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1. Introduction

Open-Shop problems are at the core of many scheduling problems involving unary resources
such as Job-Shop or Flow-Shop problems, which have received an important amount of at-
tention due to their wide range of applications. Among the many techniques proposed in the
literature, Constraint Programming (CP) belongs to the most successful ones. We propose
in this paper a constraint programming approach for the Open-Shop problem based on the
most recent methods developed for scheduling problems in CP. Our approach relies on the
use of strong propagation mechanisms of the unary resource global constraint and temporal
constraint network but also reasoning dedicated to the minimization of the makespan such
as the forbidden intervals method. Our main contribution is to show that randomization and
restart strategies combined with strong propagation and scheduling heuristics can lead to
a very efficient approach for solving Open-Shop problems. The proposed solving technique
outperforms the other approaches published so far on a wide range of benchmarks.

This paper is organized as follows. We first recall the main techniques for solving Open-
Shop problem based both on complete algorithms and local search approaches in section
2. Secondly, section 3 gives an overview of the state-of-the-art methods used in Constraint
Programming for Open-Shop problems. Section 4 describes our approach relying on ran-
domization and restarting strategies with nogood recording and section 5 presents the ex-
perimental results we obtained. It investigates in more detail the effect of each component
of the algorithm as well as its parameters.

2. Problem Definition and State of the Art

In the Open-Shop problem (OSP), a set J of n jobs, consisting each of m tasks (or operations),
must be processed on a set M of m machines. The processing times are given by a matrix
P : m × n, in which pij ≥ 0 is the processing time of task Tij ∈ T of job Jj, to be done
on machine Mi. The tasks of a job can be processed in any order, but only one at a time.
Similarly, a machine can process only one task at a time. We consider the construction of
non-preemptive schedules of minimal makespan Cmax, which is NP-Hard for m ≥ 3 (see
Gonzalez and Sahni, 1976).
Let denote by LJ

k =
∑

i∈M pik the load of job k ∈ J and by LM
k =

∑
j∈J pkj the load of

a machine k ∈ M . The maximum load over every machine and every job CLB
max is a lower

bound for the OSP.
CLB

max = max({LJ
k |k ∈ J} ∪ {LM

k |k ∈M})

We review the main exact approaches on Open-Shop problems and the most recent local
search techniques giving the best-known results.

Only a few exact methods for the OSP have been published so far. The first one (Brucker
et al., 1996) is based on the resolution of a one-machine problem with positive and negative
time-lags. The second one (Brucker et al., 1997) consists in fixing precedences on the critical
path of heuristic solutions computed at each node. Although that last method is efficient,
some problems of Taillard (1993) benchmark from size 7×7 remained unsolved. Guéret et al.
(2000) proposed an intelligent backtracking technique applied to the Brucker et al. branching
scheme. When a contradiction is raised during search, instead of systematically backtracking
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to the previous decision (chronological backtracking), the algorithm analyses the reasons
for the contradiction to avoid questioning decisions that are not related to the failure and
backtracks to a more relevant choice point. This approach significantly reduces the number of
backtracks but can be two times slower than the initial version in each node. More recently,
Dorndorf et al. (2001) improved the Brucker et al. algorithm by using CP techniques. Instead
of analyzing and improving the search strategies, they focused on constraint propagation
techniques for reducing the search space. The algorithm was the first to solve many problem
instances to optimality in a short amount of time. However, some problems of Taillard’s
benchmark from size 15 × 15 remained unsolved as well as some of Brucker et al. (1997)
instances from size 7× 7.

At the same time, many metaheuristic algorithms have been developed in the last decade
to solve the OSP. The most recent and successful metaheuristics are : Ant Colony Optimiza-
tion(ACO – Blum, 2005), Particle Swarm Optimization (PSO – Sha and Hsu, 2008) and
Genetic Algorithm (GA – Prins, 2000). The basic component of ACO is a probabilistic solu-
tion construction mechanism. Due to its constructive nature, ACO can be regarded as a tree
search method. Based on this observation, Blum (2005) hybridizes the solution construction
mechanism of ACO with Beam Search (BS). BS algorithms are incomplete derivatives of
Branch-and-Bound algorithms. It is an approximate method where a partial assignment is
only extended in a restricted number of ways (this limit is called the beam width). Beam-
ACO improves on the results obtained by the current best standard ACO algorithms. PSO
is a population-based optimization algorithm, where each particle is an individual solution,
and the swarm is composed of many particles. Sha and Hsu (2008) modify the representation
of particle position, particle movement, and particle velocity to better fit to the OSP. They
obtain many new best-known solutions of the benchmark problems. Genetic Algorithms are
a particular class of evolutionary algorithms that use techniques inspired by evolutionary
biology such as mutation, selection, and crossover. Prins (2000) presents several specialized
OSP genetic algorithms with two key-features: a population in which each individual has a
distinct makespan, and a special procedure which reorders every new chromosome.

Finally, there are many heuristic methods that quickly provide good solutions to the
OSP. Most of them are constructive heuristics and belong to three main families: prior-
ity dispatching rules, matching algorithms (see Guéret, 1997) and insertion and appending
procedures combined with beam search (see Bräsel et al., 1993).

3. The Constraint Programming Model

In this section, we present our constraint programming model to tackle specifically Open-
Shop problems. First, we briefly present basic CP notions, especially in the scheduling
context before discussing propagation and branching techniques. At each step, we present
state-of-the-art methods, explain our choice and our contribution.

Constraint programming techniques have been widely used to solve scheduling problems.
A Constraint Satisfaction Problem (CSP) consists of a set V of variables defined by a cor-
responding set of possible values (the domain D) and a set C of constraints. A solution
of the problem is an assignment of a value to each variable such that all constraints are
simultaneously satisfied. Constraints are handled through a propagation mechanism which
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allows the reduction of the domains of variables and the pruning of the search tree. The
propagation mechanism coupled with a backtracking scheme allows the search space to be
explored in a complete way. Scheduling is probably one of the most successful areas for CP
thanks to specialized global constraints which allow modelling resource limitations such as
the unary resource or cumulative global constraints (see Beldiceanu and Demassey, 2006).

Constraint Programming models in scheduling usually represent a non-preemptive task
Tij by a triplet of non-negative integer variables (sij, pij, eij) denoting the start, duration
and end of the task so that sij + pij = eij. In Open-Shop problems, the duration pij is
known in advance and is a constant. The head of a task, estij = inf(sij), denotes the earliest
possible starting date of the task whereas the tail lctij = sup(eij) is the latest completion
time. The Open-Shop problem states that a single task of a machine or job can be processed
at any given time. These constraints are modeled by the mean of the well known unary
resource global constraint. Finally, temporal constraints such as precedences between tasks
are used in the decision process. We now give more details on these constraints and their
implementations.

3.1. Unary Resource

A unary resource global constraint, also called Disjunctive, models a resource of unit capacity.
A unary resource constraint holds if all the tasks of a collection that have a duration strictly
greater than 0 do not overlap. One unary resource constraint is stated for each job and each
machine. First, we present state-of-the-art propagation algorithms for the unary resource
constraint. We also take advantage of the propagation to compute a dynamic lower bound of
the makespan. Finally, in addition to these methods, a technique called forbidden intervals
is used to improve pruning.

Unary Resource Propagation Let T denote a set of tasks sharing an unary resource
and Ω denote a subset of T . We consider the three following propagation rules :

Not First/Not Last (NF/NL): This rule determines if task i cannot be scheduled after or
before a set of tasks Ω. In other words, it implies that i cannot be last or first in the
set Ω ∪ {i}. In that case, at least one task from the set must be scheduled after (resp.
before) activity i and the tail (resp. head) of i can be updated accordingly.

Detectable Precedence (DP): A precedence i ≺ j (see section 3.2) is called detectable, if it
can be discovered only by comparing the time bounds of its two tasks. Heads and
tails of each task can then be updated more accurately by the knowledge of all the
predecessors or successors.

Edge Finding (EF): This filtering technique determines that some task must be executed
first or last in a set Ω ⊆ T . It is the counterpart of the NF/NL rule.

Several propagation algorithms (Carlier and Pinson, 1994; Caseau and Laburthe, 1995; Bap-
tiste and Le Pape, 1996; Viĺım, 2004) exist for these rules and the best of them have a
complexity of O(n log(n)).
All the previous rules rely on the computation of the earliest completion time (ECTΩ) of
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a set Ω ⊆ T of tasks. By denoting estΩ = minTij∈Ω{estij}, the earliest completion time is
defined as follow:

ECTΩ = max{estΩ′ +
∑
Ω′

pij, Ω′ ⊆ Ω} (1)

We choose the implementation proposed by Viĺım (2004) that relies on two efficient data
structures : Θ-tree and Θ-Λ-tree. These structures are based on a balanced binary tree and
allow a quick computation of ECTΩ for a given set of tasks Ω, especially at each addition or
removal of a task in the set.

The filtering algorithms of a constraint reach a local fixpoint when they can no longer
reduce domains of its variables. The order in which the filtering algorithms are applied affects
the total runtime, although it does not influence the resulting local fixpoint. Viĺım (2004)
proposed a filtering algorithm where each rule reaches its fixpoint in a main propagation loop
which is executed until no update is performed. We have a main propagation loop where
each rule is executed only once. We order the rules to minimize the number of sorts required
by the data structures and to perform all updates on heads before tails.

Makespan Propagation We also take advantage of the computation of ECTΩ to estimate
a lower bound of the makespan ECTOSP . In fact, the earliest completion time of a machine
Mi (resp. a job Jj) is given by the value of ECTMi

(resp. ECTJj
). Let R = {Jj}j∈[1,m] ∪

{Mi}i∈[1,n] denote the set of all unary resources, then the makespan is greater than the
maximum of the earliest completion time among all resources and is given by the formula
ECTOSP = maxΩ∈R{ECTΩ}.

Forbidden Intervals Forbidden intervals are a specialized filtering technique for OSP with
minimal makespan. Forbidden intervals are intervals in which in an optimal solution, tasks
can neither start nor end. Heads and tails can be strengthened based on this information
during search. When the head of a task is in such an interval, it can be increased to the
upper bound of the interval. This technique has been proposed by Guéret and Prins (1998)
and the computation of forbidden intervals is based on the resolution of m + n Subset-Sum
Problems (Kellerer et al., 2004). The Subset-Sum Problem has an O(d×n) complexity where
d is the capacity of the knapsack, i.e. the maximal makespan. The Subset-Sum problems
are solved at the beginning of the search and heads and tails are updated in a constant time.

3.2. Temporal Constraints

This section deals with the problem of managing quantitative temporal networks without
disjunctive constraints. The problem is known as the Simple Temporal Problem (STP). As
we only deal with precedence constraint network, we specialized the procedure and data
structures for incremental constraint posting and propagation algorithms.

Simple Temporal Problem A Simple Temporal Problem is defined in Dechter et al.
(1991) and involves a set of temporal integer variables {X1, . . . , Xn} and a set of constraints
{aij ≤ Xj −Xi ≤ bij}, where bij ≥ aij ≥ 0. A solution of the STP is an assignment of the
variables such that every temporal constraint is satisfied. A directed graph G = (V, E) is
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associated with the problem. The set of nodes V represents the set of variables {X1, . . . , Xn}
and the set of edges E represents the set of temporal constraint. A couple of edges, (j, i)
labeled with weight −aij and (i, j) labeled with weight bij are associated with each temporal
constraints {aij ≤ Xj − Xi ≤ bij}. Dechter et al. (1991) proved that a Simple Temporal
Problem is consistent if and only if G does not have negative cycles.

Cesta and Oddi (1996) proposed algorithms to manage temporal information that : (a) al-
low dynamic changes of the constraint set for both posting and retraction (b) exploit the
temporal constraint network for incremental propagation and cycle detection. Dechter (2003)
reviewed most properties and algorithms for the STP. Unfortunately, most of the properties
and algorithms supposed that no unary resource is involved.

Precedence Constraints Network In an Open-Shop problem, let Tij ≺ Tkl denote a
precedence constraint, i.e. a temporal constraint such that {pij ≤ skl−sij ≤ +∞}. Of course,
precedences could be handled by simply adding the corresponding elementary constraints to
the solver and by propagating them independently. But, we take advantage of previous work
on STP to gain in efficiency and flexibility. First, we slightly modify G, then we adapt
posting and retraction and propose a new algorithm to perform propagation.

The set of nodes V now represents the set of tasks. Two fictitious tasks Tstart and Tend

referring to the starting and ending tasks of the schedule, are added to that set. An arc is
added in E between two tasks Tij and Tkl if Tij precedes Tkl (Tij ≺ Tkl). Initially, the only
arcs of E are the ones originating at node Tstart or ending at node Tend. For example, Figure
1 represents G for a 3×3 OSP instance with a set of six precedence constraints where initial
edges are dotted and precedence edges are plain. The makespan Cmax of a schedule is the
length of a longest path between Tstart and Tend, a critical path.

initial edges

T11

T31

T21 T22

T32

T13

T33

T23

T12

Tstart Tend

Figure 1: Representation of the precedence constraint network G associated with a 3 × 3
OSP instance and a set of six precedence constraints.

The precedence constraint network is consistent if and only if it does not have any cycle.
So, G is a Directed Acyclic Graph (DAG). Furthermore, an implied precedence can be easily
detected when it is implied by the bounds of the tasks but it is not necessarily the case
for transitive precedences. Indeed, precedence constraints satisfy the triangular inequality
Tij ≺ Tpq ∧ Tpq ≺ Tkl ⇒ Tij ≺ Tkl. So, if an arc (Tij, Tkl) is transitive, i.e. Tij and Tkl

are connected by a path in E\{(Tij, Tkl)}, then the precedence Tij ≺ Tkl is already implied.
A branching strategy over precedences should avoid branching on transitive or satisfied
precedences.

The incremental algorithm based on the Bellman-Ford algorithms for the Single Source
Shortest Path Problem proposed by Cesta and Oddi (1996) has a O(|V | × |E|) complexity.
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Since G is a directed acyclic graph, our incremental algorithm, based on the Dynamic Bell-
man algorithm for the Single Source Longest Path problem (Gondran and Minoux, 1984),
has a linear complexity.

Network Representation We choose to design a specific and centralized data structure
to represent the precedence constraint network. Typically, cycles and transitive precedences
can be detected much faster with a centralized data structure dealing with the network of
precedences. Furthermore, propagation of a set of precedences can be done in linear time
whereas a bad ordering of awakes in the propagation loop can lead in the worst case to
quadratic time before reaching the fixpoint.

The structure can efficiently handle arc insertions/removals and is restorable upon back-
tracking, i.e., it maintains a stack to record when a change is performed on the graph. Cycle
and transitive arc detections have a constant time complexity as we maintain the transitive
closure of G. Frigioni et al. (2001) proposed an implementation for maintaining the transi-
tive closure information in a directed graph. Their approach requires O(n) amortized time
for a sequence of insertions and deletions. In addition, we also maintain a topological order
with the simple and efficient algorithm proposed by Pearce and Kelly (2006). In fact, the
transitive closure information reduces the overall complexity to maintain a topological order.
To give an example, suppose that the precedence T12 ≺ T22 has just been added in Figure
1. Then, a choice point would be created since this precedence is not transitive and did not
introduce a cycle.

Then, the transitive closure of the vertices T11 and T12 is updated. The transitive closure
of T12 is updated from {Tend} to {T22, T32, T33, Tend}. Similarly, the transitive closure of T11 is
updated to {T12, T22, T32, T33, Tend}. Assume a topological order O1, the updated topological
order after addition of T12 ≺ T22 is indicated below as O2.

(T21, T22, T31, T32, T33, T13, T23, T11, T12) (O1)

(T21, T31, T11, T12, T22, T32, T33, T13, T23) (O2)

Branching strategies exploit the data structure to avoid branching on transitive prece-
dence or create cycle in the network. Furthermore, the data structure is used to speedup
propagation. Indeed, to update the head and tail of Tij according to G, the longest path be-
tween Tstart and Tij, as well as Tij and Tend is computed. All shortest paths originating from
Tstart and ending at Tend are computed in a linear time with the Dynamic Bellman algorithm
for the Single Source Longest Path problem (Gondran and Minoux, 1984). As a topological
order is an input of the algorithm, our implementation avoids redundant computations by
maintaining a dynamic topological order. Last, at each propagation, the algorithm considers
only a subgraph of G where the head or the tail of the tasks has changed since the last call.

To summarize, the precedence constraints network is represented by a dynamic and back-
trackable directed acyclic graph in which arc insertions and deletions can be done in linear
time. The propagation is done in linear time by an algorithm based on the Dynamic Bellman
algorithm for the Single Source Longest Path problem.
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3.3. Symmetry Breaking

Many constraint satisfaction problems contain symmetries making many solutions equiva-
lent. Symmetry breaking techniques avoid redundant search effort by trying to ensure that
whenever a partial assignment is shown to be inconsistent, no symmetric assignment is ever
tried.

In our case, a solution of the OSP can be reversed considering the last task of a machine
as the first, the second to last task as the second and so on. This symmetric counterpart of
any solution is also a solution for the OSP. Once the algorithm has proved that one ordering
of the tasks was suboptimal, it is unnecessary to check the reverse ordering. Breaking this
symmetry can be done in two manners by picking: (a) any task Tij and impose, a priori,

that it starts in the left part of the schedule sij ≤
⌈

Tend−pij

2

⌉
; (b) any pair of tasks , Tij and

Tkl, belonging to the same job or same machine, and impose, a priori, that Tij ends before
Tkl starts, i.e. Tij ≺ Tkl. We will evaluate these alternatives and denote by START the
constraint (a) where we select the task with the longest processing time, and by PREC the
constraint (b) where we select the pair of tasks with the longest cumulated processing times.

3.4. Branching Scheme

Branching strategies in scheduling can be divided in two main families: assigning starting
dates or fixing precedences.

In the first category, the most well known is referred to as setTimes (Le Pape et al.,
1994) and is an incomplete branching scheme. At each node, it selects a task from a set of
unscheduled and selectable tasks, creates a choice point and schedules the selected task at
its earliest starting time. Upon backtracking, it labels the task that was scheduled at the
considered choice point as not selectable as long as its earliest start has not changed. This
branching scheme is generic but it does not allow the efficient solution of large problems.

The second category consists in fixing precedences between tasks. In OSP contexts, the
block branching of Brucker et al. (1997) (denoted as Block) is based on the computation of
a heuristic solution in each node to decide the precedences to enforce. The tasks along the
critical path of this heuristic solution are selected and precedences are stated to question
the current critical path. This branching scheme can fix many precedences at the same
time while remaining complete. Beck et al. (1997) proposed a simpler binary branching
scheme (denoted as Profile) where two critical tasks sharing the same unary resource are
ordered. This heuristic, based on the probabilistic profile of the tasks, determines the most
constrained resources and tasks. At each node, the resource and the time point with the
maximum contention are identified, then a pair of tasks that rely most on this resource at
this time point are selected (it is also ensured that the two tasks are not already connected
by a path of temporal constraints). Once the pair of tasks has been chosen, the order of
the precedence has to be decided. For that purpose, we retain one of the three randomized
value-ordering heuristics of Beck et al. (1997) : centroid. The centroid is a real deterministic
function of the domain and is computed for the two critical tasks. The centroid of a task
is the point that divides its probabilistic profile equally. We commit the sequence which
preserves the ordering of the centroids of the two tasks. If the centroids are at the same
position, a random ordering is chosen.
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An example of each branching is given in Figure 2. The shape of the tree and the types of
the node are different from one branching scheme to another.

T11 = 0

T12 = 25 T13 = 25 T23 = 0

T12 is not selectable

(T11, T12, T13, T33)
Critical path:

T12 << {T11, T13} T13 << {T11, T12} T11 << {T12, T13}
{T11, T13} << T12

T11 << {T12, T13}
{T11, T12} << T13

T33 << T13

T11 << T12

T12 << T22 T22 << T12

ProfileSetTimes

subtree

T12 and T13 are not selectable

Block

Figure 2: The shape of the search tree for different branching schemes. From left to right,
SetTimes branching, Block branching and Profile branching.

4. Solving the Open-Shop

Our approach is based on the propagation techniques of the unary resource global constraint
enhanced with forbidden intervals. The branching is conducted by adding precedences using
the Profile heuristics with randomized centroid. At this stage this approach presents two
main drawbacks. Firstly, propagation techniques are very effective once a tight upper bound
is known and only slow down search otherwise. Secondly, the slightly randomized version
of centroid shows a large variance in resolution time and the quality of the solutions found.
Such a distribution suggests an important thrashing phenomenon, i.e. the same failure can
be rediscovered several times. To address this issue, we propose to apply first a randomized
constructive heuristic (without propagation) to initialize the upper bound and start a com-
plete search with the CP model and a restarting strategy. The restarting strategy is also
enhanced with nogood recording at each restart to record all the work done from one restart
to another.

The first step surprisingly finds excellent upper bounds that are furthermore improved
during the first restarts and finally reduces the thrashing significantly for longer runs. We
now give a detailed presentation of the overall approach and analyze the different parameters.

4.1. Main Procedure

Figure 3 summarizes a general algorithm for solving the OSP : Randomized and Restarts
Constraint Programming algorithm for Open-Shop Problem (rrcp-osp). The possible val-
ues of the relevant parameters at each step are indicated.

The algorithm starts with heuristics (blocks 1-2) and continues, if needed, with a CP
search (blocks 3 to 11). We investigated two possible heuristics: Longest Processing Time
and randomized heuristics called crosh presented in details in section 4.2. The heuristics
compute an initial solution and provide the initial upper bound CUB

max. Then an optimality
test is performed (block-2) before going any further and starting the search.
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In block 3 of the figure, the CP model is created and various components are initialized. A
symmetry breaking constraint is added (block 4) and three possibilities have been analyzed:
no symmetry breaking (OFF), restricting the starting date of the longest task (START) or
fixing the precedence between the two tasks of the same job or machine with the longest
processing times (PREC). Section 3.3 discussed these choices in details.

initialize nogood store if any

endstart

1

2

3

4

6

5

7 8

9

10

11

yes

no

yes

no

yes

no

yesno

yes

no

restart

yes

no

initialize variable domains

initialize constraints store

(disjunctive, precedence, forbidden intervals).

define variables

propagate constraints

solution
found?

set dynamic cut: TRUE
cut: eend < CUB

max

set dynamic cut: FALSE

fathomed?
all branches

backtrack

dynamic
cut?

inconsistency
proven ?

CUB
max = CLB

max ?

add symmetry breaking constraint

compute CUB
max, CLB

max

CROSH(Literation, Ltime)
alternatives : LPT,

branches: Tij << Tkl, Tkl << Tij

Branching

select critical tasks : (TijTkl)
should restart?

WALSH(s, g), FIXED(s)
alternatives : OFF, LUBY(s, g),

alternatives : OFF,NOGOOD

alternatives : RANDOM, CENTROID
randomized value-ordering heuristic

alternatives : OFF, START, PREC

Figure 3: General outline of rrcp-osp. Ellipses are initial and final states. Rectangles are
procedures or actions. Diamonds are if-else conditions. Dashed rectangles are labels.

The generic loop of the algorithm is contained between blocks 5 and 11. After propagation
and domain reduction (block 5), we might have reached a solution, a contradiction or neither
of those two cases. If a solution is found, it is recorded and the new upper bound of
the makespan is used to add a constraint as a dynamic cut that will be propagated upon
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backtracking. If a failure is detected and all branches of the root node have been fathomed,
then optimality of the last solution found is proved and the algorithm terminates. Otherwise,
the algorithm backtracks. If the dynamic cut flag is set, then a propagation step is needed
to take the new cut into account. Otherwise a branching step is needed but before that, we
examine the possibility to restart. Four different options for restarting have been analyzed
in our study as shown on block 9 and discussed in more detail in section 4.3. In case of
restarts we can extract nogoods (block 10) to avoid redundant work from one restart to the
next and keep track of the subproblems already proved suboptimal or infeasible.

If no restart is performed, then a search is undertaken using the Profile branching scheme
(see section 3.4) in block 11. Branching divides the main problem into a set of exclusive and
exhaustive subproblems by temporarily adding a precedence.

4.2. Initial Solution

Propagation techniques are very costly and only useful when applied with a good upper
bound. Similarly, the branching technique is really sensitive to the quality of the upper
bound as it relies on the demand curve of the resources. It is in practice very important to
provide a good upper bound at the root node in a small amount of time.

Priority Dispatching Rule (PDR) methods are classical and easy methods to construct a
nondelay schedule by repeatedly appending tasks to a partial schedule. A schedule is called
non-delay if no machine is left idle provided that is is possible to process some job. Starting
with an empty schedule, tasks are appended as follows: (a) determine the minimal head t0

of all unscheduled operations (at time t0, there exists both a free machine and an available
job) (b) among all available tasks, choose one according to some priority dispatching rule.
Common priority dispatching rules are Longest Processing Time (LPT) and Shortest Pro-
cessing time (SPT). We do not consider SPT as Guéret (1997) experimentally proved that
LPT is the best classical heuristic. We prefer the PDR methods, which, beside from being
generic, simple and easy to implement, yield very good results experimentally (see section
5.1.1).
We based our Constructive Randomized Open-Shop Heuristics (CROSH) on this process,
randomizing the selection of task at step (b) instead of following a dispatching rule. Algo-
rithm 1 gives the details of such a heuristics.

It starts with the upper bound given by LPT (CLPT
max ) and attempts to improve it. As

each internal function has a constant time complexity, the overall complexity is given by the
three imbricated loops. 1, 2 and 3. The main loop 1 is executed at most Literation times
and the internal loop 2 and 3 are executed at most |Ut0| ≤ |T | = m× n times. The overall
complexity of CROSH is O(m2×n2×Literation). Finally, if we choose the task of Ut0 with the
longest processing time instead of randomly (see line LPT), we obtain the LPT heuristics.

4.3. Restart Strategy

Restart policies are based on the following observation: the longer a backtracking search
algorithm runs without finding a solution, the more likely it is that the algorithm is exploring
a barren part of the search space. Initial choices made by the branching are both the least
informed and the most important as they lead to the largest subtrees and the search can
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hardly recover from early mistakes. This can lead to thrashing situations where failures are
due to a small subset of early choices but discovered much deeper in the tree over and over
again. An intelligent backtracking algorithm tries to compensate for the early mistakes of
the heuristics by analyzing failures and identifying the choices responsible for the current
dead end situation. Restart strategies combined with randomization are another way to get
rid of thrashing and bad initial choices.

As our technique is randomized, preliminary experiments reveal its great sensitivity to
thrashing. Several runs could lead to very different results regarding the number of back-
tracks and solution quality. It led us to investigate restart strategies and especially universal
restart strategies.

Algorithm 1: Constructive Randomized Open-Shop Heuristics (CROSH)

Data: T, J, M, CLB
max , CLPT

max , Ltime, Literation

Result: An upper bound on Cmax

UBCmax = CLPT
max ;

while checkLimits (Ltime,Literation) do1

/* no limit reached */
Integer[] CTJ = Integer[n] ; // Job Completion Time
Integer[] CTM = Integer[m] ; // Machine Completion Time
Cmax = 0 ; // current makespan
U = T ; // set of unscheduled tasks
while U 6= ∅ do2

Ut0 = ∅ ; // set of selectable tasks
t0 =∞ ; // minimal head of unscheduled tasks
foreach Tij ∈ U do3

estij = max(CTJ [i]), CTM [j]); // head of Tij

if estij < t0 then t0 = estij ; Ut0 = {Tij};
else if estij == t0 then Ut0 = Ut0 ∪ {Tij};

LPT Ti0j0 = selectRandomly(Ut0) ;
/* schedule the selected task */
ect = t0 + pi0j0 ;
U = U\{Ti0j0};
CTJ [i0] = ect; CTM [j0] = ect;
Cmax = max(Cmax, ect);
if Cmax ≥ UBCmax then break

if Cmax < UBCmax
then

UBCmax = Cmax ;
if UBCmax = CLB

max then break

return UBCmax
;

Universal Restart Strategy. Let A(x) be a randomized algorithm of the Las Vegas type,
which means that, on any input x, the output of A is always correct but its running time
TA(x) is a random variable. A universal restart strategy determines the length of any run
for all distributions on running time.

If the only feasible observation is the length of a run and there is no knowledge of the
run-time distribution of the solver on the given instance, Luby et al. (1993) showed that the
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universal schedule of cutoff values of the form

1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .

gives an expected time to solution that is within a log factor of that given by the best fixed
cutoff, and that no universal schedule is better by more than a constant factor. The sequence
is often defined by adding a geometric factor r. By denoting sk = rk−1

r−1
, the i-th term of the

sequence is defined as follows (r = 2 is the previous example):

∀i > 0 ti =

{
rk−1 if i = sk

ti−sk−1 if sk−1 + 1 ≤ i < sk

s = 1 and r = 3⇒ 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 9, . . .

Walsh (1999) suggests another universal strategy of the form s, sr, sr2, sr3, . . . growing
exponentially, contrary to the Luby strategy which grows linearly. The two parameters that
we consider are a scale factor s and a geometric factor r. The scale factor scales, or multiplies,
each cutoff in a restart strategy. Wu and van Beek (2007) demonstrated both analytically and
empirically the pitfalls of non-universal strategies and showed that parametrization of the
strategies improves performance while retaining any optimality and worst-case guarantees.
As restarting seems a key component of those problems, we will evaluate the effects of the
scale and geometric factors to identify a good restart strategy.

Nogood Recording from Restarts Our heuristics is only randomized when ordering
two tasks to state a precedence and even in this case, the randomization only takes place
when Centroid is unable to identify a good order. This slight randomization of the search is
enough, as mentioned previously, to observe a huge variance in solution quality. However,
in some cases, very few random choices are made and the same search tree is likely to be
explored from one restart to another. We apply a simple nogood recording technique similar
to Lecoutre et al. (2007) to compensate for this drawback.

In our context, a nogood is defined with a current upper bound ub and corresponds to
a set of precedences P , such that all solutions satisfying P have a makespan greater than
ub. The same set P of precedences can be met from one restart to another. Recording P
can avoid redundant work and provide more diversification across the restarts. We record
nogoods only when the search is about to restart (block 10 of Figure 3). At this point we
record all the nogoods representing the subtrees proven suboptimal following the idea of
Lecoutre et al.. All the work accomplished during this step is therefore recorded and the
same part of the search tree will therefore not be explored in different runs. Only a linear
number of nogoods is recorded at each restart.

Nogoods are propagated individually in Lecoutre et al. using watch literals techniques.
We implemented the nogood store as a global constraint that achieves unit propagation on
the nogoods. Our implementation remains naive and could be improved based on watch
literals techniques. The number of nogoods remain quite small in practice as they are only
recorded at each restart and nogood propagation didn’t seem to be a bottleneck for efficiency
in our approach. We also remove nogoods that are subsumed by another one when adding
all the nogoods coming from a new restart.
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5. Computational Results

Three different sets of OSP benchmark instances are available in the literature. The first
set consists of 60 problem instances provided by Taillard (1993) (denoted by tai*) ranging
from 16 operations (4 jobs and 4 machines) to 400 operations (20 jobs and 20 machines).
Brucker et al. (1997) proposed also 52 difficult square OSP instances (denoted by j*) from 3
jobs and 3 machines to 8 jobs and 8 machines. Finally, the last set is made of 80 benchmark
instances provided by Guéret and Prins (1999) (denoted by GP*). The size of these instances
ranges from 3 jobs and 3 machines to 10 jobs and 10 machines. All of the experiments were
performed on a cluster with 84 machines running Linux, each node with 1 GB of RAM and a
2.2 GHz processor. We perform several set of experiments in order to : (a) study the impact
of the parameters and the various options in the algorithm (see section 5.1); (b) compare
rrcp-osp with other state-of-the-art methods (see section 5.2).

5.1. Setting the Parameters of the Algorithm

We presented in section 4 various alternatives and parameters of our general algorithm rrcp-
osp. We report here an experimental study of their importance for the algorithm and justify
experimentally the choices made in the final set up of the algorithm.

5.1.1. Initial Solution

Two possibilities of heuristics were given in section 4.2 to compute an initial upper bound:
crosh and LPT. In this section, we compare crosh and LPT and explain how the time
limit and the maximum number of iterations of crosh were chosen. First, we study the
quality of the solution with regard to the number of iterations of crosh. crosh was run
on each instance with a limit of 100000 iterations and a timeout of 30 seconds (20 runs
were performed due to the randomization and the average is reported). Figure 4 shows the
average solution quality for a given OSP size, i.e. the ratio of the best makespan CUB

max with
the lower bound CLB

max, as a function of the number of iterations.
First of all, as the first iteration of crosh runs the LPT heuristics, the two graphs clearly

prove that crosh is able to quickly improve the solution provided by LPT for any problem
size. In fact, the random constructive process provides very good upper bounds and the
ratio seems to reduce with the size of the problem. It can indeed find the optimal solution
of some of the 15× 15 and 20× 20 problems. We also notice that crosh is able to improve
the solution quality continuously after a very large number of iterations even if the slope of
the curve is obviously decreasing. The balance between the time spent with the heuristics
and the quality of the upper bound provided is difficult to choose. Ideally, we wish to stop
the heuristic phase as soon as the CP search can improve the solution faster than crosh.

Therefore, we performed a second set of experiments in which we discretized the number
of iterations into orders of magnitude 10, 100, 1000, 5000, 10000, 25000. The maximum
number of iterations was set to 25000 because the timeout of 30s is reached after 25000
iterations for large instances (15 × 15, 20 × 20). Then, for each instance and each number
of iterations, we ran twenty times rrcp-osp with crosh and a time limit of 180 seconds.
Table 1 presents the results of this second set of experiments with the percentage of solved
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) of the heuristics crosh as a function of the number of
iterations for each instance class.

instances, the average time t̄ and number of visited nodes n̄ for the best crosh parameters
and the average over all parameters. The number of iterations giving the best result is also
indicated showing that, with the exception of size 9×9, a threshold related to the size of the
problem can give a good generic setting for this limit. In fact, a single instance GP09-02 is

size Best Average

iter. % t̄ n̄ % t̄ n̄

6× 6 1000 100.0 1.8 622.6 100.0 2.1 696.8
7× 7 10000 93.0 16,3 3794.0 93.0 16.8 3889,9
8× 8 10000 83,1 44,4 6895,5 82.0 45,5 7848,4
9× 9 100 97,5 12,3 5638,5 89,9 23,8 7270,5

10× 10 25000 86,8 34,9 7564,3 81,9 44,4 10688,4
15× 15 25000 78.0 50,9 13465,3 54,2 88.0 13747,7
20× 20 10000 70,5 63,1 10696,9 51,1 94,7 10679,6

Table 1: The best number of iterations for crosh to solve the problem using the complete
algorithm.

responsible for the low number of iterations required for 9×9 instances. In this instance, our
branching scheme is critically sensitive to the initial upper bound. If the lower bound is too
tight, the centroid heuristics take bad deterministic decisions that will never be questioned
along restarts. On the contrary, if the lower bound is loose, the slight randomization of
centroid escapes from the local minima. Therefore, it advocates for a higher randomization
of centroid. Nevertheless, we chose to ignore the singularity to set up the parameters.

Finally, the number of iterations has a great influence on the overall solving time, espe-
cially on large instances where crosh gives surprisingly good results. We deduce from these
results an estimated number of iterations and an estimated quality ratio which depend on
the problem’s size. Table 2 reports the maximum number of iterations chosen for crosh
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depending on the problem size.

size 3 4 5 6 7 8 9 10 15 20

Iteration limit 5 25 50 1000 10000 10000 10000 25000 25000 25000
Average gap 1.138 1.134 1.130 1.164 1.084 1.107 1.138 1.057 1.001 1.001

Table 2: The limit in number of iterations chosen for crosh as a function of the problem’s
size.

5.1.2. Symmetry Breaking

Two possibilities were given in section 3.3 for the breaking symmetry constraint: START or
PREC. The alternative is outlined in block 4 of algorithm 3. The effectiveness of the two
approaches was tested on a small set of instances with a time limit of 180 seconds. Table 3
summarizes the results of these experiments. First of all, the initial cut reduces the amount

size Problem OFF PREC START

GP* j* tai* t̄ n̄ t̄ n̄ t̄ n̄

3× 3 X X 0.01 11.4 0.01 9.7 0.01 10.4
4× 4 X X X 0.04 96.8 0.04 104.7 0.03 93.1
5× 5 X X X 0.37 435.0 0.30 418.8 0.29 383.4
6× 6 X X 3.67 1861.5 2.27 1492.4 2.48 1467.2
7× 7 X X 3.77 2379.0 3.80 2429.2 3.06 2252.4

Table 3: Effect of the symmetry breaking constraint on a subset of instances.

of time and the number of nodes needed to solve the training set. Secondly, START seems
to be a better choice than PREC and will be used as a default option for the algorithm.

5.1.3. Restart Strategy

In this section, we discuss how to configure restart strategies. The alternatives were outlined
in blocks 9 and 10 of algorithm 3.

Restart Policy Parameters We performed experiments on a small set of instances to
identify good parameters (scaling and geometric factors) for the restart policy. We report
the effects of the parameters on the efficiency of the restart policy measured by the number
of solved problems as proposed by Wu and van Beek (2007). We ignored small instances and
used a set of 23 instances with different runtime distributions. The scale factor s is discretized
into orders of magnitude 10−2, . . . , 102 and the geometric factor, r into 2, 3, . . . , 10 for Luby
and 1.1, 1.2, . . . , 2 for Walsh. Then we multiply the scale factor by the number of tasks
n × m to take into account the size of the problem. The best parameters settings were
then estimated by choosing the values that minimized the expected number of instances not
solved. Ties were broken by considering the average amount of time needed to solve an
instance.
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Twenty runs were performed on each instance of the set with a time limit of 180 seconds
and an initial upper bound given by LPT. Table 4 shows the results of the experiments
for different restart policies with and without nogood recording. We give the percentage of
solved instances, the average amount of time and number of nodes visited during search for
the best parameter and the average over all parameter settings.

Policy Best Average

Param. % t̄ n̄ % t̄ n̄

Without nogood recording
FIXED 10 71.3 61.8 12127.7 56,6 89,2 38119,2
WALSH (1,1.5) 81.7 45,8 10149,5 77 55,2 11984,1
LUBY (1,3) 82.6 48.32 11757.6 73.8 63.6 20098.1

With nogood recording
FIXED 1 80 46,76 11357.1 68,8 70,4 31295,4
WALSH (1,1.1) 82.6 43.0 9862.1 76,2 54,6 11358,1
LUBY (1,3) 82.6 43.1 10054.8 75,5 58,6 16737,4

Table 4: Identifying good parameters for the restart policies.

As expected, estimating good parameter settings can give quite reasonable performance
improvements over unparametrized universal strategies. It can be seen that on this test
set, the Luby and Walsh strategies outperform the fixed cutoff strategy and that nogood
recording gives only small improvements over these two strategies.

Restart Policy The experiments performed in the previous paragraph do not prove that
restarting is a good alternative. Similarly, it is unclear that we should use nogood recording
combined with restarts. In this section, we performed additional experiments to set up
alternatives for the restart strategy.

Using the best parameters given in Table 4 for Luby and Walsh, we can show the interest
of restarting strategies as well as the effect of enhancing them with nogood recording on the
two graphs of Figure 5.

The 61 instances larger than size 5×5 and solved with an average time between 2 seconds
and 1800 seconds were considered to plot those graphs. The initial upper bound was given
by crosh with its default parameters(see section 5.1.1). The left graph analyses the effect of
the restarting strategies. Each point represents one instance and its x coordinate is the ratio
of the resolution time without restarts over the resolution time with restarts whereas its y
coordinate is the ratio of the number of nodes without restarts over the number of nodes with
restarts. Notice also that the scale is logarithmic and that all points are around the diagonal
since the number of nodes is roughly proportional to the time. All points located above
or on the right of the point (1,1) are instances improved by the use of restarts. Restarting
seems to globally improve the solution and some instances are even solved around 100 times
faster using restarts. However, the solution of a minority of instances located below (1,1)
is degraded. Similarly, the right graph shows the gain offered by nogood recording over the
use of restart policy (the coordinates of each point present the ratio of time and nodes of
the restarting strategy alone over the restarting strategy with nogood recording). One can
see that nogood recording only improves the restarting policies by a factor between 1 and
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Figure 5: Impact of restart policies (left graph) and nogood recording over restart policies
(right graph).

10 for the large majority of instances. Luby seems to benefit more from nogood recording
as it can contain a lot of short runs.
Finally when combining restarting policy and nogood recording, we obtain the results plotted
in graph 6. It can be seen that all the negative results of the restarting policy of Figure 5
have been eliminated while keeping the positive effects of the restarts.

We have shown here that restarting can greatly improve the solution of Open-Shop prob-
lems but lacks robustness. Restarting basically helps finding good upper bounds quickly
but once those are known, longer runs are needed to eventually prove optimality. The bal-
ance between restarting quickly to improve the upper bound or searching more to prove its
optimality is difficult to achieve. Enhancing the restarting policy with nogood recording
compensates for this drawback and improves significantly the resolution as shown by graph
6.
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Figure 6: Impact of restart policies combined with nogood recording.

Three hardest Instances Three instances, j7-per0-0, j8-per0-1 and j8-per10-2 remained
unsolved after 1800 seconds. Therefore, additional experiments were performed without time
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limit. Table 5 summarizes these results. First of all, the strategy without restarts is the
best because we need to explore a huge number of nodes to get the optimality proof. Then,
nogood recording is a critical issue for restart strategies on these instances as it cuts the
runtime by two thirds. Finally, The performance of the restart strategies changed as the
Walsh strategy performed better than the Luby strategy. It confirms the idea that the Luby
strategy improves the upper bound faster, but obtains the optimality proof slower than the
Walsh strategy.

Problem OPT Nogood recording Classic

OFF LUBY WALSH LUBY WALSH

t̄ n̄ t̄ n̄ t̄ n̄ t̄ n̄ t̄ n̄

j7-per0-0 1048 1:43 1.21 2:10 1.57 2:03 1.25 5:56 4.66 18:10 12.76
j8-per0-1 1039 2:13 1.16 3:07 1.65 3:00 1.38 10:22 5.95 23:12 12.29
j8-per10-2 1002 1:03 0.56 1:17 0.68 1:13 0.57 8:46 5.11 8:50 4.72

Table 5: The processing time t̄ (hour:minute) and number of nodes n̄ (millions of nodes) for
the given alternatives applied to the three hardest instances.

Robustness Last, we analyze the robustness of rrcp-osp for the Luby restart policy
with nogood recording and an initial upper bound given by crosh. In its general form,
robustness refers to the ability of the subject to cope well with uncertainties. In our case, it
means that we need to estimate the sensitivity to the initial upper bound and the randomized
decision process. For each instance, we compute the ratio of the standard deviation divided
by the average runtime. Then, we compute the average ratio for each benchmark. The
Taillard benchmark has an average ratio of 62% as it is very sensitive to the initial upper
bound which is often optimal. The Guéret and Prins benchmark has an average ratio of 16%
because the initial upper bound could affect the randomization process as shown for instance
GP09-02 (section 5.1.1). Finally, The Brucker et al. benchmark has the lowest average ratio
equal to 9% because most of the time is spent during the optimality proof.

5.2. Comparison with Other Approaches

The algorithm applied on the complete benchmark uses crosh in a first step, states START
as a symmetry breaking constraint and applies a Luby restarting policy with nogood record-
ing. As the algorithm is randomized, 20 runs were performed without a time limit. Tables 6,
8 and9 report optimal objective values found over all runs with the average time and num-
ber of nodes. Tables 6, 8 and 9 correspond respectively to the Taillard, Brucker et al. and
Guéret and Prins benchmarks. The tables include the best results obtained by the genetic
algorithm (GA-Prins – Prins, 2000), the ant-colony algorithm (Beam-ACO – Blum, 2005),
the particle swarm algorithm (PSO-Sha – Sha and Hsu, 2008), the branch and bound with
intelligent backtracking of (BB-Gue – Guéret et al., 2000) and the best complete approach
so far (BB-Pes – Dorndorf et al., 2001). The papers cited above sometimes report more than
one result based on variations of their approach and we have quoted the best of them in
Tables 6, 8 and 9.
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Problem BKS GA-Prins BB-Pesch Beam-ACO PSO-Sha rrcp-osp

UB/LB t Best Avg t̄ Best Avg t̄ Opt. t̄ n̄

tai 7 7 1 435 436 435 0.4 435 435.0 2.1 435 435.0 2.9 435 1,6 354,3
tai 7 7 2 443 447 443 0.9 443 443.0 19.2 443 443.0 12.2 443 1,6 447,2
tai 7 7 3 468 472 468 30.9 468 468.0 16.0 468 468.0 9.2 468 4,3 1159,0
tai 7 7 4 463 463 463 5.3 463 463.0 1.7 463 463.0 3.0 463 1,5 477,4
tai 7 7 5 416 417 416 2.0 416 416.0 2.3 416 416.0 2.9 416 0,8 156,2
tai 7 7 6 451 455 451 95.8 451 451.4 24.8 451 451.0 13.5 451 11,5 3944,6
tai 7 7 7 422 426 422 167.7 422 422.2 23.0 422 422.0 13.6 422 2,3 601,4
tai 7 7 8 424 424 424 5.0 424 424.0 1.2 424 424.0 2.3 424 0,6 189,0
tai 7 7 9 458 458 458 0.8 458 458.0 1.1 458 458.0 1.3 458 0,3 109,0
tai 7 7 10 398 398 398 53.2 398 398.0 1.6 398 398.0 2.8 398 0,5 104,2
tai 10 10 1 637 637 637 30.2 637 637.4 40.1 637 637.0 9.4 637 8,3 1213,4
tai 10 10 2 588 588 588 70.6 588 588.0 3.0 588 588.0 3.5 588 4,8 666,9
tai 10 10 3 598 598 598 185.5 598 598.0 27.9 598 598.0 10.1 598 8,5 1161,3
tai 10 10 4 577 577 577 29.7 577 577.0 2.6 577 577.0 2.6 577 2,2 263,7
tai 10 10 5 640 640 640 32.0 640 640.0 8.6 640 640.0 4.0 640 6,6 829,7
tai 10 10 6 538 538 538 32.7 538 538.0 2.6 538 538.0 1.1 538 0,4 0,0
tai 10 10 7 616 616 616 30.9 616 616.0 5.2 616 616.0 3.9 616 4,4 402,2
tai 10 10 8 595 595 595 44.1 595 595.0 15.0 595 595.0 7.0 595 6,0 632,8
tai 10 10 9 595 595 595 39.8 595 595.0 5.1 595 595.0 4.1 595 5,8 540,8
tai 10 10 10 596 596 596 29.1 596 596.0 7.5 596 596.0 5.0 596 5,6 540,9
tai 15 15 1 937 937 937 481.4 937 937.0 14.3 937 937.0 4.3 937 4,4 0,0
tai 15 15 2 918 918 (918) 18000.0 918 918.0 21.1 918 918.0 9.1 918 26,5 2189,8
tai 15 15 3 871 871 871 611.6 871 871.0 14.3 871 871.0 4.3 871 3,4 0,0
tai 15 15 4 934 934 934 570.1 934 934.0 14.2 934 934.0 3.9 934 1,7 0,0
tai 15 15 5 946 946 946 556.3 946 946.0 25.7 946 946.0 5.7 946 8,5 1759,5
tai 15 15 6 933 933 933 574.5 933 933.0 16.6 933 933.0 4.7 933 3,0 0,0
tai 15 15 7 891 891 891 724.6 891 891.0 20.1 891 891.0 10.4 891 16,5 1896,0
tai 15 15 8 893 893 893 614.0 893 893.0 14.2 893 893.0 17.3 893 1,3 0,0
tai 15 15 9 899 899 899 646.9 899 899.7 4.1 899 899.2 26.6 899 39,2 4053,0
tai 15 15 10 902 902 902 720.1 902 902.0 18.1 902 902.0 6.9 902 22,9 2080,5
tai 20 20 1 1155 1155 1155 3519.8 1155 1155.0 54.1 1155 1155.0 16.6 1155 32,4 3339,6
tai 20 20 2 1241 1241 (1241) 18000.0 1241 1241.0 79.7 1241 1241.0 23.5 1241 588,4 45605,4
tai 20 20 3 1257 1257 1257 4126.3 1257 1257.0 48.6 1257 1257.0 19.6 1257 3,0 0,0
tai 20 20 4 1248 1248 (1248) 18000.0 1248 1248.0 49.1 1248 1248.0 19.6 1248 2,7 0,0
tai 20 20 5 1256 1256 1256 3247.3 1256 1256.0 49.1 1256 1256.0 19.6 1256 3,7 0,0
tai 20 20 6 1204 1204 1204 3393.0 1204 1204.0 49.3 1204 1204.0 19.6 1204 10,2 1879,0
tai 20 20 7 1294 1294 1294 2954.8 1294 1294.0 65.0 1294 1294.0 25.4 1294 86,9 8620,0
tai 20 20 8 1169 1171 (1169) 18000.0 1169 1170.3 27.9 1169 1170.0 50.9 1169 305,8 25502,2
tai 20 20 9 1289 1289 1289 3593.8 1289 1289.0 48.6 1289 1289.0 78.2 1289 1,7 0,0
tai 20 20 10 1241 1241 1241 4936.2 1241 1241.0 48.8 1241 1241.0 78.2 1241 1,1 0,0

Table 6: Results of the Taillard Benchmark.

The column BKS gives the best known solution for each instance. The value is in bold
when the proof of optimality has been obtained for the first time by our approach and is
marked with an asterisk when the solution was not known before. For each technique, the
best (Best) or average (Avg) objective value is in bold when it is optimal. Furthermore, let t
denote the solving time, t̄ the average solving time and n̄ the average number of nodes. We
give the results obtained by mP-ASG2 + BS of Sha and Hsu. But, the best objective value
is marked with a † if it is obtained instead with mP-ASG2.
All the experiments were performed on a cluster with 84 machines running Linux, each
node with 1 GB of RAM and a 2.2 GHz processor. We have implemented a scheduling
package based on the Choco constraint programming solver (Java) which provides variables,
resources and branching objects. An additional OSP package provides heuristics, model
creation, solver configuration and nogood recording.
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BB-Gue stopped the search to 250 000 backtracks (about 3 hours of CPU time on a
Pentium PC clocked at 133 MHz). BB-Pesch has been tested on a Pentium II 333 Mhz in
an MSDOS environment within a time limit of 3 hours. Beam-ACO used PCs with AMD
Athlon 1.1 Ghz CPU running under Linux and PSO-Sha used PCs with AMD Athlon 1.8
Ghz running under Windows XP. Beam-ACO and PSO-Sha were obtained by 20 runs on
each problem whereas GA-Prins performed only one run, so we do not mention its solving
time.

Results for the Taillard Instances (Table 6) The Taillard benchmark has a reputation
of being easy because no optimality proof is needed (the optimal objective is equal to the
lower bound) and it is solved easily by metaheuristics. On the contrary, the largest instances
are still difficult for exact methods. BB-Pesch was the first exact method to solve all 10×10
instances and most of the 15× 15 and 20× 20.
rrcp-osp has solved all instances which none of the current exact algorithms is capable of.
Furthermore, rrcp-osp is more robust than Beam-ACO which encountered failures on 4
instances. The results confirm also the reputation of the Taillard benchmark as the simple
randomization mechanism of crosh is really efficient. If the average number of nodes n̄ is
nil, then crosh is fully-optimal for the given instance, i.e. the twenty runs of crosh found
the optimum. crosh is partially-optimal if at least one run found the optimum. crosh is
fully-optimal for eleven instances and partially-optimal for a large number of instances. More
precisely, Table 7 gives the percentage of run where it found the optimum as a function of
the size. As all metaheuristics use complex constructive mechanisms, it could partly explain

size 7× 7 10× 10 15× 15 20× 20
% crosh 20% 28% 69% 61%

Table 7: Percentage of runs where crosh found the optimum.

why they are so successful on this benchmark. Last, Tai 20 20 02 and Tai 20 20 08 seem
more difficult to solve for all methods especially exact methods.
To conclude, rrcp-osp is the first exact method able to solve all instances of this benchmark
and in most cases, it does so in less time than the best metaheuristics.

Results for the Brucker et al. Instances (Table 8) As a result of the relatively low
difficulty of the Taillard instances, the Brucker et al. instances were generated in order to
be more difficult to solve. Indeed, one 7× 7 instance and five 8× 8 were still open and the
optimal objective is equal to the lower bound for the three remaining 8× 8 instances. Even
if BB-Pesch is able to solve eight 7× 7 instances, the growth of the runtime shows that 8× 8
would not be solved in a reasonable time.
On this benchmark, rrcp-osp solved all instances, gave four new optimality proofs and two
new optimal solutions. The average solutions also show a clear advantage of rrcp-osp over
others algorithms. Furthermore, two-thirds of the instances were solved within one minute
and only four in more than ten minutes. Although, crosh is fully-optimal for only one
instance and partially-optimal for two others, the combination of crosh and restarts seem
to be a good alternative to reach good solutions quickly. Indeed, other exact methods such
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as BB-Pesch could end with a very weak upper bound (see j7-per0). As shown above (section
5.1.3), nogood recording keeps the optimality proof tractable even on the hardest instances
(at most 3 hours 30 minutes).

Problem BKS GA-Prins BB-Pesch Beam-ACO PSO-Sha rrcp-osp
UB/LB t Best Avg t̄ Best Avg t̄ Opt. t̄ n̄

j6-per0-0 1056 1080 1056 133.0 1056 1056.0 27.4 1056 1056.0 42.1 1056 38,7 11031,8
j6-per0-1 1045 1045 1045 5.2 1045 1049.7 61.3 1045 1045.0 59.7 1045 0,3 198,0
j6-per0-2 1063 1079 1063 18.0 1063 1063.0 38.8 1063 1063.0 72.6 1063 0,6 222,8
j6-per10-0 1005 1016 1005 14.4 1005 1005.0 10.6 1005 1005.0 45.5 1005 0,8 262,8
j6-per10-1 1021 1036 1021 4.6 1021 1021.0 11.3 1021 1021.0 21.0 1021 0,3 176,7
j6-per10-2 1012 1012 1012 13.8 1012 1012.0 1.4 1012 1012.0 8.5 1012 0,5 187,6
j6-per20-0 1000 1018 1000 10.7 1000 1003.6 31.1 1000 1000.0 77.5 1000 0,4 207,9
j6-per20-1 1000 1000 1000 0.4 1000 1000.0 0.8 1000 1000.0 1.5 1000 0,2 160,6
j6-per20-2 1000 1001 1000 1.0 1000 1000.0 3.9 1000 1000.0 30.6 1000 0,4 178,7
j7-per0-0 1048 1071 (1058) 18000.0 1048 1052.7 207.9 1050 1051.2 104.9 1048 7777.2 1564191.1
j7-per0-1 1055 1076 1055 9421.8 1057 1057.8 91.6 †1055 1058.8 155.8 1055 16,5 3264,5
j7-per0-2 1056 1082 1056 9273.5 1058 1059.0 175.9 1056 1057.0 124.5 1056 16,4 3119,3
j7-per10-0 1013 1036 1013 2781.9 1013 1016.7 217.6 1013 1016.1 183.8 1013 19,1 3980,3
j7-per10-1 1000 1010 1000 1563.0 1000 1002.5 189.9 1000 1000.0 81.9 1000 6,4 1275,7
j7-per10-2 1011 1035 1011 15625.1 1016 1019.4 180.7 1013 1014.9 125.6 1011 583,1 128288,4
j7-per20-0 1000 1000 1000 48.8 1000 1000.0 0.4 1000 1000.0 1.9 1000 0,1 0,0
j7-per20-1 1005 1030 1005 318.8 1005 1007.6 259.1 1007 1008.0 143.2 1005 8,9 2129,7
j7-per20-2 1003 1020 1003 2184.9 1003 1007.3 257.3 1003 1004.7 160.9 1003 13,8 3149,8
j8-per0-1 1039 1075 – – 1039 1048.7 313.5 1039 1043.3 220.8 1039 11168.9 1648699,8
j8-per0-2 1052 1073 – – 1052 1057.1 323.4 1052 1053.6 271.9 1052 61,3 9378,7
j8-per10-0 ∗ 1017 1053 – – 1020 1026.9 346.5 1020 1026.1 205.0 1017 184,5 24547,1
j8-per10-1 ∗ 1000 1029 – – 1004 1012.4 308.9 1002 1007.6 202.2 1000 1099,3 165874,9
j8-per10-2 1002 1027 – – 1009 1013.7 399.4 1002 1006.0 162.8 1002 4596.5 673451
j8-per20-0 1000 1015 – – 1000 1001.0 237.2 1000 1000.6 136.9 1000 9,1 2103,7
j8-per20-1 1000 1000 – – 1000 1000.0 2.6 1000 1000.0 4.5 1000 0,4 128,0
j8-per20-2 1000 1014 – – 1000 1000.6 286.2 1000 1000.0 105.8 1000 6,7 1511,2

Table 8: Results of the Brucker et al. Benchmark.

Results for the Guéret and Prins Instances (Table 9) Also the Guéret and Prins
instances were generated in order to be difficult to solve which seems to be the case as crosh
could not find any of the optimal solution. Despite that and as opposed to metaheuristics,
rrcp-osp solved the benchmark easier than the Brucker et al. benchmark. Indeed, rrcp-
osp solved all instances, gave twenty-three optimality proofs and nine new optimal solutions.
Even, if BB-Pesch did not use the benchmark, these results are impressive. BB-Pesch did not
provide results but the benchmark is more difficult for both Beam-ACO and PSO-Sha than
Brucker et al. benchmark. Indeed, they found respectively only three and eleven optimal
solutions for the 9×9 and 10×10 instances. In this case, the average solutions and processing
times show a clear advantage of rrcp-osp over other algorithms in spite of being an exact
method. Last, the optimality proof seems easier for these instances than for the Brucker
et al. benchmark as all instances were solved within an average runtime of 30 seconds.

Summary The experimental results proved the efficiency and robustness of rrcp-osp,
matches the results of the best metaheuristics on the Taillard benchmark and outperforms
other exact and approached methods on the Guéret and Prins and the Brucker et al. bench-
marks. Randomization and restarts increase the robustness of rrcp-osp. Indeed, all runs
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Problem BKS BB-Gue GA-Prins Beam-ACO PSO-Sha rrcp-osp
Best Avg t̄ Best Avg t̄ Opt. t̄ n̄

gp06-01 1264 1264 1264 1264 1264.7 30.8 1264 1264.0 176.1 1264 0,3 79,6
gp06-02 1285 1285 1285 1285 1285.7 48.7 1285 1285.0 147.8 1285 0,2 172,0
gp06-03 1255 1255 1255 1255 1255.0 30.0 1255 1255.6 133.1 1255 0,1 123,1
gp06-04 1275 1275 1275 1275 1275.0 25.9 1275 1275.0 60.8 1275 0,1 66,8
gp06-05 1299 1299 1300 1299 1299.2 39.9 1299 1299.0 159.6 1299 0,1 66,7
gp06-06 1284 1284 1284 1284 1284.0 43.0 1284 1284.0 109.4 1284 0,1 67,8
gp06-07 1290 1290 1290 1290 1290.0 10.5 1290 1290.0 1.6 1290 0,1 62,3
gp06-08 1265 1265 1266 1265 1265.2 71.9 1265 1265.5 134.3 1265 0,1 51,2
gp06-09 1243 1264 1243 1243 1243.0 9.8 1243 1243.1 156.5 1243 0,2 169,7
gp06-10 1254 1254 1254 1254 1254.0 4.6 1254 1254.0 79.8 1254 0,3 240,8
gp07-01 1159 1160 1159 1159 1159.0 86.9 1159 1159.3 223.7 1159 0,9 366,1
gp07-02 1185 1191 1185 1185 1185.0 80.3 1185 1185.0 1.2 1185 0,6 4,0
gp07-03 1237 1242 1237 1237 1237.0 40.9 1237 1237.0 9.5 1237 0,7 53,4
gp07-04 1167 1167 1167 1167 1167.0 59.2 1167 1167.0 160.4 1167 0,7 143,4
gp07-05 1157 1191 1157 1157 1157.0 124.4 1157 1157.0 139.1 1157 0,8 303,4
gp07-06 1193 1200 1193 1193 1193.9 152.4 1193 1193.1 198.6 1193 0,8 305,6
gp07-07 1185 1201 1185 1185 1185.1 91.1 1185 1185.0 1.4 1185 0,6 47,1
gp07-08 1180 1183 1181 1180 1181.4 206.7 1180 1180.0 139.4 1180 0,7 116,2
gp07-09 1220 1220 1220 1220 1220.1 127.9 1220 1220.0 143.9 1220 0,7 176,4
gp07-10 1270 1270 1270 1270 1270.1 65.6 1270 1270.0 0.5 1270 0,6 4,0
gp08-01 1130 1195 1160 1130 1132.4 335.0 †1130 1140.3 277.3 1130 2,6 1484,8
gp08-02 1135 1197 1136 1135 1136.1 228.4 1135 1135.4 258.3 1135 1,2 303,9
gp08-03 1110 1158 1111 1111 1113.7 336.3 1110 1114.0 240.3 1110 1,6 621,3
gp08-04 1153 1168 1168 1154 1156.0 275.7 1153 1153.2 308.1 1153 1,4 565,6
gp08-05 1218 1218 1218 1219 1219.8 347.7 1218 1218.9 56.6 1218 1,2 205,4
gp08-06 1115 1171 1128 1116 1123.2 359.2 1115 1126.9 249.6 1115 2,3 1497,2
gp08-07 1126 1157 1128 1126 1134.6 296.8 1126 1129.8 287.3 1126 3,6 2775,0
gp08-08 1148 1191 1148 1148 1149.0 277.4 1148 1148.0 179.3 1148 2,0 1280,3
gp08-09 1114 1142 1120 1117 1119.0 279.0 1114 1114.3 223.6 1114 2,0 1139,5
gp08-10 1161 1161 1161 1161 1161.5 281.3 1161 1161.4 217.1 1161 1,1 244,4
gp09-01 1129 1150 1143 1135 1142.8 412.9 1129 1133.2 376.3 1129 3,6 1690,5
gp09-02a 1110 1226 1114 1112 1113.7 430.8 †1110 1114.1 335.9 1110 10.7 8000.0
gp09-03 ∗ 1115 1150 1118 1118 1120.4 428.0 †1116 1117.0 313.4 1115 2,8 1421,3
gp09-04 1130 1181 1131 1130 1140.0 549.7 1130 1135.8 328.7 1130 4,3 2218,3
gp09-05 1180 1180 1180 1180 1180.5 295.9 1180 1180.0 22.3 1180 1,7 265,4
gp09-06 1093 1136 1117 1093 1195.6 387.0 1093 1094.1 277.2 1093 4,6 2386,3
gp09-07 ∗ 1090 1173 1119 1097 1101.4 431.4 1091 1096.5 376.4 1090 5,9 3482,7
gp09-08 ∗ 1105 1193 1110 1106 1113.7 376.2 1108 1108.3 334.6 1105 3,1 1445,8
gp09-09 1123 1218 1132 1127 1132.5 402.6 †1123 1126.5 358.6 1123 3,2 1536,2
gp09-10 ∗ 1110 1166 1130 1120 1126.3 435.8 †1112 1126.5 297.7 1110 6,1 2783,8
gp10-01 1093 1151 1113 1099 1109.0 567.5 1093 1096.8 455.7 1093 29,8 6660,2
gp10-02 1097 1178 1120 1101 1107.4 501.7 1097 1099.1 382.7 1097 9,7 3139,3
gp10-03 1081 1162 1101 1082 1098.0 658.7 †1081 1090.3 450.8 1081 13,6 4196,0
gp10-04 ∗ 1077 1165 1090 1093 1096.6 588.1 1083 1092.1 371.8 1077 12,4 3920,7
gp10-05 ∗ 1071 1125 1094 1083 1092.4 636.4 †1073 1092.2 314.1 1071 16,3 4781,4
gp10-06 1071 1179 1074 1088 1104.6 595.5 1071 1074.3 289.7 1071 12,4 3893,8
gp10-07 ∗ 1079 1172 1083 1084 1091.5 389.6 †1080 1081.1 167.4 1079 8,7 2188,0
gp10-08 ∗ 1093 1181 1098 1099 1104.8 615.9 †1095 1097.6 324.5 1093 10,5 3476,7
gp10-09 ∗ 1112 1188 1121 1121 1128.7 554.5 †1115 1127.0 428.2 1112 10,1 3302,9
gp10-10 1092 1172 1095 1097 1106.7 562.5 1092 1094.0 487.9 1092 7,4 1724,0

a crosh runs only 10 times (see section 4.2) instead of its default parameter defined in table 2.

Table 9: Results of the Guéret and Prins Benchmark.

over a given instance gave the same objective value and only a small variations in time and
number of nodes.
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6. Conclusion

We have presented a Constraint Programming technique rrcp-osp to solve the Open-Shop
problem. This technique consists of a high-level declarative model (tasks, resources, prece-
dences), a CP scheduler (Choco package) and a specialized OSP module. The OSP module
computes an initial upper bound with a randomized constructive heuristic, builds the model
and configures the scheduler to perform an efficient search. The scheduler offers most recent
CP based scheduling features such as resource filtering algorithms, several precedence based
branching schemes, a randomization and restart mechanism along with nogood recording.

The computational results for the Taillard, Guéret and Prins and the Brucker et al.
benchmarks matched the best metaheuristics for Taillard benchmark and closed Guéret and
Prins and Brucker et al. benchmarks. It solved all instances, found eleven new optimal
solutions, gave twenty-seven new proofs and established rrcp-osp as the state-of-the-art
method to solve Open-Shop problem.

For further research, we will try to apply rrcp to other shop problems such as Flow-
Shop Problems and Job-Shop Problems. In addition, further research topics include how to
modify the randomization mechanism, proposing hybrid restart policies and improving the
nogood propagation.
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