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1 Introduction

The purpose of this paper is to describe exact algorithms for the single criterion and the bicriteria

Minimum Cost Path Problem with Relays (MCPPR). This problem is defined on a directed network

(N ,A) with a set N = {1, . . . , n} of nodes and a set A = {1, . . . ,m} of arcs. Two nodes are

distinguished in N : an origin s and a destination t. A path from s to t in (N ,A) is represented

by a sequence p = 〈v1, v2, . . . , vℓ〉, where v1 = s, vℓ = t, vi ∈ N , i = 1, . . . , ℓ, and (vi, vi+1) ∈ A,

i = 1, . . . , ℓ − 1. For simplicity we write i ∈ p if i is a node in the sequence p, and (i, j) ∈ p if i

immediately precedes j in p. We denote by P the set of paths from s to t in (N ,A). Given i, j ∈ p,

the subpath of p between nodes i and j is denoted by σp(i, j). If a path ends at a node where

another one starts, then their concatenation is denoted by ⋄.

With each arc (i, j) ∈ A are associated a cost cij ∈ IR+
0 and a weight wij ∈ IR+

0 . Also, using

a network node i ∈ N as a relay generates a fixed cost ri ∈ IR+
0 , and it is assumed that s and t

are relays of cost 0. The MCPPR aims to determine a least cost path and the locations of relays

under a weight constraint. We will write î to distinguish a relay node i ∈ N − {s, t} of a path

from the remaining nodes that are not relays. As an example, in the network (N1,A1) of Figure 1,

q = 〈1, 2, 4〉 and q′ = 〈1, 2̂, 4〉 are paths from 1 to 4: path q contains no relay besides s and t,

whereas q′ has a relay at node 2.
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Figure 1: Two instances of the MCPPR

The objective function f(p) is the sum of the path cost

c(p) =
∑

(i,j)∈p

cij ,

and of the cost of the selected relays,

r(p) =
∑

bi∈p

ri.

In addition, the weight of any subpath between two consecutive relays cannot exceed a given upper

bound W . The weight of a path q from x to y, whose only relay nodes are x and y is given by

w(q) =
∑

(i,j)∈q

wij .

Letting R(p) = {ŝ1 = s, . . . , ŝk = t} be the set of relay nodes of a path p ∈ P, the function w can

be extended as w̃(p) = w(σp(ŝk−1, t)). In the paths above we have R(q) = ∅, R(q′) = {2}, and

f(q) = 7, w̃(q) = 6, f(q′) = 17, w̃(q′) = 〈2̂, 4〉 = 3.
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The function f aggregates c and r. For instance, still in (N1,A1) and considering W = 5,

q′′ = 〈1, 2, 3̂, 2, 4〉 is the optimal solution of the MCPPR, however q′ is also feasible, and better than

q′′ in terms of cost (c(q′′) = 13 > c(q′) = 7) but worse in terms of relay cost (r(q′′) = 0 < r(q′) = 10).

Motivated by situations like this, we will consider a variant of the MCPPR which consists of

minimizing c and r, while looking for feasible paths in terms of weight. This will be called the

Bicriteria Minimum Cost Path Problem with Relays (BMCPPR).

The MCPPR arises in the context of a telecommunications network design problem. It has been

introduced and studied in [4, 5], and applied to several contexts in [2, 7, 6]. In [5] three methods

are proposed to find a minimum cost path with relays. The most efficient has a complexity of

O(Wnm log W ). In this paper we develop a more efficient algorithm. We first address the original

version of the MCPPR and then study the variant that considers arc and relay costs separately.

The remainder of the paper is organized as follows. Section 2 is devoted to the MCPPR. After

the problem is defined, two labeling algorithms to find the optimal path are described and the

theoretical results that support them are presented. In Section 3 the MCPPR objective function

is decomposed into two: the BMCPPR is defined and a method for dealing with this problem is

developed. Section 4 presents results of computational experiments on random instances for the

problems studied in Sections 2 and 3. Conclusions follow in Section 5.

2 The minimum cost path problem with relays

The purpose of the MCPPR is to determine a feasible path between s and t, i.e., a path that satisfies

the weight constraint and has a minimum objective function value. In other words, denoting by

P = {p ∈ P : w(σp(ŝi−1, ŝi)) ≤W (i = 2, . . . , k and R(p) = {ŝ1, . . . , ŝk})}

the set of feasible paths in P, the MCPPR aims to find a path from s to t in (N ,A) satisfying

min
p∈P
{f(p)}. (1)

This problem can be seen as a more general case of the weight constrained shortest path problem.

However, in the MCPPR the relay location affects both the weight constraint and the relay costs

involved in the objective function itself. One of the differences with respect to the shortest path

problem is that an optimal path can have loops if it contains a relay node. For instance, when

W = 5 the minimum cost path with relays in the network in Figure 1a is q′′ = 〈1, 2, 3̂, 2, 4〉.

Another difference is the fact that optimal paths may contain subpaths that are not optimal,

which means that labeling algorithms supported by Bellman’s principle of optimality [1] cannot be

applied directly to the MCPPR. The only optimal solution for the MCPPR in network (N2,A2)

of Figure 1b is path 〈1, 3, 2, 4〉. However 〈1, 2〉 is feasible and has objective value 5, but it is not

optimal from 1 to 3 because 〈1, 3, 2〉 is also feasible but has an objective value 6.

A variant of (1) is obtained if the weight is considered as an objective function

min
p∈P

{f(p)}, min
p∈P

{w̃(p)}. (2)
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If f and w̃ are not correlated then (2) may have no optimal solution. Instead, the set of feasible

non-dominated paths can be defined as the set of feasible solutions for which there is no other

solution that improves one of the objectives without worsening the other. Given two feasible paths

p1, p2 between the same pair of nodes, p1 dominates p2 (p1Dp2) if and only if f(p1) ≤ f(p2),

w̃(p1) ≤ w̃(p2), and at least one of the inequalities is strict. Then it is also said that (f(p1), w̃(p1))

dominates (f(p2), w̃(p2)), which is denoted by (f(p1), w̃(p1))D(f(p2), w̃(p2)). A feasible path p is

non-dominated if and only if it is not dominated by any other.

Next we show, first that there is a non-dominated solution of (2) which is also an optimal

solution of MCPPR, and second that this bicriteria problem can be solved by labeling procedures.

In fact, even though the function w̃ is not additive, a variant of the principle of optimality can be

proved if the procedure is restricted to feasible paths, and thus a labeling algorithm can be used.

Theorem 1. There exists an optimal solution of (1) that is a non-dominated solution of (2).

Proof. Let p∗ be a minimum cost path with relays from s to t, so that p∗ satisfies the weight

constraint and f(p) is the minimum value for paths in P . By contradiction, assume p∗ is dominated

by another path p ∈ P , i.e.,

1. f(p∗) ≥ f(p) and w̃(p∗) > w̃(p), or

2. f(p∗) > f(p) and w̃(p∗) ≥ w̃(p).

As p is feasible and p∗ is a minimum cost feasible path in terms of f , 2. yields a contradiction.

On the other hand 1. implies that f(p∗) = f(p). Therefore p is also an optimal solution. If it

is non-dominated the proof is concluded; otherwise the argument can be repeated, so there is a

non-dominated path that is the optimal solution.

According to Theorem 1, finding all solutions to (2) provides a minimum cost path with relays as

well. Besides, this theorem implies that a path is obtained for every non-dominated pair of objective

values, then one of them is an optimal solution to (1). There are two non-dominated solutions of

problem (2) in the network of Figure 2 with W = 5, p1 = 〈1, 2, 4̂, 5〉 and p2 = 〈1, 3, 2, 4̂, 5〉, and

with objective values (f(p1), w̃(p1)) = (2, 3) and (f(p2), w̃(p2)) = (2, 3). However, 〈1, 3, 2〉D〈1, 2〉.

This means that finding all non-dominated solutions to (2) would require storing dominated labels.

Nevertheless, despite the constraint and the fact that f is not a standard function, the MCPPR

can be solved by finding only the non-dominated pairs of objective values, which can be achieved

by using labeling procedures, as stated in Theorem 2.

Theorem 2. For any non-dominated pairs of objective values of (2) there is a path formed by

non-dominated subpaths only.

Proof. Let p∗ be a non-dominated path in P and let i be one of its nodes. Assume that σp∗(s, i) is

dominated by another feasible path from s to i, q, thus

1. f(σp∗(s, i)) ≥ f(q) and w̃(σp∗(s, i)) > w(q), or
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Figure 2: Network (N ,A)

2. f(σp∗(s, i)) > f(q) and w̃(σp∗(s, i)) ≥ w̃(q).

Let q∗ = q ⋄σp∗(i, t) be the path that results from replacing σp∗(s, i) by q in p∗. Then w̃(q∗) ≥ w̃(p∗)

and, in case 1.

f(q∗) = f(q) + f(σp∗(i, t)) ≤ f(p∗)

holds, while in case 2. the inequality is strict.

If condition 2. is satisfied, p∗ is dominated by q∗. As for condition 1. either the same conclusion

is valid, or else p∗ and q ⋄ σp∗(i, t) are equivalent, which means there is a non-dominated path in

P equivalent to p∗ and formed only by non-dominated subpaths.

By this result a set of paths with all non-dominated pairs of objective values of (2) can be

found using a labeling algorithm that associates a network node with several nodes in different

paths starting in s. Each of these nodes, for instance x, is associated with a label with the form

lx = [πf
x , πw

x , ξx, βx], where

• π
f
x denotes the path f value (that depends on the arc costs and node relays),

• πw
x denotes its weight,

• ξx is the node that precedes x in the path, and

• βx is the network node that corresponds to x.

Given βx = i ∈ N and (i, j) ∈ A, if j 6= t then two new nodes, y, z, are labeled with

ly = [πf
x + cij + rj, 0, x, j] and lz = [πf

x + cij , π
w
x + wij , x, j], (3)

where the first case corresponds to locating a relay at node j. When j = t only the second case has

to be considered. The insertion of a new label should be accompanied by a dominance test that

compares it with labels previously set for the same node. If the new label is dominated by one of

the others, it is discarded; otherwise it is stored as a potential non-dominated label, and any label

that is dominated by this one can be deleted. Similar labeling algorithms for bicriteria shortest

path problems (thus different objective functions) can be found in [3, 8, 10, 11], among others.

When solving problem (1) some modifications can be introduced to a general labeling algorithm

because the goal now is to determine a single optimal solution, which has to be feasible and to have

minimum objective value f . As W is one of the problem’s input, then there is at most one label

5

Minimum Cost Path Problems with Relays

CIRRELT-2009-21



of weight 0, . . . ,W associated with each node, where wi = 0 means that i is used as a relay node.

Also a label lz is only created if it corresponds to a feasible path, that is, if πw
x + wij ≤ W . This

strategy may require non-dominated labels to be stored. For instance, the paths 〈1, 2〉 and 〈1, 2̂〉

in network (N1,A1) shown in Figure 1a correspond to labels la = [5, 3, 1, 2] and lb = [5, 0, 1, 2],

respectively. Both have different weights but (πf
b , πw

b )D(πf
a , πw

a ). Storing such labels simplifies the

dominance test as shown hereafter. Let M be a (W + 1)×n matrix, where Mdi stores the index of

the label with the best objective value for each feasible weight d = 0, . . . ,W + 1 and node i ∈ N .

Given a node that produces two new labels as in (3), ly is inserted in the set of labels if and only if

πr
x + cij + rj > πr

M0j
, and lz is inserted if and only if πr

x + cij > πr
Mdj

, with d = πw
x +wij. Each label

replaces the previous labels at M0j and Mdj , if they exist. This test can be easily implemented and,

as non-dominated labels can be stored in different matrix positions they are no longer deleted. This

improves the theoretical complexity order of the algorithm by comparison to a bicriteria shortest

path labeling algorithm.

The pseudo-code of Algorithm 1 summarizes the procedure described for the MCPPR. The

working variable X represents a set with the labels that have not been scanned.

Algorithm 1. Determination of the minimum cost path with relays

For d ∈ {0, . . . , W} Do

For j ∈ N Do Mdj ← 0

nX ← 1; lnX ← [0, 0,−, s]; X ← {1}

While X 6= ∅ Do

x← node in X ; X ←− X − {x}; i← βx

For j ∈ N such that (i, j) ∈ A Do

If (i 6= t) Then

If (M0j = 0) or (M0j 6= 0 and πf
x + cij + rj < π

f
M0j

) Then

nX ← nX + 1; lnX ← [πf
x + cij + rj , 0, x, j]; M0j ← nX

X ← X ∪ {nX}

EndIf

d← πw
x + wij

If d ≤W Then

If (Mdj = 0) or (Mdj 6= 0 and πf
x + cij > π

f
Mdj

) Then

nX ← nX + 1; lnX ← [πf
x + cij , d, x, j]; Mdj ← nX

X ← X ∪ {nX}

EndIf

EndFor

EndWhile

Theorem 3 proves that if the labels to be scanned are selected by non-decreasing order of f

then Algorithm 1 is label setting and thus the nodes chosen in X have the correct label. As a

consequence the algorithm can halt as soon as a node that corresponds to t is chosen; otherwise, if

it continues until X = ∅ then the labels stored in M
�t correspond to the optimal paths from s to t
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for every feasible weight.

Theorem 3. If the labeled nodes are selected by non-decreasing order of f , then those that have

been selected have permanent labels.

Proof. Suppose node x is chosen in X at a step of Algorithm 1 and assume its label lx is not

permanent, that is, another label for the same network node, ly, feasible and such that π
f
y < π

f
x

will be chosen later on. There are two possibilities:

1. If y ∈ X when x is selected, then at that moment π
f
y < π

f
x .

2. If y is inserted in X after x has been selected, then its label is obtained from a sequence

of feasible labels ly1
, . . . , lyk

starting at some node y1, which belongs to X at the time x is

selected. Furthermore, as cij ≥ 0, (i, j) ∈ A, and ri ≥ 0, i ∈ N , we have π
f
y1
≤ . . . ≤ π

f
yk
≤ π

f
y ,

therefore π
f
y1

< π
f
x .

Both cases lead to contradiction, as x should not have been chosen because x was not the node

associated with the best label in X.

As there are at most Wn labels, the total number of scanned arcs is O(Wm) and, if the label

set is manipulated as a Fibonacci heap, each scan takes O(1) operations, namely comparisons

and insertions. Besides, all the Wn labels have to be selected in the label set, which can be

achieved in O(Wn log(Wn)) time. Therefore the worst-case time complexity bound of Algorithm 1

is O(Wm + Wn log max{W,n}).

3 The bicriteria minimum cost path problem with relays

The objective function of the MCPPR aggregates two other: the path cost and the relay cost.

Considering them separately can provide effective alternative solutions. The BMCPPR is thus a

constrained bicriteria problem defined as

min
p∈P
{c(p)}, min

p∈P
{r(p)}. (4)

Its aim is to find non-dominated paths in P, that is, paths p ∈ P such that there is no q ∈ P with

c(p) ≥ c(q), r(p) ≥ r(q) and at least one inequality is strict. Similarly to problem (1), the solutions

of (4) can be found amongst the non-dominated solutions of the tricriteria problem

min
p∈P
{c(p)}, min

p∈P
{r(p)}, min

p∈P
{w̃(p)}. (5)

Still, function w̃ is not additive and the principle of optimality is again invalid. As a result, a

labeling method would have to store intermediate dominated labels. Alternatively Algorithm 1 can

be extended by including in the node labels a new parameter that refers to the path cost. Given a

node x associated with a path starting in s, the new labels have the form lx = [πc
x, πr

x, πw
x , ξx, βx],

where

• πc
x, denotes the path cost,
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• πr
x, denotes the cost of the relays in the path.

Taking x as the starting point, new labels for nodes y and z are updated as

ly = [πc
x + cij , π

r
x + rj, 0, x, j] and lz = [πc

x + cij , π
r
x, πw

x + wij , x, j], (6)

where the first case corresponds to using j as a relay node, if j 6= t. Similarly to the matrix M in

Section 2, a (W + 1)× n matrix L is defined. For every feasible weight d = 0, . . . ,W + 1 and node

i, Ldi contains the paths from s to i with weight d, which are not dominated by any other of the

same weight. Each position in L is usually associated with more than one path, unlike matrix M .

Given a node x that corresponds to i ∈ N and (i, j) ∈ A, the labels in (6) are produced. Then,

ly is inserted in set L0j if and only if it contains no other label that dominates it (i.e., another label

la such that πc
a ≤ πc

y, πr
a ≤ πr

y and at least one of the inequalities is strict), while lz is inserted in

Lπw
x +wijj under analogous conditions. The labels in L0j and in Ldj that are dominated by ly and

by lz, respectively, can be removed from these sets; otherwise L
�j will contain other labels besides

the necessary ones. Finally, it is worth stressing that this approach in effect computes the set of

non-dominated paths for every feasible weight d = 0, . . . ,W . At the end of the process all the

BMCPPR solutions, and possibly some dominated ones which should be filtered, are in L
�t.

The solutions obtained with this labeling method applied to the BMCPPR with W = 5 in

(N1,A1) are represented as a tree in Figure 3. After all labels have been scanned the set of

candidate solutions is given by L
�4 = {〈1, 2, 3, 2̂, 4〉, 〈1, 2, 3̂, 2, 4〉, 〈1, 2̂, 4〉, 〈1, 2̂, 3, 2, 4〉}. In this set

〈1, 2, 3, 2̂, 4〉, 〈1, 2, 3̂, 2, 4〉 and 〈1, 2̂, 4〉 are solutions of BMCPPR, while 〈1, 2̂, 3, 2, 4〉 is dominated

by the first two paths and thus should be discarded in the end.
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Figure 3: Tree of candidate solutions for the BMCPPR with W = 5 in (N1,A1)

The pseudo-code presented in Algorithm 2 outlines the method to solve the BMCPPR.

Algorithm 2. Determination of the non-dominated minimum cost paths with relays

For d ∈ {0, . . . , W} Do

For j ∈ N Do Ldj ← ∅

nX ← 1; lnX ← [0, 0, 0,−, s]; X ← {1}

While X 6= ∅ Do

x← node in X ; X ←− X − {x}; i← βx

For j ∈ N such that (i, j) ∈ A Do
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If (i 6= t) Then

If (L0j = ∅) or (L0j 6= ∅ and (πc
x + cij , π

r
x + rj) is not dominated in L0j) Then

nX ← nX + 1; lnX ← [πc
x + cij , π

r
x + rj , 0, x, j]; L0j ← L0j ∪ {nX}

X ← X ∪ {nX}

EndIf

d← πw
x + wij

If d ≤W Then

If (Ldj = ∅) or (Ldj 6= ∅ and (πc
x + cij , π

r
x) is not dominated in Ldj) Then

nX ← nX + 1; lnX ← [πc
x + cij , π

r
x, d, x, j]; Ldj ← Ldj ∪ {nX}

X ← X ∪ {nX}

EndIf

EndFor

EndWhile

Select the non-dominated labels associated with t in Ldt, d = 0, . . . , W

Algorithm 2 can be implemented either as a label correcting method, if the selection of nodes in

X is arbitrary, or as a label setting method, if the node with the least lexicographic label in terms

of c and r is chosen (attending to the fact that ri, cij ≥ 0, for i ∈ N , (i, j) ∈ A). In the second

case the labels chosen in X are permanent, that is they are non-dominated in the correspondent

set Ldi, for some d ∈ {0, . . . ,W} and i ∈ N , and this includes the BMCPPR solutions. The proof

is analogous to that of Theorem 3 and is therefore omitted.

As mentioned earlier this approach solves a problem similar to the bicriteria shortest path prob-

lem for every feasible weight, which Hansen proved to have a number of non-dominated solutions

that may grow exponentially [9], and thus the BMCPPR is NP-hard.

4 Computational results

Computational experiments were carried out to evaluate and to compare the empirical performance

of the algorithms just described. The tests were run on a Pentium 4 at 3 GHz, with 512 Kb of

cache memory and 1Gb of RAM, over SUSE Linux 10.3. The results presented in the following

were obtained on ten different instances generated for each dimension of the data sets.

4.1 The minimum cost path problem with relays

Two versions of Algorithm 1 were coded in C to determine a minimum cost path with relays: a label

correcting algorithm where the labels set is managed as a FIFO list, and a label setting algorithm

which is interrupted when a label associated with t is selected.

The instances considered were random networks with n = 500, 1 000, 3 000, 5 000, 10 000, and dn

arcs, for densities d = 4, 5, 10. Uniformly integer cost, relay and weight values generated in [1, 100]

and W = 50, 110 were considered. The plots in Figure 4 show the average running times of the two

codes for ten different instances of each data set dimension.
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Figure 4: Average running times of Algorithm 1 versus n

For a fixed value of W the CPU times grow with instance size, namely with n and with d. The

impact of d seems larger than that of n, as times increase faster with the first parameter than with

the number of nodes for W = 50 and W = 110. The relative behavior of the algorithms was similar

for both values of W . However, greater values imply a larger matrix and a higher number of labels

will be necessary. Therefore the times are clearly greater when W = 110. The label setting method

clearly outperformed label correcting for all problem dimensions. It should also be noted that its

sensibility to the increase of the instance parameters was much smaller than for the label correcting

version. This program solved the larger problems, n = 10000, d = 10 and W = 110, in an average

time of 0.219 seconds.

4.2 The bicriteria minimum cost path problem with relays

As for the bicriteria minimum cost path with relays, two implementations of Algorithm 2 were coded

in C and tested on a subset of the previous random networks with n = 500, 1 000, 3 000, 5 000. The

two variants correspond to a label correcting version where the set X is managed as a FIFO list,

and a label setting version. No prunning of the labels within each set Ldi, d = 0, . . . ,W , i ∈ N ,

dominated by new ones was implemented. The results in the following are averages for ten instances

of each dimension of the data set.

As expected in this case the number of paths produced, and thus the total number of labels

generated was greater than for the MCPPR, which was also reflected in greater running times for

both variants of Algorithm 2. The average numbers of solutions for each problem and the average

number of labels generated by the programs are presented in Table 1 (“—” means the program

did not run until the end). The label correcting method was less economic than the label setting

in terms of the memory space it used. In most of the n = 5000 and d = 10 instances these

problems did not run until the end due to memory overflow. In the remaining cases the number of

generated labels was always greater with the first method. As a consequence the running times for

the BMCPPR problem were greater than for the MCPPR.

The same remark can be made concerning the times growth with the number of nodes, which is
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# solutions # labels

Label correcting Label setting

n d W = 50 W = 110 W = 50 W = 110 W = 50 W = 110

500 4 5 4 78120 574150 20608 106027
500 5 7 6 139090 994255 36306 176186
500 10 9 7 511630 2115965 119925 328788

1 000 4 7 7 206064 1616795 49113 265170
1 000 5 7 8 313224 2299274 73828 384668
1 000 10 8 5 1172799 4547079 242858 661032
3 000 4 10 8 880406 6693012 178322 854451
3 000 5 12 9 1319813 9698591 287023 1321826
3 000 10 10 8 4622109 19770964 1004046 2853506
5 000 4 9 8 1780350 13091331 334742 1739159
5 000 5 10 11 2595751 19226014 528745 2426392
5 000 10 15 8 8832978 — 1777294 4758894

Table 1: Average number of non-dominated paths and of labels generated by Algorithm 2

related to the number of paths that have to be computed and with the total number of generated

labels. Figure 5 depicts the running times obtained by the variants on the test bed. Even though in

general the label setting algorithms outperformed label correcting algorithms this was not always

the case and, for the smaller instances with W = 50 the label correcting method was faster. This

is due to the more demanding process of inserting a new label by lexicographic order in set X.

However, as noted above, the number of labels was much higher for the label correcting versions,

and thus its running times still grew faster as a function of instance size.
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Figure 5: Average running times of Algorithm 2 versus n

5 Conclusions

This paper addressed the minimum cost path problem with relays. It introduced an algorithm

with a time complexity of O(Wm + Wn log max{W,n}) for the constrained problem with a single

objective function. That method is based on a labeling algorithm aided by an auxiliary matrix

that stores labels with different feasible weights. A second version of the problem, dealing with the
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same weight constraint but considering each path and relay costs separately, was also studied. The

algorithm proposed for the MCPPR was extended and adapted for this problem. Computational

results of label setting and label correcting forms for the two developed algorithms were presented.

These results show that the MCPPR can be solved in networks with up to 10 000 nodes and 100 000

arcs in less than 0.256 seconds. As for the BMCPPR instances with 5 000 nodes and 50 000 the

sets of non-dominated paths were computed in about 980 seconds.
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