path 
problems. Two algorithms are introduced, evaluated and compared with the previous 
literature. Results for random instances with 5 000 nodes, an average degree of 100 and 
200 distinct bottleneck values show that one of them solves 15 times fewer shortest path 
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and 29 times, respectively. On average the new algorithms computed the minimal 
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respectively. 

Keywords. Tricriteria path problem, cost function, bottleneck function, Pareto-optimal 
solution. 
 

Acknowledgements. This work was partially funded by the FCT Portuguese Foundation 
of Science and Technology (Fundação para a Ciência e a Tecnologia) under grant 
SFRH/BSAB/830/2008. Thanks are also due to Gilbert Laporte for comments on a 
preliminary version of this manuscript.  

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 
 
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
_____________________________ 

* Corresponding author: marta@mat.uc.pt 

Dépôt légal – Bibliothèque nationale du Québec, 
                      Bibliothèque nationale du Canada, 2009 

© Copyright  De Lima Pinto, Pascoal and CIRRELT, 2009 



1 Introduction

This paper deals with path problems involving two bottleneck functions, either of MaxMin or of

MinMax type, and one additive cost function. Polynomial algorithms for path problems involving

cost and bottleneck functions, have been presented by Hansen [3], Martins [4] and Berman et al.

[1]. More recently the tricriteria path problem with a cost function and two bottleneck functions

was analyzed by Pinto et al. [6, 7]. In these cases the goal is the generation of a set of paths, all

having Pareto-optimal objective values. The finite number of values that a bottleneck function can

have yields algorithms with polynomial complexity order. The focus of this paper is to describe

two algorithms for improving the method introduced in [6] and modified later [7]. We start by

introducing some notation and by formulating the problem itself.

Consider a graph G = (N ,A) with |N | = n and |A| = m. For each arc (i, j) ∈ A, let ck
ij ∈ IR be

its weights, k = 1, 2, 3. Given initial and terminal nodes in N , s and t, let p = 〈i1 = s, i2, . . . , iℓ = t〉,

with (ik, ik+1) ∈ A for k = 1, . . . , ℓ− 1, denote a path in G. For simplicity we write i ∈ p if i is a

node in the sequence p, and (i, j) ∈ p if i immediately precedes j in p. Let P stand for the set of

paths from s to t in G.

As mentioned above we deal with two bottleneck functions and one cost function, therefore the

objective vector associated with path p is given by c(p) = (c1(p), c2(p), c3(p)) ∈ IR3, where

c1(p) = max
(i,j)∈p

{c1
ij}, c2(p) = max

(i,j)∈p
{c2

ij} and c3(p) =
∑

(i,j)∈p

c3
ij .

For the sake of simplicity the bottleneck functions are considered as of MinMax type, yet there is no

loss of generality in doing so. The tricriteria shortest path problem with two bottleneck functions

(TSPPB) is then defined as

min{c(p) : p ∈ P}.

It is said that p ∈ P dominates p̄ ∈ P when c(p) ≤ c(p̄) and c(p) 6= c(p̄). A path p ∈ P is Pareto-

optimal if it is not dominated by any other path in P. A set P∗ ⊆ P of Pareto-optimal solutions

is a minimal complete set if for each p, q ∈ P∗ we have c(p) 6= c(q) and for any Pareto-optimal

solution p∗ ∈ P there exists p̄ ∈ P∗ so that c(p∗) = c(p̄).

This paper contains three other sections. The next one introduces two algorithms to compute

a minimal complete set as well as the use of a shortest path method that avoids ties in the costs in

order to reduce the number of subroutine calls. Section 3 presents an algorithmic analysis. Finally,

Section 4 reports and discusses computational results.

2 Algorithms for the TSPPB

The methods initially proposed to find the minimal complete set for the TSPPB, first MMS and

later MMS-R, [6, 7], use the fact that fixing bounds on the two bottleneck functions, c1, c2, produces

a subgraph of G. Therefore, Pareto-optimal solutions for this problem are amongst the shortest

paths in each of these subgraphs. MMS determines the shortest path in subgraphs obtained by fixing

all possible combinations of bounds on c1 and c2. Following that procedure but fixing the bounds

by decreasing order allows algorithm MMS-R to skip infeasible subproblems. In this section two
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new algorithms are proposed for the TSPPB. They are still based on the computation of shortest

paths in subgraphs of G, but the number of subproblems to be solved is reduced by considering

the objective values of the solutions that are obtained. A modification of these methods aimed at

decreasing the number of shortest path problems is also proposed.

Let mk be the number of different values of ck
ij, (i, j) ∈ A, and suppose these are arranged in

decreasing order, i.e., ck
1 > ck

2 > · · · > ck
mk

, k = 1, 2. Given v = (v1, v2), with vk ∈ {1, . . . ,mk} and

k = 1, 2, considering the subset of arcs

Av = {(i, j) ∈ A : ck
ij ≤ ck

vk
, k = 1, 2},

the subgraph of G, Gv = (N ,Av), can be defined.

Because our purpose is to find a minimal complete set, that is, one solution for each Pareto-

optimal triple of objective values, there is at most one solution to be considered for each pair

(v1, v2) of (c1, c2) values. If such a solution exists it is the shortest path in the subgraph defined

by (v1, v2). The presentation is simplified if the set of subgraphs Gv is represented as an m1 ×m2

matrix, denoted by C and used to store the several obtained shortest paths.

The two methods below work in two phases. One solves shortest path problems and stores the

solutions at a certain position of C. This phase is followed by another, common to both methods,

for filtering possible dominated or equivalent solutions in C.

Stair method As mentioned above, in the previous algorithms all the possible combinations of

c1
ij and c2

ij, for any (i, j) ∈ A, were considered. The aim of this new version is to use the objective

values of the computed shortest paths, in order to skip some subproblems, i.e., some positions in

matrix C. A similar idea was exploited in [4] when dealing with only two criteria, one bottleneck

and one additive. It is now extended for one more objective function.

For each value c1
u1

fixed as a bound of c1
ij , decreasing bounds are chosen for c2

ij . Let p∗ be the

shortest path in Gu and ck(p
∗) = ck

vk
, k = 1, 2. Then v = (v1, v2) is called the final position of p∗.

Under these conditions it can be shown that ck(p
∗) = ck

vk
≤ ck

uk
, k = 1, 2. Then, given some other

path q in Gw with u ≤ w ≤ v two situations can occur:

1. c2(q) < c2(p
∗), which means that q is still a path in graph Gu1,v2+1, therefore it can be found

in a subsequent iteration.

2. c2(q) ≥ c2(p
∗), therefore two new cases can happen, now in terms of c1:

(a) c1(q) < c1(p
∗), then q is still a path in Gu1+1w2

, and it can be determined later, or else

(b) c1(q) ≥ c1(p
∗), then q is dominated or equivalent to p∗, as p∗ is the shortest path in Gu

and q is in Gu.

As a consequence p∗ can be stored at position (u1, v2) and the next subgraph to consider is Gu1,v2+1.

Under certain conditions the jump can be applied to more than one row of C at a time, as in fact

these conclusions can be extended to the subgraphs of Gu until Gv. This is implemented by using

an auxiliary array b, with m1 elements, that marks the beginning of the c2 indexes to be scanned

for every row in C. A second array a, of the same size, is used to aid updating b, namely to ensure

that all the paths are computed.
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Algorithm 1 summarizes the method based on scanning matrix C as a stair that has just been

described. In this pseudo-language code, Q is an m1 ×m2 matrix that stores the c3 values of the

solutions obtained at the corresponding positions. Variable ctrl is used to skip subproblems that

have no solution.

Algorithm 1. Finding Pareto-optimal candidates with stairs

For i = 1, . . . ,m1 Do

bi ← 1; ai ← m1

For j = 1, . . . ,m2 Do Cij ← ∅; Qij ←∞

ctrl← m2; i← 1

While i ≤ m1 and ctrl 6= 0 Do

While bi ≤ ctrl Do

p← shortest path in Gibi
in terms of c3

If p is not defined Then ctrl← bi − 1

Else

vk ← indexes such that ck(p) = ck
vk

, k = 1, 2

ai ← min{v1, ai}; Caiv2
← p; Qaiv2

← c3(p)

For k = i, . . . , ai Do bk ← v2 + 1; ak ← ai

i← i + 1

Assume, for instance, that p∗ is a shortest path in G11 and (1, 1) is p∗’s final position. Following

the algorithm, a and b are updated as a1 = 1 and b1 = 2, and the next step is to consider G12. Let

now p̄ be the shortest path in this graph, with ck(p̄) = ck
vk

, k = 1, 2, and v1 = 2, v2 = 3. If a1 had

not been updated during the first iteration, then after the second iteration b2 = 4 and the shortest

path in G21 would not have been considered. However, according to situations 1 and 2 above, only

the iterations between (1, 2) and (2, 3), that is, (1, 2), (1, 3), (2, 2) and (2, 3), can be skipped. This is

accomplished by taking into account that in the second iteration a1 = min{v1, a1} = min{2, 1} = 1,

and therefore b1 is assigned the value 4 while b2 remains 1.

Blocks method The idea of this second method is the same as that used for the stair method,

but it considers both the values c1 and c2 of the computed paths at the same time. A binary

matrix R, with dimension m1 ×m2, marks the subproblems (or iterations) that have to be solved.

The shortest path problem in Gv is solved if and only if Rv = 1; otherwise the next position in

C is considered. The solutions that are obtained are inserted in the final position in matrix C.

Moreover, given p the shortest path in Gv̄ and v its final position, then Rv̂ is set to 0 for every v̂

such that v̄ ≤ v̂ ≤ v. The justification for skipping the shortest path problem resolutions associated

with v̂ is similar to that of the stair method.

Algorithm 2 outlines the blocks method in pseudo-code language.

Algorithm 2. Finding Pareto-optimal candidates with blocks

For i = 1, . . . ,m1 Do

For j = 1, . . . ,m2 Do Cij ← ∅; Qij ←∞; Rij ← 1

ctrl← m2; i← 1
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While i ≤ m1 and ctrl 6= 0 Do

j ← 1

While j ≤ ctrl Do

If Rij = 1 Then

p← shortest path in Gij in terms of c3

If p is not defined Then ctrl← j − 1

Else

vk ← indexes such that ck(p) = ck
vk

, k = 1, 2

If c3(p) < Qv1v2
Then

Cv1v2
← p; Qv1v2

← c3(p)

For g = i, . . . , v1 Do

For h = j, . . . , v2 Do Rgh ← 0

j ← j + 1

i← i + 1

The matrix C resulting from Algorithms 1 and 2 may contain some dominated or equivalent

paths. The process that eliminates such solutions is common to both the stair and blocks methods,

and is outlined in Algorithm 3. After this procedure has been applied, given the positions v and v̄

in C, such that v ≤ v̄ and v 6= v̄, the correspondent paths p and p̄ satisfy c3(p) < c3(p̄), therefore p

is not dominated by p̄. This is done by checking all the objective values of the paths stored in C,

that is, the values in matrix Q. Assume Algorithm 1 (or 2) has been applied and let Cv = p and

Cv̄ = p̄, for 1 ≤ v̄k ≤ vk = mk, therefore ck(p) ≤ ck(p̄), k = 1, 2. Thus Qv ≤ Qv̄ means p dominates

or is equivalent to p̄, so p̄ can be deleted in C.

Algorithm 3. Filtering Pareto-optimal solutions in C

For i = m1, . . . , 1 Do

For j = m2, . . . , 1 Do

If Qij 6=∞ Then

If j > 1 and Qij ≤ Qij−1 Then Cij−1 ← ∅; Qij−1 ← Qij

If i > 1 and Qij ≤ Qi−1j Then Ci−1j ← ∅; Qi−1j ← Qij

Alternative method Aimed at reducing the number of shortest path problems that have to

be solved, the routine used by the stair and the blocks methods can be replaced by a variant,

adapted from the algorithm described in [5], that chooses the best option whenever there is a

tie in the cost. This procedure is more demanding than a regular shortest path algorithm, as it

implies storing and updating the bottleneck function values, besides the additive cost. Still it can

avoid the computation of certain paths and, for some cases, outperforms the previous version, as

the empirical tests reported in Section 4 show. Denoting by πk
i the value of ck associated with a

path from s to a node i at a certain step of this labeling algorithm, k = 1, 2, 3, the shortest path

algorithm variant consists in rewriting the labeling test as:

If (π3
j > π3

i + c3
ij) or (π3

j = π3
i + c3

ij and (π1
j > max{π1

i , c
1
ij} or

(π1
j = max{π1

i , c
1
ij} and π2

j > max{π2
i , c

2
ij}))) Then

4
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Node j is labeled using arc (i, j)

π1
j ← max{π1

i , c
1
ij}; π2

j ← max{π2
i , c

2
ij}; π3

j ← π3
i + c3

ij

3 Algorithms analyses

In this section the stair and blocks method are illustrated. Also the correction of those algorithms

and their complexity are analyzed.

Let us consider the graph G depicted in Figure 1. For this instance of the TSPPB m1 = 5 and

m2 = 4, with c1
ij ∈ {9, 7, 6, 3, 2} and c2

ij ∈ {8, 5, 4, 3}, for any (i, j) ∈ A.
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Figure 1: Graph G

Tables 1 and 2 show a list of the shortest paths and the matrix C obtained when applying to G

Algorithms 1 and 2 followed by Algorithm 3, respectively. Columns p, v, IP and FP present the

computed paths, the iteration for obtaining them and their insertion and final positions, respec-

tively. The symbol ‘∅’ means there is no path in graph Gv, therefore no new solution is found at

iteration v.

p c1 c2 c3 v IP FP

p1 = 〈1, 5, 7〉 9 5 6 (1,1) (1,2) (1,2)
p2 = 〈1, 3, 6, 4, 7〉 7 3 20 (1,3) (1,4) (2,4)
p3 = 〈1, 2, 4, 7〉 7 8 13 (2,1) (2,1) (2,1)
p4 = 〈1, 3, 6, 7〉 6 5 16 (2,2) (2,2) (3,2)
p5 = 〈1, 3, 6, 4, 7〉 7 3 20 (2,3) (2,4) (2,4)
p6 = 〈1, 3, 6, 7〉 6 5 16 (3,1) (3,2) (3,2)
∅ − − − (3,3) − −
∅ − − − (4,1) − −

C

1

2

3

4

5

1 2 3 4
p1 p2

p3 p4 p5

p6

Table 1: Result of Algorithms 1 and 3

In Algorithm 1 the first path to be found is p1 = 〈1, 5, 7〉, the shortest path from 1 to 7 in G11.

As c1(p1) = c1
1 and c2(p1) = c2

2, p1 is stored at position C12. This means that the shortest path

problem in G12 can be skipped and the next graph to be considered is G13.

Note that for p2 and p4 the insertion positions are not final. In fact these paths are obtained

again at iterations (2, 3) and (3, 1), respectively. The repetitions are eliminated during Algorithm 3.

Consider now the application of Algorithm 2 to the same graph. The resulting paths are

presented in Table 2, where ‘−’ means the shortest path problem was not solved in that iteration,

that is Rv = 0.

5
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p c1 c2 c3 v IP FP Rv

p1 = 〈1, 5, 7〉 9 5 6 (1,1) (1,2) (1,2) 1
− − − − (1,2) − − 0
p2 = 〈1, 3, 6, 4, 7〉 7 3 20 (1,3) (2,4) (2,4) 1
− − − − (1,4) − − 0
p3 = 〈1, 2, 4, 7〉 7 8 13 (2,1) (2,1) (2,1) 1
p4 = 〈1, 3, 6, 7〉 6 5 16 (2,2) (3,2) (3,2) 1
− − − − (2,3) − − 0
− − − − (2,4) − − 0
p5 = 〈1, 3, 6, 7〉 6 5 16 (3,1) − (3,2) 1
− − − − (3,2) − − 0
∅ − − − (3,3) − − 1
∅ − − − (4,1) − − 1

C

1

2

3

4

5

1 2 3 4
p1

p3 p2

p4

Table 2: Result of Algorithms 2 and 3

Like before, at the first iteration p1 is obtained and is inserted in position C12. Instead of

jumping to step (1, 3) the next iteration is (1, 2), but before R12 is set to 0, which means the

shortest path problem does not need to be solved at this iteration. Now p2 = 〈1, 3, 6, 4, 7〉 is stored

in C24, because c1(p2) = 7 and c2(p2) = 3. This means with this method paths p2, and p4, are

inserted in the final position, (2, 4) and (3, 2) respectively, from the moment they are obtained.

Matrix C is unchanged after Algorithm 3. Note also that when p2 is stored, Rij is set to 0, for

i = 1, 2 and j = 3, 4.

It is worth noting that in this example Algorithm 2 performs twelve iterations, against eight

iterations for Algorithm 1. However, some of the iterations of Algorithm 2 (five in this case) consist

simply of checking the value of Rv, which is less demanding than solving a shortest path problem.

In fact, the number of shortest path problems solved by Algorithm 2 (which is seven) is smaller

than that solved by Algorithm 1 (with eight). The former procedures, MMS and MMS-R, would solve

20 and 12 shortest path problems, respectively.

The following results show that the algorithms presented are capable of finding the minimal

complete set of paths. In order to prove some auxiliary results we first note that the final position

of a path obtained by Algorithm 1 (or 2) always has components greater than or equal to the

iteration where it is computed. Let p be any path, obtained at iteration v̂, and let v be its final

position. Since p is a path in Gv̂ then ck
vk

= ck(p) ≤ ck
v̂k

, k = 1, 2, thus v ≥ v̂. Lemma 1 ensures

that the insertion row is always greater than or equal to the iteration.

Lemma 1. In Algorithm 1 ak ≥ k always holds, for k = 1, 2, . . . ,m1.

Proof. The m1 inequalities are satisfied at the beginning of the algorithm because in the initial-

ization ak = m1, k = 1, 2, . . . ,m1. Let p be a path obtained at iteration (i, bi) and assume that

at previous iterations the same property was valid, that is, ak ≥ k, k = 1, 2, . . . ,m1. According to

the remark above v1 ≥ i, where v is p’s final position. Combining the two sets of inequalities we

can say that at iteration (i, bi), after setting ai = min{v1, ai}, we have ai ≥ i and afterwards ak is

6

Enhanced Algorithms for Tricriteria Shortest Path Problems with Two Bottleneck Objective Functions

CIRRELT-2009-17



updated as ak = ai, for k = i, . . . , ai. As k ≤ ai then ak ≥ k for k = i, . . . , ai and ak is not changed

for k ∈ {1, . . . , i − 1, ai + 1, . . . ,m1}, therefore at the iteration after (i, bi) we still have ak ≥ k,

k = 1, 2, . . . ,m1.

Lemma 2 shows that in Algorithms 1 and 2 the insertion position is always between the iteration

number and the final position.

Lemma 2. Let p be a path obtained in iteration v̂ of Algorithm 1 (or 2). Then v̂ ≤ v̄ ≤ v, where

v and v̄ are p’s final and insertion positions, respectively.

Proof. We first note that v̂ ≤ v. Besides, for Algorithm 2 v̄ = v, while for Algorithm 1 v̄2 = v2 and

v̄1 = av̂1
= min{v1, av̂1

}, which implies that v̄1 ≤ v1. Since by Lemma 1 we have av̂1
≥ v̂1, then

v̄1 ≥ v̂1, and therefore v̂ ≤ v̄ ≤ v is valid for both algorithms.

Theorem 1 shows that after Algorithm 3 is applied all paths in C are at their final positions

and are Pareto-optimal.

Theorem 1. For any Cv = p 6= ∅, after Algorithm 1 (or Algorithm 2) followed by Algorithm 3:

1. v is the final position of p in C, and

2. p is Pareto-optimal.

Proof. 1. The proof of this point is immediate for Algorithm 2, because all insertions are made

in the final position.

Let us consider the same case for Algorithm 1. Given a path p in Cv, assume v̄ is its final

position, that is, ck(p) = ck
v̄k

, k = 1, 2. As paths are inserted at their final column, then

v̄2 = v2. Furthermore, by Lemma 2, v̄1 ≥ v1, which implies c1(p) = c1
v̄1
≤ c1

v1
. We now prove,

by contradiction, that c1
v̄1

= c1
v1

. If c1
v̄1

< c1
v1

, then

v̄1 > v1 ⇒ v̄1 ≥ v1 + 1⇒ c1
v̄1
≤ c1

v1+1,

thus p is a path in Gv+ , for v+ = (v1 + 1, v2). Two cases can be considered for iteration v+:

(a) If the shortest path problem is solved in Gv+ , the solution is p+ such that c3(p
+) ≤ c3(p),

therefore by Lemma 2 p+ is inserted in Cṽ, for some ṽ ≥ v+. Furthermore ṽ ≥ v with

ṽ1 ≥ v1 + 1, thus in Algorithm 3, when i = v1 + 1 and j = v2 we have Qij ≤ c3(p
+) ≤

c3(p) = Qv = Qi−1j, then Cv is set to ∅.

(b) Else in some iteration v̂ such that v̂ ≤ v+, a path p+ is obtained and inserted in Cṽ for

some ṽ ≥ v+. We have p in Gv̂ because v̂ ≤ v+, then c3(p
+) ≤ c3(p). Using the same

proof we again conclude that Cv = ∅.

Thus c1
v̄1

< c1
v1

implies Cv = ∅, which contradicts Cv = p 6= ∅, therefore c1(p) = c1
v̄1

= c1
v1

.

2. Path p is the shortest in some graph Gv̄ such that v̄ ≤ v and, by item 1, c(p) = (c1
v1

, c2
v2

, c3(p)).

Assume, by contradiction, that there is a path p̂ that dominates p, that is,

c(p̂) = (c1
v̂1

, c2
v̂2

, c3(p̂)) ≤ c(p) = (c1
v1

, c2
v2

, c3(p)) and c(p̂) 6= c(p).
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Then v̄ ≤ v ≤ v̂, therefore p̂ is also a path in Gv̄. On the one hand p is the shortest path in

that graph, and on the other hand c(p) ≥ c(p̂), thus c3(p̂) = c3(p). Together with c(p̂) ≤ c(p)

and c(p̂) 6= c(p) this leads to c1
v̂1

< c1
v1

or c2
v̂2

< c2
v2

.

Let us consider c1
v̂1

< c1
v1

(the other case can be treated similarly). Then v̂ ≥ v with v̂1 > v1,

therefore p̂ is a path in Gv+ , where v+ = (v1 + 1, v2). Now following the same steps as before

a contradiction is found, therefore p is Pareto-optimal.

The next result ensures that after the two phases of the algorithms are applied c(p1) 6= c(p2),

for any two distinct paths p1 and p2 stored at C.

Proposition 1. After Algorithms 1 (or 2) and 3 the paths in C have distinct objective values c.

Proof. At the end of the algorithms, by Theorem 1, all paths are in the final positions and there is

at most one path in each C position, therefore there are no two paths with exactly the same values

in c1, c2.

Lemma 3 is an auxiliary result for proving Theorem 2.

Lemma 3. Let p∗ be a Pareto-optimal path inserted at its final position in C by Algorithm 1 (or

2). After the application of Algorithm 3 Cv = p∗, where v is p∗’s final position.

Proof. In Algorithm 1 all solutions are inserted in distinct positions, therefore it is not necessary

to delete any solution. In Algorithm 2 a solution p is only replaced by another solution p̄, when p̄

dominates p, and thus a Pareto-optimal path is never deleted. A path p is only deleted in Algorithm

3, where p was inserted at its final position, if p is dominated by another path in C. Therefore a

Pareto-optimal path inserted at its final position is never removed from C.

Finally we prove that Algorithms 1 and 2, together with Algorithm 3, find a minimal complete

set of solutions.

Theorem 2. Let p∗ be a Pareto-optimal path and v be such that ck(p
∗) = ck

vk
, k = 1, 2. After the

application of Algorithms 1 (or 2) and 3 Cv = p, with p some path in P such that c(p) = c(p∗).

Proof. Two cases have to be analyzed:

1. The shortest path problem in Gv is not solved.

In this case a path p, the shortest in Gv̄ where v̄ ≤ v, is inserted in position v̂ such that v̂ ≥ v.

Let ṽ be p’s final position. We have v̂ ≥ v and by Lemma 2 ṽ ≥ v̂, then ck(p) = ck
ṽk
≤ ck

v̂k
≤

ck
vk

= ck(p
∗), k = 1, 2. Since v̄ ≤ v the path p∗ is in graph Gv̄ , and therefore c3(p) ≤ c3(p

∗),

hence c(p) ≤ c(p∗). As p∗ is Pareto-optimal, then c(p) = c(p∗) and ṽ = v̂ = v. This means p

is also Pareto-optimal, v is its final position and p is stored in Cv at iteration v̄.

2. The shortest path problem in Gv is solved.

p∗ is a path in graph Gv . If p is the shortest path obtained at iteration v, then c3(p) ≤ c3(p
∗).

As v is p∗’s final position and p ∈ Gv, then ck(p) ≤ ck(p
∗), k = 1, 2, therefore c(p) ≤ c(p∗).
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On the other hand p∗ is Pareto-optimal, therefore c(p) = c(p∗) must hold, which implies p is

a Pareto-optimal too and v is its final position. Finally Cv = p at the end of iteration v (for

Algorithm 2 Rv = 1 implies Qv =∞).

In both cases, by Lemma 3 Cv = p holds.

The number of operations performed by Algorithms 1 and 2 depends on the number of distinct

values of the bottleneck objective functions, m1,m2 ≤ m, which are highly correlated with the

number of Pareto-optimal solutions, and thus the number of shortest path problems that have to

be solved. As a result the new methods share the same worst-case complexity order of previous

algorithms in the literature, O(m1m2c(n)), where c(n) is the number of operations needed to find

the shortest path in a network with n nodes. The same bound is valid for the variant that avoids

ties in the paths’ bottleneck values, as in a worst-case there is a non-dominated solution for every

pair of bottleneck values c1 and c2.

4 Computational experiments

Computational experiments were carried out to evaluate the performance of the new methods, as

well as to compare them with previous approaches. Six codes were implemented in C: the methods

described in the literature, MMS and MMS-R [6, 7], the stair method, MMS-S, and the blocks method,

MMS-B, as well as the variants of the latter two which deal with cost ties, MMS-ST and MMS-BT. In

order to determine the shortest path the first four programs used Dijkstra’s algorithm [2], while

the others used its modified version described at the end of Section 2. The codes ran on an Intel

Core 2 Duo 2.0GHz with 3GB of RAM.

The first set of tests aimed to compare MMS-S and MMS-B against the previous methods, MMS and

MMS-B. Random networks with 500, 2 000 and 5 000 nodes, dn arcs, for densities d = 20, 100, and

integer c3
ij uniformly generated in [1, 10000] were considered. The bottleneck values ck

ij are integers

randomly generated in [1,mk], k = 1, 2, where m1 = m2 may be 10, 50 and 200. For any node

i, d successors j are randomly chosen and the arcs (i, j) are created in A. The results below are

average values for 10 different instances of each data set dimension.

Table 3 presents for this set of tests the final number of Pareto-optimal solutions, the CPU

times (in seconds) and the number of shortest path problems solved. We first note that the number

of Pareto-optimal solutions for this set of problems is far from the theoretical upper bound m1m2

[6]. For m1 = m2 = 10 that number is between 36% and 59% of m1m2, for m1 = m2 = 50 between

4% and 12% and for m1 = m2 = 200 between 0.4% and 1.5% of m1m2. Still concerning the number

of solved shortest path problems, it is always m1m2 with MMS while for MMS-R it is greater than

65%m1m2. With MMS-S and MMS-B these values are between 10% and 27%, and between 6% and

15% for m1 = m2 = 50, respectively. The numbers decrease with m1,m2 and are between 1.1% and

6% for MMS-S and between 0.5% and 2.1% for MMS-B, when m1 = m2 = 200. Finally it should be

noted that the number of subproblems and the number of Pareto-optimal solutions are very close,

which indicates that not many unnecessary shortest path problems are being computed.

Following the trends indicated in [7] Table 3 reports version MMS-R solves between 1%, when

m1 = m2 = 10, and 51%, when m1 and m2 are greater, less shortest path problems than the
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MMS MMS-R MMS-S MMS-B

n m m1 # PO Time SPP Time SPP Time SPP Time SPP
500 9 796 10 36 0.14 100 0.12 83 0.08 49 0.07 42
500 9 791 50 106 2.96 2 500 2.67 1684 0.49 248 0.30 145
500 9 792 200 140 43.55 40 000 39.73 26 408 0.91 450 0.42 206
500 45 264 10 50 0.20 100 0.19 99 0.14 66 0.12 54
500 45 245 50 153 3.82 2 500 3.78 2 313 0.81 386 0.46 205
500 45 243 200 321 60.17 40 000 58.76 35 891 2.53 1203 1.02 457
2 000 39 791 10 41 1.71 100 1.61 77 1.36 55 1.22 48
2 000 39 788 50 148 42.09 2 500 38.12 1 741 9.11 330 5.58 194
2 000 39 788 200 245 609.91 40 000 559.77 27 710 23.52 850 10.44 354
2 000 195 037 10 56 2.16 100 2.14 99 1.80 73 1.62 61
2 000 195 021 50 256 60.53 2 500 59.08 2 306 18.30 573 11.01 322
2 000 195 037 200 474 792.38 40 000 781.29 36 226 56.70 1966 20.60 670
5 000 99 790 10 46 11.97 100 11.72 81 9.64 59 8.87 53
5 000 99 780 50 206 242.11 2 500 221.66 1 785 72.81 451 45.03 265
5 000 99 795 200 289 3 789.81 40 000 3 518.27 26 817 178.83 1 028 77.41 426
5 000 494 924 10 59 14.25 100 14.19 99 12.22 73 11.31 64
5 000 494 972 50 296 361.43 2 500 352.87 2 315 125.61 664 73.48 372
5 000 494 940 200 602 4 709.67 40 000 4 609.85 36 346 430.59 2 379 158.50 836

Table 3: Average results for codes MMS, MMS-R, MMS-S and MMS-B

original version, which corresponds to time improvements between 1% and 17%, greater for small

size instances. Table 4 completes the comparison of MMS-R, MMS-S and MMS-B by showing the ratios

of running times and shortest path subroutine calls. Like before the new algorithms’ performance

is worse for larger problems as shortest path problems are harder to compute in these cases and,

in general, there are more Pareto-optimal paths to be found. Whether it is measured in terms of

CPU times or in terms of the number of subroutine calls, the improvement of the new approaches is

obvious. In the case of MMS-S it is from 1.15 to 43.66 times faster than MMS-R. For MMS-B the speed-

up is even greater, these values are between 1.25 and 94.60. The results concerning the number of

shortest paths found are very similar. The decrease on both time and number of subproblems is

specially dependent on m1,m2, while it remains nearly constant when n increases.

The high dependence on m1,m2 reflects the complexity order of the algorithms. Also the

outperformance of MMS-B over MMS-S was expected, as the fact that with the first paths are stored

in the final position when they are computed allows more subproblems to be skipped. This is

confirmed by Tables 3 and 4. Again the difference between the two methods is more evident for

higher m1,m2 values and the weight of this factor is larger for instances with fewer nodes. The

ratio of the stair and the blocks methods running times is around 1.10 for m1 = m2 = 10, while

for m1 = m2 = 200 it ranges between 2.17 to 2.75.

The last two columns in Table 4 depict the average time in milliseconds needed to obtain each

Pareto-optimal path. If on the one hand these values show a small m1,m2 dependence and, for the

performed tests, they were steady to the variation of d; on the other hand they are highly sensitive

to n, once it affects the time for solving shortest path problems.

On this set of instances the codes MMS-ST and MMS-BT were always less efficient than their

original versions. In fact, the number of solved shortest path problems coincided and, as expected,

the running times were higher for the codes that deal with ties on the paths cost. On a second test
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CPU SPP 1000 × CPU/PO

n m m1
MMS-R
MMS-S

MMS-R
MMS-B

MMS-S
MMS-B

MMS-R
MMS-S

MMS-R
MMS-B MMS-S MMS-B

500 9 796 10 1.50 1.71 1.14 1.69 1.98 2.22 1.94
500 9 791 50 5.45 8.90 1.63 6.79 11.61 4.62 2.83
500 9 792 200 43.66 94.60 2.17 58.68 128.19 6.50 3.00
500 45 264 10 1.36 1.58 1.17 1.50 1.83 2.80 2.40
500 45 245 50 4.67 8.22 1.76 5.99 11.28 5.29 3.01
500 45 243 200 23.23 57.61 2.48 29.83 78.54 7.88 3.18

2 000 39 791 10 1.18 1.32 1.11 1.40 1.60 33.17 29.76
2 000 39 788 50 4.18 6.83 1.63 5.28 8.97 61.55 37.70
2 000 39 788 200 23.80 53.62 2.25 32.60 78.28 96.00 42.61
2 000 195 037 10 1.19 1.32 1.11 1.36 1.62 32.14 28.93
2 000 195 021 50 3.23 5.37 1.66 4.02 7-16 71.48 43.01
2 000 195 037 200 13.78 37.93 2.75 18.43 54.07 119.62 43.46
5 000 99 790 10 1.22 1.32 1.09 1.37 1.53 209.57 192.83
5 000 99 780 50 3.04 4.92 1.62 3.96 6.74 353.45 218.59
5 000 99 795 200 19.67 45.45 2.31 26.09 62.95 618.79 267.85
5 000 494 924 10 1.16 1.25 1.08 1.36 1.55 207.12 191.69
5 000 494 972 50 2.81 4.80 1.71 3.49 6.22 424.36 248.24
5 000 494 940 200 10.71 29.08 2.72 15.28 43.48 715.27 263.29

Table 4: Comparison of the results for codes MMS-R, MMS-S and MMS-B

MMS-S MMS-ST MMS-B MMS-BT

n m m1 # PO Time SPP Time SPP Time SPP Time SPP
1 000 19 793 50 99 1.75 237 1.55 209 1.15 148 1.03 134
1 000 95 112 200 234 8.09 953 6.26 741 3.55 401 2.99 342
5 000 99 783 50 116 51.02 284 45.61 250 32.56 176 29.31 157
5 000 494 953 200 322 279.54 1 423 213.38 1 097 113.97 558 94.95 466
7 000 139 778 50 154 130.31 376 117.64 334 79.57 221 73.88 203
7 000 694 876 200 354 556.85 1 433 444.77 1 139 238.23 594 202.18 502

Table 5: Average results for codes MMS-S, MMS-ST, MMS-B and MMS-BT, in instances with c3
ij ∈ [1, 10]

set tighter ranges of the c3
ij values, (i, j) ∈ A, were considered. This set was formed by random

networks with 1 000, 5 000 and 7 000 nodes, densities of d = 20, 100, and c3
ij uniformly generated

in [1,M ], for M = 10, 100. The results, summarized in Tables 5 and 6, are again averages for 10

problems.

Tables 5 and 6 show that for costs in [1, 10] and [1, 100] avoiding ties has a positive impact over

both the number of shortest path algorithm calls and the running times. The general tendency of

increasing CPU time and number of subproblems with n and, in particular, with m1 and m2 is still

observed for MMS-ST and MMS-BT. This modification has more impact on the stair method than on

the blocks method.

When M = 10 MMS-ST solved between 1.13 and 1.30 times less shortest path problems than

MMS-S. These values are smaller for the blocks methods, between 1.09 and 1.20. In what concerns

the running time, this results in a speedup between 1.11 and 1.31 for the stair methods and between

1.08 and 1.20 for the blocks methods. The improvement is not so sharp for the wider range of costs,

M = 100. In fact with MMS-ST the number of subproblems is identical in one of the cases, for the
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MMS-S MMS-ST MMS-B MMS-BT

n m m1 # PO Time SPP Time SPP Time SPP Time SPP
1 000 19 796 50 114 1.84 258 1.78 253 1.14 157 1.10 155
1 000 95 140 200 351 12.04 1 345 11.01 1 262 4.90 515 4.62 499
5 000 99 780 50 174 76.39 412 75.89 411 45.23 237 44.53 234
5 000 494 987 200 543 413.26 2 154 377.08 2 032 160.02 793 149.07 766
7 000 139 798 50 181 148.91 423 145.78 415 85.77 239 84.48 237
7 000 694 944 200 551 828.49 2 378 759.24 2 261 305.40 811 283.46 783

Table 6: Average results for codes MMS-S, MMS-ST, MMS-B and MMS-BT, in instances with c3
ij ∈ [1, 100]

others it decreases up to 1.07 times. The reduction obtained by MMS-BT is also small, between 1.01

and 1.04. In terms of time MMS-ST is from 1.01 to 1.10 times faster than its original version. The

range is from 1.02 to 1.08 for MMS-BT.

5 Final remarks

We have introduced two methods for finding the minimal complete set of Pareto-optimal paths for

a tricriteria path problem involving two bottleneck objective functions and a cost, the stair method

and the blocks method. These methods enhance the procedures presented recently in [6] and [7] by

using the objective values of the obtained paths to reduce the number of shortest path subproblems

that have to be solved. The number of operations performed by the algorithms depends on the

number of distinct values of the bottleneck objective functions, m1,m2, which are correlated with

the number of Pareto-optimal solutions, and thus the number of shortest path problems that need

to be solved. As a result the new methods have the same worst-case complexity order as previous

algorithms, O(m1m2c(n)), where c(n) is the number of operations needed to find the shortest path

in a network with n nodes. Empirical tests showed that in practice this bound is far from being

attained and in random instances with n = 5000, average degree 100 and m1 = m2 = 200 the stair

method improved the previous solving about 15 times less shortest path problems than before,

while the blocks method solved about 43 times less. As a result the CPU times were improved in

about 11 and 29 times, respectively. The blocks method was able to compute the complete minimal

set in instances of n = 7000 and m1 = m2 = 200 in less than 4 minutes.

Variants of the two methods with the purpose of reducing the number of subproblems that have

to be solved were also proposed. To this end the labeling test used in the shortest path algorithm is

modified so that every time two paths ending at a given node have the same cost, the one with the

best bottleneck value is chosen. For the experiments performed on random instances the percentage

of improvement with these variants was between 10% and 30% for arc costs in [1, 10] and between

1% and 9% for arc costs in [1, 100]. The improvement is more significant for the stair than for the

blocks method.

Finally, it should be noted that the idea used to develop the stair and blocks methods defines

a way to search for the best solutions in matrix C. Therefore it can be applied to other combina-

torial problems with one additive and two bottleneck functions. Moreover these procedures can be

extended to the multi-objective bottleneck network problem, similarly to what was done in [8].
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