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Abstract. This paper describes a dynamic capacitated arc routing problem motivated from 

winter gritting applications. In this problem, the service cost on each arc is a piecewise 

linear function of the time of beginning of service. This function also exhibits an optimal 

time interval where the service cost is minimal. Since the timing of an intervention is 

crucial, the dynamic aspect considered in this work stems from changes to these optimal 

service time intervals due to weather report updates. A variable neighborhood descent 

heuristic, initially developed for the static version of the problem, where all service cost 

functions are known in advance and do not change thereafter, is adapted to this dynamic 

variant. 
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1 Introduction

In the capacitated arc routing problem (CARP), a set of required arcs, each with
an associated demand, is served at minimum cost with a fleet of vehicles of finite
capacity based at a given depot. The CARP occurs in real world applications when
street segments are served, like winter gritting and street sweeping, or when the de-
mand is aggregated over a number of locations along a street segment, like postman
problems. In the classical version of the problem, there is a fixed cost associated
with each arc for traveling on this arc or for serving it. In the time-dependent vari-
ant of the problem, the service cost on a required arc is also a function of the time
of beginning of service.

Winter gritting was first modeled as a CARP by Eglese et Li [8]. The authors
discuss routing efficiency issues based on different network characteristics. For
example, the presence of T-junctions in rural networks and one-way streets and
highways in urban networks are shown to significantly impact routing efficiency
measures. In [7], a winter gritting problem is reported where a number of salt de-
pots are located on the network for vehicle replenishment. The problem is solved
with simulated annealing, using a savings-based heuristic [6] to generate the start-
ing solution. In [12], the authors propose a two-phase construction heuristic. After
selecting an arc to initialize a route, new arcs are inserted in the first phase by go-
ing backward from the node at one end of the selected arc back to the depot. In
the second phase, arcs are inserted by going forward from the node at the other
end of the selected arc to the depot. In [5], the authors first divide the service area
into districts that are served from the same depot. Then, routes are constructed
in each district with the Augment-Insert heuristic [14]. In [13], a combined depot
location-arc routing problem is reported.

Apart from winter gritting, other real-life problems modeled as CARP are:

• Street sweeping: this problem was first studied in [2, 3]. In this work, each
arc has to be serviced within a given time window.

• Electric meter reading: the “capacity” constraint here comes from the fact
that each employee has a work time limit, see [16].

• Refuse collection: this problem, first considered in [1], is a CARP with two-
dimensional capacity constraints due to a true capacity constraint for each
vehicle and a work time limit for each driver.

• Snow removal: this problem was addressed in a rural context in [10]. In this
work, the authors both consider the minimization of operating costs and the
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maximization of road safety while the snow is being removed.

These real-life problems have all been studied in a static context, where it is as-
sumed that all data about the problem are known in advance. However, this is not
necessarily the case in real-word applications, where some information might not
be readily available when the vehicles start their routes. When new information
is unveiled as the routes are executed, the problem becomes dynamic. Although
there is fair number of papers on dynamic node routing problems, particularly with
regard to the integration of new customer requests into vehicle routes [9, 11, 15],
dynamic CARPs have not attracted yet the attention of the research community.
In this work, weather report updates lead to modifications to the optimal time of
beginning of service on each required arc and thus, to dynamic modifications to
the current routes. The service cost function considered on each required arc is a
piecewise linear function of the time of beginning of service. This function also
exhibits an optimal time interval where the service cost is minimal [17].

The paper is organized as follows. In section 2, the static version of the problem is
formally introduced and the variable neighborhood descent (VND) heuristic pro-
posed in [18] to solve it is briefly described. In section 3, the dynamic variant is
introduced, followed by a description of the corresponding adaptation of the VND.
In section 4, the problem generator to run the tests is detailed and numerical results
are reported.

2 The static problem

2.1 Problem definition

Let G = (V,A) be a directed graph whereV is the vertex set andA is the arc set.
A is partitioned into a subset of required arcsA1, and a subset of non required arcs
A2. With each required arce∈ A1 is associated a demandde, a lengthle, a travel
time tte, a service timeste, a travel costtce and a time-dependent piecewise linear
service cost functionsce(Te), whereTe is the time of beginning of service on arc
e. The arcs inA2 have a length, a travel time and a travel cost only. A set ofK
identical vehicles, each with capacityQ, is available to serve the required arcs.

The objective is to serve all required arcs in the graph with least-cost feasible
routes, where the cost is the sum of service costs and travel costs. More precisely,
let rk be the route traveled by vehiclek, which is made of required arcs(e1, ...,el )
and non-required (or deadhead) arcs(el+1, ...,el+p). The route cost is then:
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C(rk) =
l

∑
i=1

scei (T
k

0 )+
l+p

∑
i=l+1

tcei = sck(T
k
0 )+ tck, (1)

whereTk
0 is the start time from the depot node of the route served by vehiclek.

Given that no waiting time is allowed along a route, the time of beginning of service
on any required arcTei can be easily derived from the start time of the routeTk

0 [17].

Figure 1 shows typical piecewise linear service cost functions. The type illustrated
in Figure 1(b), where the flat portion corresponds to the optimal service time inter-
val, is the one used in our computational experiments.

Te

e

e

e

Te

e
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(b)

T

sc

sc sc

Figure 1: Different types of service cost functions

2.2 Problem-solving methodology

The problem-solving methodology for solving the static version of the problem is
reported in [18]. We briefly restate it here for the sake of completeness.
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Initial solution

In the first phase, an initial solution is obtained with either an insertion heuristic or
an adaptation of the Clarke and Wright’s savings heuristic [6].

• Savings heuristic :

Initially, each required arc is served by a single route that starts and ends
at the depot. Then, at each iteration, the pair of routes associated with the
largest savings are merged together. This is repeated until no further route
merging is feasible.

• Insertion heuristic

First, a route is created for serving the closest required arc from the depot.
Then, at each iteration a new unserved required arc is inserted into the route,
until no additional insertion is feasible. Additional routes are constructed
sequentially in this way until all required arcs are served.

Neighborhood structures

Each neighborhood is explored using a first-improvement local descent. The last
procedure presented below, called shorten, does not really generate a neighborhood
structure. It is simply aimed at reducing as much as possible the travel cost of the
routes by inverting the service and travel on a given arc, when this arc is crossed
twice.

• Arc move

Here, a required arc is removed from one route and inserted between two
other required arcs in the same route or in another route.

• Cross exchanges

Given a pair of routes in the current solution, two sequences of arcs are
exchanged. The two sequences contain exactlym required arcs, 1≤m≤M,
whereM is a parameter set to 5 in our computational experiments.

• Block exchanges

Here, sequences made of consecutive required arcs with no deadhead arcs
in-between, called blocks, are identified and exchanged between two routes.
The number of required arcs in a block is not limited and two blocks can be
exchanged even if they do not contain the same number of required arcs.
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• Shorten

When a required arc is crossed twice, once for serving it and once for travel-
ing on the shortest path between two other required arcs, it might be possible
to improve the route by inverting the order of the two activities on this arc.
This is illustrated in Figures 2 and 3, using full arcs for service and broken
arcs for travel. In the first case, the service is postponed after the travel on
arc(vi ,v j) while, in the second case, the travel is postponed after the service.
In our context, even if an improvement in travel cost is observed, there is
no guarantee that the solution is better overall, due to the time-dependent
service costs.

V i V j V i V j

V i V j

V Vk l
V k V l

V k V l

(a) (b)

(c)

Figure 2: Shorten procedure (service before travel).

Basically, the procedure is applied sequentially to every required arc which
is crossed twice. After processing a required arc, the new solution is kept
if it is better than the current solution. The shorten procedure then proceeds
with the next required arc.
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V i V j V i V j

V i V j

V k

V k

V k

(a)

(c)

(b)

V l

V
l

V l

Figure 3: Shorten procedure (travel before service).

Variable neighborhood descent

The complete VND algorithm is described in pseudo-code in the following, where:

• N1 is the arc move neighborhood.

• N2 to NM+1 are theM cross exchange neighborhoods.

• NM+2 is the block exchange neighborhood.

• sNj is a local optimum solution based on neighborhoodNj , j = 1,...,M+2.

Step 0: Initialization

Create an initial solutionsN0.

Step 1: Loop

For j = 1, ...,M + 2 do:

starting fromsNj−1, perform a local descent based on neighborhoodNj

and letsNj be the local optimum obtained.

if sNj is different fromsNj−1 thensN0 ← sNj and go to Step 1.

Step 2 :Shorten
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Apply shorten tosNM+2 to obtainsshort

If sshort is better thansNM+2 thensN0← sshort and go to Step 1; else returnsNM+2.

This algorithm is executed twice, once with each initialization heuristic, and the
best solution is returned at the end.

3 Dynamic variant

In the dynamic variant of the problem, a starting solution is first computed with
VND using service time cost functions based on some initial forecast. As vehicles
execute their routes, regular weather report updates lead to modifications to the
optimal service time interval associated with each required arc. This is explained
in the following.

3.1 Context

We assume that a storm (e.g., freezing rain) goes through a city represented as a
square in the euclidean plane, where one unit of time is equivalent to one unit of
euclidean distance. A first solution is available and computed beforehand based
on an initial storm position(x0,y0) = (0,0) at timet = 0 and some initial storm
speed forecast along the x- and y-axis(sp0,0). For simplicity purposes, it is thus
assumed that the storm moves along the x-axis only. At timeh, 2h, 3h, ..., whereh
is a fixed time step, weather reports are received that update the storm speed. This
is illustrated in Figure 4, where the storm front is represented as a vertical bar that
moves across the euclidean plane (assuming that one unit of time corresponds to
one unit of euclidean distance and that the speed of the storm is fixed at one).

In our simulations, the speed varies over time. Namely, if the speed isspt−h at time
t−h, then the speed at the current timet is :

spt = spt−h(1+ ξt),

whereξt is uniformly randomly chosen in[−α ,α ], with α a parameter.
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3.2 Definition of new static problems

Basically, the VND is applied on a new static problem each time an information
update (weather report) is received. Each static problem is defined as follows:

• all required arcs that have been serviced are removed from the problem.

• all required arcs that are currently served are assumed to be served by the
same vehicle up to their endpoint, using their current service time function.

• all other required arcs have their service time functions updated.

The next section explains how the update is performed on the third category of
required arcs.

3.3 Service cost function updates

Y

X   

h 2h0 3h

Figure 4: Example of storm movement.

When the speed of the storm varies, the optimal service time interval of each re-
quired arc must be shifted along the time line. The timemte(t) at which the storm
will reach the middle of a required arce= (vi ,v j), based on the current timet, is
first determined using its new speed:

mte(t) = t +
mxe−xt

spt
,

wheret is the current time,xt is the location of the storm along thex axis at timet,

spt is the speed of the storm at timet andmxe =
xvi +xvj

2 is the middle of arce.
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We chosemte(t) to be the middle of the optimal service time interval for arce. This
interval is thus defined as[mte(t)− γ ,mte(t)+ γ ], whereγ is a parameter set to 3
time units in our computational experiments.

3.4 Time projection

The computation of a new solution with VND takes some time. Accordingly, when
a new weather report is received, the current solution is followed for an additional
∆t time units using the updated service time functions. During that time, the so-
lution is optimized with VND based on the projected state of the system at time
t + ∆t. Due to this time projection, the optimized solution can then be applied as
soon as it is available.

3.5 Overall procedure

The evolution of the system over time can be summarized in pseudo-code as fol-
lows, using an initial solutionS0 at timet = 0 based on some initial storm position
x0 and speedsp0. As previously mentioned, the storm moves only along the x-axis.

Step 0: Initialization

t← h;

Step 1: Loop

While (t ≤ tmax)

define new static problem with updated service cost functions for

unserved required arcs, based on new storm locationxt and speedspt ;

set projected timetpro j← t + ∆t;

follow solutionSt−h up totpro j while optimizing the solution with VND

from timetpro j onward;

implement new solutionSt obtained with VND from timetpro j onward;

t← t +h.
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3.6 A small example

Figure 5 illustrates a router with two required arcse1 ande2 with both service
time and optimal service cost equal to 1. The travel times and travel costs on non
required arcs are also equal to 1. Here, the route cost is recomputed at timet = 3,
based on new data. As usual, the storm is initially located atx0 = 0 and its speed
is 1 euclidean distance unit (du) by time unit (tu), that issp0 = 1 du/tu, where the
distance and time units are the same.

e1

e2

1

2

3

4

5

6

X

Y

1 2 3 5 6 7 8 94

Figure 5: A small example

Since the middle of arcse1 and e2 is located atx = 2 and 6, respectively, their
optimal service time interval corresponds to[1,3] and[5,7], respectively, assuming
thatγ = 1. If the vehicle starts its route att = 2, then it servese1 within its optimal
time interval and the cost is 1. Then, after traveling on the two non required arcs
at a cost of 2, it reachese2 at timet = 5, thus within its optimal time interval, for a
cost of 1. Finally, the last arc is traveled at a cost of 1, for a total route costCr = 5.
Now, suppose that a new weather report is received at timet = 3, when the storm
is located atx = 3, and where the speed of the storm is modified to 0.8du/tu. At
this point, a new problem is defined. Since the vehicle has just finished its service
on arce1, this arc is removed from the problem and a new optimal service time
interval is computed fore2. With its reduced speed, the storm will now reach the
middle of arce2 at time 6.75 and the optimal time interval becomes[5.75,7.75].
As the new problem contains only required arce2, there is nothing to optimize.
Thus, the vehicle will arrive ate2 at timet = 5 and an additional cost of 0.75 is
incurred (if we assume that the service cost function increases linearly outside of
the optimal interval with a slope of one) for a total route costCr = 5.75. It should
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be noted that if we knew everything in advance, a better solution could have been
obtained. A solution of costCr = 5 is produced simply by moving the start time
of the route fromt = 2 to t = 3, as the vehicle will now reach both required arcs
within their optimal time interval. The difference 5.75 - 5 = 0.75 between the two
solutions is the value of advanced (or perfect) information.

4 Computational Results

In this section, we first describe the test instances. Then, we report computational
results obtained with our VND on these instances.

4.1 Test problems

A simulator was developed to test our algorithm. In this simulator, the vertices are
generated within a square in the euclidean plane. The horizontal and vertical sides
of the square are divided intonmax segments to obtain a grid withn2

max smaller
squares. In each one of them, a vertex is randomly generated, and the depot is
located in the bottom left square. Each vertex is connected to the vertices in the
North, South, East and West squares with two arcs, one in each direction. Then,
10% of those arcs are eliminated to break the symmetry, while keeping the graph
strongly connected. Among the remaining arcs, 50% of them are randomly selected
and defined as required arcs. Their demand is randomly set between 1 and 20 while
the vehicle capacity is set between 30 and 130.

We generated 3 types of problems with 5× 5 = 25, 7× 7 = 49 and 10× 10 = 100
vertices and with 36, 76, and 162 required arcs, respectively. The first two types
of problems are defined in a 10 km× 10 km squared area which is represented
as a 100× 100 euclidean square. Accordingly, 1du corresponds to 0.1 km. The
vehicle speed is set at 30 km/h or 1du/tu (where the distance and time units are
the same). Thus, 1tu corresponds to 12 seconds. The storm is initially located at
x0 = 0 with an initial speedsp0 of 6 km/h or 0.2du/tu. New weather reports are
received every 5 minutes or 25tu.

In the last type of problems with 100 vertices, a squared area of 25 km× 25 km is
used. Accordingly, 1du is 0.25 km and 1tu corresponds to 30 seconds, assuming
again that the vehicle speed is 30 km/h. As in the previous case, the storm is
initially located atx0 = 0 with an initial speed of 6 km/h or 0.2du/tu. New weather
reports are received every 5 minutes or 10tu.
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4.2 Results

Tables 1 to 3 show the average results obtained on each type of problems based
on 20 different instances for each type, using three different values for parameter
α . We recall that this parameter is used to define the bounds of the storm speed
updates, with larger values ofα leading to larger speed modifications. In the tables,
the first column corresponds to parameterα while the second column contains the
number of vehicles in the solutions. The third column contains the cost of the
a priori solutions, the ratio of their cost to thea posteriorisolutions (see below)
and the computation time in seconds, which includes the time to construct the
initial solutions plus the postoptimization time with VND. Thea priori solutions
are the solutions obtained with the initial service cost functions (based on storm
speedsp0), but evaluated in the dynamic setting. The fourth column contains the
same values, but for the dynamic solutions. The computation time reported for
these solutions corresponds to the largest reoptimization time with VND over all
static problems defined during the course of the dynamic process. These times
are negligible on the 25 and 50-vertex instances and∆t was set to zero during the
simulations. In the case of the 100-vertex instances,∆t was set of 1tuor 30 seconds.
The last column is the cost of thea posteriorisolutions, which serve as a basis to
quantify the benefits of advanced information, because they are computed with
the true service cost functions, namely those obtained at the end of the dynamic
process when everything is known. The computation times are not shown for these
solutions, because they are very similar to those of thea priori solutions.

The cost of the dynamic solutions lies between the cost of thea priori anda poste-
riori solutions. Thea priori solutions are not very good, because they are generated
under the initial conditions, but evaluated in the dynamic setting. This explains, in
particular, the fast degradation of these solutions with increasingα values. Clearly,
whenα is large, the initial conditions change a lot and constitute a poor approxima-
tion of the true dynamic conditions. On the instances with 25 vertices, the dynamic
solutions are quite good forα = 0.05 and 0.1, and lie well within 10% of thea
posteriori solutions, which are based on perfect information. However, whenα =
0.4, the gap jumps to 26.7%. A substantial increase of this gap is also observed
on the 50-vertex instances. However, this gap stabilizes on the largest 100-vertex
instances, due to a smaller time step between two updates on these instances (i.e.,
10 tu versus 25tu), which leads to more frequent calls to the reoptimization pro-
cedure.

13

A Dynamic Capacitated Arc Routing Problem with Time-Dependent Service Costs

CIRRELT-2009-19



α #Veh. A priori Dynamic A posteriori
cost ratio CPU cost ratio CPU

0.05 7.7 3156.3 1.149 1.03 2850.1 1.042 0.05 2736.7
0.1 7.7 3574.9 1.306 1.04 2919.1 1.070 0.05 2735.0
0.4 7.7 5429.2 1.957 1.03 3522.5 1.267 0.09 2786.3

Table 1: 25-vertex instances

α #Veh. A priori Dynamic A posteriori
cost ratio CPU cost ratio CPU

0.05 16.8 5766.1 1.162 9.39 5409.9 1.089 0.18 4968.6
0.1 16.8 6668.3 1.351 9.17 5669.7 1.146 0.32 4950.3
0.4 16.8 10445.5 2.126 10.38 7404.1 1.502 0.81 4933.6

Table 2: 49-vertex instances

α #Veh. A priori Dynamic A posteriori
cost ratio CPU cost ratio CPU

0.05 22.2 9785.5 1.300 242.18 8188.0 1.086 4.74 7552.3
0.1 22.2 14085.5 1.760 214.48 9240.5 1.164 8.31 7880.0
0.4 22.2 23430.9 2.920 247.75 11951.7 1.485 12.17 8067.3

Table 3: 100-vertex instances
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5 Conclusion

In this paper, we have tackled for the first time a dynamic CARP with time-
dependent service costs, using a variable neighborhood descent heuristic. We in-
tend to pursue this line of research by improving the proposed problem-solving
methodology and by getting closer to real-world applications. With regard to the
first issue, it would be interesting to consider an approach that would better utilize
the time available between two weather reports. The VND is very fast and allows
the system to quickly use the new solution. However, it could be beneficial to use
more time for reoptimization, even if it means that the new solution will be made
available a little bit later. This trade-off could certainly be the subject of a further
study.

Acknowledgments. Financial support for this work was provided by the Cana-
dian Natural Sciences and Engineering Research Council (NSERC). This support
is gratefully acknowledged.
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