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1 Introduction

Meta-heuristics are widely acknowledged as essential tools in addressing difficult problems in
numerous and diverse fields. Meta-heuristics actually often offer the only practical approach
to solving complex problems of realistic dimensions.

Even using meta-heuristics, however, the limits of what may be solved in “reasonable”
computing times are still reached rapidly for many problem settings, at least much too rapidly
for the growing needs of research and industry alike. Heuristics do not, in general, guaranty
optimality. Moreover, the performance often depends on the particular problem setting and
instance characteristics. Consequently, a major issue in meta-heuristic design and calibration
is not only how to build them for maximum performance, but also how to make them robust, in
the sense of offering a consistently high level of performance over a wide variety of problem
settings and characteristics.

Parallel meta-heuristics aim to address both issues. Of course, the first goal is to solve
larger problem instances in reasonable computing times. In appropriate settings, such as coop-
erative multi-search strategies, parallel meta-heuristics also prove to be much more robust than
sequential versions in dealing with differences in problem types and characteristics. They also
require less extensive, and expensive, parameter calibration efforts.

The objective of this paper is to paint a general picture of the parallel meta-heuristic field.
More specifically, we aim to present a state-of-the-art survey of the main parallel meta-heuristic
ideas and strategies and discuss general design and implementation principles that apply to
most meta-heuristic classes, to instantiate these principles for neighborhood- and population-
based meta-heuristics, and to identify a number of trends and promising research directions.

The parallel meta-heuristic field is very broad, while the space available for this paper im-
poses hard choices and limits the presentation. In addition to the references provided in the
following sections, the reader may consult a number of surveys, taxonomies, and syntheses of
parallel meta-heuristics, some addressing methods based on particular methodologies, while
others address the field in more comprehensive terms. Methodology-dedicated syntheses may
be found in [4, 74, 75, 76, 119] for parallel simulated annealing, [2, 16, 17, 93, 104, 132]
for genetic-based evolutionary methods, [26, 34, 41, 72, 151] for tabu search; [59] for scat-
ter search, [14, 52, 81] for ant-colony methods, and [100] for Variable Neighborhood Search
(VNS). Surveys and syntheses that address more than one methodology may be found in
[27, 36, 37, 38, 42, 79, 84, 113, 150].

The paper is organized as follows. Section 2 is dedicated to a general discussion of basic
meta-heuristics design principles, the corresponding potential for parallel computing, and the
taxonomy we use to structure the presentation. Section 3 addresses strategies focusing on ac-
celerating computing-intensive tasks without modifying the basic algorithmic design. Methods
based on the decomposition of the search space are treated in Section 4, while strategies based
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on the simultaneous exploration of the search space by several independent meta-heuristics
constitutes the topic of Section 5. The different cooperation principles and strategies are the
subject of Section 6 and we conclude in Section 7.

2 Meta-heuristics and Parallelism

This section is dedicated to an overview of the main classes of meta-heuristics and the associ-
ated potential for parallel computing. The latter is completed by a discussion of performance
indicators for parallel meta-heuristics. The section concludes with the criteria used in this paper
to describe and classify parallelization strategies for meta-heuristics.

2.1 Heuristics and Meta-heuristics

Given a set of objects and the contribution associated to each, an objective function computing
the value of a subset of objects out of their respective contributions, and the feasibility rules
specifying how subsets may be built, combinatorial optimization problems aim to select a sub-
set of objects satisfying these rules and such that the value of the function is the highest/lowest
among all possible combinations. Many problems of interest may be represented through this
framework, including design, routing, and scheduling. Combinatorial optimization problems
are usually formulated as (mixed) integer optimization programs. To define notation, assume
that one desires to minimize an objective function f (x), linear or not, subject to x ∈X ⊆ Rn.
The set X collects constraints on the decision variables x and defines the feasible domain. De-
cision variables are generally non-negative and all or some may be compelled to take discrete
values. One seeks a globally optimal solution x∗ ∈X such that f (x∗)≤ f (x) for all x ∈X .

In most cases, such formulations are difficult to solve for realistically-sized problem in-
stances, the main issue being the number of feasible solutions – subsets of objects – that grows
exponentially with the number of objects in the initial set. Once various methods have been
applied to re-formulate the problem and bound the region where the optimal solution is to be
found, most solution methods are based on some form of exploration of the set of feasible
(and sometimes, infeasible) solutions. Explicit enumeration is normally out of the question
and the search for the optimal solution proceeds by implicit enumeration. Branch-and-bound
(and price, and cut, and ...) methods are typical of such approaches and make up one of the
strategies of choice used in the search for optimal solutions to combinatorial problems. Unfor-
tunately, these methods fail for many instances, even when parallel implementations are used.
Thus, heuristics have been, and continue to be, an essential methodology in addressing com-
binatorial optimization formulations, often offering the only practical alternative when dealing
with problem instances of realistic dimensions and characteristics.

2
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A heuristic is any procedure that aims to identify a “good” feasible solution x̃ ∈X . Of
course, one would like x̃ to be identical to x∗ (if the latter is unique) or f (x̃) to be equal to
f (x∗). For most heuristics, however, one can only hope (and for some, prove) that f (x̃) is
“close” to f (x∗). At the core of many heuristics, one finds an improving iterative procedure
that moves from a given solution to a solution in its neighborhood, which is better in terms
of the objective function value or some other measure based on the solution characteristics.
Thus, at each iteration, such a local search (LS) procedure identifies and evaluates solutions
in the neighborhood of the current solution, selects the best one relative to given criteria, and
implements the transformations required to establish the selected solution as the current one.
The procedure iterates until no further improvement is possible.

input: x ∈X an initial solution
y← Neighbor(N (x))
while c(y) < c(x)

x← y
y← Neighbor(N (x))

return x

Figure 1: Local Search Template

Figure 1 illustrates the local search template (for a minimization problem). The input value
x is an usually feasible initial solution. The expression N (x) denotes the neighborhood of x,
that is, the set of solutions, called neighbors, that can be reached from x through a predefined
transformation of x called move. Such a transformation may be simple, e.g., complement the
value of an integer-valued variable, or more complex made up of a sequence of operations, e.g.,
λ -opt modifications of routes in vehicle routing problems (VRPs). The value of any solution x
is given by c(x), which may be f (x), or more or less loosely related to it, or an entirely different
function. Figure 2 illustrates the procedure Neighbor, which identifies, evaluates, and selects
solutions in the neighborhood N (x) of the current solution x, m(x) standing for a neighbor
of x obtained applying the move m. The parameter neighbor selection indicates whether the
procedure returns the best solution in N (x) with respect to c(x), or the first solution better than
x found while exploring N (x). One denotes these two cases as best-improvement (also called
steepest descent, or ascent when maximizing) and first-improvement, respectively.

Local search heuristics update the current solution x only when it can be improved and never
backtrack to a previous solution. They therefore stop as soon as a local optimum solution is
found. This inability to continue past the first encountered local optimum is a major drawback
of classical heuristic schemes. Moreover, such procedures are unable to react and adapt to
particular problem instances. Re-starting and randomization strategies, as well as combinations
of simple heuristics offer only partial and largely unsatisfactory answers to these issues. The
class of modern heuristics known as meta-heuristics aims to address these challenges.

3
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input: x; neighbor selection
NewCurrentSolution← x
if (neighbor selection = first improvement) then

y← m(x); N (x)←N (x)\ y;
while (c(y)≥ c(x) or N (x) 6= /0) y← m(x); N (x)←N (x)\ y
NewCurrentSolution← y

if (neighbor selection = best improvement) then
while (N (x) 6= /0)

y← m(x); N (x)←N (x)\ y
if (c(y) < c(NewCurrentSolution)) then NewCurrentSolution← y

return NewCurrentSolution

Figure 2: Procedure Neighbor

Meta-heuristics have been defined as master strategies (heuristics) that guide and modify
other heuristics to produce solutions beyond those normally identified by heuristics such as
local search [69, 71]. Compared to exact search methods, such as branch-and-bound, meta-
heuristics cannot generally guarantee a systematic exploration of the entire solution space.
Instead, they attempt to examine only parts thereof where, according to certain criteria, one
believes good solutions may be found. Well-designed meta-heuristics avoid getting trapped in
local optima or sequences of visited solutions (cycling) and provide reasonable assurance that
the search has not overlooked promising regions.

Meta-heuristics are iterative procedures, which move at each iteration toward “good” so-
lutions in the neighborhood of the current solution or of a suitably selected subset. Unlike
local search heuristics, however, meta-heuristics may move to not-necessarily-improving so-
lutions, which constitutes the main mechanism to avoid stopping at local optima. Additional
mechanisms control the evolution of the meta-heuristic to avoid cycling, learn from previous
moves and encountered solutions, and provide for a thorough search. Meta-heuristics explore
a search space that may be the feasible domain of the problem at hand, or only loosely based
on it (e.g., the search space may include unfeasible solutions or may be restricted to a sub-
set of variables only). Many meta-heuristics have been proposed. From the point of view of
parallel-strategy design, however, it is convenient to discuss them according to whether their
main search mechanism is based on neighborhoods or populations.

Neighborhood-based meta-heuristics implement explicitly moves to solutions selected within
given neighborhoods and generally proceed following a single trajectory in the search space.
Tabu search, simulated annealing, guided local search, variable neighborhood search, greedy
randomized adaptive search, and iterated local search, belong to this category of meta-heuristics,
and define high-level mechanisms to guide local search explorations of the search space. The
high-level mechanisms monitor the status of the search, determine when particular phases
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(e.g., diversification and intensification) should start, select neighborhoods and local-search
procedures, etc. Figure 3 displays the general design idea for neighborhood-based meta-
heuristics, emphasizing the two major nested loops of their usual implementation: An outer
loop implements the high-level meta-heuristic controlling (guiding) the global search and the
selected local search procedure, while the inner loop executes the local search. Notice that the
Neighbor(N (x)) procedure called within the local search implicitly adds a third-level nested
loop.

Identify an initial solution
while Termination criterion not satisfied

Monitor and update global search status and
Update meta-heuristic guidance information

Including the selection of LS procedures and neighborhoods
while LS termination criterion not satisfied

y←Neighbor(N (x))

Figure 3: The Neighborhood-based Meta-heuristic Idea

Generate an initial population P of size n
while (Termination criterion not satisfied)

Monitor and update global search status and
Update meta-heuristic guidance information

Including selection of elite sub-populations and
Computation of corresponding solution values

Compute global information (average fitness, pheromone matrix)
Update population

Including local search

Figure 4: The Population-based Meta-heuristic Idea

Population-based meta-heuristics use a set of solutions to concurrently sample different
regions of the solution space. The search moves to new solutions by recombining elements
from different solutions in the current population. We find in this group evolutionary methods
(genetic algorithms), scatter search, and path relinking. For the purposes of this paper, we also
include in the group ant-based methods and other swarm-based algorithms. Figure 4 display
the general algorithmic idea of population-based meta-heuristics. There are several loops in
an implementation of a population-based method: the generation of the initial population, the
computation of solution values, which could involve the entire population, and of the global
information, the generation of new individuals, which may involve local search either as an in-
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dividual improvement mechanism (e.g., genetic algorithms and scatter search) or as a trajectory
between two individuals (path relinking).

2.2 Sources of Parallelism

Parallel/distributed computing means that several processes work simultaneously on several
processors solving a given problem instance. Parallelism thus follows from a decomposition
of the total computational load and the distribution of the resulting tasks to available proces-
sors. The decomposition may concern the algorithm, the problem-instance data, or the prob-
lem structure (e.g., mathematical or attribute-based [28, 29] decomposition). In the first case,
denoted functional parallelism, different tasks, possibly working on the “same” data, are allo-
cated to different processors and run in parallel, possibly exchanging information. The second
is denoted data parallelism or domain decomposition and refers to the case where the problem
domain, or the associated search space, is decomposed and a particular solution methodol-
ogy is used to address the problem on each of the resulting components of the search space.
The third case is quite recent and generates tasks by decomposing the problem along sets of
attributes. The decomposition could be performed through mathematical programming tech-
niques or heuristically. Then, some tasks work on sub-problems corresponding to particular
sets of attributes (i.e., part of the original search space), while others combine sub-problem
solutions into whole solutions to the original problem. According to how “ small” or “large”
are the tasks in terms of algorithm work or search space, the parallelization is denoted fine- or
coarse-grained, respectively.

From an algorithmic point of view, the main source of parallelism for meta-heuristics is
the concurrent execution of their inner loop iterations: evaluating neighbors, computing the
fitness of individuals, or having ants forage concurrently. Unfortunately, this is often also the
only source of readily available parallelism in meta-heuristics, most other steps being time
dependent and requiring the computation of the previous steps to be completed. Even when
parallelism is available, synchronization enforcing the time-dependency of the meta-heuristic
steps yields significant delays, which makes parallel computation non relevant.

A significant amount of parallelism may be found, on the other hand, in the domain of
the problem addressed or in the corresponding search space. Indeed, there are no data depen-
dencies between the cost or evaluation functions of different solutions and, thus, these may
be computed in parallel. Furthermore, theoretically, the parallelism in the solution or search
space is as large as the space itself. There are considerable limitations to an efficient exploita-
tion of this parallelism, however. For obvious reasons, one cannot assign a processor to each
solution evaluation. The solution or search space must therefore be partitioned among proces-
sors, thus serializing the evaluation of solutions assigned to the same processor. The resulting
partitions are generally still too large for explicit enumeration and, thus, an exact or heuristic
search method is still required for implicitly exploring it. Partitioning then raises two issues
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with respect to an overall meta-heuristic search strategy. First, the control of an overall search
conducted separately on several partitions of the original space and the comprehensiveness of
the solution finally reached. Second, the allocation of the computing resources for an efficient
exploration avoiding, for example, searching regions with poor-quality solutions. Nonetheless,
besides the inner-loop computations, this is the only other relevant source of parallelism for
meta-heuristics, and is exploited in many of the strategies described in this paper.

Two main approaches are used to partition the search space: domain decomposition and
multi search (the name multiple walks is also found in the literature). The former explicitly
partitions it (see Section 4), while the latter implicitly divides it through concurrent explo-
rations by several methods, denoted in the following “search threads”. Using different search
strategies contributes toward a non-overlapping exploration of the search space, but does not
guarantee it and, thus, a multi-search parallelization rarely provides a proper partition of the
search space. Multi-search strategies, particularly those based on cooperation principles, make
up the bulk of the successful parallel meta-heuristics, however. They are the object of most
recent publications in the field and are addressed in Sections 5 and 6.

2.3 Parallel Meta-heuristics Strategies

We adopt the classification of Crainic and Nourredine [36], generalizing that of Crainic, Toulouse,
and Gendreau [41] (see also [26, 37, 38]; [150] and [42] present classifications that proceed of
the same spirit), to describe the different parallel strategies for meta-heuristics. This classifica-
tion reflects the previous discussion and is sufficiently general to encompass all meta-heuristic
classes, while avoiding a level of detail incompatible with the scope and dimension limits of
the paper.

The three dimensions of the classification indicate how the global problem-solving pro-
cess is controlled, how information is exchanged among processes, and the variety of solution
methods involved in the search for solutions, respectively. The first dimension, Search Control
Cardinality, thus specifies whether the global search is controlled by a single process or by
several processes that may collaborate or not. The two alternatives are identified as 1-control
(1C) and p-control (pC), respectively.

The second dimension, relative to the type of Search Control and Communications, ad-
dresses the issue of information exchanges. In parallel computing, one generally refers to syn-
chronous and asynchronous communications. In the former case, all concerned processes stop
and engage in some form of communication and information exchange at moments (number
of iterations, time intervals, specified algorithmic stages, etc.) exogenously determined, either
hard-coded or determined by a control (master) process. In the latter case, each process is in
charge of its own search, as well as of establishing communications with other processes, and
the global search terminates once each individual search stops. To reflect more adequately the
quantity and quality of the information exchanged and shared, as well as the additional knowl-

7

Parallel Meta-Heuristics

CIRRELT-2009-22



edge derived from these exchanges (if any), we refine these notions and define four classes:
Rigid (RS) and Knowledge Synchronization (KS) and, symmetrically, Collegial (C) and Knowl-
edge Collegial (KC).

Because more than one solution method or variant (e.g., different parameter settings) may
be involved in a parallel meta-heuristic, the third dimension indicates the Search Differen-
tiation: do search threads start from the same or different solutions and do they make use
of the same or different search strategies? The four cases considered are: SPSS, Same ini-
tial Point/Population, Same search Strategy; SPDS, Same initial Point/Population, Different
search Strategies; MPSS, Multiple initial Points/Populations, Same search Strategies; MPDS,
Multiple initial Points/Populations, Different search Strategies. Obviously, one uses “point”
for neighborhood-based methods, while “population” is used for genetic-based evolutionary
methods, scatter search, and ant colony methods.

Based on this classification and the sources of parallelism in meta-heuristics identified at
Section 2.2, we address the parallel meta-heuristic strategies in four groups and sections: 1-
control strategies exploiting the intrinsic parallelism offered by the basic, inner-loop, compu-
tations of meta-heuristics in Section 3, and strategies based on explicit domain decomposition
in Section 4, while Sections 5 and 6 are dedicated to independent and cooperative multi-search
strategies, respectively.

We complete this section with a few notes on measures to evaluate the performances of
parallel meta-heuristics The traditional goal when designing parallel solution methods is to
reduce the time required to “solve”, exactly or heuristically, given problem instances or to ad-
dress larger instances without increasing the computational effort. For exact solution methods
that run until the optimal solution is obtained, this translates into the well-known speedup per-
formance measure, computed as the ratio between the wall-clock time required to solve the
problem instance in parallel with p processors and the corresponding solution time of the best-
known sequential algorithm; A somewhat less restrictive measure replaces the latter with the
time of the parallel algorithm run on a single processor. See [8] for a detailed discussion of this
issue, including additional performance measures.

Speedup measures are more difficult to define when the optimal solution is not guaranteed
or the exact method is stopped before optimality is reached. Indeed, for most parallelization
strategies, the sequential and parallel versions of a heuristic yield solutions that are different
in value, composition, or both. Thus, an equally important objective when parallel heuristics
are contemplated is to design methods that outperform their sequential counterparts in terms of
solution quality and, ideally, computational efficiency, i.e., the parallel method should not re-
quire a higher overall computation effort than the sequential method or should justify the effort
by higher quality solutions. Search robustness is another characteristic increasingly expected
of parallel heuristics. Robustness with respect to a problem variant is meant here in the sense
of providing “equally” good solutions to a large and varied set of problem instances, without
excessive calibration, neither during initial development, nor when addressing new problem

8

Parallel Meta-Heuristics

CIRRELT-2009-22



instances. See [37, 38] for a discussion of these issues.

3 Low-Level 1-Control Parallelization Strategies

Parallel strategies that exploit the potential for task decomposition within the inner-loop com-
putations of meta-heuristics are often labeled “low level” because they modify neither the al-
gorithmic logic, nor the search space. They aim solely to accelerate the search and generally
do not modify the search behavior of the sequential meta-heuristic. Typically, the exploration
is initialized from a single initial solution or population, and the search proceeds according
to a single meta-heuristic strategy, only the inner-loop computations being decomposed and
simultaneously performed by several processors.

Perform meta-heuristic

Select & partition the work

Distribute to slaves 

Continue meta-heuristic

Execute

received work

Return best solution

Recuperate slave results

Execute

received work

Return best solution

Execute

received work

Return best solution

Figure 5: Low-level Decomposition Strategy

Most low-level parallel strategies belong to the 1C/RS/SPSS class and are usually imple-
mented according to the classical master-slave parallel programming model. A “master” pro-
gram executes the 1-control sequential meta-heuristic but dispatches computation-intensive
tasks to be executed in parallel by “slave” programs, as illustrated in Figure 5. The master
program receives and processes the information resulting from the slave operations, selects
and implements moves or, for population-based methods, selects parents and generates chil-
dren, updates the memories (if any) or the population, and decides whether to activate different
search strategies or stop the search. The slave programs perform evaluations and return the
results to the master which, once all the results are in, resumes the normal logic of the sequen-
tial meta-heuristic. The complete control on the algorithm execution rests with the master,
which decides the work allocation for all other processors and initiates most communications.
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No communications take place among slave programs. Figure 6 illustrates this control and
communication scheme. Its instantiations for neighborhood and population-based methods are
presented in the next two subsections.

Master

Slave

i

Slave

j
Slave

r

Send work

& commands

Return best 

results

Figure 6: Master-Slave Configuration

3.1 Neighborhood-based 1C/RS/SPSS Meta-heuristics

This is the parallelization of the neighborhood evaluation procedure, depicted in Figure 2,
called to compute the next current solution of a local search heuristic embedded in a neighbor-
hood or population-based (e.g., evolutionary procedures implementing advanced “schooling”
for offspring) meta-heuristic. Each iteration of the appropriate while loop of the procedure gen-
erates and evaluates one neighbor of the current solution, and may be executed independently
of the other iterations since no data dependency exists between iterations. The computations
of these iterations may then be distributed over the available p processors as illustrated in Fig-
ure 7. The master groups the neighbors into the appropriate number of tasks, which are then
sent to slaves. Each slave then executes the Neighbor procedure on its respective part of the
neighborhood and sends back the best one found. The master waits for all slaves to terminate
their computations and, then, selects the best move and proceeds with the search. See [58] for
an application of this strategy to a tabu search meta-heuristic for the vehicle routing problem
with time-window constraints (VRPTW).

There is no predefined optimal size for the parallel tasks, the granularity |N (x)|/p of the
decomposition depending upon the number p of available processors, as well as preoccupa-
tions with inter-processor communication times and balancing work loads among processors,
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input: x a current solution; task size the number of neighbors in a task
c(Best)← ∞; number o f tasks← |N (x)|

task size ; j← i← 0
while j < number o f tasks

send to a slave process(task j); j ++
while i < number o f tasks

y← receive from slave(neighbor); i++
if c(y) < c(Best) then Best← y

return Best

Figure 7: 1C/RS Strategy: Master Neighborhood Evaluation

given the computer architecture on which computations are being performed. Thus, for exam-
ple, defining each neighbor evaluation as a single task and dynamically dispatching these on a
first-available, first-served basis to slave processors as they complete their tasks provides maxi-
mum flexibility and good load balancing when the evaluation of neighbors is of uneven length.
For most parallel computer architectures, however, this fine-grained parallelism may come at
too high an overhead cost for creating and exchanging tasks. When neighbor evaluations are
sensibly the same, an often used strategy is to partition the elements defining the neighborhood
into as many groups as available processors.

Notice that, when the local search procedure returns the first-best neighbor (e.g., the simple-
serializable-set approach for parallel simulated annealing [82, 74]), the implemented move
will often be different from that of the sequential version and, thus, the two algorithms will
behave differently. Moreover, the speedup performance of this strategy will be poor when many
“good” neighbors are readily available (e.g., when the temperature parameter of simulated
annealing is high and most neighbors are acceptable).

3.2 Population-based 1C/RS/SPSS Meta-heuristics

1C/RS/SPSS parallelism in genetic algorithms is to be found in the loops that implement the
selection, crossover, mutation, and fitness-evaluation operators, the resulting methods being
variably identified in the literature as global parallelization, master-slave parallelization, and
distributed fitness evaluation.

In theory, the degree of parallelism for each of these four operators is equal to the popula-
tion size, but overhead costs may significantly decrease the degree of achievable parallelism.
Actually, to be worth parallelizing, the computation must be significant. It is of little worth,
for example, to parallelize a computationally simple operation like mutation. In other cases, an
efficient parallelization can only be implemented on shared memory systems. Thus, for exam-
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ple, the selection operator must be able to access randomly any individual in the population and
its parallelization on a distributed-memory computer, where individuals are distributed across
several processors, is too costly and inefficient. In practice, only the fitness evaluation can sat-
isfy these requirements, and is often the only practical source of 1C/RS/SPSS parallelism for
genetic-evolutionary methods.

The 1C/RS/SPSS parallel fitness evaluation of a population can be implemented using the
master-slave model. The master partitions the individuals among slaves, which compute and
return the fitness of each individual, as well as aggregate figures to facilitate the average pop-
ulation fitness to be computed by the master once all slaves have reported in. Similarly to
other 1-control low-level parallelizations, the execution of a 1C/RS/SPSS evolutionary-genetic
algorithm performs the same search as the sequential program, only faster.

The 1C/RS/SPSS parallelism for ant-colony methods lies at the level of the individual ants.
Ants share information indirectly through the pheromone matrix. Furthermore, the pheromone
matrix is updated once all solutions have been constructed, and there are no modifications of
the pheromone matrix during a construction cycle. Consequently, the construction procedure
performed by each individual ant is performed without data dependencies on the progress of
the other ants.

Currently, most parallel ant-colony methods implement some form of 1C/RS/SPSS strategy
according to the master-slave model, including [14, 49, 118, 120, 141]. The master builds tasks
consisting of one or several ants (which can be assimilated to a “small” colony) and distributes
them to the available processors. Slaves perform their construction heuristic and return their so-
lution(s) to the master, which updates the pheromone matrix, returns it to the slaves, and so on.
To further speed up computation, the pheromone update can be computed at the level of each
slave, which computes the update associated to its solutions as well as the best solution and
sends the aggregated pheromone update and its best solution to the master. The fine-grained
version with central matrix update has been the topic of most contributions so far and, in gen-
eral, it outperformed the sequential version of the algorithm. It is acknowledged, however, that
it does not scale and, similarly to other meta-heuristics, this strategy is outperformed by more
advanced multi-search methods.

Scatter search and path relinking implement different evolution strategies, where a re-
stricted number of elite solutions are combined, the result being enhanced through a local
search or a full-fledged meta-heuristic, usually neighborhood-based. Consequently, the 1C/RS/SPSS
strategies discussed previously regarding the parallelization of local-search exploration apply
straightforwardly to the present context, as in [59, 60, 62] for the p-median and the feature-
selection problems.

A different 1C/RS/SPSS strategy for scatter search may be obtained by running concur-
rently the combination and improvement operators on several subsets of the reference set.
Here, the master generates tasks by extracting a number of solution subsets and sending them
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to slaves. Each slave then combines and improves its solutions, returning its results to the
master for the update of the reference set. Each subset sent to a slave may contain exactly
the number of solutions required by the combination operator or a higher number. In the for-
mer case [59, 60, 62], the corresponding slave performs an “iteration” of the scatter search
algorithm. In the latter, several combination-improvement sequences could be executed and
solutions could be returned to the master as they are found or all together at the end of all
sequences. This heavy load for slaves may conduct to very different computation times and,
thus, load-balancing capabilities should be added to the master.

3.3 Remarks

We complete the low-level parallelization discussion with two remarks.

A second class of low-level parallelization approaches was defined in the literature, the
so-called probing or look-ahead strategies, parallelizing the sequential fan candidate list strat-
egy first proposed for tabu search [72, 73]. Probing strategies belong to the 1C/KS class with
any of the search-differentiation models identified previously. For neighborhood-based meth-
ods, probing may allow slaves to perform a number of iterations before synchronization and
the selection of the best neighbor solution from which to proceed (one may move directly to
the last solution identified by the slave or not). For population-based methods, the method
may allow each slave to generate child solutions, “educate” them through a hill climbing or
local-search procedure, and play out a tournament to decide who of the parents and children
survive and are passed back to the master. To the best of our knowledge, [39] is the only paper
ever to report results on a parallel implementation of the sequential fan candidate list strategy.
The authors realized a comparative study of several synchronous tabu search parallelizations
for the location-allocation problem with balancing requirements, including a straightforward
1C/RS/SPSS approach and a 1C/KS/SPSS method following the model just described (as well
as a few p-control approaches). Both the 1C/KS/SPSS and the 1C/RS/SPSS heuristics yielded
better solutions than sequential tabu search on the tested instances, the former being consis-
tently superior to the latter.

We notice that a rather limited impact of low level, 1-control parallel strategies was ob-
served in most cases. Of course, when neighborhoods are large or neighbor-evaluation pro-
cedures are costly, the corresponding gain in computing time may prove interesting, e.g., the
parallel tabu searches of [19, 21, 135] for the Quadratic Assignment Problem (QAP), [20]
for the Traveling Salesman Problem (TSP), and [116, 117, 115] for the task-scheduling prob-
lem. Then, when a sufficiently large number of processors is available, it might prove worthy
to combine a 1C/RS/SPSS approach to more sophisticated strategies into hierarchical solu-
tion schemes (e.g., [122] were low-level parallelism accelerated the move evaluations of the
individual searches engaged into an independent multi-search procedure for the VRP). More
advanced multi-search strategies generally outperform low-level strategies, however.
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4 Domain Decomposition

Domain or search-space decomposition constitutes another major parallelization strategy, one
that is intuitively simple and appealing: divide the search space into smaller, usually disjoint
but not necessarily exhaustive sets, solve the resulting subproblems by applying the sequential
meta-heuristic on each set, collect the respective partial solutions and reconstruct an entire one.

This apparently simple idea may take several forms, however. The most straightforward ap-
proach consists in partitioning the solution vector, each resulting subset defining a subproblem.
Thus, for example, the arc-design variables of a VRP may be separated into customer subsets
(including the depot in each subset). A number of factors must then be specified to completely
define the search-space decomposition. First, whether the partition is strict or subsets are al-
lowed to overlap (e.g., “close by” customers may appear in two subsets in the previous VRP
example). Second, whether search threads consider complete or partial solutions to the prob-
lem (in both cases, search processes access only a restricted portion of the search space). In
the latter case, a complete solution has to be reconstructed at some point. Third, whether the
“moves” performed on a subproblem are restricted to the corresponding search-space subset,
or may involve variables in neighboring sub-spaces creating an indirect overlapping of subsets.

Strict partitioning restricts the meta-heuristic threads to their subsets and forbids moves
involving solutions belonging to two or more subsets (e.g., arc swaps involving customers in
different subsets). This obviously results in part of the search space being unreachable and
the parallel meta-heuristic being non-optimal. Explicit or implicit overlapping aims to address
this issue. But not completely and not without cost. Thus, the only way to guarantee that all
potential solutions are reachable is to make overlapping cover the entire search space. This
corresponds to “no decomposition” in the case of explicit overlapping and is thus not relevant.
For implicit overlapping, it may also deny any gain resulting from decomposition in the first
place or, in the best case, require significant overhead costs to keep most of the subproblem
threads within their own subspaces.

Consequently, strict partitioning or very limited overlapping are the preferred approaches
and a re-decomposition feature is included to increase the thoroughness of the search and allow
all potential solutions to be examined: the decomposition is modified at regular intervals and
the search is restarted using this new decomposition. This feature provides also the opportunity
to define non-exhaustive decompositions, i.e., where the union of the subsets is smaller than
the complete search space. A complete-solution reconstruction feature is almost always part of
the procedure.

This strategy is naturally implemented using 1C/KS schemes, with a MPSS or MPDS
search-differentiation strategy, according to the master-slave programming model illustrated
in Figure 8. The master process determines the partition and sends subsets to slaves, synchro-
nizes their work and collects their solutions, reconstructs solutions (if required), modifies the
partitions, and determines stopping conditions. Slaves concurrently and independently perform
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Partition the search space

Distribute to slaves 

Perform meta-heuristic 

on received partition

Send best solution

Recuperate slave results

Build complete solution

Verify stop condition

Perform meta-heuristic 

on received partition

Send best solution

Perform meta-heuristic 

on received partition

Send best solution

Figure 8: Domain Decomposition – Master-Slave Logic

the search on their assigned search-space subsets. The master is illustrated in Figure 9, where
it is assumed that each slave performs a local search or a meta-heuristic on its subproblem and
returns its current best solution when the master synchronizes activities.

input: x ∈X an initial solution; j← i← 0
Decompose problem instance into p subproblems S1,S2, . . . ,Sp
while Stopping criteria not reached

while j < p send to a slave process(S j,x); j ++
Synchronize slaves
while i < p xi← receive from slave(); i++
x← construct(x1,x2, . . . ,xp)
S1,S2, . . . ,Sp←Modify partition

return x

Figure 9: Domain Decomposition – Master Procedure

For neighborhood-based meta-heuristics, as well as for evolutionary methods embedding
such meta-heuristics or local search procedures, one may implement the search-space decom-
position approach by replacing the corresponding local search with the master-slave strategy of
Figure 9. A few modifications to the original meta-heuristic may be required though. Thus, for
simulated annealing, the length of the local search (cooling schedule) of each slave is reduced
by a factor equal to p. The main issue for tabu search is the global tabu list the master has to
reconstruct out of the local memories of the slaves simultaneously with the reconstruction of a
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complete solution prior to continuing the search.

A different approach is to implementing the 1C/KS scheme of Figures 8 and 9 is to execute
a full meta-heuristic on each subset of the search space, periodically modifying the partition
and re-starting the search. Such an approach has been used for tabu search and proved quite
successful for problems for which a large number of iterations can be performed in a relatively
short time and restarting the method with a new decomposition does not require an unreason-
able computational effort (e.g., [54] for the TSP, [83] for image filtering, and [68] to solve
efficiently in real time several variants of the same ambulance fleet management problem in-
stance).

Perform meta-heuristic 

on own partition

Send best solution

Recuperate results

Build complete solution

Verify stop condition

Partition search space

Partition search space Partition search space Partition search space

Perform meta-heuristic 

on own partition

Perform meta-heuristic 

on own partition

Send best solution

Recuperate results

Build complete solution

Verify stop condition

Partition search space

Send best solution

Recuperate results

Build complete solution

Verify stop condition

Partition search space

Continue search on 

new partition

Continue search on 

new partition
Continue search on 

new partition

Figure 10: Domain Decomposition – Collegial Logic

We are not aware of any application of the previous approach to meta-heuristics other than
tabu search, although such applications would be straightforward in most cases. A similar re-
mark applies to the pC/KS version of search-space decomposition, a MPSS or MPDS search-
differentiation strategy, illustrated in Figure 10. Such an approach was proposed in [136] for the
VRP, where the customer set was partitioned, vehicles were allocated to the resulting regions,
and each subproblem was solved by an independent tabu search. All processors stopped after a
number of iterations that varied according to the total number of iterations already performed.
The partition was then modified by an information exchange phase, during which tours, unde-
livered cities, and empty vehicles were exchanged between adjacent processors (corresponding
to neighboring regions). At the time, this approach did allow to address successfully a number
of problem instances, but the synchronization inherent in the design of the strategy hindered its
performance. A parallel ant-colony approach combining this decomposition idea to a master-
slave implementation was presented in [51] (parallelizing the algorithm presented in [123]),
where the master generates an initial solution, defines the partition, and updates the global
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pheromone matrix, while slaves execute a savings-based ant colony algorithm [124] for the
resulting restricted VRP.

To complete the presentation, notice that the search behavior and the computational work
performed by the sequential and parallel versions of meta-heuristics, as well as the quality of
their respective solutions are not the same in most cases (again, enforcing similar behaviors
would require efforts that would take away any possible benefit from parallelization). Search-
space decomposition methods appear increasingly needed as the dimensions of contemplated
problem instances continues to grow. Clearly, more work is required on how to best combine
domain decomposition and the other parallelization strategies, cooperation in particular.

5 Independent Multi-search

Independent multi-search is among the earliest parallelization strategies. It is also the most
simple and straightforward p-control parallelization strategy and generally offers very interest-
ing performances.

The strategy consists in performing several searches simultaneously on the entire search
space, starting from the same or from different initial solutions, and selecting at the end the best
among the best solutions obtained by all searches. It is thus a straightforward parallelization of
the well-known multi-start heuristic.

Independent multi-search methods belong to the pC/RS class of the taxonomy. No attempt
is made to take advantage of the multiple search threads running in parallel other than to iden-
tify the best overall solution once all programs stop. This earns independent search strategies
their rigid synchronization classification.

Independent multi-search methods turn out to be effective, simply because of the sheer
quantity of computing power they allow one to apply to a given problem. This was established
empirically by several papers, including the tabu searches in [10] for the QAP and [137] for the
job shop scheduling problems, in which excellent results were obtained when compared to the
best existing heuristics at the time. Both studies also attempted to establish some theoretical
justifications for the efficiency of independent search. Battiti and Tecchiolli [10] derived mod-
els that showed that the probability of “success” increased and the corresponding average time
to “success” decreased with the number of processors (provided the tabu procedure did not
cycle). On the other hand, Taillard [137] showed that the conditions required for the parallel
method to be “better” than the sequential one are rather strong, where “better” was defined as
“the probability the parallel algorithm achieves success by time t with respect to some condi-
tion (in terms of optimality or near-optimality), is higher than the corresponding probability
of the sequential algorithm by time pt”. However, the author also mentioned that, in many
cases, the empirical probability function of iterative algorithms was not very different from an
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exponential one, implying that independent multi-thread parallelization is an efficient strategy.
The results for the job shop problem seemed to justify this claim. Similar results may also be
found in [142].

This combination of simplicity of implementation and relatively good performances ex-
plains the popularity of the pC/RS/MPSS strategy for the parallelization of neighborhood-based
meta-heuristics, e.g., tabu search for the VRP [122, 140] and production planning [12]; GRASP

for the QAP [92, 112, 114], the Steiner problem [95, 96], and the 2-path telecommunication
network design [125, 126, 127]; simulated annealing for graph partitioning [7, 6, 91, 43] (in
the first two contributions the simulated annealing threads were enhanced with a simple tabu
search to avoid cycling and were part of a multi-level implementation) and the TSP [99] (where
each search thread was a simulated annealing procedure but an adaptive temperature schedule
was controlled by a genetic algorithm); and variable neighborhood search for the p-median
problem [61].

Independent multi-search pC/RS/MPSS applications to non-genetic evolutionary methods
have also been proposed for scatter search [60, 62], as well as for ant-colony optimization for
set covering [118], the TSP [134], and the VRP [50]. Stutzle [134] also presented a mathe-
matical analysis and empirical results that suggest the behavior of pC/RS ant-colony parallel
algorithms is similar to that of neighborhood-based meta-heuristics, i.e., providing the proba-
bility of finding the best solution is exponentially distributed with respect to time, independent
multi-colony strategies are likely to find better solutions than a sequential implementation for
properly selected performance targets.

In theory, pC/RS independent multi-search may be as easily adapted to parallel evolutionary
meta-heuristics by running the same (MPSS) or different (MPDS) evolutionary method on
disjoint populations. In practice, however, most evolutionary-genetic pC/RS parallelizations
used small-sized populations, an “initial” population of size n being separated into n/p groups
for the p available processors [77, 130], a strategy that did not perform well when compared
to sequential algorithms with optimized population size for the particular problem instance.
Indeed, while small populations speed up the computation of genetic operators such as fitness
evaluation and crossover, they also display well-documented adverse impacts on the diversity
of the genetic material, leading to premature convergence of the search. Running several full-
sized population genetic methods in parallel [23, 24] avoids this issue and offers performances
similar to those observed for the other meta-heuristics: a computation effort multiplied by
the number of independent search threads and generally being outperformed by cooperative
strategies.
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6 Cooperative Search Strategies

Independent multi-search strategies seek to accelerate the exploration of the search space to-
ward a better solution (compared to sequential search) by initiating simultaneous search threads
from different initial points (with or without different search strategies). Cooperative search
strategies go one step further and integrate mechanisms to share, while the search is in progress,
the information obtained from this diversified exploration. The sharing and, eventually, cre-
ation of new information yields in many cases a collective output with better solutions than a
parallel independent search.

Cooperative multi-search methods launch several independent search threads, each defin-
ing a trajectory in the search space from a possibly different initial point or population by
using a possibly different meta-heuristic or search strategy. The information-sharing cooper-
ation mechanism specifies how these independent meta-heuristics interact, the global search
behavior of the cooperative parallel meta-heuristic emerging from the local interactions among
them. Such similarities with systems where decisions emerge from interactions among au-
tonomous and equal “colleagues” have inspired the name collegial control for the classes of
strategies described in this section.

Cooperative search may be viewed as a bottom-up meta-heuristic specifying the compo-
nents and their interactions, and it may thus become a “new” meta-heuristic in its own right.
The key challenge of cooperation is to ensure that meaningful information is exchanged in
a timely manner yielding a global parallel search that achieves a better performance than the
simple concatenation of the results of the individual threads, where performance is measured
in terms of computing time and solution quality. Toulouse, Crainic, and Gendreau [144] have
proposed a list of fundamental issues to be addressed when designing cooperative parallel
strategies for meta-heuristics: What information is exchanged? Between what processes is it
exchanged? When is information exchanged? How is it exchanged? How is the imported data
used? Implicit in their taxonomy and explicitly stated in later papers, the issue of whether the
information is modified during exchanges or whether new information is created completes
this list.

These decisions are more than implementation details, they constitute the core design pa-
rameters of a cooperative meta-heuristic. For example, a cooperative strategy could have a set
of independent meta-heuristics re-start periodically from the current-best overall solution. The
specification that all independent search threads are re-started periodically from the current-
best solution of all the independent programs makes up the cooperation mechanism. It tells
when programs interact (periodically; the period length is usually clearly stated), what infor-
mation is exchanged (the best solutions and the overall best), between what search threads (all),
what to do with the exchanged information (re-start from the imported solution).

The information to be shared among cooperating search threads should aim to improve the
performance of the receiving programs, and create a global, “complete” image of the status
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of the search. “Good” solutions are the most often exchanged type of information. In many
cases, this takes the form of the current-best solution a search thread sends to the others or, as
in the previous example, the overall best being sent to all. Not all such strategies are profitable,
however.

It has been observed that sending out all current-best solutions is often counter productive,
particularly when the meta-heuristic starts on a series of improving moves or generations, as
solutions are generally “similar” (particularly for neighborhood-based procedures) and the re-
ceiving threads have no chance to actually act on the in-coming information. It has also been
observed that always sending the overall best solution to all cooperating threads is generally
bad as it rapidly decreases the diversity of the parts of the search space explored and, thus,
increases the amount of worthless computational work (many threads will search in the same
region) and brings an early “convergence” to a not-so-good solution. Sending out local optima
only, exchanging groups of solutions, and implementing random selection procedures for the
solutions to send out, the latter generally biased toward good or good-and-different solutions,
are among the strategies aimed at addressing these issues. (A different strategy was proposed in
[3], where the negative impact of best-solution broadcasts followed by search re-initialization
was countered by having half the tabu searches regularly apply a diversification procedure,
while the other half engaged in an intensification phase.)

So-called context information may also be exchanged. Context information refers to data
collected by a meta-heuristic during its own exploration, such as the statistical information
relative to the presence of particular solution elements in improving solutions (e.g., the medium
and long-term memories of tabu search). Such exchanges show great promise as part of guiding
heuristics for the overall search (see Section 6.3), but are not much used yet and significant
research is needed to define and qualify them.

Search threads may exchange information directly or indirectly. Direct exchanges of in-
formation between two or more threads often occur when the concerned programs agree on a
meeting point in time to share information. But not always. Thus, a search thread may send
– broadcast – its information to one or several other threads without prior mutual agreement.
Receiving search threads must then include capabilities to store such information without dis-
turbing their own search trajectories until ready to consider it. Failure to implement such
mechanisms may result in bad performances, as has been observed for strategies combining
uncontrolled broadcasting of information and immediate acceptance of received data.

Indirect exchanges of information are performed through independent data structures that
become “central” sources of information search threads may access asynchronously to post in-
formation and read information already posted. Such a data structure is denoted blackboard in
computer-science and artificial-intelligence vocabulary; memory, pool, and data warehouse are
equivalent terms found in the parallel meta-heuristic literature (due to the role assigned to the
elements it contains, the terms reference and elite set are also sometimes used; in the following,
we use “blackboard” for general discussions and an appropriate one among the others when
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addressing specific topics). Blackboards could be centralized or distributed. Centralized black-
boards have been used in most parallel meta-heuristic contributions. They post information
generated by all the search threads, which, in turn, may read this information independently.
The distributed approach has several blackboards located on the sites of the search threads,
which thus become hosts, and only a subset of threads may post and access information stored
on a given local blackboard. Note that a blackboard which only posts information generated
by its host can support direct asynchronous interactions between the host and a subset of “ad-
jacent” search threads. The number of blackboards in such a distributed implementation could
thus be as large as the number of search threads. More complex, hierarchical structures may
be contemplated, in particular for grids or loosely coupled distributed systems, but have yet to
be studied.

Communications proceed according to an interaction topology represented by a commu-
nication graph specifying the processes that may engage in direct exchanges. Each node of
the graph represents a search thread or a blackboard. Edges define pairs of search threads or
of a search thread and a blackboard that may communicate directly. They therefore specify
the direct flow of information in the cooperative system. Communication graphs may mirror
the physical interconnection topology of the parallel computer executing the parallel program.
Often, however, the communication graph is logically defined to suit the requirements of the
cooperation strategy. Typical interaction topologies found in the parallel meta-heuristic lit-
erature are complete graphs (Figure 11), rings, grids (Figure 12), toruses, and stars (Figure
13).

When and how information is shared specifies how frequently cooperation activities are
initiated and whether, in order to engage in these activities, concerned search threads must
synchronize, i.e., each stopping its activities and waiting for all others to be ready, or not. One
identifies these two cases as synchronous and asynchronous communications, respectively. The
accumulated knowledge of the field indicates for both cases that exchanges should not be too
frequent to avoid excessive communication overheads as well as premature “convergence” to
local optima [145, 146, 147, 148].

Synchronous cooperation activities are initiated based on conditions external to all, or to all
but one of the individual programs. In the example above, where programs interact periodically,
the cooperative search strategy is synchronous, exchanges being initiated when exogenously-
specified conditions, e.g., time or the number of iterations, are reached. These conditions
are applied in the same way to all search threads, and communications cannot start until all
have reached the designated status. The goal of synchronous cooperative strategies is to re-
create a state of complete knowledge at particular points in the global search and, thus, to
hopefully guide the global search into a coordinated evolution toward the desired solution to
the problem. As we will see in the following subsections, this goal is rarely attained. Moreover,
synchronization results in significant time inefficiencies as communications are initiated only
when the slowest search thread is ready to start. We refer to such strategies as p-control,
knowledge synchronous, pC/KS, with any of the SPDS, MPSS or MPDS search differentiation
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approaches (appropriately applied).

A cooperation strategy is asynchronous when programs initiate cooperation activities ac-
cording to their own internal state only, without coordination with other programs. Thus, for
example, a search thread may make available its current best solution by posting it on a black-
board or may ask for an external solution after it failed to improve the quality on its best solution
for a certain number of iterations. Asynchronous communications provide the means to build
cooperation and information sharing among search threads without incuring the overheads as-
sociated to synchronization. As we will see in Sections 6.2 and 6.3, they also bring adaptivity
to cooperation strategies, to the extend that the parallel cooperative meta-heuristic may react
and dynamically adapt to the exploration of the search space of the particular problem instance
being addressed. This is more likely to yield a globally emergent exploration strategy of the
search space than synchronous approaches.

Asynchronous cooperation is fully distributed, cooperative activities being instantiated in-
dependently and concurrently by search threads, and are referred to as p-control collegial,
pC/C, strategies (Section 6.2). Shared information may not just be exchanged, however, it may
also be modified or used to infer knowledge. Thus, for example, statistical information may be
gathered regarding configurations of solution elements in the best exchanged solutions, or the
solutions gathered in a particular blackboard may form an elite population yielding new indi-
viduals to be shared among cooperating search threads. We refer to such settings as p-control
knowledge collegial, pC/KC, strategies (Section 6.3).

It is worth noticing that cooperation is somewhat biased toward intensifying the search in
regions of the solution space that have already been explored and where interesting solutions
have been identified. This is particularly true for simple cooperation mechanisms based on
synchronization or only exchanging current best solutions. It is thus important to equip the
cooperation mechanisms with diversification capabilities. The introduction of probabilistic se-
lection of exchanged solutions constitutes an example of such a mechanism. Advanced pC/KC
cooperation strategies go further through creation of new solutions and guidance information
as described in the following subsections.

The main principles of cooperative p-control parallelization are the same for neighborhood-
and population-based meta-heuristics, even though denominations and implementation ap-
proaches may differ. One thus finds, for example, coarse and fine-grained island models for
genetic-based evolutionary methods, the differentiation following from the cardinality of the
population of each participating meta-heuristic, few (even down to 1 in some implementations)
and many individuals, respectively. Similarly, multi colony is the term generally used in the
ant-colony meta-heuristic community. The presentation that follows identifies these differences
without dedicating subsections to each meta-heuristic class.
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6.1 pC/KS Synchronous Cooperative Strategies

According to the cooperative pC/KS scheme, the independent cooperating meta-heuristics en-
ter into an information exchange phase at pre-determined intervals, phase that must be com-
pleted before any program can restart its exploration from that synchronization point.

Search
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Search
kSearch

j

Search
l

Search
h

Search
r

Figure 11: Complete-Graph Communication Scheme

Many proposed pC/KS cooperative search meta-heuristics followed a strategy where all
threads synchronized at each point using a complete-graph communication model (Figure 11)
and used master-slave implementation. In this setting, a master process, which may or not also
include one of the participating meta-heuristics, initiates the other threads, stops all threads at
synchronization points, gathers the sharable information, updates the global data, decides on
the termination of the search and, either effectively terminates it or distributes the shared infor-
mation (a good solution, generally, the overall best solution in many cases) and the continue-
search signal to the other meta-heuristic threads.

The pC/KS implementation of VNS for the p-median problem proposed in [61] followed
this idea, as well as the tabu search-based implementations proposed for the TSP [94], the
VRP (using ejection chains) [121, 122], the QAP [46] and the task mapping problem [45],
the last two contributions attempting to overcome the limitations of the master-slave setting
by allowing processes, on terminating their local search phases, to synchronize and exchange
best solutions with processes running on neighboring processors. A more sophisticated pC/KS
approach was proposed in [108], where the master dynamically adjusted the search-strategy
parameters of cooperating tabu searches according to the results each fad obtained so far. Com-
putational results reported for the 0-1 Multi-dimensional Knapsack Problem showed that this
dynamic adjustment of search parameters was indeed beneficial.

The master-slave implementation model has been applied to evolutionary methods as well.
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In coarse-grained island implementations of cooperating genetic methods [43, 133], the master
stops the cooperating meta-heuristics and initiates the migration operator to exchange among
the independent populations the best or a small group of some of the best individuals in each.
Applied to ant-colony systems [53] (also for a satisfiability problem), this strategy divided
the colony into several sub-colonies, each assigned to a different processor. Each slave sent
to the master its best solution once its ants finished searching. The master then updated the
pheromone matrix and started a new search phase.

Alternatively, pC/KS cooperative schemes can be implemented by having each search
thread empowered to initiate synchronization once it reaches a pre-determined status. It then
broadcasts its sharable data, current best solution or group of solutions, followed by similar
broadcasts performed by the other search threads. Once all information is shared, each thread
performs its own import procedures on the received data and proceeds with its exploration of
the search space until the next synchronization event. Such an approach was proposed for sim-
ulated annealing [48], where the search threads transmitted their best solutions every n steps,
and re-started the search after updating their respective best solutions. This cooperative method
outperformed an independent multi-thread search approach, both obtaining better results than
the sequential version in terms of solution quality.

Most synchronous coarse-grained island parallelizations of genetic-based evolutionary meth-
ods fall under this category, where migration operators are applied at regular intervals, e.g.,
[152] for satisfiability problems, where the best individual of each population migrated to re-
place the worst of the receiving population, [55] for multi-objective telecommunication net-
work design with migration following each generation, and [22, 23, 24, 93, 78] for graph-
partitioning, the later implementing a hierarchical method, where the fitness computation was
performed at the second level (through a master-slave implementation; the overhead due to the
parallelization of the fitness became significant for larger numbers of processors). A similar
strategy was proposed for the multi ant-colony algorithms [97, 98]. Each colony has its own
pheromone matrix and may (homogeneous) or may not (heterogeneous) use the same update
rule. Colonies synchronize after a fixed number of iterations to exchange elite solutions that
are used to update the pheromone matrix of the receiving colony.

Several of these studies [22, 23, 24, 93] compared several implementations of coarse-
grained parallel genetic methods and contributed to show that synchronous pC/KS strategies
outperform independent search approaches. They also showed the superiority of dynamically-
determined synchronization points, as well as that of asynchronous communications. Similar
conclusions were obtained [88, 90, 89, 91] for parallel simulated annealing for the graph par-
titioning problem and for tabu search [39, 40] for location problems with balancing require-
ments.

The previous strategies are based on global exchanges of information, gathered at synchro-
nization points during the computation and distributed to all search threads. The interest of
these strategies follows from the fact that they use the best knowledge available at the synchro-
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Figure 12: Grid Communication Scheme – Diffusion-based Cooperation

nization points to attempt to guide the exploration. Global information sharing has obvious
drawbacks, however. When each independent program is guided by the same set of best so-
lutions, the global search lacks diversity and, eventually, all threads will focus on the same
regions of the search space. Designing globally efficient synchronous cooperative strategies
has proved to be difficult in most cases.

Synchronized cooperation may alternatively be based on direct local exchanges of informa-
tion, global information sharing taking place through diffusion. To design such a cooperative
strategy, the complete communication graph used previously is replaced by a less densely con-
nected communication topology such as ring, torus, or grid graphs. The topology restricts to
a few neighbors the direct communications a search thread may engage in, as illustrated in
Figure 12 for a grid communication graph where, for example, the search thread on node 6
can share information only with threads on nodes 2, 5, 7, and 10. Following synchronization,
each thread continues its search based on information obtained from programs adjacent in the
communication graph. Even though no direct global exchanges take place, information is still
shared through diffusion. Thus, for example, assuming the meta-heuristic at node 6 received
and accepted the best solution of node 2 at synchronization point i and the program at node
10 receives and accepts the solution of node 6 at synchronization point i+1, information from
search thread on node 2 passed to the method on node 10. Through diffusion, the search threads
on nodes 2 and 10 shared some information even though they are not adjacent

This idea has not been as broadly explored as the global-exchange strategy, even though
synchronous cooperative mechanisms based on local exchanges and diffusion have a less neg-
ative impact on the diversity of the search-space exploration. A number of applications were
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proposed for coarse-grained [15, 143] and fine-grained [56, 57, 101, 103] genetic-based evolu-
tionary methods with good results. (It is interesting to recall that [101, 103] was part of a larger
body of contributions [102, 104, 105, 106, 107] where hill-climbing heuristics were embedded
into genetic algorithms to improve – “educate” – individuals and the impact of this hybridiza-
tion on the behavior and performance of genetic methods was studied.) An application to
ant-colony optimization methods was also proposed [98] with similar results.

Cooperation based on asynchronous information sharing generally outperform synchronous
methods, however, and are the topic of the next subsection.

6.2 pC/C Asynchronous Cooperative Strategies

Historically, independent and synchronous cooperative methods were the first multi-search
approaches to be developed. However, because of the shortcomings of these methods, dis-
cussed at length in the previous subsections, attention has increasingly been turned toward
asynchronous strategies, which now largely define the “state-of-the-art” in parallel multi-search
meta-heuristics. These asynchronous procedures all follow the same general pattern: starting
from possibly different initial solutions and using possibly different search strategies, p threads
explore simultaneously the search space, exchanging and, eventually, creating information ac-
cording to a mechanism moved by the internal logic of each participating search thread and
the state of the search. Asynchronous cooperative strategies belong either to the pC/C or to
the pC/KC class of the taxonomy, the main difference between the two being whether or not
any “new” knowledge is inferred on the basis of the information exchanged between the search
threads; pC/KS strategies are addressed in the next subsection.

Most genetic-based evolutionary asynchronous cooperative meta-heuristics belong to the
pC/C class. They generally implement a coarse-grained island model, where migration is trig-
gered within individual populations, selected migrant individuals being directed toward either
all other populations or a dynamically-selected subset. An early comparative study of coarse-
grained parallel genetic methods for the graph-partitioning problem numerically showed the
superiority of the pC/C strategy (with migration toward a subset of populations) over syn-
chronous approaches [93]. Currently, this is the most popular strategy for multi-population
parallel genetic methods [17].

The sharing of information in most asynchronous cooperative search strategies outside the
genetic-evolutionary community is based on some form of centralized blackboard model, most
often denoted central memory [26, 40, 41] and illustrated in Figure 13. According to this pC/C
cooperation model, whenever a search thread identifies sharable information it sends it to the
central memory, from where, when needed, it also retrieves information sent by the other co-
operating search threads. (Information retrieval on distributed-memory systems passes through
a request to the processor running the central-memory processes.) The sharable information
corresponds to a locally improving solution, the most successful implementations sending new
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local optima only, according to the already-mentioned information-sharing parsimony princi-
ple.

The need for cooperation is particular to each type of meta-heuristic involved in the co-
operation. Following again the principle of parsimonious communications, such activities are
often initiated at algorithmic steps involving a choice of solutions or a modification of the cur-
rent solution from where the next local search will proceed, e.g., diversification moves in tabu
search or neighborhood changes in variable neighborhood search. It may also be triggered by a
priori rules, e.g., a fixed number of iterations, particularly when no such algorithmic steps exist,
e.g., the tabu searches based on continuous diversification strategies. Central-memory-based
asynchronous cooperative algorithms thus provide the environment of an indirect exchange of
information between cooperating search threads, in particular among the one that stored the
sharable information in the central memory and the one that accessed this information through
a request for knowledge to the central memory.

Search
i

Search
k

Search
j

Search
l

Memory, Pool
Reference Set

Elite Set
Data Warehouse

Figure 13: Star Communication Scheme – Memory-based Cooperation

Most current implementations of this approach manage the central-memory information
following an algorithmic template similar to the one illustrated in Figure 14. The input variable
memory size specifies the capacity of the central memory, i.e., the number of solutions that can
be stored in the memory. Incoming solutions are automatically accepted when the memory is
not full. Acceptance is conditional to the relative interest of the incoming solution compared to
the “worst” solution in the memory, otherwise. In most cases, the comparison is based on the
evaluation function for the corresponding search space or the value of the objective function of
the original problem. The rWorst solution of a full memory is then replaced with the incoming
solution when the value of the latter is better (lower, for minimization problems) than that of
the former. Diversity measures may modify this choice in more advanced strategies (which
may also delete a larger part, half, usually, of the population in memory). The template also
illustrates the random solution-extraction process, which follows the request of a cooperating
search thread for a solution from memory. The random selection may be uniform or biased to
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favor solutions with the best ranking based on, for example, solution values.

input: memory size number of sharable information instances
c(rWorst)← ∞; f ill← 0
while not f inished

x′,message, pid← receive from coop search thread()
if message = put in memory then

if c(x′) < c(rWorst) then
if f ill ≤ memory size then

memory← memory∪ x′; f ill← f ill +1
else

memory← memory∪ x′

memory← memory\ rWorst
rWorst← compute rWorst()

if message = get f rom memory then
rBest← select randomly(memory)
send to search thread(rBest, pid)

Figure 14: Memory Template

Several central-memory-based cooperative search strategies are described in the literature,
including simulated-annealing applications to graph partitioning [88, 89, 90, 91] and the TSP
[129], and the master-slave implementation of a pC/C/MPSS cooperation mechanism for VNS
applied to the p-median problem [33]. In the latter method, individual VNS processes com-
municated exclusively with a master process., which kept, updated, and communicated the
current overall best solution (it also initiated and terminated the algorithm). Solution updates
and communications were performed following messages from the individual VNS threads,
which proceeded with the “normal” VNS exploration for as long as the solution was improved.
When the solution was not improved, it was communicated to the master (if better than the one
at the last communication) and the overall best solution was requested from the master. The
search was then continued starting from the best overall solution in the current neighborhood.
Computational results on TSPLIB problem instances with up to 11849 customers showed that
the cooperative strategy yielded significant gains in terms of computation time without loosing
on solution quality, which was comparable to that of the best results in the literature (when
available).

To the best of our knowledge, Crainic, Toulouse, and Gendreau were the first to pro-
pose a central-memory approach for asynchronous tabu search in their comparative study for
multi-commodity location with balancing requirements [40]. Their method, where individual
tabu searches sent to the memory their local-best solutions when improved and imported a
probabilistically-selected (rank-biased) solution from the memory before engaging in a diver-
sification phase, outperformed in terms of solution quality the sequential version (which was
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also bested in terms of wall-clock computing time) as well as pC/RS/MPDS, pC/KS (vary-
ing the synchronization mechanisms and the Search-Differentiation strategies), and broadcast-
based asynchronous pC/C cooperative strategies. The same approach was applied to the fixed
cost, capacitated, multicommodity network design problem with similar results [32]. Over
the last few years, several other authors have implemented fairly similar approaches to a va-
riety of problems, including the partitioning of integrated circuits for logical testing [1], two-
dimensional cutting [11], the loading of containers [13], labor-constrained scheduling [18], and
VRPTW [86].

The same broad strategy was also followed when meta-heuristics belonging to different
types were sequentially applied to a given problem. The two-phase approach of Gehring and
Homberger for the VRPTW [63, 64, 65, 80] is a typical example of such a method, where each
search thread first applies an evolution strategy to reduce the number of vehicles, followed by
a tabu search to minimize the total distance traveled. A somewhat different two-phase pC/C
parallel strategy was proposed in [9] for the Steiner problem, where each phase, using reac-
tive tabu search and path relinking, respectively, implemented the pC/C asynchronous central
memory strategy, all processes switching from the first to the second phase simultaneously.

The central-memory pC/C approach has proved efficient in handling the problem of pre-
mature “convergence” in cooperative search. The memory contains a large set of different
solutions and cooperating search threads may import different solutions even when their coop-
eration activities are taking place in a short time span. Furthermore, the probabilistic solution-
extraction strategies used by the central-memory program yield a cooperation that continuously
evolves with respect to the search threads indirectly exchanging information.

The central-memory approach also allows for more flexibility in terms of the different
meta-heuristic (and exact, eventually) methods that can be combined in a same set of cooper-
ating programs. One can thus have methods that heuristically construct new solutions, execute
neighborhood-based improving meta-heuristics, evolve populations of solutions, or perform
post-optimization procedures on solutions in the memory. One can thus select cooperating
methods that complement each other, as illustrated in the study of Crainic and Gendreau [31],
where a genetic-method thread was added to an asynchronous multi-thread tabu search for
multicommodity location-allocation with balancing requirements [40]. The tabu searches were
aggressively exploring the search space, while the genetic method contributed toward increas-
ing the diversity of solutions exchanged among the cooperating methods. The genetic method
was launched once a certain number of elite solutions identified by the tabu searches were
recorded in the central memory, using this memory as initial population. Asynchronous migra-
tion subsequently transfered the best solution of the genetic pool to the central memory, as well
as solutions of the central memory toward the genetic population. This strategy did perform
well, especially on larger instances. It also yielded an interesting observation: the best overall
solution was never found by the genetic thread, but its inclusion allowed the tabu search threads
to find better solutions through what appears as a more effective diversification of the global
search.
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Memory-based pC/C cooperative search is also computationally efficient as no costs are
incurred for inter-program synchronizations. No broadcasting is taking place and there is no
need for complex mechanisms to select the threads that will receive or send information and
to control the cooperation. The central memory is thus an efficient implementation device that
allows for a strict asynchronous mode of exchange, with no predetermined connection pattern,
where no process is interrupted by another for communication purposes, but where any thread
may access at all times the data previously sent out by any other search thread. These positive
qualities of the central-memory cooperation concept have naturally opened the way to the
development of more advanced pC/KC mechanisms where new information is generated based
on the data exchanged among cooperating threads. This is the topic of the next subsection but,
first, a look to a different asynchronous cooperative search strategy based on direct information
exchanges among search threads.

As mentioned earlier, one can implement direct asynchronous exchanges through local
memories (blackboards). Hosted by each search thread and storing information that the host
makes available for sharing, such memories can be read directly and asynchronously by adja-
cent search threads according to their own internal logic. Information is thus shared globally
through diffusion processes.

A pC/C cooperative strategy based on these ideas and denoted multi-level cooperative
search was proposed by Toulouse, Thulasiraman, and Glover [149]. The mechanism may
be instantiated with any search differentiation strategy (the authors used MPSS) and enforces
the principle of controlled diffusion of information. Each search thread works at a different
level of aggregation of the original problem (one processor works on the original problem)
and communicates exclusively with the threads working on the immediate higher and lower
aggregation levels. Improved solutions are exchanged asynchronously at various moments dy-
namically determined by each thread according to its own logic, status, and search history.
Received solutions are used to modify the search at the receiving level. An incoming solution
will not be transmitted further until a number of iterations have been performed, thus avoiding
the uncontrolled diffusion of information. Excellent results have been obtained for graph and
hypergraph partitioning problems [110, 111], network design [35], feature selection in biomed-
ical data [109], and covering design [44]. It all these cases, the proposed method is either the
current best or is on the par with the best meta-heuristics for the problem.

6.3 pC/KC Asynchronous Cooperative Strategies

The exchanges performed by cooperating search threads constitute a rich source of data for
constructing an approximate image of the status of the global search. It has been thus widely
observed that globally-optimal solutions are often similar, e.g., in the values taken by a large
number of variables. Then, because the solutions exchanged are generally locally good, being
local optima in many cases, one may assume that the statistical properties of the best solutions
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exchanged are likely to approximate the statistical properties of the set of globally optimal
solutions, and that this likelihood should increase in time with the evolution of the cooperative
search. It then appears interesting to process the exchanged solutions to extract knowledge
about these characteristics, and then use this knowledge to guide the search performed by the
cooperating threads.

A particular form of knowledge-creation mechanism follows from the observation that the
exchanged solutions form an elite population. New solutions may then be created by applying
any available evolutionary meta-heuristic, solutions that improve upon their parents and thus
directly enhance the global search. Moreover, these new solutions contribute to diversify the
sharable information and may thus lead one or several cooperating threads to explore new
regions of the search space.

Cooperative strategies including mechanisms to create new information and solutions based
on the solutions exchanged belong to the p-control knowledge collegial (pC/KC) class.

Historically, two main classes of pC/KC cooperative mechanisms are found in the lit-
erature, both based on the idea of exploiting a set of elite solutions exchanged by coop-
erating search threads, but differing in the information that is kept in memory: adaptive-
memory methods [128] store partial elements of good solutions and combine them to create new
complete solutions that are then improved by the cooperating threads; while central-memory
methods exchange complete elite solutions among neighborhood and population-based meta-
heuristics and use them to create new solutions and knowledge to guide the cooperating threads
[26, 38, 40]. The differences between the two approaches are becoming increasingly blurred,
however, as the latter approach generalizes the former.

The adaptive-memory terminology was coined by Rochat and Taillard in a paper [128]
proposing tabu search-based heuristics for the VRP and the VRPTW that are still among the
most effective ones for both problems. (For more on adaptive-memory concepts, see [70,
138, 139]) The main idea is to keep in the memory the individual components (in routing
problems, the vehicle routes) making up the elite solutions as they are found by the cooperating
threads, together with memories counting the frequency of each element in the best solutions
encountered so far. The elements are ranked according to the attribute values of their respective
solutions, the objective value, in particular. When a cooperating thread completes its current
search, it sends its best solution to the adaptive memory and, then, probabilistically selects
tours in the memory to construct an initial solution for its next search. In almost all cases, the
new solution will be made up of routes from different elite solutions, thus inducing a powerful
diversification effect.

The adaptive-memory approach has been applied very successfully to the VRPTW [5] and
[131], the latter proposing a set-covering heuristic to select the elements that will generate the
new initial solution of a cooperating thread, and to real-time vehicle routing and dispatching
[66], within a two-level parallelization scheme: a pC/KC/MPSS cooperating adaptive memory
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scheme was implemented at the first level while, at the second level, each individual tabu
search thread implemented the route decomposition of Taillard [136] with the help of several
slave processors.

Badeau et al. [5] also reported a number of interesting findings for the development of
asynchronous multi-thread procedures, whether they use adaptive memory or not. First, the
performance of their method with respect to the quality of the solution was almost independent
of the number of search processes (as long as this number remained within reasonable bounds)
for a fixed computational effort (measured in terms of the overall number of calls to the adap-
tive memory by all search threads). Second, while traditional parallelization schemes rely on
a one-to-one relationship between actual processors and search processes, it turned out that
their method did run significantly faster when using more search processes than the number of
available processors, because this allowed to overcome the bottlenecks created when several
threads were trying to access simultaneously the processor on which the adaptive memory was
located. Furthermore, computational evidence showed that it is not, in general, a good idea
to run a search thread concurrently with the adaptive-memory-management procedure on the
same processor.

Central-memory mechanisms keep full solutions, as well as attributes and context infor-
mation sent by the search threads involved in cooperation. They include adaptive-memory
concepts as special cases and are thus offering increased generality and flexibility. Cooper-
ating methods may construct new solutions, execute a neighborhood-based improving meta-
heuristic, implement a population-based meta-heuristic, or perform post-optimization proce-
dures on solutions in the memory. Improving meta-heuristics aggressively explore the search
space, while population-based methods (e.g., genetic algorithms [31, 86, 87] and path relink-
ing [30]) contribute toward increasing the diversity of shared information (solutions) among
the cooperating methods. Exact solution methods may participate to the cooperation either
to build solutions or to seek out optimal ones (on restricted versions of the problem, even-
tually). Moreover, once complete solutions are stored in the central memory, statistics and
information-extraction and creation mechanisms may be built based on any individual element
of these solutions or combinations thereof. Memories recording the performance of individual
solutions, solution components, or search threads may be added to the central memory and
statistics, learning schemes, and guidance mechanisms may be gradually built.

Population-based methods, genetic algorithms, in particular, are often used to create new
solutions. As described in the previous sub-section, Crainic and Gendreau [31] proposed in an
early study to use the “young” set of elite solutions in the central memory to populate a genetic
method and, then, to asynchronously migrate elite solutions between the two populations. The
concept evolved and the set of elite solutions in the central memory is currently viewed as the
population to be simultaneously evolved by the cooperating threads, including one or more
evolutionary methods [30, 47, 85, 86, 87].

The cooperative meta-heuristic proposed by Le Bouthiller and Crainic [86] (also used in
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[85, 87]) for the VRPTW had thus two simple genetic algorithms with order and edge recom-
bination crossovers, respectively, evolving the same population with two tabu search methods
that perform well sequentially, the Unified Tabu of Cordeau, Laporte, and Mercier [25] and
Taburoute of Gendreau, Hertz, and Laporte [67]. The cooperating threads shared information
about their respective good solutions identified so far. When a thread improved its best solu-
tion, it sent it to the central memory, where they were considered “in-training” until they went
through the post-optimization process (2-opt, 3-opt, or-opt, and ejection-chain procedures used
to reduce the number of vehicles and the total traveled distance) and become “adults”. The pool
of adults in the central memory formed the elite population for the genetic operators and the
tabu search procedures, which required solutions when needed (at regular intervals for the Uni-
fied Tabu and at diversification time for Taburoute). This algorithm, without any calibration or
tailoring, proved to be competitive with the best meta-heuristics of its day in linear speedups.

The goal of Le Bouthiller, Crainic, and Kropf [85, 87] was to improve upon this pC/C
cooperative scheme by extracting new knowledge from the information exchanged, in order to
guide the individual threads and, hopefully, yield a more efficient global search. The authors
also aimed for a guidance mechanism independent of particular features of the problem class at
hand, e.g., routes in vehicle routing problems, and thus selected to work with one of the atomic
elements of the problem: the arc.

The basic idea was that an arc that appears often in good solutions and less frequently in
bad solutions may be worthy of inclusion in a tentative solution, and vice versa. To implement
this idea, the authors considered the frequency of inclusion of arcs in three subsets of solutions
in the pool, the elite (e.g., the 10% best), average (between the 10% and 90% best), and worst
(the last 10%) groups of solutions. An arc with a high frequency in a given group signals
that the meta-heuristics participating to the cooperation have often produced solutions that
include that arc. Patterns of arcs were then defined, representing subsets of arcs with similar
frequencies of inclusion or not in particular population groups. Guidance was obtained by
transmitting arc patterns to the individual threads indicating whether the arcs in the pattern
should be “fixed” or “prohibited” to intensify or diversify the search, respectively (“fix” and
“prohibit” were performed by using the patterns to bias the selection of arcs during moves or
reproduction). The computing time allocated to the cooperative method was divided into four
phases: two phases of diversification at the beginning to broaden the search, followed by two
intensification phases to focus the search around promising regions. (A dynamic version of
this mechanism where phases are triggered by the evolution of the population diversity and
best-solution value is presented in [85]). Excellent performances in terms of solution quality
and computing efficiency were observed when this pC/KC method was compared to the best-
performing methods of the day.

The versatility and flexibility of the central-memory concept is also seen in the methods that
start to be proposed to address so-called rich (combinatorial optimization) problems displaying
multiple “attributes” characterizing their feasibility and optimality structures. The general ap-
proach when addressing such multi-attribute problems is to either simplify them, or to sequen-
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tially solve a series of particular cases, where part of the overall problem is fixed or ignored, or
both. It is well-known that this leads to suboptimal solutions, however, and thus methods are
being proposed to comprehensively address rich combinatorial problems, accounting for “all”
their attributes simultaneously.

According to the best knowledge of the authors, Crainic et al. [30] (see also [47]) were
the first to propose such a methodology in the context of designing wireless networks, where
seven attributes were considered simultaneously. The authors proposed a pC/KC/MPDS paral-
lel cooperative meta-heuristic that had tabu search solvers work on limited subsets of attributes
only, while a genetic method amalgamated the partial solutions attained by the tabu search
procedures into complete solution to the initial problem. The global search proceeded in three
phases. To initiate the search, tabu searches started from randomly-generated solutions and
sent their improving solutions to the central memory to build the starting population for the
evolutionary method. In the second phase, tabu search threads requested solutions at diversifi-
cation time, solutions that were extracted probabilistically biased toward the best (by objective
value). Finally, the third phase was activated when the global search stalled and made use of a
guidance mechanism based on solution attributes different from the objective value to direct the
searches of the cooperating threads toward regions of the search space where those attributes
displayed desired values.

A generalization of this approach, denoted Integrative Cooperative Search (ICS) was in-
troduced recently [28, 29]. In ICS, independent exact or meta-heuristic solution methods, the
Partial Solvers, work on different subsets of attributes of the problem, while other algorithms,
the Integrators combine the resulting partial solutions and improve them. Each Partial Solver
is designed to investigate a subset of the problem attribute set and construct the set of corre-
sponding elite Partial Solutions (more than one solver may be assigned to the same attribute
subset, in which case, they are organized according to the central memory cooperation model).
Each Integrator selects solutions from the different Partial-Solution sets and constructs, and
possibly improves, complete solutions to the original problem, which become part of the cen-
tral memory. It is noteworthy that this is a particular case of evolution, where parents and
offspring are in different populations and are conceptually different. Consequently, the method
is not evolving the populations of elite partial and complete solutions in the strict sense of the
term, by replacing individuals. It is rather a continuous process yielding, for each Integrator
thread, one or several individuals, which enrich the set of complete solutions. Partial Solvers
and Integrators cooperate through the central memory and an adaptive Global Search Coordi-
nator. The latter is a device that monitors the central memory and the information exchanged
to maintain an image of the context of the global search and of the performance and evolution
of each individual search thread. Guidance mechanisms are built based on this information, in
particular to steer Partial Solvers toward different regions of their search subspaces.

The last two contributions belong to a development trend still in its infancy, requiring work
to fully describe its behavior and characterize its performance. The preliminary results are very
promising, however, and also illustrate the interest of the pC/KC central-memory asynchronous
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cooperation idea.

7 Perspectives

We presented a state-of-the-art survey of the main parallel meta-heuristic ideas and strategies,
discussed general design and implementation principles, and instantiated these principles for
neighborhood- and population-based meta-heuristics. The survey was structured along the
lines of a taxonomy of parallel meta-heuristics, which provides a rich framework for analyz-
ing these design principles and strategies, reviewing the literature, and identifying trends and
promising research directions.

To sum up, four main classes of strategies are found in the parallel meta-heuristics field:
low-level decomposition of computing-intensive tasks with no modification to the original al-
gorithm, direct decomposition of the search space, independent multi-search, and cooperative
multi-search. Historically, this series corresponds to the development sequence of parallel
strategies, which, initially, was proposed mainly for genetic methods, simulated annealing,
and tabu search. The range of targeted meta-heuristics has broadened in recent years, multi-
search strategies taking center stage. A number of studies identifying and characterizing gen-
eral strategies were also proposed (see references in the Introduction) and successfully applied
to various meta-heuristics and problem classes.

This is not to say that the research on parallel meta-heuristics is over. Far from it. As
pointed out in the paper and summarized in the following, many open questions and challenges
still face the community, both in terms of general methodology and its instantiation to the par-
ticular context of given meta-heuristics and problem classes. Indeed, such instantiations lead
not only to well-adapted and performing implementations for the meta-heuristic and problem
class considered, but also to a broader understanding of the methodology and its implications.
This is certainly true for the more recent methods, e.g., ant-colony and other swarm-based
methods, but also for the more “traditional” meta-heuristic classes where one still observes a
lack of comprehensive studies focusing on these issues.

Returning to the four classes of strategies mentioned above, one should emphasize that each
addresses a particular need and, therefore, they are all part of the parallel-meta-heuristic tool-
box. Low-level parallelization strategies accelerate computing-intensive tasks, particularly the
evaluation of a population or neighborhood, and should prove effective in addressing similar
needs for swarm-inspired methods. Consequently, while the research issues are less challeng-
ing, the impact of these strategies in actual implementations may be significant, particularly as
part of hierarchical strategies.

A similar case can be made for domain decomposition. Following a short period of in-
tensive work, this strategy has been less studied in recent times. The increase in memory and
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computing power of contemporary computers might explain this fact. The dimensions of the
problem instances one faces keep increasing, however, and strategies that provide the means
to efficiently address them are certainly needed. The decomposition of the search space of
the problem at hand is a “natural” approach to attacking such problems. Research is required,
however, on advanced ways to dynamically perform this decomposition and the reconstruction
of whole solutions. The relations to the implicit-decomposition (attribute based) methods and
the integration with cooperative-search strategies also constitute a challenging and promising
research field.

Independent multi-search offers an easy access to parallel meta-heuristic computation. The
straightforward parallelization of the multi-start strategy resulting in the simultaneous explo-
ration of the search space by (possibly different) search threads starting from different initial
solutions has proved its worth in numerous studies. When one looks for a “good” solution
without investment in methodological development or actual coding, independent multi-search
is the appropriate tool. More refined techniques, cooperative search in particular, are needed
for better results, however.

Asynchronous cooperation provides a powerful, flexible and adaptable framework for par-
allel meta-heuristics that consistently achieved good results in terms of computing efficiency
and solution quality for many meta-heuristic and problem classes. It is increasingly acknowl-
edged as a meta-heuristic class in its own right and constitutes a rich and challenging research
field. Among the many research issues of significant interest, we mention four.

First, the exchange and utilization of context data, in particular the memories local to the
search threads, to construct an image of the status of the global search. Such a process may
prove of great interest in better identifying the regions of the search space already visited
and the ones where it would be interesting to direct the search (promising or not yet visited
regions). It could also be extended to investigate the relative performance of the individual
searches participating to the cooperation and either dynamically adjust the search parameters
of some or even replacing an unperforming method with a better performing one.

The second issue we identify is that of learning and extracting of information from the
shared data. One could, in fact, see the previous issue as a particular case of this field aimed
at creating new solutions and new information, e.g., patterns of attributes in given subsets of
solutions in the central memory. The goal is to 1) enrich the population of elite solutions, or
parts thereof, that are shared among cooperating search threads, and 2) build guidance mech-
anisms that bring in a more consistent (and, sometimes, more directive) way the status of the
global search to the search decisions of individual search threads. Research is this direction
is still at the very beginning but has proved its worth. Of particular interest in this context
are the studies aimed at the integrative cooperative methods, where the search space is indi-
rectly partitioned according to subsets of problem attributes, and search threads address either
the resulting subproblems or the integrative processes constructing and improving complete
solutions.
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More research is also warranted in mixing particular meta-heuristics and strategies. With
respected to the latter issue, there is interest in the possible linkages between central-memory
and multi-level strategies. Indeed, while it is important to preserve the multi-level data-exchange
mechanisms that provides the means to control the diffusion of information, the introduction
of a central memory, with guidance, eventually, could enhance the global search by, on one
hand, more rapidly making available pertinent information and, on the other hand, creating
new sharable data. With respect to methods, we should not only study how the parallel strate-
gies apply to the newer meta-heuristics (e.g., swarm-based), but also how these behave while
part of a cooperative algorithm and to what extent and how the behavior of the latter is modi-
fied. Of equally significant interest is the role of exact methods in cooperation.

It is noteworthy, finally, that cooperation in cooperative search methods takes place at two
different levels. The first is the direct and explicit information sharing specified by the cooper-
ation mechanism, that is, by the algorithmic design of the cooperation. In this sense, it is a top
down and “local” process, exchanges taking place between particular search threads or searches
and the memory, at moments determined by the algorithmic logic of search initiating communi-
cations. The second level is that of the implicit cooperation, where information spreads across
all the cooperating methods through a diffusion process and correlated interactions. Implicit
cooperation is bottom up and global. It is not specified algorithmically. It is rather an emergent
phenomenon produced by the correlated local interactions among searches. Many research
issues are related to indirect cooperation and how to harness it to enhance the optimization
capabilities of cooperative meta-heuristics. The main issue is thus how to design such systems
(essentially through the selection of search algorithms and direct cooperation strategies) to ob-
tain a system-wide emergent behavior that fulfills some specific requirements, e.g., an efficient
exploration of the solution space. This area of research is close to similar efforts in other fields
focusing on systems that display emergent behavior through self-organization and complex
adaptive behaviors, e.g., decentralized autonomic computing and social robotics. A number
of concepts have been proposed in these contexts (e.g., nonlinear dynamical systems, chaos
theory, attractors and system equilibrium) but have not yet resulted in significant advances for
cooperative search. Research in this area will thus probably continue to be mostly empirical
for some time in the future, while theoretical models are being built and put to the test. The
global effort in these directions will provide us to the design tool for more powerful parallel
meta-heuristics.
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Search Heuristic for the Vehicle Routing Problem with Time Windows. Transportation
Research Part C: Emerging Technologies, 5(2):109–122, 1997.

[6] Banos, R., Gil, C., Ortega, J., and Montoya, F.G. A Parallel Multilevel Metaheuristic
for Graph Partitioning. Journal of Heuristics, 10(4):315–336, 2004.

[7] Banos, R., Gil, C., Ortega, J., and Montoya, F.G. Parallel Heuristic Search in Multi-
level Graph Partitioning. In Proceedings of the 12th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, pages 88–95, 2004.

[8] Barr, R.S. and Hickman, B.L. Reporting Computational Experiments with Parallel Algo-
rithms: Issues, Measures, and Experts Opinions. ORSA Journal on Computing, 5(1):2–
18, 1993.

38

Parallel Meta-Heuristics

CIRRELT-2009-22



[9] Bastos, M.P. and Ribeiro, C.C. Reactive Tabu Search with Path-Relinking for the Steiner
Problem in Graphs. In S. Voß, S. Martello, C. Roucairol, and Osman, I.H., editors,
Meta-Heuristics 98: Theory & Applications, pages 31–36. Kluwer Academic Publish-
ers, Norwell, MA, 1999.

[10] Battiti, R. and Tecchiolli, G. Parallel Based Search for Combinatorial Optimization:
Genetic Algorithms and TABU. Microprocessors and Microsystems, 16(7):351–367,
1992.

[11] Blazewicz, J., Moret-Salvador, A., and Walkowiak, R. Parallel Tabu Search Approaches
for Two-Dimentional Cutting. Parallel Processing Letters, 14(1):23–32, 2004.

[12] Bock, S. and Rosenberg O. A New Parallel Breadth First Tabu Search Technique for
Solving Production Planning Problems. International Transactions in Operational Re-
search, 7(6):625–635, 2000.

[13] Bortfeldt, A., Gehring, H., and Mack, D. A Parallel Tabu Search Algorithm for Solving
the Container Loading Problem. Parallel Computing, 29:641–662, 2003.

[14] Bullnheimer, B., Kotsis, G., and Strauß, C. Parallelization Strategies for the Ant System.
In R. De Leone, A. Murli, P. Pardalos, and G. Toraldo, editors, High Performance Al-
gorithms and Software in Nonlinear Optimization, volume 24 of Applied Optimization,
pages 87–100. Kluwer Academic Publishers, Dordrecht, 1999.

[15] Calégari, P. , Guidec, F., Kuonen, P., and Kuonen, D. Parallel Island-Based Genetic
Algorithm for Radio Network Design. Journal of Parallel and Distributed Computing,
47(1):86–90, 1997.
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J., editors, Artificial Neural Nets Problem Solving Methods - Proceedings of the 7th
International Work-Conference on Artificial and Natural Neural Networks, volume 2686
of Lecture Notes in Computer Science, pages 414–421. Springer-Verlag, Heidelberg,
2003.

[54] Fiechter, C.-N. A Parallel Tabu Search Algorithm for Large Travelling Salesman Prob-
lems. Discrete Applied Mathematics, 51(3):243–267, 1994.

[55] Flores, S.D., Cegla, B.B., and Caceres, D.B. Telecommunication Network Design with
Parallel Multi-objective Evolutionary Algorithms. In IFIP/ACM Latin America Net-
working Conference 2003, pages –, 2003.

42

Parallel Meta-Heuristics

CIRRELT-2009-22



[56] Folino, G., Pizzuti, C., and Spezzano, G. Combining Cellular Genetic Algorithms and
Local Search for Solving Satisfiability Problems. In Proceedings of the Tenth IEEE
International Conference on Tools with Artificial Intelligence, pages 192–198. IEEE
Computer Society Press, 1998.

[57] Folino, G., Pizzuti, C., and Spezzano, G. Solving the Satisfiability Problem by a Paral-
lel Cellular Genetic Algorithm. In Proceedings of the 24th EUROMICRO Conference,
pages 715–722. IEEE Computer Society Press, 1998.

[58] Garcia, B.L., Potvin, J.-Y., and Rousseau, J.M. A Parallel Implementation of the Tabu
Search Heuristic for Vehicle Routing Problems with Time Window Constraints. Com-
puters & Operations Research, 21(9):1025–1033, 1994.
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