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1 Introduction

Network design models are used in many applications, most notably in the fields of
logistics, transportation and telecommunications [12, 31, 33]. In this paper, we study
a particular case, the multicommodity capacitated fixed-charge network design problem
(MCND), which can be described as follows. Given a directed graph G = (N, A), where
N is the set of nodes and A is the set of arcs, and a set of commodities (or origin-
destination pairs) K to be routed according to a known demand dk for each commodity k,
the problem is to satisfy the demand at minimum cost. The objective function consists of
the sum of transportation costs and fixed design costs, the latter being charged whenever
an arc is used. The transportation cost per unit of commodity k on arc (i, j) is denoted
ck
ij ≥ 0, while the fixed design cost for arc (i, j) is denoted fij ≥ 0. An origin O(k) and

a destination D(k) are associated to each commodity k. The MCND is NP-hard since it
contains as a special case the uncapacitated fixed charge network design problem, which
is NP-hard as well [31].

The MCND can be modeled as a mixed-integer program (MIP) by using continuous
flow variables xk

ij, which reflect the amount of flow on each arc (i, j) for each commodity
k, and 0-1 design variables yij, which indicate if arc (i, j) is used or not:

min
∑
k∈K

∑
(i,j)∈A

ck
ijx

k
ij +

∑
(i,j)∈A

fijyij, (1)

∑
j∈N+

i

xk
ij −

∑
j∈N−

i

xk
ji =


dk, if i = O(k),
−dk, if i = D(k), ∀ i ∈ N, ∀ k ∈ K,

0, otherwise,
(2)

∑
k∈K

xk
ij ≤ uijyij, ∀ (i, j) ∈ A, (3)

xk
ij ≥ 0, ∀ (i, j) ∈ A, ∀ k ∈ K, (4)

yij ∈ {0, 1}, ∀ (i, j) ∈ A, (5)

where N+
i = {j ∈ N |(i, j) ∈ A} and N−

i = {j ∈ N |(j, i) ∈ A}.

Constraints (2) correspond to flow conservation equations for each node and each
commodity. Relations (3) represent capacity constraints for each arc. They also link
together flow and design variables by forbidding any flow to circulate through an arc
that is not chosen as part of the design.

Branch-and-bound (B&B) algorithms based on linear programming (LP) relaxations
are the most common tools to solve such models. Here, however, the LP relaxation
generally provides a weak lower bound [13]. Alternative relaxation approaches have
been devised, in particular Benders decomposition [10] and Lagrangian-based procedures
[13, 14, 19, 20, 26, 28, 37]. Heuristic methods have also been proposed for computing
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feasible solutions [11, 15, 16, 21, 22]. In this paper, we present a cutting-plane method
for computing better lower bounds, motivated by numerous successful applications of
this methodology to other network design problems, closely related to the MCND [1, 2,
4, 5, 7, 8, 9, 17, 18, 29, 30, 35].

The cutting-plane method we propose is based on five classes of valid inequalities
(VI): the strong, cover, minimum cardinality, flow cover, and flow pack inequalities. The
last four classes of inequalities are expressed in terms of cutsets of the network. These
classes of inequalities have been applied to similar network design problems in the past,
but not the MCND, to the best of our knowledge. Also, the efficient generation of these
inequalities within a cutting-plane framework is a challenging task. Our contribution is
threefold:

• We develop efficient separation and lifting procedures adapted to the MCND. In
particular, we present a new separation procedure for flow cover and flow pack
inequalities.

• Embedded within the cutting-plane framework, we develop several procedures for
generating cutsets of the network, in particular a method inspired by metaheuristic
approaches. These cutset generation procedures can be adapted to other network
design problems [5, 35].

• We perform an extensive set of computational experiments that show the efficiency
of our separation, lifting and cutset generation methods. In particular, we show
that our implementation of cover and flow cover inequalities outperforms that of
the state-of-the-art software CPLEX (version 10.1) [27] on our class of problem
instances. When embedded in the B&B algorithm of CPLEX, we also show that our
cutting-plane procedure allows to prove optimality for a majority of the instances,
while most unsolved instances show optimality gaps within 3% when stopped after
a reasonable CPU time limit.

The paper is organized as follows. The five classes of valid inequalities are described
in Section 2. The separation and lifting procedures for these inequalities are presented
in Section 3. The cutting-plane algorithm, including the cutset generation procedures,
is the topic of Section 4. In Section 5, we report the results of experiments on a large
class of problem instances. We conclude this paper with a discussion of future research
avenues.

2
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2 Valid Inequalities

In this section, we present the five classes of valid inequalities that are used in our cutting-
plane algorithm. The last four classes of valid inequalities are defined in terms of cutsets
of the network.

2.1 Strong Inequalities

The strong inequalities (SI) are defined as follows:

xk
ij ≤ dkyij, ∀(i, j) ∈ A, k ∈ K. (6)

Adding the SI to the model significantly improves the quality of the LP lower bounds
[13, 19]. Although there is a polynomial number of SI (|A||K|), adding all of them to the
LP relaxation yields very large models that frequently exhibit degeneracy. Only a small
fraction of SI will be added within our cutting-plane algorithm.

2.2 Cover Inequalities

If we let S ⊂ N be any non-empty subset of N and S̄ = N\S its complement, we denote
the corresponding cutset by (S, S̄), i.e., the set of arcs that connect a node in S to a node
in S̄. The following cutset inequality is valid:∑

(i,j)∈(S,S̄)

uijyij ≥ d(S,S̄), (7)

where d(S,S̄) is a lower bound on the amount of flow that must circulate across the
cutset in any feasible solution. A simple way to compute d(S,S̄) is to use K(S, S̄) ⊆ K,
the set of commodities having their origin in S and their destination in S̄, and to set
d(S,S̄) =

∑
k∈K(S,S̄) dk. Since it is obtained from a linear combination of constraints (2)

and (3), the cutset inequality is redundant for the LP relaxation of the MCND. It can
still be useful, however, as some VI derived from it might improve the LP relaxation.

By complementing the y variables (replacing yij by 1 − yij) in the cutset inequality,
we obtain a classical 0-1 knapsack structure. The well-known cover inequalities (CI) for
that structure [6, 25, 40] are based on the following definition (for the sake of clarity, we
adapt to the MCND the classical terminology related to the 0-1 knapsack structure).

Definition 1: A set C ⊆ (S, S̄) is a cover if the total capacity of the arcs in (S, S̄)\C
does not cover the demand: ∑

(i,j)∈(S,S̄)\C
uij < d(S,S̄).

3
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Moreover, the cover C ⊆ (S, S̄) is minimal if it is sufficient to open any arc in C to cover
the demand: ∑

(i,j)∈(S,S̄)\C
uij + upq ≥ d(S,S̄),∀(p, q) ∈ C.

For every cover C ⊆ (S, S̄), the cover inequality (CI)∑
(i,j)∈C

yij ≥ 1 (8)

is valid for the MCND. The basic idea behind this inequality is that one has to open
at least one arc from the set C in order to meet the demand. In addition, it has been
proven [6, 40] that if C is a minimal cover, we can apply a lifting procedure to derive a
facet of the convex hull of the 0-1 knapsack structure defined by the cutset inequality for
a given (S, S̄).

2.3 Minimum Cardinality Inequalities

Let us assume the capacities of the arcs in (S, S̄) are represented in non-increasing order:
uij(t) ≥ uij(t+1)

, t = 1, ..., |(S, S̄)|−1. We can then define the least number of arcs in (S, S̄)
that must be used in every feasible solution: lS = max {h|∑t=1,...,h uij(t) < d(S,S̄)} + 1.
From this number, we can derive the minimum cardinality inequality (MCI), defined as:∑

(i,j)∈(S,S̄)

yij ≥ lS. (9)

This inequality has been used to strengthen relaxation bounds for the 0-1 knapsack
problem [32].

2.4 Flow Cover Inequalities

To define the next classes of inequalities, we introduce the following notation. For any
L ⊆ K, let xL

ij =
∑

k∈L xk
ij, bL

ij = min{uij,
∑

k∈L dk} and dL
(S,S̄) =

∑
k∈K(S,S̄)∩L dk, for

a given cutset (S, S̄). A flow cover (C1, C2) is defined by two sets C1 ⊆ (S, S̄) and
C2 ⊆ (S̄, S) such that µ =

∑
(i,j)∈C1

bL
ij −

∑
(j,i)∈C2

bL
ji − dL

(S,S̄) > 0. The flow cover

inequality (FCI) is then defined as follows:∑
(i,j)∈C1

(xL
ij + (bL

ij − µ)+(1− yij)) ≤
∑

(j,i)∈D2

min{bL
ji, µ}yji +

∑
(j,i)∈C2

bL
ji

+dL
(S,S̄) +

∑
(j,i)∈(S̄,S)\C2∪D2

xL
ji, (10)
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where a+ = max{0, a} and D2 ⊂ (S̄, S)\C2. This inequality has been studied by several
authors [24, 36, 39] and is implemented in state-of-the-art MIP software tools, such as
CPLEX [27].

2.5 Flow Pack Inequalities

Using the same notation as above, a flow pack (C1, C2) is defined by two sets C1 ⊆ (S, S̄)
and C2 ⊆ (S̄, S) such that µ =

∑
(i,j)∈C1

bL
ij −

∑
(j,i)∈C2

bL
ji − dL

(S,S̄) < 0. The flow pack

inequality (FPI) is then defined as follows [3, 38]:∑
(i,j)∈C1

xL
ij +

∑
(i,j)∈D1

(xL
ij −min{bL

ij,−µ}yij)) ≤ −
∑

(j,i)∈C2

(bL
ji + µ)+(1− yji) +

∑
(j,i)∈(S̄,S)\C2

xL
ji +

∑
(i,j)∈C1

bL
ij. (11)

where D1 ⊂ (S, S̄)\C1.

3 Separation and Lifting Methods

In this section, we present separation and lifting procedures for each class of valid inequal-
ities presented above. We first note that the separation of strong inequalities is trivial,
as it suffices to scan each arc and each commodity to identify all violated inequalities.
We now turn to the cover and minimum cardinality inequalities, for which we present a
general lifting procedure. In a subsequent section, we explain how we generate flow cover
and flow pack inequalities using a new separation routine for these classes of inequalities.

3.1 Cover and Minimum Cardinality Inequalities

For both the cover and minimum cardinality inequalities, we assume a cutset (S, S̄) is
given (see Section 4 for a description of cutset generation procedures). To generate both
types of inequalities, we first determine, a priori, two subsets C1 (the open arcs) and C0

(the closed arcs) in (S, S̄) that satisfy the condition∑
(i,j)∈(S,S̄)\(C1∪C0)

uij ≥ d(S,S̄) −
∑

(i,j)∈C1

uij > 0.

To find C1 and C0, we propose the following procedure, called OpenCloseArcs, which
uses the variables T , the residual capacity (

∑
(i,j)∈(S,S̄)\(C1∪C0) uij), and D, the residual

demand (d(S,S̄) −
∑

(i,j)∈C1
uij). The procedure makes use of the current LP solution ȳ,
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attempting to close an arc (i, j) with a small value ȳij (as measured by a threshold ε0) and
such that the residual capacity (T − uij) still covers the residual demand D. Similarly,
the procedure attempts to open an arc (i, j) with a large value ȳij (as measured by a
threshold ε1) and such that there is still some residual demand to cover (D − uij > 0).
As in Gu et al. [23], the sets C1 and C0 can be derived from the variables having integer
values at the current LP solution, by using ε0 arbitrarily close to 0 and ε1 arbitrarily
close to 1. The outline of the procedure is summarized in Algorithm 1.

Algorithm 1 OpenCloseArcs

1: Initialize: T ← ∑
(i,j)∈(S,S̄) uij, D ← d(S,S̄)

2: for arc (i, j) ∈ (S, S̄) (in arbitrary order) do
3: if (ȳij < ε0) and (T − uij ≥ D) then
4: Add (i, j) to C0

5: Close (i, j) by setting T ← T − uij

6: end if
7: if (ȳij > ε1) and (D − uij > 0) then
8: Add (i, j) to C1

9: Open (i, j) by setting D ← D − uij and T ← T − uij

10: end if
11: end for

Once the sets C1 and C0 are obtained, we define the restricted cutset inequality
induced by C1 and C0 as ∑

(i,j)∈(S,S̄)\(C1∪C0)

uijyij ≥ d(S,S̄) −
∑

(i,j)∈C1

uij.

To define a cover C for this restricted cutset inequality, we have implemented the
heuristic approach proposed by Gu et al. [23, 24] in their extensive study of cover
inequalities. The basic idea of this heuristic is to try to exclude as much as possible from
the set C the arcs with large ȳij, in order to increase the chance of finding a violated
inequality (i.e.,

∑
(i,j)∈C ȳij < 1). Therefore, the heuristic considers the arcs in non-

decreasing order of ȳij, instead of ȳij

uij
, as would be performed by the classical greedy

heuristic for the 0-1 knapsack problem. Ties are broken by considering the arcs in non-
increasing order of their capacity. Once a cover is obtained with this heuristic, it is easy
to extract a minimal cover from it, by removing some of the arcs from the cover until
the condition in Definition 1 is satisfied. Once the cover C is constructed, the induced
inequality might be strengthened by the lifting procedure to be presented next. Note
that, even if the identified cover inequality is not violated, we might find a violated one
through the lifting procedure.

To generate an MCI, it suffices to use a sorting algorithm to compute the least number
of arcs that must be used in the set (S, S̄)\(C1 ∪ C0). Although the MCI is weak in
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general, by deriving it over a restriction of (S, S̄), followed by the application of a lifting
procedure, one can obtain a strengthened valid inequality.

CI and MCI derived from the restricted cutset inequality have the following general
form: ∑

(i,j)∈B

yij ≥ L,

with L = 1 and B corresponding to a cover, in the case of a cover inequality, while for a
minimum cardinality inequality, B = (S, S̄)\(C1∪C0) and L is equal to the least number
of arcs that must be used in B. Since this inequality is restricted to open arcs in C1 and
closed arcs in C0, lifting (down for the variables in C1 and up for the variables in C0) is
necessary to ensure its validity for the MCND.

Lifting amounts to determining coefficients γij for all (i, j) ∈ (S, S̄)\B such that∑
(i,j)∈(S,S̄)\B

γijyij +
∑

(i,j)∈B

yij ≥ L +
∑

(i,j)∈(S,S̄)\(B∪C0)

γij

is valid for the MCND. The lifting procedure is applied sequentially, meaning that the
variables are lifted one after the other in some predetermined order. For each (i, j), it is
well-known that the corresponding lifting coefficient γij can be determined by solving a
0-1 knapsack problem. The quality of the resulting lifted inequality depends on the order
in which the variables are lifted. Note that, lifting down the variables in (S, S̄)\(B ∪C0)
contributes to the violation of the inequality since γijyij ≤ γij. However, lifting up the
variables in C0 has a negative impact on the violation in the sense that an inequality
violated prior to this lifting step might become satisfied after. This might happen if some
variables in C0 have positive values (ȳij > 0) at the current LP solution. We conclude
that lifting down the variables in (S, S̄)\(B ∪C0) must be accomplished before lifting up
the variables in C0. Moreover, when lifting down the variables in (S, S̄)\(B ∪ C0), those
with fractional values are lifted first, in non-decreasing order of their current value. Ties
are broken by considering first the arcs in non-increasing order of their capacity. When
lifting up the variables in C0, we do the exact opposite.

The cover and minimum cardinality inequalities display similar structures and, thus,
the same lifting strategy is used for both. It is however possible to generate two different
cover and minimum cardinality inequalities, one being violated by the current LP solu-
tion, while the other is not. Consequently, we incorporated both classes of inequalities
into our cutting-plane procedure.

7
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3.2 Flow Cover and Flow Pack Inequalities

To generate flow cover and flow pack inequalities, we use two simpler valid inequalities.
First, the single-arc flow pack inequality (SFPI) is defined as follows:∑

(i,j)∈C1

xL
ij + xL

rt ≤ (
∑

(j,i)∈C2

bL
ji + dL

(S,S̄))yrt +
∑

(j,i)∈(S̄,S)\C2

xL
ji + (1− yrt)

∑
(i,j)∈C1

bL
ij,(12)

where (r, t) ∈ (S, S̄), C1 ⊆ (S, S̄)\{(r, t)} and C2 ⊆ (S̄, S). It is easy to show directly
that this inequality is valid for the MCND. More interestingly, a necessary condition for
the SFPI to be violated is µ < 0, which is precisely what defines a flow pack (hence,
its name). Moreover, the SFPI can be seen as a special case of the FPI, by letting
D1 = {(r, t)} in the definition of the FPI. Indeed, if we assume bL

rt ≥ −µ and bL
ji ≤ −µ,

for all (j, i) ∈ C2, then the FPI (11) reduces to:∑
(i,j)∈C1

xL
ij + xL

rt ≤ −µyrt +
∑

(j,i)∈(S̄,S)\C2

xL
ji +

∑
(i,j)∈C1

bL
ij

= (
∑

(j,i)∈C2

bL
ji + dL

(S,S̄) −
∑

(i,j)∈C1

bL
ij)yrt +

∑
(j,i)∈(S̄,S)\C2

xL
ji +

∑
(i,j)∈C1

bL
ij

= (
∑

(j,i)∈C2

bL
ji + dL

(S,S̄))yrt +

∑
(j,i)∈(S̄,S)\C2

xL
ji + (1− yrt)

∑
(i,j)∈C1

bL
ij,

which is precisely the SFPI (12).

The second valid inequality is called the single-arc flow cover inequality (SFCI):∑
(i,j)∈C1

xL
ij + xL

rt ≤ (
∑

(j,i)∈C2

bL
ji + dL

(S,S̄))(1− yrt) +
∑

(j,i)∈(S̄,S)\C2

xL
ji + yrt

∑
(i,j)∈C1

bL
ij,(13)

where (r, t) ∈ (S̄, S), C1 ⊆ (S, S̄) and C2 ⊆ (S̄, S)\{(r, t)}. Similarly to the SFPI, we
can show the validity of the SFCI either directly, or by reducing it to a special case of
the FCI when µ > 0.

The interest of these single-arc inequalities is that their separation problems are simple
once we fix the set of commodities L, in constrast with the FCI and the FPI, which remain
hard to separate, even if we fix L. Indeed, given (x̄, ȳ) the current LP solution, sets S ⊂ N
and L ⊆ K, and an arc (r, t) ∈ (S, S̄), separating the SFPI consists in setting

C1 = {(i, j) ∈ (S, S̄)\{(r, t)}|x̄L
ij > (1− ȳrt)b

L
ij},

C2 = {(j, i) ∈ (S̄, S)|bL
jiȳrt < x̄L

ji}.

8
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For each cutset generated by the cutting-plane algorithm, the separation procedure thus
scans each arc, trying to find violated SFPI associated to this arc. If the cutset is a
singleton that is the origin of commodity k, we set L = {k} and C2 = ∅, since in this case
there is no flow of commodity k coming into r. Otherwise, we set L = {k ∈ K|x̄k

rt > 0},
in order to maximize the left-hand side of (12) and increase the chance of a violation.
The separation procedure for the SFCI is derived in a similar way.

Once a violated SFPI is obtained, then there are two cases: 1) µ < 0; 2) µ + bL
rt > 0.

In case 1), we lift the inequality to obtain a FPI. First, we initialize D1 = {(r, t)} and
then add to D1 each arc (i, j) ∈ (S, S̄)\C1 such that x̄L

ij −min{bL
ij,−µ}ȳij > 0. Then,

we further lift the resulting FPI inequality by applying the lifting function proposed by
Atamtürk [3]: we lift all variables in C1 and the variables in (S̄, S)\C2 such that ȳij ≤ ε.
In case 2), we first add (r, t) to C1 and recompute µ = µ + bL

rt. Then, for each arc
(i, j) ∈ C1 such that bL

ij > µ, we add to the left hand side of the inequality the term
bL
ij(1− yij). We then set D2 = {(j, i) ∈ (S̄, S)\C2 : x̄L

ji > min{bL
ji, µ}ȳji}. Finally, we lift

the resulting FCI by applying the lifting function proposed by Atamtürk [3]: we lift all
variables in C2 and the variables in (S, S̄)\C1 such that ȳij ≤ ε.

We proceed similarly when a violated SFCI is generated. There are again two cases:
a) µ > 0; b) µ − bL

rt < 0. In case a), we proceed as in case 2) above to obtain a lifted
FCI. In case b), we first add (r, t) to C2 and recompute µ = µ − bL

rt. Then, we proceed
as in case 1) above to generate a lifted FPI.

To summarize, for each cutset identified by the cutting-plane algorithm, the sep-
aration procedure first identifies violated SFPI and SFCI. For each of these violated
inequalities, we apply well-known lifting strategies to generate a FCI or a FPI, or both.
Our approach to generate FCI and FPI contrasts significantly with the standard separa-
tion procedure which uses a relaxation involving only the 0-1 variables, thus allowing to
derive FCI and FPI from simple covers [34]. Here, we use a relaxation that involves both
the 0-1 and the continuous variables, allowing us to derive FCI and FPI from single-arc
structures.

4 Cutting-Plane Algorithm

The cutting-plane algorithm starts by solving the LP relaxation of formulation (1)-(5),
the so-called weak relaxation of the problem. Subsequently, it alternates between the
generation of cuts and the solution of the current LP relaxation (with the addition of all
cuts generated so far). The generation of cuts is controlled by parameters that determine
whether or not the separation and lifting procedures for each class of valid inequalities
should be activated. If the generation of any one of the cutset-based inequalities (i.e.,
LCI, LMCI, FCI, FPI) is activated, the generation of cuts starts by identifying a fam-
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ily of cutsets. For each cutset in this family, the corresponding violated cutset-based
inequalities are generated.

The cutting-plane algorithm follows two phases. In Phase I, the family of cutsets
is based on singletons, i.e., for each cutset (S, S̄), S is an origin or S̄ is a destination
for at least one commodity. Phase I iterates over this family of cutsets until no further
significant improvement in the bound, z, is observed. In Phase II, more complex families
of cutsets are generated, using one of the three approaches described in the remainder
of this section. At the end of Phase II, if the bound has improved from the first to the
second phase, Phase I is launched all over again. To limit the total computational effort,
we use a parameter Tmax to bound T , the number of calls to Phase II. The cutting-plane
algorithm thus follows the general structure outlined in Algorithm 2, where δ (we use 0.1
in all our tests) and Mmax are user-supplied parameters.

We now describe the three approaches used to generate families of cutsets in Phase
II (Step 20 of the procedure). The first approach, called Enumeration, consists in gen-
erating all possible subsets of N of cardinality M. Clearly, Mmax should then be kept
at a relatively small value, otherwise the number of cutsets is prohibitively large. This
approach is not meant to be efficient, but it is used as a basis of comparison for the two
other approaches.

The second approach uses the notion of articulation set, which is a set S ⊂ N such that
removal of S disconnects, for at least one commodity k, its origin O(k) from its destination
D(k). These are the only sets which might lead to non-trivial cutset inequalities based
on (S, S̄). In this so-called Articulation approach, we thus generate all cutsets (S, S̄)
where S is an articulation set.

In the first two approaches, the families of cutsets are generated only once, before
the first execution of the for loop at step 19, and the corresponding cutsets are stored
in memory for subsequent calls to Phase II. The third approach is significantly different,
since the generation of the corresponding families of cutsets is dynamic, as it depends
on the current solution to the LP relaxation. In this Heuristic approach, new families
of cutsets are obtained by partitioning the set of nodes N into L subsets Sl, l = 1, ..., L,
such that Sl∩Sk = ∅, for all l 6= k, and ∪l=1,...,LSl = N . Then, each subset Sl, l = 1, ..., L,
induces two cutsets (Sl, S̄l) and (S̄l, Sl), and the corresponding partition of N determines
a family of cutsets available for the generation of violated valid inequalities.

This approach is inspired by principles derived from metaheuristics. First, it calls
a construction procedure to provide an initial partition of N into subsets of cardinality
M. Cuts are generated on this initial family of cutsets. Then, a fixed number, Imax,
of iterations of a local search procedure is performed to derive new partitions of N
into subsets of cardinality M. Each new partition is obtained by simply moving nodes
among subsets around a cycle, thus preserving the subset cardinality from the initial
partition to the new one. For each partition thus obtained, cuts are generated for the
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Algorithm 2 CuttingPlane

1: Initialization: Solve the weak relaxation; let z and ȳ be the optimal value and
design solution, respectively

2: if ȳ is integral then
3: stop
4: end if
5: zlast ← z and T ← 0
6: Phase I: Generate cuts, using the family of cutsets based on all singletons
7: if some cuts were found then
8: Solve the LP relaxation; let z and ȳ be the optimal value and design solution,

respectively
9: if ȳ is integral or z − zlast ≤ δ then

10: stop
11: end if
12: zlast ← z and go to 6
13: end if
14: Phase II:
15: if T ≥ Tmax then
16: stop
17: end if
18: zlast ← z and T ← T + 1
19: for M = 2 to Mmax do
20: Generate a family of cutsets based on subsets of N of cardinality M
21: Generate cuts, using the current family of cutsets
22: if some cuts were found then
23: Solve the LP relaxation; let z and ȳ be the optimal value and design solution,

respectively
24: if ȳ is integral then
25: stop
26: end if
27: end if
28: end for
29: if z − zlast > δ then
30: go to 6
31: end if
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corresponding family of cutsets. To summarize, in the Heuristic approach, the family
of cutsets generated at Step 20 is the union of the families of cutsets obtained by the
construction procedure and the Imax calls to the local search procedure.

The initial partition of N into subsets of cardinality M is obtained by the construc-
tion procedure called GenerateMultiSet(M). Since all types of cutset-based inequalities
have a higher chance of being violated when the arcs in (Sl, S̄l) display small fractional
values ȳij, the procedure attempts to construct the sets Sl with the objective of min-
imizing

∑
(i,j)∈(Sl,S̄l) ȳij and

∑
(j,i)∈(S̄l,Sl) ȳji. At any step of the procedure, let Sl be a

subset of N of cardinality smaller than M. Initially, the family contains one subset, S1,
having a single element (arbitrarily chosen). We denote free node, a node that is not
included in any subset, and N̄ , the set of all free nodes. Also, for each free node j, let
wj = max{maxi∈Sl

ȳij, maxi∈Sl
ȳji}. To achieve our objective, we identify the free node

n such that n = argmaxj∈N̄ {wj}. If n exists, then we add it to Sl and move to the
next step: continue with the construction of Sl, if |Sl| < M or, otherwise, proceed to
the construction of Sl+1 (by selecting arbitrarily some free node and then repeating the
process). If, however, no free node is connected by an arc to at least one node in Sl, we
choose n arbitrarily among the free nodes. The procedure stops when there are no more
free nodes. The outline of the procedure is summarized in Algorithm 3.

Algorithm 3 GenerateMultiSet(M)

1: Initialize: N̄ ← N , l← 1
2: if N̄ = ∅ then
3: stop
4: end if
5: Select (arbitrarily) a node m ∈ N̄
6: Add m to Sl and remove it from N̄
7: if |Sl| ≥ M then
8: l← l + 1 and go to 2
9: end if

10: n← argmaxj∈N̄ {wj}
11: if n exists then
12: m← n and go to 7
13: end if
14: Go to 2

Note that, the procedure attempts to first include in Sl a free node that is connected
by an arc to at least one node in Sl to avoid generating valid inequalities that are aggre-
gations of previously generated valid inequalities. Figure 1 illustrates such a situation,
where we assume that all possible violated cuts using cutsets induced by subsets of car-
dinality 1 have already been generated. Currently, the procedure is constructing subsets
of cardinality 2. If we chose to include the free node 2 into the set Sl = {1} to create the
new set Sl = {1, 2}, we would identify a new cutset, but the resulting cutset inequality
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would just be the aggregation of the previously generated cutset inequalities induced by
{1} and {2}. Thus, this new cutset would not identify any new cuts.

a) b)

3

1
2

3
4

5

12

4

5

Figure 1: GenerateMultiSet Example

The local search procedure identifies new families of cutsets by performing exchanges
of nodes among subsets of the current family. The basic idea behind these exchanges is to
obtain a new subset Sl′ from a subset Sl by moving a node n from some set Sk, Sk ⊂ S̄l, to
Sl. These exchanges are performed by the procedure MultiExchange((Sl)l=1,...,L, W, WN).
The sets W and WN contain, respectively, the indices l of all subsets Sl and the nodes
n ∈ N involved in some exchanges at previous calls to the procedure. These sets are
used to ensure that the exchanges reach different subsets and involve different nodes,
thus creating new cutsets at each iteration. The procedure considers at each step a set
Sl and aims to identify and move to Sl the node n such that

n = argmaxj∈(N\WN )∩(∪k/∈W,Sk⊂S̄l
Sk){wj}.

Note that n ∈ N\WN is chosen among the set of nodes connected by an arc to at least
one node in Sl. Again, this strategy attempts to avoid generating valid inequalities that
are aggregations of previously generated ones. Once n is identified, we move it from some
set Sk to Sl. Then, the procedure repeats the process by considering subset Sk at the
next iteration. The procedure starts with a set Sl not involved in previous exchanges
(i.e., l /∈ W ). The procedure also stores in set V the indices of the subsets Sl considered
at each iteration and stops whenever it finds a couple of subsets (Sl, Sk) involved in an
exchange such that k ∈ V . This strategy identifies a cycle on which the nodes are moved
around. This is illustrated in Figure 2, where the procedure stops after successively
moving nodes from S2 to S1, from S3 to S2, from S4 to S3, and from S1 to S4. By doing
so, all subsets have the same cardinality as before the exchanges. The outline of this
procedure is presented in Algorithm 4.
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Algorithm 4 MultiExchange((Sl)l=1,...,L, W, WN):

1: Initialize: V ← ∅
2: if W = {1, ..., L} then
3: W ← ∅
4: end if
5: Let l /∈ W correspond to some set not involved in previous exchanges
6: n← argmaxj∈(N\WN )∩(∪k/∈W,Sk⊂S̄l

Sk){wj}
7: if (∪k/∈W,Sk⊂S̄l

Sk) = ∅ then
8: W ← ∅ and go to 5
9: end if

10: if n does not exist then
11: WN ← ∅ and go to 5
12: end if
13: Let Sk ⊂ S̄l such that n ∈ Sk

14: Move n from Sk to Sl

15: WN ← WN ∪ {n}
16: W ← W ∪ {l}
17: if V = ∅ then
18: l0 ← l
19: end if
20: V ← V ∪ {l}
21: if k ∈ V then
22: if k 6= l0 then
23: n← argmaxi∈Sl0

(maxj∈Sk
ȳij, maxj∈Sk

ȳji)

24: Move n from Sl0 to Sk (to complete the cycle)
25: end if
26: Stop
27: end if
28: l← k and go to 6
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Figure 2: MultiExchange Example

5 Computational Results

Computational experiments were performed with five objectives in mind:

• Calibrate the parameters of the procedures.

• Compare the performance of our separation and lifting procedures for cover and
flow cover inequalities with those of the state-of-the-art software CPLEX (version
10.1).

• Compare the relative performance of the different classes of valid inequalities.

• Test the performance of the cutset generation procedures.

• Evaluate the quality of the formulations obtained from different variants of the
cutting-plane algorithm, by performing a state-of-the-art B&B algorithm on each
of these formulations.

Following a preliminary section that describes the data instances and the performance
measures used in the experiments, we present and analyze the results in the five subse-
quent subsections, each dedicated to one of the objectives stated above.
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5.1 Data Instances and Performance Measures

Computational experiments were conducted on a set of 196 instances used in several
papers on the MCND problem and described in detail by Crainic et al. [14]. These prob-
lem instances consist of general transshipment networks with one commodity per origin-
destination and no parallel arcs. Associated to each arc are three positive quantities: the
capacity, the fixed charge, and the transportation cost (the same for all commodities).
These instances are characterized by various degrees of capacity tightness, with regard to
the total demand, and importance of fixed design cost, with respect to the transportation
cost.

The instances are divided into three classes. Class I consists of 31 problem instances
with many commodities compared to the number of nodes, while Class II contains 12
problem instances with few commodities compared to the number of nodes. In addition to
the numbers of nodes, arcs, and commodities, each instance in Classes I and II is charac-
terized by two more letters indicating the fixed cost level compared to the transportation
cost, “F” for high and “V” for low, and the capacity level compared to the total demand,
“T” for tight and “L” for loose. Class III is divided into two categories, A and B, each
containing nine sets of nine problem instances each (with three exceptions corresponding
to the smaller-network instances). Each set is characterized by the numbers of nodes,
arcs, and commodities, which are the same for the nine instances, and by instance-specific
levels of fixed cost and capacity tightness. Thus, F = 0.01 (F01), F = 0.05 (F05), and
F = 0.1 (F10) are used to qualify the fixed costs relative to the transportation costs,
where the fixed-cost ratio is computed as F = |K|∑(i,j)∈A fij/

∑
k∈K dk ∑

(i,j)∈A ck
ij. Sim-

ilarly, C = 1 (C1), C = 2 (C2), and C = 8 (C8) are used to qualify the tightness of the
total capacity compared to the total demand, where the capacity ratio is computed as
C = |A|∑k∈K dk/

∑
(i,j)∈A uij. Class III-A contains 72 small size problem instances with

10 nodes, while Class III-B contains 81 medium to large size instances with 20 nodes.

To evaluate the performance of the different variants of the cutting-plane algorithm,
we use three measures:

• The time, t, to compute the lower bound, where all experiments are performed on
a Sun Entreprise 10000 with 64 Gigabytes of RAM operating under Solaris 2.7.
The procedures are coded in C++. To solve the LP relaxations, we use the dual
simplex implementation in CPLEX [27]. We use the time, tw, to compute the weak
relaxation bound as a basis of comparison. To compare the time t required by the
cutting-plane algorithm with tw, we use the measure

∆tw =
100(t− tw)

tw
.

• The gap between the lower bound and the value of a reference solution. For the
weak relaxation, we use as reference solution the best known feasible solution of
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Weak LP Weak LP
Description Nb ∆z∗ tw Description Nb ∆z∗ tw

Class I Class II
20,230,40 (3) 7.70% 0.2 25,100,10 (3) 29.02% 0.1
20,230,200 (4) 28.33% 5.7 25,100,30 (3) 24.44% 0.3
20,300,40 (4) 9.74% 0.3 100,400,10 (3) 37.30% 1.1
20,300,200 (4) 21.41% 8.3 100,400,30 (3) 34.56% 1.5
30,520,100 (4) 18.45% 7.9
30,520,400 (4) 15.62% 35.4
30,700,100 (4) 17.72% 2.8
30,700,400 (4) 18.07% 39.8
Average (31) 17.38% 12.3 Average (12) 31.33% 0.8

Class III-A Class III-B
10,35,10 (6) 12.61% 0.0 20,120,40 (9) 21.93% 0.5
10,35,25 (6) 17.96% 0.1 20,120,100 (9) 19.57% 3.0
10,35,50 (6) 14.34% 0.1 20,120,200 (9) 16.71% 8.5
10,60,10 (9) 20.26% 0.0 20,220,40 (9) 29.93% 0.7
10,60,25 (9) 16.06% 0.1 20,220,100 (9) 26.95% 2.5
10,60,50 (9) 18.67% 0.2 20,220,200 (9) 24.05% 13.0
10,85,10 (9) 17.25% 0.0 20,320,40 (9) 32.34% 0.9
10,85,25 (9) 18.69% 0.1 20,320,100 (9) 30.56% 2.9
10,85,50 (9) 21.54% 0.2 20,320,200 (9) 28.10% 15.2
Average (72) 17.80% 0.1 Average (81) 25.57% 5.3

Table 1: Classes and Problem Dimensions

value z∗, which corresponds to the best (often optimal) solution obtained by using
CPLEX [27] on the so-called strong formulation, obtained by adding all strong
inequalities to the weak formulation. A limit of 10 hours of computation was
imposed for each instance. The results show that CPLEX is quite efficient at
solving small-size instances within the time allowed. However, when the problem
size is increasing (especially the number of commodities), CPLEX is unable to
prove optimality within the available computational time. For these instances, the
best feasible solution found is then used. For the weak relaxation lower bound zw,
we thus report the following gap measure:

∆z∗ =
100(z∗ − zw)

z∗
.

For the lower bound z computed by the cutting-plane procedure, the reference
solution is the weak relaxation bound, and we use the following gap measure:

∆zw =
100(z − zw)

zw
.

• The number of cuts generated by the cutting-plane algorithm.

Table 1 gives the classification of the instances among the classes with respect to
problem dimension. Columns “Description” and “Nb” show the dimension of the in-
stances, characterized by the numbers of nodes, arcs, and commodities, and the number
of instances with these dimensions, respectively. The average gap between the bounds
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of the weak relaxation and the best known feasible solution is given under column ∆z∗,
while the average time required to solve the weak relaxation is given in column tw. The
“Average” line shows the gap average over all instances in each class along with the
average time required to compute the bounds. The results in column ∆z∗ confirm the
poor quality of the lower bounds generated by the weak relaxation.

5.2 Parameter Calibration

Preliminary tests to calibrate the parameters were performed over a subset of 38 instances
with various characteristics selected from Classes I, II, and III-B. The chosen test set is
shown in Table 2. These tests aim to calibrate the lifting tolerance parameters ε0 and ε1

used to generate CI and MCI in Algorithm 1, as well as ε used to generate FPI and FCI
lifted inequalities. To facilitate the calibration and the comparison, we tested several
values for ε while setting ε0 = ε and ε1 = 1 − ε. Only Phase I of the cutting-plane
algorithm was performed, i.e., only cutsets based on singletons were used. This choice
is justified by the fact that most of the bound improvement is obtained in Phase I, the
additional improvement provided by Phase II being relatively modest, as we will see in
Section 5.5.

Classes Dimension Nb Dimension Nb Dimension Nb Total
Class I 30,520,100 (4) 30,520,200 (4) (8)
Class II 10,100,400 (3) (3)
Class III-B 20,300,40 (9) 20,300,100 (9) 20,300,200 (9) (27)
Total (38)

Table 2: Problem Instances for Parameter Calibration

CI MCI FCI FPI
ε ∆zw ∆tw ∆zw ∆tw ∆zw ∆tw ∆zw ∆tw

0 8.10% 5.2% 6.63% 4.9% 36.72% 96.3% 37.26% 111.7%
0.5 7.49% 5.0% 7.70% 5.2% 36.43% 98.7% 37.19% 126.8%
1 7.55% 5.2% 7.48% 5.2% 36.33% 112.0% 37.17% 181.5%

Table 3: Parameter Calibration

Table 3 displays the results obtained by using CI, MCI, FPI, and FCI, each family
alone, in the cutting-plane algorithm. Three values for ε (0, 0.5, and 1) have been
considered. Bold entries in Table 3 indicate the best results obtained for each family and
each ε−value. Therefore, ε = 0 is the best value for CI, FPI, and FCI, while ε = 0.5 is
the best for MCI. These results are consistent with those obtained in the literature on
CI [23], FCI and FPI [3] . For the MCI, the value of 0.5 is somewhat intuitive. Indeed,
unlike the CI, which is based on a minimum cover, the MCI by itself is not strong since
it is based on all arcs in the cutset. Therefore, closing and opening as many arcs as
possible, as reflected by the value ε = 0.5, and then performing lifting, will lead to a
stronger inequality. Consequently, in the remaining tests, ε = 0 is used for CI, FPI, and
FCI, while ε = 0.5 is used for MCI.
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In addition to the best value for the lifting parameters, these preliminary results in-
dicate that using CI or MCI provides somewhat a modest improvement of bound quality,
about 8% for an extra 5% of computational time, when compared to the important im-
provement obtained from FPI and FCI, about 37% for an extra 100% of computational
time. These results seem to point to the fact that inequalities based on both continuous
and 0-1 variables are more effective than those based on 0-1 variables only.

5.3 Comparison with CPLEX Cuts

Table 4 displays the per-class average results obtained by the cutting-plane method im-
plemented in CPLEX and those of our cutting-plane algorithm. We aim especially to
compare the CPLEX implementation of CI and FCI with our own implementation for the
same classes of valid inequalities. To make a fair comparison, single-node cutset struc-
tures have been added to the formulations given to CPLEX. These special structures are
redundant in the formulation but allow CPLEX to identify violated cover inequalities.
The columns “CI ” and “FCI ” display, respectively, the average results obtained by using
CI alone and FCI alone, while the columns “All” and “Enum1” show the average results
obtained by using all classes of valid inequalities in both methods, “CPLEX ” and our
“Cutting-Plane” algorithm. Note that “Enum1” denotes the variant of our cutting-plane
algorithm that performs only Phase I, i.e., all classes of valid inequalities are used, but
only single-node cutsets are used in the cutset generation procedure.

The results indicate that the cutting-plane algorithm we propose outperforms CPLEX
in terms of bound quality and computational effort. Indeed, for a slightly longer time
than CPLEX, our CI implementation obtains a gap improvement of 8.54% compared to
5.4% obtained by CPLEX. Moreover, for a substantially less computational effort (except
for Class II instances), our FCI implementation obtains better bounds than CPLEX FCI.
The most conclusive result is obtained when comparing the “All” and “Enum1” methods.
For 1/6 of the computational effort needed by CPLEX, our “Enum1” method gets an
extra 4.78% of bound gap improvement on average over the 196 instances. In fact, this
extra gap improvement reaches up to 14.07% for Class II instances for a larger, but still
reasonable computing time.

5.4 Comparison Among Classes of Valid Inequalities

In this section, we present the results of computational experiments performed to compare
the relative performance of the five classes of valid inequalities. As in the previous
sections, only Phase I of the cutting-plane algorithm was performed. We first present
average results over all classes of instances and, then, we analyze the results based on
problem dimensions and characteristics.
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CPLEX

Classes CI FCI All
∆zw ∆tw Cuts ∆zw ∆tw Cuts ∆zw ∆tw Cuts

Class I (31) 0.48% 1.4% 7 17.41% 194.1% 768 17.41% 202.4% 784
Class II (12) 23.28% 0.6% 18 38.11% 5.3% 112 38.59% 5.0% 113
Class III-A (72) 5.45% 0 6 17.82% 4.4% 77 17.83% 4.3% 75
Class III-B (81) 4.60% 0.9% 14 27.91% 92.6% 358 27.90% 95.1% 357
Average (196) 5.40% 0.6% 10 23.17% 70.9% 305 23.20% 72.5% 306

Cutting-Plane

Classes CI FCI Enum1
∆zw ∆tw Cuts ∆zw ∆tw Cuts ∆zw ∆tw Cuts

Class I (31) 1.00% 1.3% 21 17.29% 26.8% 1278 19.21% 18.1% 2858
Class II (12) 24.38% 7.4% 28 50.71% 28.6% 706 52.66% 17.2% 1312
Class III-A (72) 8.78% 0.5% 16 20.31% 3.4% 163 21.19% 3.3% 335
Class III-B (81) 8.86% 1.2% 38 31.35% 51.8% 1114 33.70% 18.2% 2134
Average (196) 8.54% 1.4% 27 26.25% 28.6% 766 27.98% 12.6% 1537

Table 4: CPLEX Cuts Versus Cutting-Plane Algorithm

Table 5 shows the improvement gap, ∆zw, and the additional computational time,
∆tw, averaged over the 196 instances. In column “None+” we show the results obtained
by using each individual class alone, while in column “All-” we display the results obtained
by using all classes of valid inequalities, except the one identifying the respective row.
These results confirm the superiority of the inequalities based on continuous and 0-1
variables, i.e., SI, FCI, and FPI, over those based only on 0-1 variables, i.e., CI and MCI.
In terms of gap improvement, FPI slightly outperforms SI, but at the expense of a much
larger computational effort. We also see that removing the generation of SI is detrimental
to the performance of the cutting-plane algorithm, as the gap improvement then decreases
by 1.01% with a significant increase in computational time. Removing any of the other
classes of inequalities is also somewhat counter-productive, as it leads to reductions in
the gap improvement without significant improvements in the computational time.

None+ All-
∆zw ∆tw ∆zw ∆tw

∅ 0% 0% 27.98% 12.6%
SI 26.53% 7.3% 26.97% 30.0%
CI 8.54% 1.4% 27.92% 12.8%

MCI 8.00% 1.4% 27.97% 12.6%
FCI 26.25% 28.6% 27.97% 10.9%
FPI 26.75% 32.9% 27.94% 10.5%

Table 5: Comparison of Valid Inequalities

Table 6 shows a detailed analysis, according to problem dimension, of the effect of
activating each class of inequalities alone. Results are reported only for the inequalities
that involve continuous and 0-1 variables, i.e., SI, FPI, and FCI, which have already been
shown to be much stronger than the other classes of inequalities. These results show an
important gap improvement for a reasonable extra time for the different methods and
different classes. Indeed, the per-class average gap improvement ranges from 17.29% up
to 52.09%. Although all three classes provide a good gap improvement, SI shows the best
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performance regarding the bound gap improvement and the extra time needed. However,
SI is outperformed, in terms of bound gap, by FPI and FCI for Classes II and III-A. In
fact, the best average improvement for these two classes is obtained by FPI, which reaches
52.09% for Class II and 20.68% for Class III-A and gets up to 69.13% for some difficult
Class II instances (e.g., 100,400,30). It is important to note that instances in Classes II
and III-A are characterized by a small number of commodities when compared to the
number of nodes. On the contrary, when the number of commodities is significantly larger
than the number of nodes, as for most instances in Classes I and III-B, SI outperforms
FPI and FCI. Among these two classes of inequalities, FPI generally outperforms FCI in
terms of bound improvement, for a similar computational effort.

Problems SI FCI FPI
∆zw ∆tw Cuts ∆zw ∆tw Cuts ∆zw ∆tw Cuts

Class I
20,230,40 (3) 7.59% 2.4% 97 7.77% 4.3% 243 7.85% 3.3% 217
20,230,200 (4) 31.72% 14.7% 1310 27.35% 37.0% 1744 28.17% 36.6% 2288
20,300,40 (4) 9.88% 2.2% 107 10.01% 3.8% 254 10.09% 3.9% 270
20,300,200 (4) 23.24% 9.9% 910 20.65% 16.2% 1270 21.08% 15.5% 1646
30,520,100 (4) 21.58% 11.8% 603 20.54% 22.1% 1255 21.06% 20.0% 1464
30,520,400 (4) 16.75% 27.9% 1492 14.53% 42.6% 1946 14.92% 39.6% 2475
30,700,100 (4) 19.55% 12.2% 551 18.60% 21.6% 1112 19.16% 20.7% 1351
30,700,400 (4) 19.32% 35.7% 1705 16.52% 60.9% 2145 17.01% 54.9% 2697
Average (31) 19.06% 15.0% 871 17.29% 26.8% 1278 17.73% 25.0% 1594

Class II
25,100,10 (3) 33.16% 2.0% 68 38.54% 4.8% 212 39.51% 5.1% 258
25,100,30 (3) 33.85% 1.7% 122 34.86% 3.6% 261 35.73% 3.9% 308
100,400,10 (3) 48.56% 13.5% 168 62.85% 22.5% 858 64.00% 19.8% 898
100,400,30 (3) 63.76% 24.7% 477 66.61% 83.4% 1492 69.13% 79.2% 1562
Average (12) 44.83% 10.5% 209 50.71% 28.6% 706 52.09% 27.0% 757

Class III-A
10,35,10 (6) 11.36% 0.4% 17 11.76% 1.1% 42 11.76% 1.0% 41
10,35,25 (6) 20.94% 0.6% 53 21.41% 1.8% 94 21.53% 1.8% 108
10,35,50 (6) 16.90% 0.7% 113 16.94% 1.8% 119 17.18% 2.2% 150
10,60,10 (9) 22.69% 0.5% 26 24.98% 1.9% 87 25.50% 2.0% 97
10,60,25 (9) 16.00% 1.2% 74 17.04% 4.0% 180 17.51% 4.3% 220
10,60,50 (9) 21.55% 1.9% 148 20.53% 5.3% 239 21.19% 7.0% 337
10,85,10 (9) 17.11% 0.5% 23 19.28% 3.2% 132 19.72% 3.2% 131
10,85,25 (9) 19.71% 1.0% 68 21.37% 3.7% 208 21.65% 3.8% 225
10,85,50 (9) 26.32% 2.2% 146 25.87% 5.5% 291 26.20% 6.2% 339
Average (72) 19.52% 1.1% 76 20.31% 3.4% 163 20.68% 3.7% 194

Class III-B
20,120,40 (9) 23.12% 2.6% 167 24.21% 7.0% 422 24.88% 7.1% 488
20,120,100 (9) 23.53% 2.9% 435 22.03% 6.7% 560 22.56% 7.9% 731
20,120,200 (9) 20.36% 2.5% 817 18.30% 6.9% 550 18.42% 7.9% 729
20,220,40 (9) 40.87% 7.9% 339 40.58% 31.9% 835 41.02% 30.4% 966
20,220,100 (9) 34.05% 10.8% 607 31.80% 28.4% 1044 32.44% 28.2% 1297
20,220,200 (9) 29.68% 8.1% 938 26.64% 19.9% 1312 27.27% 30.0% 1661
20,320,40 (9) 47.66% 15.5% 553 47.41% 154.1% 1599 47.85% 211.6% 1878
20,320,100 (9) 41.91% 20.2% 967 39.79% 117.1% 1734 40.31% 153.3% 2198
20,320,200 (9) 35.06% 13.6% 1329 31.35% 93.8% 1973 31.81% 317.4% 2416
Average (81) 32.92% 9.4% 684 31.35% 51.8% 1114 31.84% 62.6% 1374

Table 6: Comparison of Valid Inequalities with Respect to Problem Dimension

Table 7 summarizes the results of the same experiments, presented with respect to the
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different levels of fixed-cost and capacity ratios. Two major conclusions emerge from these
results. First, the gap improvement increases with the importance of fixed costs (for the
same capacity level). Second, the gap improvement decreases as the capacities get tighter
(for the same fixed-cost level). In terms of gap improvement, SI often outperforms the
other classes for loose-capacity instances, while FPI usually outperforms the other classes
for tight-capacity instances. In terms of computational time, SI clearly outperforms the
other classes, irrespective of the problem characteristics. Not only the identification of
violated valid inequalities is easier with SI than with FCI and FPI, but also the number
of cuts generated by SI is significantly less than with the two other classes.

Problems SI FCI FPI
∆zw ∆tw Cuts ∆zw ∆tw Cuts ∆zw ∆tw Cuts

Class I
V L (8) 19.79% 15.7% 843 17.85% 29.0% 1147 18.24% 25.2% 1415
V T (8) 13.76% 13.0% 655 12.55% 22.2% 1016 12.88% 20.0% 1199
F L (7) 25.76% 17.4% 1204 23.04% 35.0% 1748 23.69% 35.5% 2313
F T (8) 17.78% 14.0% 824 16.45% 21.9% 1262 16.85% 20.6% 1539
Average (31) 19.06% 15.0% 871 17.29% 26.8% 1278 17.73% 25.0% 1594

Class II
Problems SI FCI FPI

∆zw ∆tw Cuts ∆zw ∆tw Cuts ∆zw ∆tw Cuts
V L (4) 4.51% 14.7% 42 5.28% 15.7% 141 5.42% 15.3% 127
V T (4) 0.64% 11.8% 110 0.86% 12.5% 318 0.90% 12.5% 293
F L (4) 96.26% 13.3% 407 102.31% 58.8% 1120 105.00% 56.5% 1267
F T (4) 35.66% 4.8% 144 46.76% 12.9% 768 48.12% 10.6% 793
Average (12) 44.83% 10.5% 209 50.71% 28.6% 706 52.09% 27.0% 757

Class III-A
C1 (9) 9.39% 0.6% 52 9.43% 1.3% 85 9.45% 1.4% 101

F01 C2 (9) 6.09% 0.7% 50 6.62% 1.7% 86 6.63% 1.7% 97
C8 (6) 3.32% 0.5% 40 4.49% 2.4% 118 4.69% 2.9% 128

C1 (9) 29.20% 1.2% 90 28.78% 3.2% 169 29.30% 3.2% 201
F05 C2 (9) 18.97% 1.1% 81 19.76% 3.0% 158 20.14% 2.9% 184

C8 (6) 11.08% 0.6% 54 13.71% 4.1% 194 14.11% 4.4% 210

C1 (9) 42.10% 2.0% 122 41.41% 5.0% 217 42.01% 7.1% 293
F10 C2 (9) 27.89% 1.5% 104 29.07% 5.0% 216 29.84% 5.5% 268

C8 (6) 19.40% 0.9% 70 22.92% 4.9% 252 23.26% 4.9% 267
Average (72) 19.52% 1.1% 76 20.31% 3.4% 163 20.68% 3.7% 194

Class III-B
C1 (9) 26.11% 6.8% 473 24.65% 15.9% 734 25.05% 16.8% 926

F01 C2 (9) 18.48% 5.6% 384 17.66% 11.6% 662 17.99% 10.7% 775
C8 (9) 6.44% 2.0% 317 6.94% 5.8% 547 7.04% 5.7% 522

C1 (9) 51.99% 21.2% 1109 48.41% 129.7% 1707 49.15% 100.3% 2163
F05 C2 (9) 36.02% 10.7% 697 34.27% 38.0% 1221 34.94% 42.1% 1550

C8 (9) 18.53% 2.1% 434 18,60% 6.9% 785 18.85% 6.3% 785

C1 (9) 64.89% 23.2% 1392 60.85% 196.2% 2073 61.63% 317.4% 2848
F10 C2 (9) 45.82% 10.5% 830 43.24% 54.5% 1413 44.14% 56.0% 1803

C8 (9) 27.98% 2.0% 517 27.48% 7.2% 886 27,78% 8.3% 991
Average (81) 32.92% 9.4% 684 31.35% 51,8% 1114 31.84% 62.6% 1374

Table 7: Comparison of Valid Inequalities with Respect to Problem Characteristics
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5.5 Comparison of Cutset Generation Procedures

In this section, we compare the results obtained by the cutset generation approaches pre-
sented in Section 4. More precisely, the following variants of the cutting-plane algorithm
were implemented and tested (all classes of valid inequalities were used):

• Enum1 : This variant consists in performing only Phase I, i.e., only single-node
cutset structures are considered.

• Enumj, j ≥ 2: These variants are obtained by using the Enumeration approach
in Phase II, i.e., all subsets of N of cardinality j are generated. We have tested
three values of j: 2, 3, and 4, but we report only the results obtained with the
first two values. Indeed, Enum4 runs out of memory for Class II instances, since
enumerating all cutsets up to cardinality 4 for instances with 100 nodes leads to
unrealistically large-size instances (4 087 975 cutsets). Moreover, the results of
Enum4 for the other classes show that the bound improvement is not significant,
with an improvement of 0.01% on average for 10 times more computational effort
when compared to Enum3 results.

• Artic: This is the Articulation approach with Mmax = 2, i.e., we generate all
cutsets (S, S̄) where S is an articulation set of cardinality 2.

• Heur : This is the Heuristic approach based on the construction and local search
procedures, GenerateMultiSet and MultiExchange, presented in Section 4.
The parameters of the procedures were calibrated and the following values were
used: Tmax = 5, Mmax =

⌈
N
3

⌉
, and Imax = 20.

• ArticHeur : This variant combines the last two methods. More specifically, articu-
lation sets of cardinality 2 are stored in memory, and when Phase II is launched to
generate cutsets corresponding to subsets of cardinality 2, these articulation sets
are first considered before the Heuristic approach is performed.

Table 8 displays the average results obtained by these cutset generation methods.
The results obtained by Enum1 show that Phase I of the cutting-plane algorithm im-
proves the weak relaxation bound by 27.98% on average for a relatively small increase
in computational effort of 12.6%. By increasing the time by 14.9%, Enum2 reaches an
additional improvement of only 0.27% on average over the 196 problem instances. This
additional improvement reaches 0.37% on average with Enum3, but the computational
effort is then substantially more important. When comparing the results of Artic with
those of Enum2, we see that the enumeration of articulation sets of cardinality 2 is al-
most as effective (in terms of the bounds) as the complete enumeration of all subsets of
cardinality 2 and is slightly more efficient (in terms of computational time). Not sur-
prisingly, the reduction of the computational effort increases with the number of nodes,
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∆zw ∆tw Cuts ∆zw ∆tw Cuts ∆zw ∆tw Cuts

classes Enum1 Enum2 Enum3
Class I (31) 19.21% 18.1% 2858 19.22% 30.7% 2868 19.23% 174.5% 2895
Class II (12) 52.66% 17.2% 1312 54.62% 143.6% 1590 55.31% 3878.4% 2173
Class III-A (72) 21.19% 3.3% 335 21.52% 8.2% 361 21.65% 23.6% 384
Class III-B (81) 33.70% 18.1% 2134 33.78% 26.3% 2169 33.81% 93.3% 2195
Average (196) 27.98% 12.6% 1537 28.25% 27.5% 1580 28.35% 312.3% 1639

classes Artic Heur ArticHeur
Class I (31) 19.22% 30.6% 2873 19.23% 43.2% 2875 19.23% 55.7% 2880
Class II (12) 54.25% 70.3% 1462 55.18% 113.4% 1653 55.24% 161.8% 1691
Class III-A (72) 21.52% 7.9% 358 21.50% 25.7% 358 21.56% 29.5% 361
Class III-B (81) 33.77% 26.4% 2164 33.80% 38.0% 2165 33.81% 45.9% 2175
Average (196) 28.23% 23,0% 1570 28.28% 38.9% 1582 28.32% 48.5% 1591

Table 8: Comparison of Cutset Generation Procedures

the best results being obtained for Class II instances. Interesting results are obtained
with the heuristic approaches Heur and ArticHeur, which show bound improvements
and computational times that are competitive with those of the enumeration methods.
Overall, the best bound improvements are obtained with Enum3, but with a prohibitive
computational effort. A good tradeoff between bound quality and computational effort
is obtained with ArticHeur. Even then, we note that the bound obtained after Phase
II only slightly improves upon the bound computed after Phase I, with less than 0.5%
on average, with the exception of Class II instance, for which the bound improvement
reaches more than 2.5% on average.

5.6 Evaluation of Cutting-Plane Formulations

To evaluate more precisely the performance of the proposed cutting-plane algorithms, we
perform the B&B algorithm of CPLEX [27] on the formulations obtained from SI (i.e.,
only the strong inequalities are generated by the cutting-plane algorithm), Enum1, and
ArticHeur. A limit of 2 hours of CPU time is imposed for each instance. Moreover, the
best known feasible solution for each instance is provided as the initial incumbent. This
way, our experiments measure the quality of the lower bounds in terms of their ability to
prune the search tree. The results are provided in Table 9, which is divided into two parts:
“Solved Problems” and “Unsolved Problems.” The former shows the results obtained for
the problem instances that are solved to optimality within the time allowed using any
of the three formulations. Of the 196 instances, there are 135 instances in this category.
In “Unsolved Problems” we display the results obtained for problems that could not be
solved using any of the three formulations. Of the remaining 61 instances, there are 58
instances in this category. Two of the remaining 3 instances have been solved using SI
only, while the third has been solved using Enum1 only.

First, we analyze the “Solved Problems.” Column “Solved” shows the number of
solved problems per class, while columns “t” and “Nodes” give the average time and
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the average number of nodes required for each formulation. These results indicate the
superiority of ArticHeur over Enum1 and SI in terms of the number of nodes required
to prove optimality. In particular, ArticHeur uses about 1/5 of the number of nodes
required by SI for Class II instances. Despite this reduction, SI outperforms ArticHeur
in terms of computational time, except for Class II instances for which the average time
needed by both formulations is almost the same. Similarly, Enum1 requires less nodes,
but is also more time consuming per node when compared to SI.

Solved Problems

Classes Solved SI Enum1 ArticHeur
t Nodes t Nodes t Nodes

Class I (31) 10 698 3547 950 2312 984 2473
Class II (12) 9 705 70129 522 25020 650 15156
Class III-A (72) 72 2 215 3 171 3 160
Class III-B (81) 44 247 2652 669 2168 554 1644
Average (196) 135 180 5917 325 2637 299 1815

Unsolved Problems

Classes Unsolved SI Enum1 ArticHeur
∆z∗ Nodes ∆z∗ Nodes ∆z∗ Nodes

Class I (31) 21 3.16% 7971 3.15% 5410 3.16% 4914
Class II (12) 3 7.69% 38974 6.99% 10379 6.67% 5017
Class III-B (81) 34 2.96% 13844 3.20% 6102 3.20% 5793
Average (124) 58 3.28% 13017 3.38% 6073 3.36% 5434

Table 9: CPLEX B&B, 2 hours CPU Time Limit, Solved and Unsolved Problems

Next, we analyze the “Unsolved Problems.” Column Unsolved shows the number of
unsolved problems per class, while ∆z∗ shows the gap with respect to the best known
solution z∗. These results indicate that all formulations are able to provide impressive
optimality gaps on average. Although SI provides the best optimality gap for the 58 un-
solved problems, the optimality gap for Class II instances is worse than the one obtained
by Enum1 and ArticHeur formulations. We further note that this gap improvement
has been obtained within the same limited time and while exploring substantially less
nodes. We also note that, by exploring only half of the nodes when compared to Enum1,
ArticHeur provides better solutions for Class II instances. These results confirm those of
the previous section, which have shown the superiority of the ArticHeur method when
compared to the other methods for Class II instances.

We have performed additional experiments on the 61 instances that are not in the
category of “Solved Problems.” For this set of instances, Table 10 gives the results for
solved and unsolved problems using the B&B algorithm of CPLEX applied to the three
formulations with a limit of 10 hours of CPU time imposed for each instance. We note
that, of the 61 instances, 12 instances fall in the “Solved Problems” category and 42
instances fall in the “Unsolved Problems” category. The remaining 7 instances have been
solved by only one or two formulations. In particular, two of Class III instances have
been solved solely by SI, while one Class I and one Class III instances have been solved
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only by Enum1 and ArticHeur. In general, for the 61 instances, the results indicate that,
by allowing more time, the optimal gap is reduced and reaches close to 3% on average
for all formulations.

Solved Problems

Classes Solved SI Enum1 ArticHeur
t Nodes t Nodes t Nodes

Class I (21) 2 11350 14222 10191 3462 11746 5135
Class II (3) 0 - - - - - -
Class III-B (37) 10 12405 56077 15398 33348 15311 25798
Average (61) 12 12229 49101 14531 28367 14717 22354

Unsolved Problems

Classes Unsolved SI Enum1 ArticHeur
∆z∗ Nodes ∆z∗ Nodes ∆z∗ Nodes

Class I (21) 19 2.98% 25114 2.97% 15776 2.99% 14937
Class II (3) 3 6.76% 178931 6.22% 52794 5.87% 22474
Class III-B (37) 20 3.23% 41288 3.43% 16732 3.43% 16252
Average (61) 42 2.95% 43803 3.01% 18875 3.02% 16102

Table 10: CPLEX B&B, 10 hours CPU Time Limit, Solved and Unsolved Problems

6 Conclusions

In this paper, we have presented a cutting-plane algorithm for the multicommodity ca-
pacitated fixed-charge network design problem. We have described five families of valid
inequalities: the strong, cover, minimum cardinality, flow cover and flow pack inequal-
ities. We have developed efficient separation and lifting procedures, as well as a cutset
generation algorithm based on metaheuristic principles. Finally, we have presented com-
putational results conducted on a large set of instances.

The computational study shows that our implementation of cover and flow cover
inequalities outperforms that of the state-of-the-art software CPLEX and that the other
valid inequalities contribute to further bound improvement. This conclusion points out
to interesting research avenues. Although we have tested our cutting-plane algorithm
within an enumerative framework, the procedure can be included in a more promising
branch-and-cut algorithm, since the cuts used are valid at all nodes of the enumeration
tree. An additional important advantage of the cutting-plane method we propose is that
it uses valid inequalities derived from any cutset structure, which constitutes one of the
most fundamental structures found in almost all network design problems. Thus, it would
be interesting to investigate the usefulness of the proposed cutset generation methods to
improve the formulations of other network design formulations.
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[20] B. Gendron and T.G. Crainic. Bounding procedures for multicommodity capaci-
tated fixed charge network design problem. Technical Report CRT-96-06, Center for
research on transportation, 1996.

[21] I. Ghamlouche, T.G. Crainic, and M. Gendreau. Cycle-based neighbourhoods for
fixed charge capacitated multicommodity network design. Operations Research,
51:655–667, 2003.

28

A Cutting-Plane Algorithm for Multicommodity Capacitated Fixed-Charge Network Design

CIRRELT-2009-20



[22] I. Ghamlouche, T.G. Crainic, and M. Gendreau. Path relinking, cycle-based neigh-
bourhoods and capacitated multicommodity network design. Annals of Operations
Research, 131:109–133, 2004.

[23] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Lifted cover inequalities for 0-
1 integer programs: computation. NFORMS Journal on Computing, 10:427–437,
1998.

[24] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Lifted cover inequalities for 0-1
integer programs: complexity. INFORMS Journal on Computing, 11:117–123, 1999.

[25] P.L. Hammer, E.L. Johnson, and U.N. Peled. Facets of regular 0-1 polytopes. Math-
ematical Programming, 8:179–206, 1975.

[26] K. Holmberg and D. Yuan. A Lagrangian heuristic based branch-and-bound ap-
proach for the capacitated network design problem. Operations Research, 48:461–
481, 2000.

[27] ILOG Inc. Using the CPLEX Callable Library and CPLEX Mixed Integer Library.
CPLEX version 10.1., 2005.

[28] G. Kliewer and L. Timajev. Relax-and-cut for capacitated network design. In Pro-
ceedings of Algorithms-ESA 2005: 13th Annual European Symposium on Algorithms,
pages 47–58. Lecture Notes in Computer Science 3369, 2005.

[29] J.M.Y. Leung and T.L. Magnanti. Valid inequalities and facets of the capacitated
plant location problems. Mathematical Programming, 44:271–291, 1989.

[30] T.L. Magnanti, P.B. Mirchandani, and R. Vachani. The convex hull of two core
capacitated network design problems. Mathematical Programming, 60:233–250, 1993.

[31] T.L. Magnanti and R.T. Wong. Network design and transportation planning: models
and algorithms. Transportation Science, 18:1–55, 1984.

[32] S. Martello and P. Toth. Upper bounds and algorithms for hard 0-1 knapsack
problems. Operations Research, 45:768–778, 1997.

[33] M. Minoux. Network synthesis and optimum network design problems: models,
solution methods and applications. Networks, 19:313–360, 1989.

[34] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley-
Interscience, New York, 1998.

[35] F. Ortega and L.A. Wolsey. A branch-and-cut algorithm for the single commodity
uncapacitated fixed charge network flow problem. Networks, 41:143–158, 2003.

[36] M.W. Padberg, T.J. Van Roy, and L.A. Wolsey. Valid linear inequalities for fixed
charge problems. Operations Research, 33:842–861, 1985.

29

A Cutting-Plane Algorithm for Multicommodity Capacitated Fixed-Charge Network Design

CIRRELT-2009-20



[37] M. Sellmann, G. Kliewer, and A. Koberstein. Lagrangian cardinality cuts and vari-
able fixing for capacitated network design. In Proceedings of Algorithms-ESA 2002:
10th Annual European Symposium on Algorithms, pages 845–858. Lecture Notes in
Computer Science 2461, 2002.

[38] J.I.A. Stallaert. The complementary class of generalized flow cover inequalities.
Discrete Applied Mathematics, 77:73–80, 97.

[39] T.J. Van Roy and L.A. Wolsey. Solving mixed integer programming problems using
automatic reformulation. Operations Research, 35:45–57, 1987.

[40] L.A. Wolsey. Faces of linear inequalities in 0-1 variables. Mathematical Programming,
8:165–178, 1975.

30

A Cutting-Plane Algorithm for Multicommodity Capacitated Fixed-Charge Network Design

CIRRELT-2009-20


	CIRRELT-2009-20-pp
	CIRRELT-2009-20-abstract
	CIRRELT-2009-20



