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Abstract. Transportation is an important part of the forestry supply chain. Typically, 
several forest companies operate in the same region. However, coordination of the wood 
flows between two or more companies is rare. The recent identification of important 
potential savings has raised interest in collaborative transportation planning to support 
coordination. Even though substantial savings can be realised, two key questions exist: (i) 
how should the potential savings be divided among a group of collaborating companies 
and (ii) among the potential collaborating companies, how should the collaborating 
group(s) be formed? In this paper, the two questions are studied in a specific context: 
among the potential collaborating companies, a subset, denoted the leadings companies, 
performs the collaborative transportation planning on behalf of the others. We use the 
concept of a business model to detail such context. Based on the literature on network 
formation where potential savings are modelled by a cooperative game, four business 
models in four different scenarios of leading companies are thus explored. We propose a 
longest path model as a new method to determine the stable and credible group(s) in 
each computation. A case study including eight forest companies is described and 
analysed. 
Keywords. Game theory, OR in natural resources, transportation, graph theory, horizontal 
cooperation. 
Acknowledgements. The authors wish to thank Philippe Marier of FORAC Research 
Consortium for his contribution to this work. The authors would also like to acknowledge 
the financial support of the Natural Sciences and Engineering Research Council of 
Canada (NSERC) and the private and public partners of the FORAC Research 
Consortium. Finally, the authors wish to thank the Forestry Research Institute of Sweden 
for the data used in the case study as well as the eight companies involved. 
 
Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 
 
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
_____________________________ 

* Corresponding author: Jean-Francois.Audy@cirrelt.ca 
 
Dépôt légal – Bibliothèque et Archives nationales du Québec, 
                      Bibliothèque et Archives Canada, 2009 

© Copyright  Audy, D’Amours, Rönnqvist  and CIRRELT, 2009 



1. Introduction 

Transportation is an important part of the wood flow chain in forestry. Large volumes and 

relatively long transport distances together with increasing fuel prices and environmental 

concerns create the need for improved transportation efficiency. Typically, several forest 

companies operate in the same region. Harvest areas supply mills that transform the round wood 

comprised of several assortments (defined by e.g. species, dimension and quality) into a basket of 

end-products (e.g. lumber, veneer) as well as by-products (e.g. chips, sawdust). These latter are 

then shipped to other mills for further transformation (e.g. pulp, paper). However, coordination of 

the wood flows between two or more companies is rare, even when supply (e.g. harvest areas) 

and demand (e.g. mills) points from different companies are evenly distributed geographically 

within a region. Forsberg et al. (2005) describe a Decision Support System (DSS) based on 

Operations Research (OR) methods that allows the coordination of the wood flows between 

companies. Two opportunities of coordination are computed in this DSS called FlowOpt. 

Figure 1 illustrates the first opportunity: wood bartering between two companies. Four mills (i.e. 

two mills for company 1 and two mills for company 2) and a set of supply areas are considered. 

In the left part, each company operates by itself while in the right part both companies use all 

supply areas as a common resource. As a result, with wood bartering, volumes of some supply 

areas are exchanged between the companies to reduce the total travelling distance. 

 

 

Figure 1: Improvements in transportation efficiency using wood bartering 
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Figure 2 illustrates the second opportunity: backhauling between two companies. Two mills (i.e. 

a sawmill and a papermill) and their respective delivery trips (sawlogs to sawmill and pulp logs 

to papermill) are considered. In the left part, each company uses an individual (back and forward) 

delivery trip while in the right part the companies combine their individual delivery trips into one 

to reduce the total unloaded travelling distance (i.e. broken lines). 

 

 

Figure 2: Improvements in transportation efficiency using backhauling 

 

By improving transportation efficiency, this coordination leads to a reduction in transportation 

cost; see Forsberg et al. (2005) and Frisk et al. (2009) for industrial case studies conducted with 

the FlowOpt system. However, this coordination is conditional on collaboration between 

companies in transportation planning. As pointed out by Frisk et al. (2009), when coordination 

should be included in the integrated planning there is a number of questions that arise such as: (a) 

How to compute the potential savings of a coordination of the wood flows among a set of 

collaborating companies? (b) How should the potential savings be divided among the 

collaborating companies? We also add: (c) Among the potential collaborating companies, how 

should the collaborating group(s) be formed? For an empirical study of the three questions, we 

use an industrial case study with eight forest companies embedding potential savings with 

coordination of the wood flows. This case study is based on the same as described in Frisk et al. 

(2009). 
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To address question (a), we examine the literature on horizontal cooperation, see Cruijssen et al. 

(2007a) for a survey of this field. The European Union (2001) defines horizontal cooperation as 

“concerted practices between companies operating at the same level(s) in the market”. These 

cooperating companies can be competitors or not but they should perform the same type of 

activities and/or services rather than performing complementary activities and/or services, which 

is related to vertical cooperation. See Simatupang and Sridharan (2002) for an in-depth 

discussion on vertical cooperation and Mason et al. (2007) on lateral cooperation, which is the 

combining of both horizontal and vertical cooperation. Moreover, the notion of “company” 

should not be considered too restrictively. For instance Barratt (2004) notes that horizontal 

cooperation can also be conducted among the business units (e.g. departments, divisions) inside a 

sole company that works as if they themselves were a company. Cruijssen et al. (2007a) provides 

a more logistics oriented definition where “horizontal cooperation is about identifying and 

exploiting win-win situations among companies that are active at the same level of the supply 

chain in order to increase performance.”  

In this paper, the latter definition is more relevant to address question (a). Indeed, in addition to 

the case studies in Forsberg et al. (2005) and Frisk et al. (2009), there exist several other cases 

studies in the literature where companies obtain savings with horizontal cooperation in road 

transport planning, see e.g. Caputo and Minonno (1996), Bahrami (2002), Cruijssen et al. (2005), 

Palander and Väätäinen (2005), le Blanc et al. (2007), Cruijssen et al. (2007b,c), Ergun et al. 

(2007), Krajewska et al. (2007), Mason et al. (2007), Audy et al. (2008) and Clifton et al. (2008). 

In many of these case studies, the common savings are defined as the difference between the cost 

of the common solution (i.e. transportation planning of all companies together) compared to the 

sum of the cost of each stand-alone solution (i.e. transportation planning of each company alone). 

A decision support system such as the above-mentioned FlowOpt system allows computing both 

common and stand-alone solutions which in turn allows computing the potential common savings 

obtained through collaboration by any group of two to all eight forest companies of our case 

study. 

Cooperative game theory addresses both questions (b) and (c) in the study of cooperative game 

with transferable utility (TU-game). Any situation in which a group of companies, through 

cooperation (such as a collaboration in the transportation planning), can obtain a certain benefit 
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(such as a savings) which can be divided without loss between them is described in such a TU-

game. Moreover, in such a TU-game, a company is named a player and a group of cooperating 

companies a coalition. For a survey on the concepts and applications of game theory in the field 

of supply chain management, we refer to Leng and Parlar (2005), Cachon and Netessine (2006), 

Chinchuluun et al. (2008), Meca and Timmer (2008) and Nagarajan and Sošic (2008). In this 

paper, the case study embedding potential savings with coordination of the wood flows among 

the forest companies is described as a TU-game. However, given the requirement that 

coordination of the wood flows should be included in the planning, the TU-game is studied 

according to a specific context: among the eight companies, a subset, denoted the leading 

companies (LC), performs the planning on behalf of the others, denoted the non-leading 

companies (NLC). This context involves some modifications to the study of the TU-game and to 

describe them, we use the concept of a business model. A business model involves restrictions on 

question (b): the distribution of the benefit and, question (c): the formation of the coalition(s). To 

respect such restrictions in the study of the TU-game, we examine the literature on network 

formation where the potential cooperating savings are modelled by a TU-game such as the one 

described in our case study. By combining graph theory and both cooperative and non-

cooperative game theory, the literature on network formation is well suited to address questions 

(b) and (c). 

We explore four different business models and each of them is evaluated according to four 

leadership scenarios of distinct subsets of LC. The restrictions in the formation of the coalition(s) 

are the same among the four business models while there is a difference in the distribution of the 

benefits. Two business models follow a savings allocation rule to split the common savings 

among the collaborating companies while the two others follow a cost allocation rule to split the 

common cost among the collaborating companies. Moreover, in both the cost and the savings 

approaches, the allocation rule is customized according to a plausible altruistic or opportunistic 

behaviour by the LC. By adopting an opportunistic behaviour instead of an altruistic one, the LC 

aims to obtain additional benefit at the expense of the NLC. Thus, the comparison of the two 

business models within the same approach allows evaluating, question (b): how much additional 

benefit can the LC obtain by adopting an opportunistic behaviour instead of an altruistic one and, 

question (c): whether the final(s) coalition(s) that have been formed are the same or not? 
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Furthermore, the impact of the sequence in which the NLC are included in the coalition on the 

benefit of the LC is evaluated. 

The research contribution of our paper is twofold. First, by including practical business 

considerations in our study of questions (b) and (c), we analyze both questions according to the 

self-interested objective of a subset of the players rather than all of them, and we demonstrate the 

impacts of such an objective on the results of both questions. Second, we propose a longest path 

model as a new method to determine the stable coalitions required by our analysis in the first 

contribution. The literature on horizontal cooperation in transportation almost never pays 

attention to the formation of stable coalitions, rather, most of the literature presumes that the 

grand coalition (i.e. the coalition of all potential cooperating players) always forms, while in 

practice the players, in making their coalition formation decisions, can face substantial 

limitations, such as the ones raised by our business models. 

The paper is organized as follows. In Section 2 we introduce transportation planning in forestry 

and we describe the collaborative organisation managed by the LC. In Section 3 we describe the 

foundations of our TU-game while in Section 4 we describe the game through the field of 

network formation. In Section 5 we discuss the allocation rule for sharing the savings and we 

provide a tree representation of our game while in Section 6 we propose a longest path model to 

represent the game. In Section 7 we detail the case study and in Section 8 we present the 

numerical results. In Section 9 we discuss a number of practical aspects considering the proposed 

model and, finally, we make concluding remarks. 

2. Transportation planning 

Transportation planning in forestry is done in several steps and is commonly managed according 

to four time-perspective horizons: strategic, tactical, operational and real-time. Decisions at the 

strategic level often deal with forest management, wood procurement, road 

upgrade/building/maintenance considerations and transportation modes decisions. Tactical 

decisions mainly address planning issues from one week to one year (e.g. budget planning). On 

an annual basis, transportation is often integrated with harvesting planning, deciding on the 

catchment areas to supply the mills with the right wood assortments at the lowest cost. 

Operational decisions concern the planning of the entire route schedule for each individual truck 
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for one or many days. Real-time decisions concern the dispatching of the next trip (or part of a 

route) to one truck in the present situation (e.g. when a truck completes a delivery). There exist 

many papers and case studies on different OR problems occurring in transportation planning in 

forestry, see review papers such as Rönnqvist (2003), Epstein et al. (2007) and D’Amours et al. 

(2008). In order to allow companies to deal with such OR problems, many decision support 

systems have also been developed, see e.g. routing system such as ASICAM (Weintraub et al., 

1996), Åkarweb (Eriksson and Rönnqvist, 2003), MaxTour (Gingras et al., 2007), VTM (Audy et 

al., 2007) and RuttOpt (Andersson et al., 2008). 

The case study in this paper is based on a classical problem in OR, the transportation model, with 

some modifications for the forestry context and to allow the use of backhauling. Thus, the OR 

problem consists in determining the destination-mill(s) of the wood assortments volume, that is, 

which supply point(s) should deliver to which demand point(s) in what volume. With a common 

planning of the OR problem (i.e. a planning with the supply and demand points of all 

collaborating companies), we obtain a solution which provides all the cost-effective wood 

bartering and backhauling coordination opportunities among the collaborating companies. A 

complete description of this OR problem and the decision support system, FlowOpt, use for its 

planning is found in Forsberg et al. (2005). 

In the paper, the collaborating companies outsource the common planning of the OR problem to 

the LC. Thus, the LC acts as an organisation that manages the collaboration by, essentially, i) 

collecting the information (e.g. supply, demand), ii) performing the planning and, iii) providing 

each collaborating company with a ‘collaborative plan’ to put into practice. This ‘collaborative 

plan’ is specific to each company and is composed of two information parts. The first part 

advises the wood bartering and backhauling coordination opportunities within the supply and 

demand of the company. This information is easily extracted from the solution of the common 

planning of the OR problem. The second part concerns the monetary benefit obtained by the 

company in the collaboration. This information is computed with an allocation rule, which 

requires cost information obtained with common and stand-alone planning of the OR problem. 

More details on the allocation rule are provided in section 5. Our concept of a business model 

allows addressing both questions (b) and (c) according to the specific context of such a 

collaborative organisation. 
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The issues on how exactly, among the collaborating companies, the monetary exchanges are 

performed in order that each company reaches its monetary benefit is beyond the scope of this 

paper, as well as the definition of the exact information technology required by such a 

collaborative organisation. However, note that tailored allocation rules have recently been 

suggested in the literature to tackle the first issue, see e.g. Houghtalen et al. (2009) and Özener 

and Ergun (2008), while the second issue could be addressed by migrating the actual FlowOpt 

system to a web-based system such as the above-mentioned routing system Åkarweb and VTM. 

 

3. Definition of the cooperative graph-restricted game 

A TU-game is given by a pair (N,v), where N={1,2,3…,n} denotes a finite set of n players and v 

is the characteristic function, assigned to every coalition S N⊆  a worth v(S), representing the 

total benefit of this coalition of players when they cooperate. The coalition with all players is 

called the grand coalition and each coalition with only one player, a singleton coalition. A 

coalition structure is a partition of the n players into distinct coalitions (a player cooperates in 

only one coalition). A payoff represents the individual benefit of a player for its cooperation on a 

coalition. In the literature, the notion of n-person game with transferable utility is also used to 

represent a TU-game and the notion of utility is also used to represent the worth of a coalition. 

The worth of a coalition in a context of an OR problem with a minimization objective refers 

generally to a savings whereas with a maximization objective the worth refers to a profit. The OR 

problem of the case study has a minimization objective. Its solution provides the total 

transportation cost for the coalition while the worth of that coalition represents the total savings 

in transportation cost obtained through collaboration. Thus, the value of the characteristic 

function is computed from the solutions of the FlowOpt system. Specifically, the cost of a given 

coalition S, c(S), is obtained from the system as well as the cost of the singleton coalition jT  of 

each company j in the coalition S, ( ) ,   1,  ,  j j jc T T T S j S= ⊂ ∈ . The worth of that coalition S is 

easily computed by equation (1): 

v(S) = ( ) ( )j
j S

c T c S
∈

−∑   (1) 
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Obviously, v(ø) = 0 and v(S) = 0 if S is a singleton coalition. Also, the worth of a coalition does 

not depend on non-member players, i.e. there is no externality between the coalitions, and hence 

v(S) denotes the savings that the members of the coalition S can obtain on their own. 

According to the solutions of the FlowOpt system on each coalition S N⊆ , we can state certain 

properties of the studied game. The game is superadditive, since ( ) ( ) ( )v S T v S v T∪ ≥ + for any 

disjoint coalitions ,S T N⊆  such that S T∩ =∅ . In others words, a merge is always profitable (or 

at least not unprofitable). Also, the game is strictly monotonic increasing since ( ) ( )v T v Sf  for 

any coalitionsT S N⊂ ⊂ . Finally, the game is a non constant-sum since ( ) ( ) ( )v S v S v N+ ≠  for all 

complementary coalitions S and S  because all the savings provided by the opportunities in 

coordination of the wood flows between the players of the two distinct coalitions are lost. 

In classical cooperative game theory, it is assumed that any and all coalitions are likely to form. 

However, in many specific contexts, it is possible that some coalitions cannot be formed due to 

certain social, hierarchical, economical, communicational or other restrictions, see van den Brink 

et al. (2007) for a list of papers on each. Introduced in cooperative game theory by Myerson 

(1977), graph theory provides a suitable tool for explicitly modelling these restrictions in the 

game. In Myerson graph theory formulation, a node represents a player and an undirected arc (i.e. 

link between two nodes) represents a potential to have a bilateral cooperative agreement between 

players i and j. Myerson defines a cooperation structure as all the feasible links between the 

potential agreeing players. The players “connected” on a non-directed graph g resulting from a 

given cooperation structure form a coalition. Even if two players do not have a direct bilateral 

agreement between each other, they may still be in the same coalition if they are “connected” 

through intermediate player(s). All the resulting “unconnected” graphs (i.e. the network structure) 

furnish the set of the distinct coalitions formed among the N players (i.e. the coalition structure). 

Following the works of Myerson, directed graph were then introduced in the literature. By using 

oriented arc from node i to j instead of undirected arc, we can represent more complex 

restrictions such as, e.g. player i can propose to player j to cooperate, whereas, player j cannot 

propose to player i to cooperate unless there exists an oriented arc j to i. 

Our concept of business model introduces such graph restrictions in the study of the TU-game. 

Specifically, we impose a cooperation structure where one central player i, representing the 
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leading(s) company(ies), is directly connected to every other non leading company j by an 

oriented arc i to j and there are no other arcs. Thus, the LC is the only one that can propose to a 

NLC to collaborate and only one coalition, necessarily including the LC, can be formed. Figure 3 

shows an example of cooperation structure restricting a game with six players, player 1 being the 

leader. In the literature on network formation, this cooperative graph-restricted game without 

directed arcs is a special kind of cycle-free network called a ‘star’ in which there exists a node i, 

i.e. the centre of the star, such that every link in the network involves node i (Jackson, 2008). 

 

 

Figure 3: Example of a six-player cooperative graph-restricted game with player 1 being the LC 

 

4. Description of the network formation game in extensive form 

In classical cooperative game theory, the approach which is generally assumed during the 

formation of the coalitions is that any number of players can simultaneously join or abandon a 

coalition. However, in other contexts, only bilateral agreements to cooperate between players can 

occur and a player must maintain its previous agreement in any further bilateral agreement. For 

instance, Macho-Stadler et al. (2006) study the sequential merger among two companies, two 

groups of already merged companies or between a company and a group of already merged 

companies. Vidal-Puga (2007) studies a situation in which only one coalition is formed in the 

sequential inclusion of one new player. In a context similar to our case study, Cruijssen et al. 

(2005) study a procedure allowing a logistics service provider to form, with sequential offer to a 
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set of potential collaborating shippers, the grand coalition. Finally, Cruijssen et al. (2007c) study 

the development of a hub distribution network (i.e. a distribution network in which transhipment 

is allowed at specific intermediate facilities called hubs) by a step-wise procedure in which only 

one shipper at a time joins the coalition, which is the jointly investing hub distribution network 

hub. 

In this paper, our concept of business model imposes such approaches with permanent and 

sequential bilateral agreement in the study of the TU-game. Moreover, to respect the cooperative 

graph-restricted game such as the one in Figure 3, the bilateral agreement can only be proposed 

by the LC and the unique coalition is formed through a sequence of bilateral agreements between 

the LC and the NLC. In order to tackle such a sequential, permanent and player’ restricted 

bilateral agreement in the coalition formation, we draw on the literature on network formation 

where all the potential cooperating worth are modelled by a TU-game in extensive form. 

The literature on network formation incorporates, among other matters, the graph theory 

formulation supporting the modelling of the cooperative graph-restricted game; see Demange and 

Wooders (2005) and Jackson (2008) for exhaustive surveys on the network formation literature. 

Thus, the set of the “unconnected” graph g resulting from the links formed in the cooperative 

graph-restricted game (i.e. the network structure) provides the coalition structure. The modelling 

by a TU-game, instead of value functions on networks, of the worth obtained by each resulting 

coalition allows specifying the worth of the coalition represented by graph g on which players are 

connected with one another within the graph g and not on how exactly its players are connected 

within the graph g, see van den Nouweland (2005) for a survey of papers based on this modelling 

approach. Finally, the study of the game in extensive form, rather than in normal/strategic form, 

allows being more explicit about the issue of timing in the study of the game. Indeed, games in 

extensive form allow studying sequential bilateral agreements over many time periods while 

games in normal/strategic form are limited to bilateral agreements in one time period. 

Network formation games in extensive form were introduced in the paper of Aumann and 

Myerson (1988), see Bloch and Dutta (2008) for a recent survey of the literature on sequential 

models of network formation. In the game of Aumann and Myerson, an exogenous rule gives the 

sequence of pairs of players that have an opportunity to make a bilateral agreement, i.e. to form a 

link between them. Bilateral agreements cannot be broken once they have been made. All players 
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observe which pairs of players made or not an agreement when they have the opportunity to do 

so, i.e. we are in a game of perfect information. Mutual agreement is required to form a link and 

each player takes its decision with a look-ahead perspective, i.e. in addition to considering 

whether he will be better off with this link than without it, the player considers whether the 

formation of this link could end with a better or worse final payoff for him according to the 

further potential opportunities in links between other pairs of players. This look-ahead 

perspective is based on two assumptions in the game. First, the players take their decision in a 

self-interested way to maximize their own individual final payoff. Second, the worth of each 

resulting coalition (modelling by a TU-game) will be divided among its players according to an 

exogenous allocation rule, the Myerson value (Myerson, 1977). The Myerson value is an 

extension of the Shapley value (Shapley, 1953), a well-known allocation rule, to TU-game in 

which exactly how the players in a coalition are connected must be considered in the 

determination of the payoffs. 

The game by Aumann and Myerson is finite in time: the game ends when, after the last link has 

been formed, all pairs of players without a bilateral agreement have, according to the sequence 

given by the exogenous rule, a last opportunity to make it, but do not agree. An equilibrium 

concept, the subgame perfect Nash equilibrium (SPNE), is applied to provide a prediction about 

the decision of each player at each opportunity and thus, makes a prediction about the ending 

network structure. A SPNE is a refinement of the well-known Nash equilibrium (Nash, 1951) for 

a finite game of perfect information in game in extensive form. The network structure supporting 

a SPNE, and by extension each resulting coalition, is said to be stable and credible. A network 

structure is stable when the prediction about the set of decisions by each player is the ‘best 

response’ (i.e. allows the highest individual final payoff) against the sets of decision of the other 

players and, credible when these predictions hold at each ‘step’ of the game (i.e. at each 

opportunity to make a bilateral agreement). In a stable and credible network structure, no player, 

at any step of the game, could benefit from a modification in its predicted set of decisions. 

Our concept of business model in the study of the TU-game imposes a similar approach with two 

main differences. First, to respect the cooperative graph-restricted game, the sequence of pairs of 

players that have an opportunity to make a bilateral agreement is determined by the LC and each 

pair involves a LC. Second, we do not follow a two-stage process in which the coalitions are 
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formed and then the worth of each is divided among their players, rather, both are determined 

simultaneously. Thus, the proposition of bilateral agreement by the LC includes an immediate 

payoff for the NLC if this latter agrees and, in some business models, a description of the 

potential additional payoffs if other NLC also agree on further propositions by the LC. We put 

emphasis here on the word ‘potential’ since, in contrast to the immediate payoff, each of the 

additional payoffs for the NLC is conditional on the conclusion of a further bilateral agreement 

between the LC and other NLC’s. The procedure study by Cruijssen et al. (2005) involves such 

an announcement of the potential for additional payoffs within the proposition to collaborate. 

How are the immediate payoff and, in some business models, the potential additional payoffs 

computed by an allocation rule? Each of the four different business models explored in this paper 

uses a different allocation rule and each rule is described in the following section. 

5. Allocation rule of each business model 

Several cost/savings allocation rules exist in practice in the industry and in the field of 

cooperative game theory. An extensive review of cost allocation methods, mostly based on 

cooperative game theory such as the Shapley value and the nucleolus, can be found in Tijs and 

Driessen (1986) and Young (1994). The computing and analysis of some cost allocation methods 

on a case study similar to the one in the paper is presented in Frisk et al. (2009) as well as a new 

method, based on a linear programming model, that aims for proportionally equal payoff to each 

player. 

There is no single and all-purpose method to achieve cost/savings allocation. Cooperative game 

theory provides a set of properties to study cost/savings allocation methods among a set of 

players. When choosing an existing method or developing a new one, we seek one that satisfies 

specific properties which are considered essential to meet in our context. In the context of our 

collaborative organisation, three of these properties must be satisfied by the allocation rule of 

each of the four business models. First, the propriety of efficiency, which requires that the 

common cost/savings of a coalition must be split entirely among its players. Second, the 

propriety of individual rationality, which requires that no player is worse off by collaborating on 

a coalition. Third, the cross monotonic propriety, which requires that the payoff of a collaborating 

player does not decrease with the conclusion of new bilateral agreements between the LC and 

other NLC. We had a fourth propriety recently introduced in the field of cooperation in 
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transportation (see e.g. Audy et al. (2008), Özener and Ergun (2008), Perea et al. (2008)), which 

is a reinforcement of the individual rationality: no collaborating player can receive a null payoff. 

In other words, being a participant in a coalition must offer a positive benefit to the collaborating 

player. 

The allocation rules of the four business models are based on the same allocation scheme: an 

allocation according to the stand-alone weighted cost of each player in the coalition. This 

allocation scheme is easy to understand and to compute. Thus, each allocation rule is a close 

version of the others according to i) a cost or a savings allocation approach and, ii) an altruistic or 

an opportunistic behaviour by the LC. In contrast to more advanced methods, the aim is to 

demonstrate through simple and easily customized allocation rules how the behaviour of the LC 

can affect benefit sharing among the collaborating players as well as the development and the 

size of the coalition. 

Two business models follow a cost allocation rule while the two others follow a savings 

allocation rule. The cost approach consists in allocating the cost of a coalition S while the 

savings approach consists in allocating the worth of a coalition S. Thus, the payoff of a player i, 

iv , is computed by equation (2) where iy  is the cost/savings-value allocated to player i by the 

cost/savings allocation rule: 

iv = ( )i ic T y−   (2) 

In both the cost and the savings approaches, the allocation rule is customized according to a 

plausible altruistic and opportunistic behaviour of the LC. The distinction between both 

behaviours concerns the share of the marginal worth increase when a player j accepts a bilateral 

agreement proposed by the LC, which is the difference between the worth of the ‘new’ coalition 

S and the ‘previous’ coalition T, such that { }\T S j= . The allocation rule coming from an 

altruistic behaviour shares the marginal worth increase among all the players of the ‘new’ 

coalition S while the one coming from an opportunistic behaviour shares the marginal worth 

increase only between player j and the LC. Thus, the proposition of bilateral agreement by an 

opportunistic’ LC includes only one payoff for the NLC (i.e. the immediate payoff) while the 

proposition by an altruistic’ LC includes the immediate payoff as well as a description of the 

potential additional payoffs. Sprumont (1990) introduces the notion of population monotonic 
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allocation scheme to describe a situation in which, as with our two allocation rules customized to 

imitate an altruistic behaviour by the LC, the payoff to every player increases as the coalition to 

which he belongs grows larger (i.e. new player joins). The allocation rules of each of the four 

business model are: 

Business model 1: the cost allocation approach with altruistic behaviour 

According to the rule of this business model, each time a player j accepts the LC’s proposition, 

the cost of the ‘new’ coalition S, c(S), is reallocated among all its players. The allocation is 

performed according to the proportion of the player’s stand alone cost of the sum of all the 

players’ stand alone cost in coalition S. The fundaments of this rule do not respect the cross 

monotonic propriety. However, by an appropriate selection of the sequence in which the LC 

makes its proposition of bilateral agreement to NLC, it is possible to respect the cross monotonic 

propriety in the case study. 

Business model 2: the cost allocation approach with opportunistic behaviour 

According to the rule of this business model, each time a player j accepts the LC’s proposition, 

the cost allocated to the LC is recomputed while the cost allocated to the NLC is computed only 

once, that is, when the NLC accepts the proposition. Specifically, for each ‘new’ coalition S, the 

allocation of the cost of coalition S is computed in three steps. First, the cost allocated to player j 

is computed: this is the part of the cost of coalition S that corresponds to the proportion of its 

stand alone cost on the sum of all the players’ stand alone cost in coalition S. Second, the 

remaining part of the cost of coalition S is computed by withdrawing the cost allocated to player j 

in the first step and all the cost allocated to the NLC in the previous iterations. Finally, the 

remaining cost is allocated among the LC according to the proportion of the LC’s stand alone 

cost on the sum of all the LC’ stand alone cost. 

Business model 3: the savings allocation approach with altruistic behaviour 

According to the rule of this business model, each time a player j accepts the LC’s proposition, 

the marginal worth increase between the coalition T and the ‘new’ coalition S is allocated among 

all the players of coalition S. The allocation is performed according to the proportion of the 

player’s stand alone cost on the sum of all the players’ stand alone cost in coalition S. 
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Business model 4: the savings allocation approach with opportunistic behaviour 

According to the rule of this business model, the marginal worth increase when player j accepts 

the LC’s proposition is allocated only between the player j and the LC. Specifically, for each 

‘new’ coalition S, the allocation of the marginal worth increase between coalitions T and S is 

computed in three steps. First, the part of the marginal worth increase allocated to player j is 

computed: it is the part of the marginal worth increase that corresponds to the proportion of its 

stand alone cost on the sum of all the players’ stand alone cost in coalition S. Second, the 

remaining part of the marginal worth increase is computed by withdrawing the part allocated to 

player j in the first step. Finally, the remaining part of the marginal worth increase is allocated 

among the LC according to the proportion of the LC’ stand alone cost on the sum of all the LC’ 

stand alone cost. 

 

5.1. Tree representation of the network formation game in extensive form 

A finite game of perfect information in extensive form such as the one in our paper can be 

represented by a simple tree where a node has a player’s label and the outgoing edge(s) of this 

node corresponds to the available decision(s) for the player at this step of the game. At each step, 

the player can make only one decision, i.e. select only one of the available outgoing edge(s). 

Figure 4 shows a small example of simple tree with three players, player 1 being the LC, in 

which the cost of coalition S, c(S), are: c({1}) = 4, c({2}) = 8, c({3}) = 5, c({1,2}) = 10, c({1,3}) 

= 8, c({2,3}) = 10, c({1,2,3}) = 13. 

The root node corresponds to the first player that must make a decision and, according to its 

decision, the subsequent node, if any, corresponds to the next player that would have to make a 

decision, and so on. For instance, the tree starts with player 1 that must take a decision among 

three outgoing edges: one is labelled ‘E’ while the two others are labelled ‘P’. In this paper, our 

concept of business model imposes the LC at the root nodes and the available decisions to the LC 

and the NLC must be different. Thus, the LC is allowed to propose (‘P’) a new bilateral 

agreement to a specific NLC or to end (‘E’) the game by not proposing any new bilateral 

agreement. The NLC are allowed to accept (‘A’) or refuse (‘R’) the proposition of bilateral 

agreement by the LC. When the NLC accept the LC’ proposition, a link is formed between them 
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and individual payoffs are obtained. In our network formation game, only the outgoing edges 

labelled ‘A’ can form links and provide individual payoffs. To keep the tree as short as possible, 

we represent the end of the game when a NLC refuses the offer by the LC while, according to 

any of our four business models, the LC has the opportunity to continue the game with the other 

NLC’s without bilateral agreement or, even later, proposes again a bilateral agreement to a NLC 

that has previously refused. 

A sequence of decisions by the players determines a path through the tree. The individual final 

payoffs (computed with the allocation rule of business model 4 in Figure 4) for the respective 

players are given at the end of each potential path, labelled ‘a’ to ‘i’ in Figure 4. Each path 

provides an answer to both questions (b) and (c). For instance, path ‘c’ corresponds to, question 

(b): the formation of coalition {1,2} and the singleton coalition {3}, and, question (c): a 

individual final payoff of 0.67 for player 1, 1.33 for player 2 and zero for player 3. Moreover, a 

path tells us details about the issue of timing in the answers to both questions (b) and (c). For 

instance, path ‘e’ tells us that player 1 first takes the decision to make a proposition to player 2 

and then to player 3, while in path ‘i’ it is the opposite case. And, as we can see by comparing the 

individual final payoffs of paths ‘e’ and ‘i’, the choice of the sequence to reach the same coalition 

(the grand coalition in paths ‘e’ and ‘i’), has an impact on the individual final payoff of player 1 

as well as the two other players. 
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Figure 4: Example of a three-player network formation game in extensive form with player 1 

being the leading company 

 

By providing a prediction about the decision of each self-interested player at each node, the 

solution concept of subgame perfect Nash equilibriun (SPNE) allows identifying which path, 

among all potential paths, will be taken and thus, to answer to questions (b) and (c). The method 

of backward induction could be used to determine the path supported the SPNE in the game. 

Essentially, this method consists in starting the predictions at each decision node without 

successor and reaching back in the tree to the root node. For instance, path ‘e’ supports the SPNE 

in the game represented by Figure 4. In this paper, a longest path model is proposed as a new 

method to determine the path supported the SPNE, i.e. to determine the stable and credible 

coalitions. 
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6. Longest path model to represent the network formation game in extensive form 

The objective of the LC is the formation of a stable and credible coalition in such a way that they 

will maximize their individual final payoff, as opposed to that of each of the players. To 

determine the optimal path according to this objective, we can formulate our network formation 

game in extensive form by an OR problem: the longest path problem. Given a network of 

oriented arcs from node i to node j with each a length value, the objective in this OR problem is 

to find the longest path in the network to reach a sink node 0* starting by a source node 0. The 

indexes, sets, parameters and decision variables used in the longest path model are defined in 

Table 1. 

 

Table 1: Indexes, sets, parameters and decision variables 

Indexes 

S : a coalition 

T : a coalition, such that { }\T S j=  

0 : the pseudo-player source 

0* : the pseudo-player sink 

Sets 

A : set of all oriented arcs to go from coalition S to T 

A’ : set of all oriented arcs to go from coalition S to T, such that 

the pseudo-player sink is excluded from the coalition T, 

'A A⊂  

Parameter 

,S TM  : marginal payoff increase for the LC from coalition S to T 
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Decision variable 

,S Tx  : 1 if the optimal path goes from coalition S to T, 0 otherwise

 

The longest path problem [LPP] can be formulated as following: 

 

[LPP]  
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In this context, a node represents an ‘ordered’ coalition, e.g. the coalition ‘1,2’ is different from 

the coalition ‘2,1’ even if they regroup the same players. The value of the oriented arcs represents 

the marginal payoff increase for the LC when player j accepts the proposition of bilateral 

agreement and thus, coalition T is formed from coalition S, such that { }\T S j= . Each of these 

values is computed according to the allocation rule of a specific business model. All oriented arcs 

starting from the pseudo-player source or arriving at the pseudo-player sink have a null marginal 

worth increase. The objective of the [LPP] is to find the path traversed in the network (i.e. from 

the pseudo-player source to the pseudo-player sink) that allows the total maximal payoff to the 

LC, which is the sum of each of the oriented arc values on this path. The constraints (3) ensure 

that the formation of the coalition is made by sequential bilateral agreement. The constraints (4) 

and (5) ensure that only one coalition is created. 
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An illustrative numerical example 

In order to illustrate the formation of the coalition following the [LPP] formulation, we 

reconsider the small example of three players in Figure 4 and in which the worth of coalition S, 

v(S), are: v({1}) = 0, v({2}) = 0, v({3}) = 0, v({1,2}) = 2, v({1,3}) = 1, v({2,3}) = 2, v({1,2,3}) = 

4. Since player 1 is the LC and he (or she) can only propose a bilateral agreement to one NLC at 

the time without the obligation to make a proposition to all of them, the set A is equal to ( (0,01), 

(01,012), (01,013), (01,010*), (012,0123), (012,0120*), (013,0132), (013,0130*), (0123,01230*), 

(0132,01320*) ) while the set A’ is equal to ( (0,01), (01,012), (01,013), (012,0123), (013,0132) 

). Figure 5 shows the graph on which the [LPP] must be solved. The value on each oriented arc 

represents the marginal payoff increase for the LC if player j accepts their proposition and the 

coalition T is formed from coalition S, such that { }\T S j= . In order to follow the logic of the tree 

representation of our game in Figure 4, we deliberately represent the graph of the [LPP] with a 

top-to-bottom orientation of the source and the sink, rather than a right-to-left as in the OR 

literature. Moreover, the letters in parentheses on each of the pseudo-players’ sink entering arcs 

refers to the paths ending with an edge labelled ‘E’ in the tree representation of the game in 

Figure 4. 

 

 

Figure 5: the [LPP] representation of network formation game in extensive form 
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The mathematical model based on the [LPP] can be stated as: 

01,012 01,013 012,0123 013,01320.67 0.44 1.41 1.59x x x x+ + +MAX  

s.t. 

0,01 01,012 01,010* 01,013

01,012 012,0123 012,0120*

01,013 013,0132 013,0130*

012,0123 0123,01230*

013,0132 0132,01320*

( ) 0
( ) 0
( ) 0

( ) 0
( ) 0

x x x x
x x x
x x x
x x
x x

− + + =

− + =

− + =

− =

− =

  (3) 

0,01 1x =   (4) 

01,010* 012,0120* 013,0130* 0123,01230* 0132,01320* 1x x x x x+ + + + =  (5) 

{ } ( ), 0,1    ,S Tx S T A∈ ∀ ∈  

 

In Figure 5, we can see that the optimal path for the LC is the longest path 0, 1, 2, 3, 0* with a 

total individual final payoff of 2.08 for the LC. This total individual final payoff corresponds to a 

reduction of 52% of the LC’s stand-alone cost (i.e. c({1}) = 4) as well as a catch by the LC of 

52% of the worth generated by the final coalition (i.e. v({1,2,3}) = 4). Obviously, the optimal 

path is the path supporting the SPNE, i.e. the path which determines the stable and credible 

coalition(s). 

Moreover, by following the optimal path, instead of the one we denote by the worst path (i.e. in 

Figure 5, the path 0, 1, 3, 2, 0* with a total final payoff of 2.03), the LC obtain a 0.05 (2.5%) 

additional payoff. The worst path must leads to the exact same final coalition as the optimal path 

(in Figure 5: the grand coalition) but with the sequence providing the lower total final individual 

payoff to the LC. Finding the worst path is equivalent to solving the shortest path problem with 

the constraint to connect all the companies connected by the optimal path. 

Finally, as for a path in the tree representation of the game in Figure 4, the answer, with the 

timing issue, on both questions (b) and (c) can be deduced. 
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7. Numerical results 

The numerical results are based on a case study involving eight forest companies operating in 

Sweden. For an average Swedish mill, the one-way delivery distance for round wood is 80 km 

and transportation operations account for 27% of its supply cost (Frisk, 2008). Moreover, 

transportation represents up to 0.45 billion €/year for the Swedish forest companies and 

approximately a third of this cost is fuel (Frisk, 2008). Given this large amount of money spent 

on transportation, a small cost reduction can lead to important savings. Furthermore, 

transportation is not a core activity for the wood processing mills and, consequently, this reduces 

the level of risk associated with the collaboration. These conditions (i.e. high potential return, low 

risk, not core activity) provide a good business context for the establishment of a collaborative 

organization in transportation. 

7.1. Description of the case study 

The data has been taken from a case study done by the Forestry Research Institute of Sweden for 

eight participating forest companies. The companies operate in southern Sweden and cover 

different geographical areas. Figure 6 shows the operation areas of the eight companies. The 

darker polygons indicate high volume supply areas of one or more supply points while bigger 

circles represent high volume demand points. Company 2 covers the entire region while the 

others only one or more parts. The data represent the transports carried out during one month for 

a total of 898 supply points, 101 demand points and 12 wood assortments (depending on e.g. 

species and dimensions). 
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Figure 6: The operation areas for the eight companies 

The companies are different volumes and Table 2 shows the company weighted volume 

transported and their stand alone weighted cost. We see that the company weighted volume is 

strongly linked to the company stand alone weighted cost. 

Table 2: Proportion of volume and stand alone cost per company 

Company Volume Stand-alone cost 

1 8.8% 8.6% 

2 34.2% 34.8% 

3 10.1% 11.1% 

4 5.0% 4.8% 

5 26.3% 24.0% 

6 10.7% 11.4% 

7 4.2% 4.5% 

8 0.7% 0.8% 
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To be able to solve the [LPP] according to the four business models and with any leadership 

scenario among the eight forest companies, upstream work on the data in the case study is 

required. First, we need to compute, with equation (1), a worth for every coalition S N⊆ . To use 

equation (1), the common planning of the OR problem of all combinations of coalition involving 

2 to 8 of the companies has been done with the FlowOpt system in order to provide the cost of 

247 (28-8-1) distinct combinations of a coalition. Also, to obtain the stand alone cost of each 

player (e.g. the eight singleton coalitions), the planning of the OR problem with only the supply 

and demand points of the company has also been done with the FlowOpt system. Second, 

according to the above-mentioned allocation rule in each of the four business models, we need to 

compute the value for each oriented arc, which is the marginal payoff increase for the LC from 

coalition S to T, such that { }\T S j= . 

 

7.2. Description of the leadership scenario 

Each business model has been evaluated according to four leadership scenarios in which one, two 

or four companies among the eight are the LC. The choice of these four leadership scenarios is 

based on the below-mentioned hypothesis and other leadership scenarios could be evaluated. 

Leadership scenario 1: the larger player 

According to the two opportunities in coordination of the wood flows in Figures 1 and 2, the 

companies with a large volume evenly distributed over different geographical areas are usually 

the companies who can generate the greatest savings by collaborating with any other company. 

Thus, it appears realistic to suppose that one or more LC’s with a large volume and a fairly good 

geographical cover (in both harvest areas and mills) could reach a ‘critical size’ to initiate the 

collaboration with initial propositions including enough payoffs to convince a few first players to 

accept to collaborate. Then, with a greater size, substantial payoff can be generated with any 

player outside the actual coalition and thus facilitate the snowball effect on the growth of the 

collaborative organisation. With more than a third of the total volume carried and harvest areas 

and mills covering the entire region, company 2 alone surpasses our notion of ‘critical size’ and it 

is the LC in this first scenario. 
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Leadership scenario 2: the second largest player with a player completing its coverage 

In this second scenario, companies 1 and 5 are jointly the LC. The sharing of leadership by the 

two companies is mutually advantageous. They obtain together a weighted volume and a cover of 

the different geographical areas almost equal to company 2 and thus, together they reach a 

business position to initiate the collaboration that is as advantageous as that of company 2. Also, 

for the second largest company 5, a shared leadership with company 1 specifically is highly 

strategic from the point of view of the geographic cover. Both companies do not operate within 

the same geographical areas and the combination of their respective geographic cover fits like 

two pieces of a puzzle. Their collaboration only generates a modest savings of 0.8% ($110,146) 

which is not surprising for two players with adjacent geographic cover. 

Leadership scenario 3: the two mid-size players 

In this third scenario, companies 3 and 6 are jointly the LC. These two companies are the two 

mid-size players among the eight players. Together, they increase their weighted volume and 

obtain a partial, but well distributed coverage of the entire region. Their similarities (i.e. volume 

and dispersed cover) favour a joint leadership while together they generate a savings of 1.3% 

($121,897). 

Leadership scenario 4: the four smaller players 

In this last scenario, companies 1, 4, 7 and 8 are jointly the LC. These companies are the four 

smaller players among the eight companies. Together, they become the third largest weighted 

volume and obtain coverage in many geographical areas. Their similarities (i.e. small volume, 

narrow and isolated coverage) favour a joint leadership while they generate together a savings of 

1.7% ($134,188). 
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8. Results analysis 

Table 3 shows the results with leadership scenario 1 computed according to the four different 

business models. Tables 4, 5 and 6 show the same results for, respectively, leadership scenario 2, 

3 and 4. In the columns “Optimal path” and “Worst path” we provide, respectively, the more and 

less lucrative paths for the leading company(ies). The optimal path is the path that supports a 

SPNE while the worst path leads to the exact same final coalition as the optimal path but with the 

sequence providing the lower total final individual payoff to the LC. The difference between both 

optimal and worst paths is provided, in percentage and cost value, in the column “Difference”. 

In business model 1, all paths which lead to the final coalition maximizing the total individual 

final payoffs of the LC are optimal paths. Consequently, we indicate the number of optimal paths 

that are available for the LC to form this final coalition. In leadership scenario 4 (i.e. the four 

smaller players), we should note an exception to the previous statement. In order to respect the 

cross monotonic propriety in the allocation, two paths (i.e. 3, 5, 2, 6 and 3, 5, 6, 2) among the 

entire 24 potential paths to reach the grand coalition are not allowed since, in both, the payoffs of 

player 3 are reduced by 0.19% ($9,079) when player 5 joins the coalition. In the three other 

leadership scenarios, all the available optimal paths respect the cross monotonic propriety. 

Column “LC total final payoff” shows, in percentage (compared to the total stand-alone cost of 

the LC) and in cost value, the total final payoff of the LC. The last column shows the percentage 

of the worth of the final coalition taken by the LC or, in other words, the percentage part the final 

payoff of the LC represented on the sum of the final payoff obtained by all the collaborating 

companies. The case study highlights several results. In the next subsections, we analyse a 

number of them. 
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Table 3: Main results of leadership scenario 1 - the larger player 

Business 

model Optimal path Worst path Difference LC total final payoff 

LC 

proportion 

of the total 

worth of the 

final 

coalition 

1 All the 720 paths that lead to the final coalition {2,3,4,5,6,7,8} 9.5% $1,400,519 38.0%

2 1, 5, 8, 4, 6, 7, 3 3, 7, 6, 4, 8, 5, 1 5.2% $761,378 16.2% $2,383,788 60.5%

3 3, 7, 8, 4, 6, 5, 1 5, 1, 6, 8, 4, 7, 3 2.9% $426,256 15.0% $2,201,067 55.8%

4 4, 1, 6, 3, 8, 7, 5 3, 5, 6, 7, 4, 1, 8 1.1% $161,356 22.4% $3,282,559 83.3%

 

Table 4: Main results of leadership scenario 2 - the second largest player with a player 

completing its coverage 

Business 

model Optimal path Worst path Difference LC total final payoff 

LC 

proportion 

of the total 

worth of the 

final 

coalition 

1 All the 720 paths that lead to the final grand coalition 9.3% $1,286,565 32.6%

2 2, 8, 4, 6, 7, 3 7, 3, 2, 4, 6, 8 3.1% $432,052 16.2% $2,239,878 56.8%

3 7, 3, 4, 8, 2, 6 2, 6, 8, 4, 7, 3 1.6% $218,603 13.5% $1,868,065 47.4%

4 2, 8, 4, 7, 6, 3 3, 2, 6, 7, 8, 4 1.6% $214,011 22.1% $3,049,227 77.4%
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Table 5: Main results of leadership scenario 3 - the two mid-size players 

Business 

model Optimal path Worst path Difference LC total final payoff 

LC 

proportion 

of the total 

worth of the 

final 

coalition 

1 All the 120 paths that lead to the final coalition {2,3,4,5,6,7,8} 9.5% $908,812 24.7%

2 1, 5, 8, 4, 2, 7 7, 4, 2, 8, 5, 1 8.6% $818,603 19.8% $1,889,297  47.9%

3 7, 4, 2, 8, 5, 1 5, 1, 2, 8, 4, 7 4.0% $377,708 16.9% $1,606,806 40.8%

4 1, 5, 8, 4, 7, 2 2, 1, 4, 5, 7, 8 3.0% $288,121 29.5% $2,807,986 71.2%

 

Table 6: Main results of leadership scenario 4 - the four smaller players 

Business 

model Optimal path Worst path Difference LC total final payoff 

LC 

proportion 

of the total 

worth of the 

final 

coalition 

1 

All the 24 paths that lead to the final grand coalition except the 

paths 3, 5, 2, 6 and 3, 5, 6, 2 9.3% $736,118 18.7%

2 5, 2, 6, 3 3, 6, 2, 5 10.6% $838,410 24.9% $1,963,205 49.8%

3 3, 6, 2, 5 5, 2, 6, 3 3.4% $267,622 16.5% $1,305,700 33.1%

4 2, 6, 5, 3 3, 6, 2, 5 3.9% $309,085 36.3% $2,863,558 72.6%
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8.1. Business model 1 and player 1 

If player 1 is one of the LC in business model 1 (i.e. leadership scenarios 2 and 4), the grand 

coalition will form with a 9.3% final individual payoff for each of the eight players. On the other 

hand, if player 1 is not one of the LC (i.e. leadership scenarios 1 and 3), the final coalition {2, 3, 

4, 5, 6, 7, 8} will form and player 1 will end in a singleton coalition {1}. Alone in its singleton 

coalition, player 1 is therefore the loser of this result with a null payoff while the seven other 

players receive a 9.5% final individual payoff. The reason for this exclusion is simple: even the 

addition of player 1 to coalition {2, 3, 4, 5, 6, 7, 8} results in a marginal worth increase of 0.61%, 

according to the altruistic cost allocation rule in business model 1, its addition reduced by 0.2% 

the payoffs of the seven other players. In other words, in business model 1, at the expense of the 

other players, player 1 receives more benefits than its volume can generate in the grand coalition. 

Overall, the exclusion of player 1 in leadership scenarios 1 and 3 leads to final coalitions that do 

not capture the entire economic potential in collaboration. The loss of overall supply chain 

profitability because of self-interested players has been greatly studied in the literature on vertical 

cooperation in supply chain management, see e.g. Simatupang and Sridharan (2002). 

If for any reason, excluded player 1 has an influence on the LC (e.g. player 1 assumes a portion 

of the supply of one or several of the mills of leading player 2 in the leadership scenario 1), 

player 1 can use its influence to force leading player 2 to make a bilateral agreement proposition. 

Such a notion of influence of a potential user, of an on-going implementation inter-organizational 

system, against another potential user has been studied in the field on information systems, see 

e.g. Boonstra, A., and J. de Vries (2008). To maintain its final individual payoff, leading player 2 

must propose a final individual payoff to player 1, which is, at the maximum, equal to the 

marginal worth increase of 0.61%. By accepting an individual payoff equal to its marginal worth 

increase, player 1 obtains 76.2% (a loss of $80,820) of the individual payoff that he would have 

obtained if he had been one of the LC or if we had addressed the formation of the coalition 

according to a maximization objective of the coalition’s worth rather than the total final 

individual payoff of the LC (i.e. a subset of the players). 
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8.2. Altruistic versus opportunistic behaviour 

In the four computed leadership scenarios, by adopting an opportunistic behaviour rather than an 

altruistic one in the same cost/saving allocation approaches, the leading companies have obtained 

an additional individual payoff of 6.9-19.7%. The greater difference belongs to the last leadership 

scenario in which the four smaller players have increased their total individual payoff by 15.6% 

(a gain of $1,227,087) and 19.8% (a gain of $1,557,858) in respectively, the cost and saving 

allocation approaches. Obviously, this additional benefit for the LC with an opportunistic 

behaviour was made at the expense of the benefit share for the NLC but, as with the adoption of 

altruistic behaviour, all the above-mentioned proprieties in the allocation (e.g. individual 

rationality) were respected with the opportunistic behaviour. 

In 2008, three of the eight companies involved in the case study started a collaboration where 

monthly coordinated planning was done (Lehoux et al., 2009). Based on this recent development, 

we note that an altruistic behaviour seems more suitable to a collaborative organization driven by 

one or a set of shipping companies (as in our leadership scenarios) while an opportunistic 

behaviour seems closer to a collaborative organization driven by one or several carriers or third 

party logistics. More details on the latter collaboration organization are provided in Table 7. 

8.3. Optimal and worst sequence 

In business models 2 to 4 in the four computed leadership scenarios, by taking to their advantage 

the decision on the sequence in which to propose a bilateral agreement to the NLC, the LC have 

obtained a 1.1-10.6% additional total payoff. For instance, in business model 2 with the 

leadership scenario 1, leading player 2 obtains an additional individual payoff of 5.2% (a gain of 

$761,378) by following the (optimal) sequence 1, 5, 8, 4, 6, 7, 3 rather than the (worst) sequence 

3, 7, 6, 4, 8, 5, 1. Figure 7 shows both optimal (left) and worst (right) paths for this specific case. 
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Figure 7: Optimal and worst paths for leading player 2 in business model 2 

 

Among the four leadership scenarios, it is interesting to note that in business models 2 and 3, the 

sequence of the worst path is (or almost) the reverse of the optimal path (e.g. Figure 7). The 

reason for this is different for the two business models. 

In business model 2, there are players with important volumes and dense covers on their 

respective geographical areas (i.e. players 1, 2 and 5, which for the sake of clarity we denoted as 

the α players) in the beginning of the optimal sequence of the four computed scenarios. The 

transportation planning of the volume belonging to the α players with the volume belonging to 

the LC will generate new coordination opportunities with any LC or α player. In this business 

model, the proposition to the NLC includes only one individual payoff (i.e. the immediate 

payoff). Thus, it is advantageous for the LC to fix the individual payoff of the α players as early 

as possible in the sequence in order to avoid sharing later with them the savings coming from the 

synergies generated with their volume. 

In business model 3, the players with small volume and lean, partial and dispersed geographic 

cover are (e.g. players 4, 7 and 8, which for the sake of clarity we denoted as the β players) at the 

beginning of the optimal sequence of the four computed scenarios while the α players are 

predominantly at the end of the optimal sequence. In this business model, the marginal worth 

increase of the ‘new’ coalition S is shared with all players of coalition T ( { }\T S j= ) and player j 
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using the stand alone weighted cost of the player. Thus, it is more advantageous for the LC to 

start with the β players and player 3 than the α players. Together with the volume of the LC, the 

volume of the β players and player 3 (see discussion in next paragraph) will generate smaller 

marginal worth increase than the volume of the α players. However, the LC will obtain a higher 

part of this small marginal worth by not starting the sequence with the α players that, with their 

relative high stand-alone cost, received a larger part of the further marginal worth increases. 

Players 3 and 6 are similar players both in their volume and stand-alone cost percentages 

(compared to the grand coalition, see Table 2) and the characteristics of their geographic cover. 

However, in business model 3, player 3 is at the beginning of the sequence while player 6 is at 

the end of the sequence or just before the α players. The difference in the location of the main 

operation areas of players 3 (i.e. in the south-west) and 6 (i.e. in the north-east) mostly explains 

the results. With its location, player 3 provides to the LC with more synergies than player 6. At 

the bottom line, these additional synergies allow to the LC more benefits than the larger part of 

the further marginal worth increases player 3 will receive with its higher (compared to the β 

players) stand alone weighted cost. 

8.4. The value of being a leading player 

By being a leading player, a company improves its final individual payoff. For each of the four 

business models, Figure 8 illustrates the final payoff of player 2 according to the four leadership 

scenarios. We see that player 2 obtains higher payoffs by being an LC (i.e. leadership scenario 1) 

rather than being a NLC (i.e. leadership scenarios 2, 3 and 4). Especially, by taking alone the 

leadership in scenario 1, player 2 improves by 1.5% ($20,488), 59.9% ($1,427,215), 45.3% 

($996,870) and 80.4% ($2,638,443) for, respectively, the business models 1, 2, 3 and 4, if we 

compare to its average final payoff in scenarios 2-4. These values represent the opportunity cost 

of not being, alone or with another specific player, a LC in each business model. 
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Figure 8: The opportunity cost for the player 2 of not being the sole LC in each business model 

 

In business model 1, a refinement of the latter statement must be noted according to the impacts 

of player 1 on the results (see discussion in 8.1): if a player shares the leadership with player 1, 

this player will not improve its final individual payoff in business model 1. 

8.5. Discussion 

As reported in our case study as well as in other above-mentioned case studies with horizontal 

cooperation in transport planning, there are important savings with collaborative planning. In this 

paper, we study the allocation of these savings as well as the formation of the collaborating 

groups according to one perspective of a collaboration organization. However, there are other 

perspectives of collaboration organization that could be evaluated, see e.g. Wang et al. (2007). 

Among the stakeholders that could be involved in different OR problems occurring in 

transportation planning in forestry, we can identify five potential categories of who can perform 

the common planning. They are presented in Table 7 and some examples are provided.  
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Table 7: The five categories of organisations that can perform the common planning 

Category Description 

1 

A shipping company performs the planning. An example is the Swedish forest companies Holmen 

Skog (HS) and Norra Skogsägarna (NS) (Eriksson and Rönnqvist, 2003). By using the decision 

support system ÅkarWeb, HS advises the backhauling opportunities among both its under-contract 

carriers and some of NS in order to allow coordination among the carriers in the truck routing. 

2 

More than one shipping company performs the planning. An example is the buyers’ network of the 

Canadian wood logs supplier Groupe Transforêt (Audy et al., 2007). By using the decision support 

system VTM prototype, truck routing is performed on all the volume to delivery in the network in 

order to schedule shared routes among two or more buyers. 

3 

A carrier or a third party logistics (3PL) performs the planning. An example is the Swedish forest 

products carrier Skogsåkarna (http://www.skogsakarna.se/) who furnishes the transport activities of 

several forest companies. Another example is the Swedish company Sydved 

(http://www.sydved.se/) who organises the purchase and transport of logs for its owners, the forest 

companies Stora Enso and Munksjö. 

4 

More than one carrier or 3PL performs the planning. An example is the Swedish logging and 

transportation company VSV (http://www.vsv.se/english.html) who collaborates in its transport 

operations with other carriers. 

5 Shipper(s), Carrier(s) and 3PL(s) perform the planning. 

 

There are also a number of practical aspects to consider for successful collaborating groups. 

Below we discuss a number of them and we refer to Frisk et al. (2009) for a discussion on other 

relevant aspects on the case study (e.g. valuation of wood, legality, tactical versus operational 

planning and shared information and quality). 

Sequential bilateral agreement 

We study sequential bilateral agreement for the formation of the coalition since, in practice the 

evaluation of the potential benefit is often realized between two companies at a time. Each 

company uses its internal planning system to anticipate the potential benefit of the collaboration 

without revealing it to the other company and to negotiate a bilateral collaboration agreement. 
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The main reasons why the information about the potential benefit is not shared are that this 

information may include sensitive business information and provide insights that could 

substantially affect the negotiation. It appears realistic to suppose that the proposition of 

collaboration by the LC must also be evaluated on a ‘two companies’ basis’ while considering 

the previously collaborating companies as only one company dealing with another potentially 

collaborating company. Then, the larger group of collaborating companies can continue the 

bilateral evaluation and so on until the final coalition is formed. 

Conflict of interest 

The collected information for collaborative planning may include sensitive business information. 

To avoid possible conflict of interest, the ‘collaborative plan’ to put in practice by each company 

is generated with the two OR models and the LC must follow the obtained solutions. In a 

discussion on inter-organizational systems, Kumar and van Dissel (1996) identify possible risks 

of conflict and strategies for minimizing the likelihood of such conflicts. More recently, Clifton 

et al. (2008) use cryptographic techniques to perform the transportation planning among potential 

competitors’ carriers without the requirement of a central broker and with a strictly minimum 

share in information. However, possible conflict of interest or the appearance of such still 

remains, essentially because the collaborative organization of the LC is not an independent one. 

In the paper, we consider that the NLC accepts this risk since the collaborative organization of 

the LC must be considered as a kind of specialized logistics service provider. 

Coalition establishment and management costs 

No cost was calculated for the establishment and then the management of the coalition while, in 

practice, both will reduce the final payoff. 

Establishment cost has been studied by some authors in the literature on network formation. 

Slikker and van den Nouweland (2000) introduce a ‘connecting’ cost when players forming links 

and study how different values of that fixed cost influence the formation of the network. Galeotti 

et al. (2006) also use a ‘connecting’ cost but this cost varies across the players and, in addition, 

for the same player, the cost is sensitive to the identity of the potential partner-player. In practice, 

this variable ‘connecting’ cost makes sense since some players in the case study have more 

affinity together such as e.g. for the connection of their own IT system. However, the drawback 
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of such a bilateral approach excludes the complete coalition structure which, according to 

Macho-Stadler et al. (2006), should be considered since the authors note that the establishment 

cost of a coalition seems much higher when more companies are involved. 

In contrast to establishment cost, management cost refers to a repeating cost of running the 

collaboration over time. Some authors (e.g. Audy et al., 2008) use a fixed unit cost which is e.g. 

link to the volume to delivery, while other (e.g. Cruijssen et al., 2005) levy a part of the savings. 

Cost-reduction perspective and negotiation 

In this paper, the decision to collaborate or not strictly focusses on a cost-reduction perspective 

while, as detailed in the literature review of Cruijssen et al. (2007a), there exist several other 

potential benefits (e.g. faster delivery time) than cost-reduction to perform horizontal cooperation 

in transportation and logistics. However, cost-reduction is usually by far the most important of 

the potential benefits, but a question still remains: how much is enough in payoff to convince a 

player to accept to collaborate? At the least a payoff is just slightly greater than zero but, in 

practice, this issue is much more complex and it is based on a negotiation between the 

companies. Nagarajan and Sošic (2008) provide an exhaustive review of cooperative bargaining 

models in supply chain management that could support such payoffs fixation in a negotiation 

context. In such bargaining models, one notion is highly relevant: the negotiation power of each 

player. For instance, when two players negotiate, we should expect that the player with the higher 

negotiation power receives a larger payoff than the weaker counterpart. 

Moreover, before engaging in costly and time-consuming establishment work, a more strategic 

oriented reflexion must be considered by the potential collaborating players. For instance, based 

on a total of 58 key performance indicators found through in-depth interviews and a literature 

study, Naesens et al. (2007) propose a framework to address, at a low cost and in a short period 

of time, such issues for reflection. Sometimes, even with large potential benefits, two companies 

can face insurmountable practices (e.g. difference in culture) that inhibit their collaboration. 

Several impediments and threats to horizontal cooperation are also detailed in the literature 

review of Cruijssen et al. (2007a). 

Analysis of Building Coalitions and Savings Sharing - Application to Forest Transportation

CIRRELT-2009-26 36



9. Conclusion 

It has been shown that coordination of the wood flows among companies within the same region 

can lead to an important transportation cost reduction. There exist decision support systems that 

can establish transportation plans including such coordination opportunities and thus quantify the 

value of the savings by any group of collaborators in the region. However, these systems raise 

questions of how to share the obtained savings among the collaborating companies and how the 

collaborating group(s) will be formed. We study both questions within a network formation game 

in extensive form to take into account in the game several restrictions raised by our notion of 

business model. This business model approach allows the integration of practical considerations 

in defining the allocation rule (e.g. altruistic or opportunistic behaviour) as well as the coalition 

formation process (e.g. leading position of some players). To find the stable and credible group(s) 

and payoffs in the studied game, we propose a longest path model. This model has been applied 

in a case study with eight companies involved in forest transportation in Sweden. A total of four 

distinct business models have been considered in the paper and each have been evaluated with the 

model according to four distinct leadership scenarios. The tests highlight several results. 

In the four computed leadership scenarios, by adopting an opportunistic behaviour rather than an 

altruistic one, the leading companies have obtained an additional individual payoff of 6.9-19.7%. 

Furthermore, among the four computed scenarios, the savings allocation approach (i.e. business 

models 3 and 4) has been more advantageous for the leading companies than the cost allocation 

approach (i.e. business mode1s 1 and 2) by allowing a larger part of the worth of the final 

coalition to the leading players than the non-leading ones. 

It was shown that in a group of companies, specific business models could lead to the formation 

of final coalitions that do not capture the entire economic potential of the group. 

By taking the decision on which optimal sequence to propose bilateral agreement to the same set 

of non leading companies, the leading companies have obtained a total 1.1-10.6% additional 

payoff. 

The opportunity cost of not being a leading company (alone or with other specific companies) as 

also been evaluated, for company 2 this could resolve in a loss of 80.4% of its best final payoff as 

a leader. 
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As future research, we want to study different business models in which the LC can develop their 

coalition in various ways. Another issue to be addressed relates to evolution of the formed 

coalition(s) as time goes by and thus more planning periods are considered. The formation of the 

coalitions without complete or accurate information should also be addressed. Finally, the 

additional payoffs for a company to join more than one coalition (i.e. overlapping coalitions) by 

splitting its demand/supply should be investigated. 
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