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Abstract. This paper provides a methodology for Supply Chain Network (SCN) design 

under uncertainty. The problem is initially defined as a two level organizational decision 

process: the design decisions must be made here and now, but the SCN can be used only 

after an implementation period. During a multistage planning horizon a set of user 

response decisions and a set of planned structural adaptation decisions must be 

anticipated. The methodology recognizes three event types to characterize the future SCN 

environment: random, hazardous and deep uncertainty events. At the design time, future 

environments are anticipated through a scenario planning approach. Scenario samples 

generation allows approximating the design model to be solved with a sample average 

approximation program in order to produce a set of alternative designs. A design 

evaluation approach is then applied to select the most effective and robust SCN among 

this set and the status quo design. 
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Introduction 

Supply Chain Network (SCN) design involves strategic decisions on the number, location, 
capacity and mission of the supply, production and distribution facilities of a supply chain in or-
der to provide goods to a predetermined, but possibly evolving, customer base. Location models 
have been studied extensively in the literature under deterministic, dynamic and stochastic envi-
ronments. Detailed reviews of location models are found in Owen and Daskin (1998) and Klose 
and Drexl (2005). Location models based on stochastic optimization (Birge and Louveaux, 1997; 
Snyder and Daskin, 2006) and robust optimization approaches (Kouvelis and Yu, 1997) were 
also proposed to take uncertainty into account. A review of location models under uncertainty is 
found in Snyder (2006). When classical location models are extended to design SCNs, other stra-
tegic decisions on sourcing, capacity acquisition, technology selection and market policies must 
be considered. The problem then is much more complex: the number of echelon in the network 
increases, objectives become heterogeneous, new complex constraints, to deal with international 
issues for example, are needed and the environment uncertainty increases. Management’s ulti-
mate goal is to maximize the effectiveness and competitiveness of the SCN. The predominant 
approach to solve these problems has been to use deterministic mathematical programming mod-
els with appropriate sensitivity analysis and scenario analysis. An integrated deterministic mod-
eling framework incorporating most of the aspects of the problem studied to date is presented in 
Martel (2005).  

Since SCNs must be designed to last for several years, it is clear that they should be robust 
enough to cope with all the random environmental factors (demand, prices, exchange rates…) 
affecting the normal operations of a company. In addition, SCNs should perform well under ma-
jor disruptions. In view of recent events, such as the 9/11 terrorist attacks on WTC and hurricane 
Katrina, companies are aware that they should prepare for the next disaster, but in reality only a 
few do (Lee, 2004; Sheffi, 2005). At a time when management efforts strive to make supply 
chains as lean as possible such events may have serious impacts on company performances 
(Hendricks and Singhal, 2005). Clearly, this type of event should be taken into account in SCN 
design models. Moreover, in most real life projects, one has to compare the design proposed with 
the status quo network. This is often done by calculating the economic value of the two solutions 
with the objective function of the mathematical model used to obtain the proposed design, which 
is inadequate. It is then legitimate for management to question the precision and validity of such 
results. As far as we know, this question has not been addressed explicitly in the SCN literature. 

A few authors have proposed stochastic linear programming (SLP) models (Pomper, 1976; 
Eppen et al., 1989; Santoso et al., 2005; Vila et al., 2007) and robust optimization (RO) models 
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(Gutierrez et al., 1995; Snyder et al., 2006) to deal with environment uncertainty in SCN design. 
The models proposed however apply either to simplified location problems, or they consider 
only certain types of uncertainties, which compromise their solution robustness for real life prob-
lems. No comprehensive approach dealing with all the issues raised above currently exist. A 
critical review of major drawbacks and missing links in the current SCN design literature is 
found in Klibi et al. (2009a). 

This paper proposes a SCN design methodology taking into account the various types of un-
certainties that may affect a supply chain. A scenario based solution approach to design and 
evaluate SCNs under uncertainty is also proposed. The paper is organized as follows. Section 2 
presents the SCN design methodology. It also proposes an approach to take high-impact disrup-
tions into account in SCN design models. Section 3 proposes a generic solution approach to ob-
tain robust value-creating SCN designs. Finally, conclusions and future research directions are 
provided. 

SCN Design Methodology 

Decision problem structure 

SCN design problems deal with strategic decisions such as facility location, technology se-
lection, capacity acquisition and deployment issues that are the responsibility of top manage-
ment. At that level, a major preoccupation is the long term financing of the investments required, 
the expected return on these investments, risk management and, more generally, the impact of 
the SCN design decisions on the value of the firm, in a business context, or on the effectiveness 
with which the organization can accomplish its mission, in other contexts (government, military, 
NGOs…). However, design decisions impose resource availability and utilization constraints on 
the users of the SCN which, through their daily supply, production and distribution actions, in 
response to customer demands, determine the return that will be obtained from the investment. 
Note that although much of the following discussion is cast in a business context, the methodol-
ogy proposed applies as well to non-business contexts. 

Clearly, design decisions cannot be made without anticipating how the users will use the 
SCN to respond to daily events. The timing of the decisions made at the design and user response 
levels must also be taken into account. At the beginning of the planning horizon, SCN design 
decisions are made and after an implementation period the network designed or reengineered be-
comes available for use during several usage periods. During these usage periods, users serve 
customers, and react to disruptions, on an ongoing basis with the SCN designed. Although events 
occur continuously, we assume that the users make daily or weekly decisions, and thus that it is 
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sufficient to observe the environment at the beginning of discrete working periods uTτ ∈ . Fur-
thermore, additional design decisions will be taken in time to adapt the SCN to its environment, 
which leads to replications of the design and response planning cycle along the planning horizon 
considered. This gives rise to the multi-stage decision process illustrated in Figure 1 for two 
planning cycles. However, in a rolling horizon framework, the only decisions implemented when 
the problem is solved at the beginning of the horizon are the first design decisions. Subsequent 
design decisions can be considered as future opportunities to adapt the network to its environ-
ment. During the planning horizon some disruptions may also affect the SCN. Unfortunately, at 
the beginning of the horizon, the future is not known. The best that can be done is to anticipate, 
with the information currently available, what the users and the designer will subsequently do to 
respond to the business environment that will prevail and to adapt the structure of the SCN. In 
order to avoid any ambiguity, in what follows, we use the expressions design decision only for 
the decisions to be implemented at the beginning of the horizon. Subsequent design decisions are 
referred to as structural adaptation decisions. 

Design 
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lead time

1δ + Δ1δ

1
uT

Usage period
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User response level 

1T̂

τ
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Figure 1. Decision Time Hierarchy for Two Planning Cycles 

This paper proposes a SCN design methodology based on the explicit modeling of the de-
sign and user response levels over a multi-stage planning horizon. Each level is described by a 
decision model depending on a, possibly multi-criterion, preference structure C , on a decision 
space (X for the design level and Y for the user response level), and on the information available 
I at the time a decision is made. It is assumed however that the two levels consider themselves as 
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part of a team (i.e. they do not have an antagonistic behaviour) and that the information asymme-
try is due mainly to the fact that the decisions are not made at the same time. The anticipation 
pertains, first, to the response of the user to short term events within the network provided by the 
design level for each planning cycle (stage). In addition, the anticipation covers the SCN struc-
tural adaptation decisions for future planning cycles. This leads to the formulation of an antici-
pated adaptation-response model. A perfect anticipation is not possible, however. The response 
and design models could be used in the anticipation but, because of the decision time lag, the in-
formation cannot be the same. In most cases, the anticipated adaptation-response model is based 
on aggregate information and on simplified response and design models. It must be realized that 
the anticipation used has a major impact on the quality of the SCN designed. The role of antici-
pations in SCN design is studied in Klibi et al. (2009b). They investigate the impact of various 
response anticipation sub-models on SCN design quality, and they show that there is an (antici-
pation accuracy, model solvability) trade-off to consider in order to obtain good SCN design 
models.  

As illustrated in Figure 1, we assume in this text that the planning horizon considered cov-
ers a set N of planning cycles also referred to as decision stages. At the user response level, for 
stage n N∈ , decisions are made each working period u

nTτ ∈  (days or weeks). At the design 
level, these working periods are usually aggregated into quarterly or yearly planning periods 

n̂t T∈ . Each planning cycle n N∈  starts with a design (adaptation) decision at date nδ . A known 
implementation lead time of Δ  planning periods is then incurred before the new design is avail-
able. The planning cycle includes the set of planning periods n̂t T∈  defined to cover the working 
periods u

nTτ ∈ . The complete planning horizon considered is thus defined by 1 2
ˆ ˆ ˆ ˆ... NT T T T= ∪ ∪  

at the design level or by 1 2 ...u u u u
NT T T T= ∪ ∪  at the user response level. In what follows, n(t) is 

used to denote the planning cycle n containing period t. 

At the beginning of each working period uTτ ∈ , when the user has to make his decisions, 
the information available ( )uI τ  is almost perfect, but at time 1δ  design decisions are made un-
der uncertainty. The information available at time nδ  is denoted by ( )nI δΩ  and we assume that 
it relates to a set Ω  of plausible future scenarios. The fundamental structure of this strategic de-
cision problem is presented in Figure 2. The formulation used is based on the generic distributed 
decision-making framework proposed by Schneeweiss (2003). It is assumed that design deci-
sions are made on a rolling horizon basis. 

In the figure, the hat ‘ ^ ’ is used to indicate terms in the anticipation, and {... }IR  is a gen-
eralized future return measure depending on the nature of the information available I. The super-
scripts d and u are used to denote the design and user response levels, respectively. At the design 
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level, 1x  is the vector of the location, technology, capacity, mission and resilience strategy deci-
sions made at time 1δ , 1X  is the feasible design space for this decision vector, and *

1x  is the de-
sign selected for implementation. dC  and duĈ  are respectively the private criterion and the top-
down criterion of the design model. The former captures mainly investment costs. The later is the 
part of the design-criterion taking future response decisions and structural adaptation decisions 
into account; it captures the revenues and expenses generated by using the SCN and the addi-
tional investment costs necessary to adapt the SCN during the planning horizon. The anticipated 
design criterion dĈ  is used to evaluate the structural adaptation decision vector ( )n ωx̂  under 
scenario ω ∈Ω , and ( )1n

n ω−xX̂  is the feasible structural adaptation decisions space for stage n . 
Note that the later depends on the state of the system at the beginning of cycle n , i.e. on the de-
sign decisions of the previous period.  
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Figure 2. Strategic Decision Framework  

At the user response level, τy  is the vector of tactical, operational and/or recourse procure-
ment, production, warehousing and transportation decisions made for each working period 

u
nTτ ∈ . The user model return measure ( ) ( ){ }u uC Iyτ τR  depends on the nature of the informa-

tion available ( )uI τ . At the design level, all these tactical and response decisions can usually not 
be considered explicitly: they are replaced by aggregate surrogate decision vectors ( )t ωŷ , with 
value depending on the scenario ω ∈Ω , for each planning periods t T∈ ˆ . The anticipated re-
sponse criterion uĈ  and decision space ( )n t

t ω( )xŶ  are constructed conceptually from the user re-
sponse level model and/or statistically from past behaviour observations. The adaptation-
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response model typically involves aggregations over products, customers, means of transporta-
tion and working periods. However, these anticipation decisions cannot be implemented and are 
only used to anticipate the revenues and expenses of the adaptation-response model. For a given 
design 1 1∈ Xx  and a given scenario ω ∈Ω , the anticipated adaptation-response model optimizes 
the value of surrogate response decisions and structural adaptation decisions over the planning 
horizon. In addition, non-anticipativity constraints must be added to ensure that the decisions 

( )x̂n ω  are identical for all the scenarios ω  incorporating the same events for the previous peri-
ods. 

In the design model, the future value of design 1x  is assessed using a return measure 
( ) ( ){ }1 1x , .C I δΩR  taking all the scenarios ω ∈Ω  into account and which, as we shall see, may 

be defined to reflect both expected value and aversion to risk. This return measure would also 
normally incorporate a discount factor to take the timing of C  into account. 

Characterization of the information available 

A supply network must be designed to cope with its future environment, but at the point in 
time when it is engineered (or reengineered) the future is not known with certainty. Uncertainty 
is defined here as the inability to determine the true state of the future business environment 
which may be partially known or completely unknown. When some information is available, 
three types of uncertainties can be distinguished: randomness, hazard and deep uncertainty. Ran-
domness is characterized by random variables related to business as usual operations, hazard by 
low probability unusual situations with a high impact and deep uncertainty by the lack of any 
information to assess the probability of plausible future events. For hazards, it may be very diffi-
cult to obtain sufficient data to assess objective probabilities and subjective probabilities must 
often be used. A detailed discussion of the relevance of these three types of uncertainties for 
supply chain design is found in Klibi et al. (2009a). 

During a planning horizon, the SCN evolves under varying environments. An environment 
is defined as the internal and external conditions under which the SCN operates during a given 
period of time. The future is considered at the design level by specifying possible sequences of 
environments over the planning periods t T∈ ˆ . Each possible sequence of environments defines a 
scenario. An event is a measurable (i.e. having observable consequences) factor or incident in-
fluencing the business environment during a given time period. An event is defined over an adja-
cent subset of planning periods in T̂ . The environment of planning period t  is a compound 
event, i.e. the result of all the events occurring during period t . From our characterization of un-
certainty, it is seen that three types of events shape SCN environments: random, hazardous and 
deeply uncertain events.  
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Random events are assumed to be defined over a single period ˆt T∈ , and they describe fac-
tors with a probability of occurrence which can be estimated. Historic information on supply, 
demand, costs, lead times, exchange rates, etc., can be used to estimate the probability distribu-
tion of the random variables related to the business as usual operations of the SCN. These events 
include the degenerate case of certain events that occur when perfect information exists.  

Hazardous events describe factors or incidents affecting a number of adjacent planning peri-
ods in T̂  and creating SCN disruptions. Hazards are rare but repetitive events which may be 
characterized by formal location, severity and occurrence processes. Hazardous events involve 
natural, accidental or wilful incidents affecting SCN resources. They include accidental disrup-
tions in operations such as major equipment breakdowns, strikes and discontinuities in supply 
due to supplier bankruptcy, for example. They also include disruptions arising from natural haz-
ards affecting a geographical region, such as earthquakes, floods, windstorms, volcanic erup-
tions, droughts, forest fires, heat waves, freezes and cold waves. For such events, catastrophe 
models have been used to provide likelihood of occurrence and/or likelihood of associated mone-
tary losses, based on historical data and/or professional expert opinions (Grossi and Kunreuther, 
2005).  

Deeply uncertain events are incidents affecting a number of adjacent planning periods in T̂  
for which no directly relevant information exists. These events include isolated, non repetitive, 
extreme events for which a likelihood of occurrence cannot be evaluated (Banks, 2006). Events 
related to terrorism (sabotage, bombing…) and political instability (sudden currency devaluation, 
coup…), with unpredictable time of occurrence, severity and location, are usually considered as 
deeply uncertain. In the recent past, some of these disruptions, like the 9/11 WTC attack and the 
SARS epidemic, have lead to major business failures. Lempert et al. (2006) suggest the use of 
narrative scenarios in deep uncertainty situations and show how to use these scenarios to enhance 
solution robustness.  

The events matrix presented in Figure 3 is a crossover between our information-based clas-
sification of events and their expected severity. Light zones correspond to random events having 
normal impacts on SCNs. As seen in the introduction, several deterministic models and a few 
stochastic programming models were proposed in the literature to deal with SCN design prob-
lems under these types of events. Dark zones correspond to hazardous and deeply uncertain 
events. As indicated previously, some robust optimization approaches were proposed to deal 
with simple location problems under these types of events. Our aim here is to propose an inte-
grated SCN design methodology to take all these types of events into account. The methodology 
proposed is based on recent work in stochastic programming (Shapiro, 2007), catastrophe model-



The Design of Effective and Robust Supply Chain Networks 

CIRRELT-2009-28 8

ing (Grossi and Kunreuther, 2005), scenarios planning (Van der Heijden, 2005) and risk analysis 
(Haimes, 2004). It builds on the fact that in all these modeling approaches, the information avail-
able on the future can be presented in the form of a set of scenarios about how the future may 
unfold.  

In
fo
rm
at
io
n

Impact

Certainty

Randomness

Hazard

Deep Uncertainty

Normal
None Moderate

Serious
Catastrophic

Catastrophe Mo dels
Ro bust Optimization

Determinis tic Mo dels

Sto chastic  
Pro gramming
Mo dels

 
Figure 3. Events Matrix 

From our previous definitions, it is clear that a scenario is a compound event. Each scenario 
is the result of the juxtaposition of one or more event types that shape the environment of SCNs. 
All scenarios include random events associated to business-as-usual conditions, but they do not 
necessarily include the hazardous or deeply uncertain events associated to the SCN threats dis-
cussed previously. Hereafter, totally destructive events causing irreversible damages to an entire 
business are excluded from the analysis. Also, in what follows, in order to analyse the various 
sources of risk properly, it is necessary to partition the set of scenarios Ω  into two mutually ex-
clusive and collectively exhaustive subsets: PΩ  including all probabilistic scenarios without 
deeply uncertain events (P-scenarios), and UΩ  including all other scenarios (U-scenarios). In 
principle, it should be possible to evaluate the probability ( )p ω  of scenarios Pω ∈Ω . However, 
the probability of U-scenarios cannot be evaluated. A conceptual representation of the scenarios 
tree thus obtained, and of its relationship with SCN decisions, is provided in Figure 4. Each path 
in this tree correspond to a scenario ω ∈Ω .  

Businesses and organizations operate in a complex world and, when looking far away, it 
cannot be assumed that the future will unfold in the tracks of the past. When developing their 
strategies, companies like Shell study significant events, they analyse political, social and eco-
nomic actors and their motivations, they explore what the world might look like over the next 
twenty years, and the impact of alternative views of the future on their business environment 
(Shell Global Scenarios to 2025, 2005). In other words, they define possible evolutionary paths. 
The scenarios in Figure 4 must consider such evolutionary paths. The scenarios in Ω  are possi-
ble realizations of a set of underlying stochastic processes with known (for P-scenarios) or un-
known (for U-scenarios) parameters. In what follows, it is assumed that a set K of evolutionary 
paths with probability , kp k K∈ , can be defined and that the parameters of the scenario generat-
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ing stochastic processes depend on evolutionary paths. It is thus seen that the set of scenarios Ω  
is the union of the scenario sets  Pk UkΩ Ω,  associated to the evolutionary paths k K∈ . 

1δ

Planning horizon t T̂∈

( )2x ω

1x

( )N ωx…

Probabilistic
scenarios

Deeply 
uncertain 
scenarios

Pω ∈ Ω

Uω ∈ Ω

 
Figure 4. Scenarios Tree for the Planning Horizon 

SCN Risk Analysis  

Supply chain networks are usually geographically dispersed across regions and countries 
which increase their risk exposure and, in order to design robust SCNs, the impact of random, 
hazardous and deeply uncertain events must be taken into account. Using historical data, classi-
cal forecasting and statistical analysis methods can be used to estimate the probability distribu-
tions associated to random events. However, the case of hazards and deep uncertainty deserves 
further analysis. The disruptions which may affect a supply chain can take several forms and it is 
important to find a practical way of taking them into account without getting lost into a maze of 
possible incident types. This can be done by classifying hazards into a small number of meta-
events with generic impacts on SCN resources (multihazards) and, by considering deep uncer-
tainty through the use of imaginative scenarios. To embed this in our SCN design methodology, 
we must provide an answer to the three fundamental questions associated to risk analysis: 1) 
What can go wrong? 2) What are the consequences? 3) What is the likelihood of that happening? 
For deep uncertainty events, only the two first questions can be partially answered. For hazards, 
this leads to a three phase approach to model SCN exposures. It combines concepts from catas-
trophe analysis (Haimes, 2004; Grossi and Kunreuther, 2005; Banks, 2006) and SCN vulnerabil-
ity analysis (Helferich and Cook., 2002; Kleindorfer and Saad, 2005; Sheffi, 2005; Craighead et 
al., 2007, Wagner and Bode, 2008).  
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The next paragraphs describe the three phases of the SCN hazard modeling approach pro-
posed. The role of each of these phases is the following: 

1) Characterization of multihazards and vulnerability sources. The SCN vulnerability sources 
to take into account in the study are identified and related to relevant multihazards to specify 
threat domains. The territory over which the network is deployed is partitioned into hazard 
zones, which are related to exposure levels or regions. When the phase is completed, each 
network location is associated to a vulnerability source, a hazard zone and an exposure level. 

2) Modeling of multihazard processes. A compound stochastic process is defined to describe 
how multihazards occur in space and in time, and to specify incident’s intensity and duration. 
This phase is independent of the SCN considered. We assume that each incident occurs in a 
hazard zone at the beginning of a working period. The impact intensity and duration vari-
ables are however associated to exposure levels. 

3) Modeling the impact of hits on the SCN. The occurrence of an incident in a hazard zone does 
not necessarily result in a hit of all the SCN locations in that zone. Attenuation probabilities 
are defined to reflect hits likelihood. When a location is hit, the impact on the network capac-
ity and demand is modelled using recovery functions based on intensity and time to recovery 
variables.  

In what follows the approach is described in generic terms and examples are given to illustrate 
particular cases. 

Multihazards and vulnerability sources 

To perform its activities the SCN exploits internal resources, it does business with SC part-
ners, and it uses public infrastructures. Examples of typical resources, partners and infrastruc-
tures are given in Figure 5. These resources/partners are associated to specific geographical lo-
cations. Moreover, when modeling a SCN, some of these locations may be aggregated into geo-
graphical zones with a computable centroid. For example, in a business context, ship-to points 
are usually aggregated into demand zones and, in a military context, demand is naturally associ-
ated to regions where conflicts of various types may develop. Let L be the set of all the SCN lo-
cations considered. When an extreme event occurs, all locations are not affected in the same 
way. For example, a fire in a plant may decrease production capacity but an earthquake in a de-
mand zone may increase demand for first-aid products drastically, but decrease demand for lux-
ury products. For this reason, depending on their nature, locations l L∈  are classified in vulner-
ability source subsets with similar impacts and time to recovery. Let S be the set of all relevant 
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vulnerability sources. The notation ( )s l  is used to denote the vulnerability source s S∈  charac-
terizing location l L∈ . In a SCN, transportation means are also used to move materials between 
locations. The potential locations and moves considered when designing a supply chain define a 
network similar to the one illustrated on the vulnerability source layer of Figure 6. 

Multihazards

Natural disasters

Geopolitical failures

Market failures

Industrial accidents
×

 
         s S∈                      h H∈  

Figure 5. Examples of Vulnerability Sources and Multihazards  

When considering potential risks arising from natural, accidental and wilful hazards on the 
SCN, a large set of vulnerability sources can be identified (Helferich and Cook, 2002). However, 
the impact of hazards on these vulnerability sources can vary from catastrophic to low. At the 
strategic decision-making level, the number of vulnerability sources considered should be re-
duced to a manageable level. A filtering process based on a subjective evaluation of the vulner-
ability identified leads to the selection of the sources with potential strategic consequences to be 
included in the set S. The vulnerability sources retained usually include the main internal produc-
tion, distribution and service resources influencing capacity (plants, warehouses, stores…), the 
main product-markets or service-offers influencing demand, and the main vendors influencing 
supply (raw-material suppliers, energy suppliers…). It is assumed that all strategic vulnerabilities 
come from the SCN locations l L∈  and not from its arcs. The overriding criterion for the defini-
tion of a vulnerability source s S∈  is that all the locations sl L∈  it covers must have a similar 
behaviour in terms of impact intensity, time to recovery and recovery pattern when hit by a mul-
tihazard, so that they can all be described in terms of the same metrics. They must also be de-
fined so that the sets ,  sL L s S⊂ ∈ , are mutually exclusive and collectively exhaustive. This may 
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lead to the definition of more than one location l for a same geographical region. For example, if 
the sales of two product categories in the same region (say first-aid products and luxury prod-
ucts) are not affected in the same way by a multihazard (one may increase and the other de-
crease), then they must be distinguished by associating them to different locations. Similarly, in a 
military context, potential humanitarian relief missions and peace-keeping missions in a same 
geographical area must be distinguished because they do not require the same material. 

Natural, accidental and wilful hazards cover large classes of incidents which do not neces-
sarily affect SCN vulnerability sources in the same way. Also, depending on the scope of the 
study, some hazard types may not be relevant. For example, when designing an American net-
work, natural disasters are relevant, but the risk of armed conflicts resulting from a political fail-
ure is negligible. However, when designing an international SCN, potential state failures must be 
taken into account. Finally, even if a hazard type is relevant, for some parts of the world the data 
required to characterize it may not be available. For all these reasons, for a given SCN design 
study, a set H of multihazards to consider must be specified. Such a multihazard set is illustrated 
in Figure 5. Multihazards can be elaborated from the data provided by several public sources 
such as the Centre for Research on the Epidemiology of Disasters (www.cred.be), the Heidel-
berg Institute for International Conflict (www.hiik.de), the Federal Emergency Management 
Agency (www.fema.gov) and the U.S. Geological Survey (www.usgs.gov), and private sources 
such as Swiss Re (www.swissre.com) and Munich Re Group (www.munichre.com). Vulnerabil-
ity source threat domains must also be defined by specifying the subset sH H⊆  of multihazards 
which have an impact on each vulnerability source s S∈ . 

In what follows, we assume that extreme event threats are not directly related to the re-
sources/partners involved in the SCN but rather to the vulnerability source they are associated to 
and to their geographical location. In order to map threats, the geographical territory in which the 
SCN performs must be partitioned into a set of hazard zones Z. Using geographical coordinates, 
the hazard zone ( )z l Z∈  of a location l L∈  can be identified, as illustrated in Figure 6. Hazard 
zones delineate areas with similar geological, meteorological, political, economical and critical 
infrastructure characteristics. These zones may correspond to counties, to states/provinces, to 
countries, to 3-digit zip-codes, or to a combination of those, depending on the level of precision 
desired and the data available. They must be constructed, however, to make sure that the SCN 
location aggregates defined fit uniquely in a hazard zone, and they must be large enough to con-
sider the occurrence of extreme events in different zones as independent. They must also be de-
fined so that the sets zL L⊂  of locations in the zones z Z∈  are mutually exclusive and collec-
tively exhaustive. The zonation process is a key issue since the zone granularity determines the 
realism of the multihazard incidents considered in the SCN optimization model. 
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Figure 6. SCN Exposure Modeling 

Unfortunately, with the data available, it is often difficult to estimate hazard arrival and im-
pact processes directly at the hazard zone level. For each multihazard h H∈ , this leads to the 
introduction of a set hG  of zone aggregates called exposure levels. The notation ( )hg z  is used to 
denote the exposure level hg G∈  including hazard zone z Z∈ , and gZ Z⊂  the set of zones in 
exposure level hg G∈ . Exposure levels can be defined top-down or buttom-up, depending on the 
context. Exposure levels are sometimes associated to geographical regions, such as continents. 
The states in the continent then provide the relationship ( )hg z between zones and levels. Alterna-
tively, levels can be constructed by evaluating an exposure index for each zone, and then associ-
ating levels to adjacent index value intervals. Zones are then assigned to levels based on their 
index value. For a multihazard h H∈ , this defines an exposure map such as the one illustrated 
on the multihazard exposure layer in Figure 6. The exposure index used to do this can be based 
on failed state (www.foreignpolicy.com) and/or opacity (www.opacityindex.com) indexes de-
signed to reflect the political stability of a region, natural catastrophes exposure indexes calcu-
lated from the data provided by CRED, FEMA or USGS, economic performance indexes such as 
the World Competitiveness Scores of IMD (www.imd.ch) or the Global Competitiveness Index 
of WEF (www.weforum.org), industrial accident indexes related to the claims made to insurance 
companies, public infrastructure quality indexes calculated from databases such as the CIA 
World Factbook (www.cia.gov/cia/publications/factbook), or on a combination of those. The ex-
posure level ( ) ( ( ))h hg l g z l=  of a location l L∈  can be uniquely determined for each multihaz-
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ard h H∈ . This initial analysis phase thus leads to the specification of multihazard classes 
( , ) ,hs g S G h H∈ × ∈ , with associated mutually exclusive and collectively exhaustive location 
subsets ( ) ( ){ },h

sg hL l s l s g l g= = = . 

Modeling of multihazard processes 

The SCN designed must cope with the future and thus the modeling of future extreme events 
must take possible evolutionary paths into account. We assume that multihazards occur inde-
pendently in hazard zones, and that the time between the occurrences of successive multihazards 
in a zone is characterized by a non-stationary stochastic arrival process depending on the evolu-
tionary path considered. More specifically, under evolutionary path k K∈ , if an incident occurs 
in working period uTτ ∈ , then the time before the arrival of the next multihazard h H∈  in zone 
z Z∈  is a random variable h

zkτλ  with cumulative distribution function (.)
h

zkF λ
τ . In practice, catas-

trophe models often use Poisson processes to determine the number of extreme events that can 
occur in a given period (Banks, 2006). Accordingly, we consider that in most cases it is suffi-
cient to assume that (.)

h

zkF λ
τ  is an exponential distribution ( )h

zkExp τμ  with an expected time be-
tween multihazards h

zkτμ . Let 
1

( , )h h
k zδφ μ τ  be a function elaborated by experts to superimpose a 

time pattern for evolutionary path k on 
1

h
zδμ , the historical mean time between multihazards 

h H∈  in hazard zone z Z∈  estimated at the beginning of the planning horizon (i.e. at time 1δ ). 
Then, the required probability distributions are obtained simply by calculating 

1
( , )h h h

zk k zτ δμ φ μ τ=  
for all h, z, k and τ.  

When designing a domestic SCN in America, the data required to estimate arrival processes 
directly at the hazard zone level can be obtained relatively easily. However, when designing a 
global SCN, the data provided by organizations such as CRED and HIIK is not sufficiently de-
tailed to support such an approach. A hierarchical modeling approach based on exposure level 
arrival processes and conditional hazard zone hit probabilities must then be used. Let h

gkτλ  be a 
random variable, with cumulative distribution function (.)

h

gkF λ
τ , representing the time before the 

arrival of the next multihazard h H∈  in exposure level (region) hg G∈  under evolutionary path 
k K∈  when an incident occurs in working period uTτ ∈ . Also, proceeding as in the previous 
paragraph, let 

1
( , )h h h

gk k gτ δμ φ μ τ=  be the mean time between multihazards h H∈  in exposure re-
gion hg G∈  under evolutionary path k when in working period τ. This process models the arrival 
of incidents in the exposure regions, but it does not specify in which hazard zone within the re-
gion the multihazard occurs. In order to specify this zone, subjective conditional hit probabilities 
can be estimated from public or constructed indexes ,  , h

zI z Z h H∈ ∈ . For example, for geopo-
litical failures the Failed State Index published yearly by Foreign Policy 
(www.foreignpolicy.com) can be used, and for natural disasters an incident occurrence frequency 
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calculated from CRED data can be used. Using such indexes, for a given multihazard h H∈ and 
exposure region hg G∈ , the following conditional probability mass function can be calculated: 

 
g

h h h
z g z z gz Z

p I I z Z
∈

= ∈∑| , . 

Intuitively, it appears that the impact intensity and duration of hazards are usually highly 
correlated. We thus assume that when a multihazard h H∈  occurs in a zone z Z∈ , its duration 
(in working periods) and its intensity (in a generic measure such as the loss level, or the casualty 
level, per period) are characterized by two correlated random variables related to the zone expo-
sure level ( ) hg z G∈ , namely: the impact intensity h

gβ , with cumulative distribution function 
(.)

h

gF β

 and the duration h
gθ . The duration is related to the intensity through incident impact-

duration functions ( ) , h h h h
g gf h Hθ β ε= + ∈ , estimated by regression, and with a random error 

term ~ Normal(0, )h h
εε σ . These distribution functions and incident impact-duration functions 

can be estimated from the data provided by organizations such as CRED, HIIK, FEMA and 
USGS. 

Modeling the impact of hits on the SCN 

The occurrence of an extreme event in hazard zone z does not necessarily imply that all the 
SCN locations zl L∈ will be hit. When the hazard zones are large (countries or states), it is likely 
that only a part of the zone locations will be hit. Also, when considering the impact on product-
markets, the SCN does not necessarily respond to all incidents. When designing a pre-
positioning supply network for a humanitarian or military organization, for example, the organi-
zation’s response to a natural disaster may depend on its policies, on UN solicitations and on 
other commitments (Girard et al., 2008). In such cases, a demand surge for first-aid products in a 
hazard zone does not necessarily generate demands in the corresponding SCN demand zone.  
This leads to the estimation of attenuation probabilities h

lα  which are conditional probabilities 
that location l  is hit when a multihazard h H∈  occurs in zone ( )z l . It is clear that these prob-
abilities are related to the hazard zones granularity. Large zones lead to small attenuation prob-
abilities, and vice versa. Attenuation probabilities can be estimated by experts for each SCN lo-
cation, based on experience and data available. 

When the SCN is hit, this has impacts on the network capacity and demand. In order to 
model these impacts, we need to refine our representation of the SCN. A hit on vulnerability 
sources such as plants, distribution centers (DCs) and suppliers result mainly in capacity loss, but 
a hit on product-markets affects demand processes. To reflect this, we partition the vulnerability 
source set S in two subsets: capacity-based sources cS  and demand-based sources dS . Also, in 
SCN design projects, the products manufactured and sold are usually aggregated into a set of 
product families p P∈ , and the subset of product families sP P⊂  associated to each vulnerabil-
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ity source s S∈  needs to be identified. Finally, to model impacts, we need to define a parameter 

lpc  denoting the capacity of location c,  ,sl L s S∈ ∈  for product sp P∈ , and a random variable 

lpd τ , with cumulative distribution function (.)d
lpkF τ , specifying the normal operations demand of 

location d,  ,sl L s S∈ ∈  for product sp P∈  in period uTτ ∈ , under evolutionary path k K∈ .  

When a location l L∈  in zone z(l) is hit by a multihazard h H∈ , the severity of the incident 
is characterized on two correlated dimensions: the impact intensity and the time to recovery 
(Sheffi, 2005). Clearly, these dimensions are related to the generic multihazard intensity and du-
ration variables h

gβ  and h
gθ  defined previously. However, the SCN impact severity must be ex-

pressed in units related to the capacity and demand of the vulnerability sources. It is assumed 
that the metrics used to characterize these two severity dimensions are the same for all the loca-
tions associated to a given vulnerability source, i.e. for all sl L∈ . Hence, for each vulnerability 
source s S∈ , incident profiles such as the ones illustrated in Figure 7 must be specified for all 
locations sl L∈ , products sp P∈  and multihazards sh H∈ . Damage on suppliers is typically as-
sessed using an unfilled rate (% of material ordered during the incident not delivered) and the 
time required to restore supplies, whereas damage on production-distribution resources is usually 
assessed using a capacity loss rate and the time before production/distribution can resume. For 
vulnerability sources affecting demand, damage is usually assessed using an inflation or defla-
tion rate expressing a demand surge or drop for a given period of time. Note that the evaluation 
of incidents severity may also be influenced by the state of the resources/partners associated to a 
vulnerability source. In some cases, an engineering analysis may be required to establish the fra-
gility of vulnerability source resources depending on the building type, age, etc. 
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Figure 7. Multihazard Incident Profiles Example 

Let h
lξ  be a discrete random variable giving the time to recovery, in working periods, of lo-

cation l L∈  when hit by a multihazard ( )s lh H∈ . We assume that this time to recovery can be 
related to the multihazard duration ( )

h
g lθ  using an adequate translation function ( ) ( )( )h h h

l s l g lqξ θ=  
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specified for each vulnerability source s S∈  and multihazard sh H∈ . This function may be 
based on a proportion estimated from past instances or provided by experts. Consider a multi-
hazard h H∈ hitting location l L∈  at the beginning of working period ' uTτ ∈ . Then, the impact 
of the hit lasts during working periods ',..., ' 1h

lτ τ τ ξ= + − .  

When a multihazard h H∈  hits a location l, its impact is not necessarily felt uniformly dur-
ing the time to recovery h

lξ  (Sheffi, 2005). Several phases are usually observed, depending on 
the nature of the multihazard and of the vulnerability source. For example, when a manufacturing 
plant is hit by a natural disaster, production capacity drops quickly during a first phase, then 
there may be a stagnation period while recovery measures are organized, and during a third 
phase the capacity is gradually restored. On the other end, when a disaster relief organisation ini-
tiates an assistance mission, it typically involves the three following phases: deployment, sus-
tainment and redeployment. Such phase-dependent impacts can be characterized by defining dis-
crete recovery functions ( , , ), , , h

sp sr h H s S p Pβ ξ= ∈ ∈ ∈ρ ρ , where 1[ ,..., ]τ τ ξρ ρ + −=ρ ' ' is a vector 
of capacity/demand amplification percentages for the ξ

 
working periods affected by the multi-

hazard. The 1,...,τ τ ξρ ρ + −' '  values used as an argument in the function reflect amplification per-
centages before the hit and the function returns percentages after the hit, as illustrated in Figure 
8. If the working periods affected by the multihazard are not still recuperating from a previous 
incident, then the a priori percentages are =100%, 1τρ τ τ τ ξ= + −', ..., ' . The amplitude of the 
amplification percentages depends on β , the multihazard generic impact intensity measure. 
Multihazard recovery functions are defined by experts for each vulnerability source and product 
family, based on experience and data available. 

Using these recovery functions, the capacity available or the demand can be calculated for 
specific working periods and locations. More specifically, the behaviour of the capacity 'lpc τ  or 
the demand 'lpd τ  resulting from a multihazard h H∈  is described by the following relations: 

c
( )' ,  ',..., ' 1;  ( , , );  , ,  h h h h

lp lp lp l lp sp g l l lp s sc c r s S p P l Lτ τρ τ τ τ ξ β ξ= = + − = ∈ ∈ ∈ρ ρ       (1) 
d

( )' ,  ',..., ' 1;  ( , , );  , ,  h h h h
lp lp lp l lp sp g l l lp s sd d r s S p P l Lτ τ τρ τ τ τ ξ β ξ= = + − = ∈ ∈ ∈ρ ρ       (2) 

This SCN impact modeling approach is based on a simplified representation of SCN resources, 
but it should be relatively easy to adapt to the specificities of real life cases. In particular, expres-
sions (1) and (2) reflect multiplicative impacts, which is typically appropriate in business con-
texts. However, for humanitarian relief or military organizations, the demand is usually more 
adequately described using additive impact relationships because lpd τ  can be zero when there is 
no incident. Also, we assumed that multihazard recovery functions are not affected by evolution-
ary paths, which is not always the case.  
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Figure 8. Recovery Function for a Given h H∈ , cs S∈  and sp P∈  

Plausible future scenarios 

The SCN hazard modeling framework proposed in the previous paragraphs is based on a 
number of key concepts: the identification of evolutionary paths K, the classification of SCN lo-
cations L  into vulnerability sources S and of hazards into multihazards H, the zonation of the 
territory into hazard zones Z and their classification into exposure levels G, the definition of in-
cident profiles in terms of impact intensity and time to recovery with associated recovery func-
tions, and the characterization of multihazards likelihood through the use of incident arrival sto-
chastic processes, impact intensity probability distribution functions, incident impact-duration 
functions and attenuation probabilities. The superposition, during the planning horizon, of a spe-
cific instance of this hazard occurrence process over specific instances of the business-as-usual 
random variables used to model the SCN yield a probabilistic scenario Pω ∈Ω . Some of these 
plausible future scenarios may involve only a few multihazard over the planning horizon but oth-
ers may be much more chaotic. An intuitive measure to assess the risk associated to a scenario 

Pω ∈Ω  is the number of hits ( )γ ω  it undergoes during the planning horizon. Figure 9 illustrates 
the distribution of the number of hits for a large sample of scenarios with exponential multihaz-
ard inter-arrival times. In order to distinguish between the scenarios a decision maker would con-
sider as acceptable, in term of the risks involved, and those that would raise a serious concern, 
we define a hazard tolerance level κ. This level is the maximum number of hits the decision 
maker can tolerate without serious concern. This tolerance level is used to partition the set of 
probabilistic scenario PΩ  in two subsets, namely AΩ  the set of acceptable-risk scenarios and 

SΩ the set of serious-risk scenarios. 

For a given SCN design project, the sets, measures and functions required to characterize 
hazards are necessarily defined based on the information and experience available and, conse-
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quently, they may completely overlook some potential extreme events for which no information 
and experience exist. It is to cope with these potential threats that imaginative deeply uncertain 
scenarios must be elaborated. Some uncertain extreme events associated with these scenarios can 
be identified through structured brainstorming sessions and/or expert interviews related to SCN 
threats and vulnerabilities (Van der Heijden, 2005). However, for our purposes, the resulting 
scenarios must be expressed quantitatively in terms of the parameters used in the design model. 
This can be achieved by following the structured process described in this section but by replac-
ing probability distributions and impact functions by human inputs for multihazards which can-
not be described probabilistically. Also, these scenarios necessarily include random events and 
they may also include probabilistic hazards so they are most easily created by perturbating prob-
abilistic scenarios. In what follows, our interest in deep uncertainty scenarios will be mainly re-
lated to our need to generate worst case scenarios. These would typically be probabilistic scenar-
ios in the tail of the distribution of the number of hits, as illustrated in Figure 9, or serious-risk 
scenarios perturbated by deep-uncertainty events imagined by experts. Our challenge now is to 
elaborate a SCN design modeling framework taking all this into account. 
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Figure 9. Distribution of the Number of Hits for a Large Sample of Scenarios 

SCN Design Model  

The generic design model proposed in Figure 2 does not take the nuances introduced in the 
previous section into account explicitly. More specifically, in Figure 2, the generalized future 
return measure 1{ }.| ( )I δΩR  used is defined over the set of all scenarios Ω  and it does not take 
the partitioning into acceptable-risk, serious-risk, and deeply uncertain scenarios into account. A 
fundamental argument of risk analysis is that this should not be done because it gives the same 
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weight to normal impact and serious impact events. To avoid this pitfall, in risk analysis, tradi-
tional expected value assessment functions are replaced by a set of conditional expected value 
assessment functions taking the impact of various types of events into account (Haimes, 2004). 
Along this line of thinking, in our SCN design methodology, to take into account the quality of 
information available and the impact intensity of events (as described in Figure 3), we propose 
to replace our original future return measure by three conditional return functions defined over 
the scenario subsets AΩ , SΩ  and UΩ  respectively.  

This transforms our original model into the following multiobjective program:   

    ( ){ } ( ){ } ( ){ }{ }
1 1

1 1 1max
x X

x x x, . , , . , , .A S UA S U
C C C

Ω Ω Ω∈
R R R                                  (3) 

( ){ } ( ){ } ( ){ } [ ]1 1 1 0 1x x x, . , . , . , ,A A AA AA A A
C C Cϕ ϕ

Ω Ω Ω
= + ∈ER D                    (4)                         

( ){ } ( ){ } ( ){ } [ ]1 1 1 0 1x x x, . , . , . , ,S S SS SS S S
C C Cϕ ϕ

Ω Ω Ω
= + ∈ER D                        (5) 

                           ( ){ } ( ){ }1 1, . ,U U UU
C Min C

ω
ω

Ω ∈Ω
=x xR D                        (6) 

where ( )A A
C

Ω
R , ( )S S

C
Ω

R  and ( )U U
C

Ω
R  are conditional return functions for scenarios in AΩ , 

SΩ  and UΩ , respectively, defined in terms of the conditional expected value ( )A A
C

Ω
E  and 

( )S S
C

Ω
E  of random variable C, of the conditional measures of dispersion (variability) 

( )A A
C

Ω
D  and ( )S S

C
Ω

D  of random variable C and of the weights Aϕ  and Hϕ . When ( )A A
C

Ω
D  

and ( )S S
C

Ω
D  are coherent risk measures, ( )A A

C
Ω

R  and ( )S S
C

Ω
R  are also coherent risk meas-

ures (Rockafellar, 2007). Coherent risk measures must satisfy a number of convexity, 
monotonicity, translation equivalence and positive homogeneity conditions. The most convenient 
coherent dispersion measures to use in our context are  

{ } { }+[ ( ) ]-C C C= E ED     or    { } { }+ +min [ ] [ ]  0,C C Cν ν
∈

= − + − ≥D
r

r r
R

E  

where [c]+ = max (c, 0) and ν  is a constant. The former is a mean-semideviation risk function 
and the later the so-called conditional value at risk function (Shapiro, 2007).  

Since the probability of occurrence of scenario Uω ∈Ω  is not known, expected value and 
dispersion measures cannot be defined for U-scenarios. For this reason, for U-scenarios, we use 
conditional return functions ( )U U

C
Ω

R  based on the robust optimization criteria proposed by 
Kouvelis and Yu (1997). In our context, it is most convenient to use the absolute robustness or 
robust deviation criteria defined respectively by: 

( ){ } ( )1 1x x, ,U C Cω ω= −D     or    ( ){ } ( ) ( )1 1 1x x x, , ,U C C Cωω ω ω⎡ ⎤= −⎣ ⎦D  

where 1
ωx  is the optimal single scenario design obtained when scenario ω  is realized, i.e. where  

1 11 1=arg{max ( )}Cω ω∈x Xx x , . From a computational point of view, the absolute robustness crite-
rion is more attractive because it does not require the optimal decision for each scenario but, ac-
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cording to Kouvelis and Yu (1997), it leads to very conservative decisions. The robust deviation 
criterion is more adequate in our context but it requires more computations.  

Several methods are proposed in the literature to solve multiobjective programming prob-
lems. Given the complexity and size of model (3), an adequate approach here is to simply con-
vert it into the multiparametric program: 

( ){ } ( ){ } ( ){ }
1 1

1 1 1 1max ( ) (1 ) ,. ,. ,.A S UA SA S U
R w C w C Cψ ψ

Ω Ω Ω∈
⎡ ⎤= − + +⎣ ⎦x X

x x x xR R R          (7) 

with subjective weights 0 1  1,A S Aw w w≤ ≤ = − , 0 1ψ≤ ≤ . Since  1( )R x  is a convex combination 
of coherent risk measures, it is also a coherent risk measure (Rockafellar, 2007). Such an ap-
proach leads to satisfactory designs only if program (7) is solved parametrically for different 
weight values. Note that when the probabilities ( )p ω  for all probabilistic scenarios can be evalu-
ated, and when the decision maker is neutral to risk, we have 0A Sϕ ϕ= =  in (4) and (5), and 

0ψ = . Under these conditions, by defining the weight AA Aw p
ω

π ω
∈Ω

= = Σ ( ) , the probability of 
acceptable-risk scenarios, and 1S S Aw π π= = − , the probability of serious-risk scenarios, (7) re-
duces to the maximization of the unconditional expected value of ( )1C x , . . On the other end, a 
decision maker averse to extreme events would define weights A Aw π<  and 0ψ > , and a deci-
sion-maker averse to dispersion would set 0Aϕ >  and 0Sϕ > . Note however that, in most practi-
cal cases, the number of possible scenarios Ω  is extremely large, if not infinite, and thus it is 
impossible to obtain the set PΩ  and the probabilities Pp ω ω ∈ Ω( ),  explicitly. 

Our previous discussion of extreme events has another impact on the formulation of SCN 
design models. When facing such threats, one would like to design the SCN to avoid risky loca-
tions as much as possible and to be able to bounce back quickly when hit, i.e. to favour network 
structures and response policies helping the user to react efficiently when hit. This is the domain 
of resilience strategies (Sheffi, 2005). Clearly, resilient designs improve the SCN robustness. In 
order to obtain resilient designs, additional decision variables and constraints may have to be in-
cluded in the formulation of the solution sets ( )1

1
ˆ, , \{1}n

n n Nω− ∈xX X . For example, one may 
want to provide instructions on the backup depot to use to supply customers when the primary 
depot is hit, or to impose primary and backup distance covers to ensure an adequate response to 
all customers (Klibi and Martel, 2009). Unfortunately, this further complicates the design model. 
Note finally that the anticipated adaptation-response model in Figure 2 must incorporate an 
evaluation of the recourses necessary to obtain a feasible solution under any scenario ω ∈Ω . All 
this certainly lead to extremely complex optimization models under uncertainty. In what follows, 
we propose a generic SCN design approach based on reasonable approximations of model (7). 
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Scenario-based SCN Design Model Solution Approach 

SCN design model (3) is a multi-stage stochastic program with an infinite set of scenarios, a 
multiobjective reward function, and an anticipation of adaptation-response decisions. Unfortu-
nately, this model is intractable in its current form, and the objective of this section is to propose 
a complexity reduction approach to obtain solvable SCN design models capturing the essence of 
the problem. Our purpose is not so much to obtain the optimal design as it is to identify practical 
ways of hedging risks that are largely overlooked in classical SCN models. The approach is 
based on several accuracy-solvability tradeoffs likely to yield effective and robust SCN designs.  

A first complexity reduction avenue is to use approximate anticipations of adaptation-
response decisions to simplify the combinatorial structure of the design model. A second simpli-
fication is to reduce the multiobjective function to a multiparametric function based on (7), and 
capturing only the primordial expected value and risk aversion criteria associated to probabilistic 
scenarios. A third opportunity comes from the fact that SCN design problems are usually solved 
on a rolling horizon basis so that the only decisions implemented when the model is solved are 
the first design decisions *

1x . This suggests that the model can be reduced to a multi-cycle two-
stage stochastic program with recourse without loosing its hedging capabilities, which simplifies 
both the generation of scenarios and the resolution of the model. Finally, the resulting stochastic 
program can be solved using several samples of scenarios generated using Monte Carlo methods. 
The approach then reduces to solving a set of large MIPs, as done when solving stochastic pro-
grams with the Sample Average Approximation (SAA) method (Shapiro, 2003). Additional de-
signs can be obtained by varying the anticipation granularity and the objective function weights. 
The designs obtained are then compared using performance measures (4)-(7), evaluated with a 
more precise adaptation-response model than the one incorporated in the design model and a lar-
ger scenario sample. 

The SCN design approach thus obtained is summarized in Figure 10. It includes three 
phases: scenario generation, design generation and design evaluation. The first phase involves 
the generation of several plausible future scenario samples for the design generation and evalua-
tion phases. It produces I independent small Monte Carlo samples of Am  acceptable-risk scenar-
ios and Sm  serious-risk scenarios, , 1,...,SA mmm

i i i i IΩ = Ω ∪ Ω = , as well as estimates  and A Sπ π  of 
the probabilities  and A Sπ π , for the design generation phase. It also provides larger samples 

, SA MMΩ Ω  of probabilistic scenarios, and a sample UMΩ  of worst-case scenarios to the design 
evaluation phase. The second phase of the approach involves the resolution of the MIPs  
SAA( m

iΩ ), 1i I= , ..., , resulting from the approximations made. For a given resilience and re-
sponse anticipation formulation, this yields a set of distinct designs 1 , 1,...,j j J=x  ( J I≤ ). The 
third phase of the approach compares the performance of these designs, and of the status quo de-
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sign 0
1x , by solving an approximate adaptation-response model for each of the scenarios in 

0{ }S UA M MMM ωΩ = Ω ∪ Ω ∪ Ω ∪ , where 0ω  is an historical scenario. The set of scenario specific 
design values ( )1 , , MjC ωω ∈ Ωx% , thus obtained are used to evaluate performance measures 

1 1 1 1{ ( ,.)}, { ( ,.)}, { ( ,.)} and ( )M M MA S U

j j j j
A S UC C C RΩ Ω Ωx x x x% % %R R R  based on (4)-(7). Finally, classical 

multicriteria filtering and selection techniques can be used to select the design *
1x  to implement. 

In what follows each phase of this generic design approach is discussed and explained in more 
details. 

SCN design models
- Resilience formulation
- Anticipation 
- Solution method

1

2

3

Status quo

( , 1,..., ), ,Pm
i i I P A SΩ = =

1 , 1,...,j j J=x

, ,PM P A SΩ =

0
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*
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…
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( )1 , ,du MjC ωω ∈Ωx%

UMΩ

0( )ω

( , 1,..., ), ,i
Pw i I P A S= =

 and A Sπ π

 

Figure 10. Generic SCN Design Methodology  

SCN Designs Generation  

As indicated previously, four complexity reduction stratagems can be used to formulate 
solvable SCN design models. The first one involves the incorporation of approximate anticipa-
tions of adaptation-response decisions in the design model. In classical SCN design models user 
decisions are anticipated using continuous throughput and flow variables. The anticipation vari-
ables are typically aggregates over several products, customers, transportation means and work-
ing periods. These decision variables are used to anticipate revenues and expenses, but they can-
not be implemented. For example, in practice, flow decisions take the form of daily shipments in 
response to specific customer orders, and not the form of an annual quantity of products to ship 
between two locations. The later is used as a crude approximation of the former. In fact, such 
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approximations are often so crude, that they raise issues about the validity of the model. Some 
authors have proposed models with more accurate anticipations: a model incorporating detailed 
market response anticipations is proposed by Vila et al., (2007), and more elaborated transporta-
tion and inventory costs anticipations are proposed in the location-routing and location-inventory 
models reviewed in Shen (2007). Klibi et al., (2009b) studied various anticipations for the sto-
chastic location-transportation problem, based on different demand representations (multiple 
scenarios vs average demand) and on different aggregations of transportation decisions (route vs 
flows), customers (ship-to-point vs demand zones) and time (working periods vs planning peri-
ods). The results obtained show that although significant gains can be made by using more pre-
cise anticipations, given the computational power currently available, some tradeoffs are neces-
sary. The best approach seems to be to seek an adequate equilibrium between all the dimensions 
involved instead of neglecting some dimensions (ex: using a deterministic model to be able to 
anticipate transportation costs with route-variables). The use of adequate approximate anticipa-
tions reduces the size of the multi-stage stochastic program to solve. 

A second complexity reduction avenue is the replacement of the multiobjective function in 
model (3) by a simplified version of the composite return function (7), which is a convex combi-
nation of conditional return functions (4)-(6). The return functions (4) and (5) are defined in term 
of an expected value and a dispersion measure. Since the recourse variables included in the an-
ticipation sub-model tend to be very expensive, the stochastic program tries to eliminate any ex-
treme behaviour, which naturally reduces variability even if the dispersion terms are not included 
in these return functions. For this reason, a convenient complexity reduction mean is to set 

0A Sϕ ϕ= =  in functions (4) and (5), respectively. Also, the aim of return function (7) is to re-
flect the consequences of extremely hazardous deeply uncertainty scenarios. However, since the 
probabilistic scenarios were separated into acceptable and serious risk scenarios, one can give 
more importance to extreme events if desired by increasing weight Sw . For this reason, another 
reasonable complexity reduction opportunity is simply to set 0ψ = . This reduces the original 
design model to the simpler multi-stage stochastic program: 

( ){ } ( ){ }
1 1

1 1max A SA SA S
w C w C

Ω Ω∈
⎡ ⎤+⎣ ⎦x X

x x, . , .E E              (8) 

Recall that, to take the risk attitude of decision makers into account, the weights and A Sw w  
should be based on the probabilities and A Sπ π . These probabilities are not available but the 
weights can be based on the estimates and A Sπ π  provided by the scenario generation procedure. 

The dynamics of the multi-stage decision structure described in Figure 1 and Figure 2 is an 
important source of complexity. When several planning cycles are considered, first-stage design 
decisions 1x  are made here and now, and the subsequent structural adaptation decisions 
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2 , ..., nxx  are implementable policies (Shapiro, 2007) elaborated to respect non-anticipativity 
conditions. When this is taken into account explicitly, the size of the problem tends to blow up. 
However, since design decisions are made on a rolling horizon basis, the structural adaptation 
decisions 2 , ..., nxx  will in fact be revised before they are implemented. In our context, they are 
essentially anticipation variables. Under these conditions, a reasonable complexity reduction as-
sumption is to consider that the decisions 2 , ..., nxx  must be made at the beginning of the plan-
ning horizon. This eliminates non-anticipativity constraints and transforms the model into a 
multi-cycle two-stage stochastic program. In most practical cases, the number of possible scenar-
ios Ω  is extremely large and, in order to solve (8), one needs to limit the number of scenarios 
considered and to avoid the explicit use of the probabilities ,( ) Pp ωω ∈ Ω . Another complexity 
reduction method is to replace the population sets PΩ  in design model (8) by representative 
Monte Carlo samples  and SA mmΩ Ω  of Am  equiprobable acceptable-risk scenarios and Sm  
equiprobable serious-risk scenarios, respectively. Clearly, the quality of the design obtained with 
the resulting SAA program depends on the number A Sm m m= +  of scenarios considered. To get 
better designs, the model can be solved with I scenario sample replications 

, 1,...,SA mmm
i i i i IΩ = Ω ∪ Ω = . Statistical gaps can be calculated to evaluate the quality of the solu-

tions obtained with these scenario sets (Shapiro, 2003), and they can be used to calibrate the size 
of the scenario samples to generate. The SAA model to solve for a given scenario sample m

iΩ  is 
the following:  

SAA( m
iΩ ) ( ) ( ) ( )( )1

ˆ, 1

ˆ ˆˆ ˆmax , ,  
Pm

i

d d u
n t

PP A S n t T

i
Pw

m C C C
ω

ω ω ω
= >∈Ω ∈

⎧ ⎫⎪ ⎪+⎨ ⎬
⎪ ⎪⎩ ⎭

+∑ ∑ ∑ ∑x x y  (9)

 s.t.    1 1x X∈ ;  1ˆˆ n
n n

−∈ xx X , \{1}n N∈  (10)

         ( ) ( ) xy Y ( )ˆˆ n t
t tω ω∈ , , m

it T ω∈ ∈Ωˆ  (11)

Despite all the simplifications proposed, for real SCN design problems, program SAA( m
iΩ ) 

may still be extremely large and difficult to solve. Santoso et al. (2005) proposed the use of 
Benders decomposition to solve this type of SCN design models. Recent commercial solvers, 
such as CPLEX-11, incorporate generic heuristics (ex: the feasibility pump) to find good initial 
solutions and they are able to solve surprisingly large SCN design problems. Also, since our ob-
jective here is to generate good potential SCN designs, and since commercial solvers tend to take 
a lot of time to prove optimality after they found the optimal solution, larger optimality gap pa-
rameter values can be used to reduce computation times. Note finally that several heuristic meth-
ods were proposed in the literature to solve deterministic location-allocation problems (see Klibi 
et al. (2009a) for a review) and some of them can be extended relatively easily to solve stochas-
tic versions of the problem. 
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By solving SAA( m
iΩ ), 1,...,i I= , a set of potentially effective and robust designs are ob-

tained. However, the SAA program solved is based on a specific resilience and adaptation-
response anticipation formulation, and on given risk-attitude weights. Other potential designs can 
be generated by modifying the model formulation or the risk-attitude weights. Modifying the 
model formulation may be cumbersome, but reformulations such as a change in the granularity 
of some anticipation variables are possible without excessive efforts. Changing risk-attitude 
weights is easy and, since these weights are not hard data, varying them is an adequate approach 
to generate alternative designs 1 , 1,...,j j J=x  ( J I≤ ). One way to take into account the fuzzy na-
ture of these weights, and to make sure that the designs obtained by solving the I SAA programs 
are all distinct, is to consider them as random variables with [ ]~Uniform ,S S Sw π π + Δ , 

1A Sw w= −  and AπΔ < . Since the overshoot parameter Δ  determines the maximum value of 

Sw , its value is selected to reflects the risk-aversion of the decision-maker. The weights 
 and i i

A Sw w  used for model SAA( m
iΩ ) are generated randomly from this distribution. 

Scenarios Generation 

Plausible future scenario samples are required by the two other phases of the design meth-
odology in Figure 10. As indicated before, scenarios are juxtapositions of random, hazardous 
and deeply uncertain events over the planning horizon T̂ , and they are shaped by possible evolu-
tionary paths k K∈ . When the decision process is approximated by a two-stage stochastic pro-
gram, plausible futures can be represented as a fan of individual scenarios, as illustrated in Fig-
ure 4, and it is sufficient to generate particular event type realizations and to concatenate them to 
obtain a scenario. Importance sampling techniques (Ducapova et al., 2000) can also be used to 
obtain scenario samples adequately covering all scenario types and evolutionary paths. In this 
section, we provide a procedure to generate individual scenarios and we discuss the generation of 
the various scenario samples required to obtain effective and robust SCN design. 

As explained previously, random and hazardous events can be characterized by random 
variables with distribution functions depending on working periods uTτ ∈  and on evolutionary 
paths k K∈ . Also, some of the problem data may be considered as known but affected by haz-
ards. To illustrate this, in the section on the modelling of hazards, we introduced a known con-
stant capacity parameter lpc  and a time-dependent random demand variable lpd τ , both being sub-
jected to the effects of hazards. To simplify the presentation we also assume in this section that 
capacity and demand are the only two variables affected by hazards. Other random variables re-
lated to prices, costs, exchange rates... may be influenced by evolutionary paths, but not by haz-
ards. Let Ε  be the set of all these random variables, denoted by , e eτζ ∈ Ε , and let (.), e

kF eτ ∈Ε , 
be their cumulative distributions for working period uTτ ∈  under evolutionary path k K∈ . For a 
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given scenario ω , the value taken by these variables is denoted by ( )lpc τ ω , ( )lpd τ ω  and ( )e
τζ ω . 

The Monte Carlo procedure required to generate these values is given in Figure 11. In the pro-
cedure, u  denotes a pseudorandom number, and ( )1 uΦ −  the inverse of the standardized Normal 
variate. 

 

1) Select an evolutionary path k randomly using , kp k K∈  

2) For all h H∈  and hg G∈ , do: 
 0η =  
 While | |uTη ≤

 
do: 

  Compute the next multihazard arrival moment  1
( )

h

gkF uλ
τη η

−
= +   

  Select a hazard zone z randomly in gZ  using , h
z g gp z Z∈|  

  Insert the pair ( , )hη⎡ ⎤⎢ ⎥  chronologically in the list zzT  
 End While 
    End For  
3) For all z Z∈ , do: 
          Set 1lpτρ = , ul L p P Tτ∈ ∈ ∈, ,        

          For all ( ) zhτ ∈T', , do: 

                  Compute 
  1

( ) ( )
hh

z g z uF ββ
−

=  and ( ) ( )1h h h
z z hf uεθ β σ Φ −= +  

                  For all h
z ll L u α≤∈ , do: 

            Compute ( ) ( )( )h h h
l s l z lqξ θ=  

                          Compute 1h h h h
lp s l p z l l lp lrτ τρ β ξ ρ τ τ τ ξ= = + −( ) ( )( , , ), ', ..., ' , ( )s lp P∈    

                   End For 
           End For 
    End For  
4) For all c , ,s ss S l L p P∈ ∈ ∈  and uTτ ∈ : Compute the capacity ( )lp lp lpc cτ τω ρ=  

    For all , ,d
s ss S l L p P∈ ∈ ∈  and uTτ ∈ : Generate the demand 

   1
( ) ( )d

lp lp lpk ud Fτ τ τω ρ
−

=  

    For all e∈ Ε  and uTτ ∈ : Compute ( ) 1e e
k uFτ τζ ω

−
=  ( )   

5) Aggregate these values over periods , u
tT t Tτ ∈ ∈ ˆ , to obtain ( )lptc ω , ( )lptd ω  and ( )e

tζ ω  

Figure 11. Monte Carlo Procedure for the Generation of a Scenario ω    

The procedure includes five main steps. First, an evolutionary path is randomly selected. 
Then, a chronological list zzT  of all the multihazards arrival periods is constructed for every haz-
ard zone z Z∈ . Third, the intensity and duration of the incidents are generated and used to calcu-
late amplification factors using the recovery functions. Forth, the amplification factors are used 
to calculate the working period’s capacity and demand. The value of the hazard-independent 
random variables is also computed. We assume here that the random variables , e eτζ ∈ Ε , are in-
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dependent. If they are not, the generation process is more complicated but straightforward. The 
last step aggregates the working period values obtained into planning period values. This is re-
quired because the design generation phase needs scenarios expressed in terms of planning peri-
ods ˆt T∈ . The design evaluation phase however usually uses scenarios expressed in terms of 
working periods uTτ ∈ . Note that this aggregation process does not always involve a simple 
sum over all the working periods , u

tT t Tτ ∈ ∈ ˆ . For the capacity, for example, in order to take 
congestion into account properly, this may involve period sampling or the application of a cor-
recting factor.    

The procedure in Figure 11 can be used to generate all the scenarios, probabilities and risk-
attitude weights required by the design generation phase. To do this, a large sample of dM  sce-
narios 

dMΩ  is generated and partitioned into acceptable and serious hazard subsets 
d
AMΩ  and 

d
SMΩ , using the hazard tolerance level κ (see Figure 9). From these sub-samples, the probability 

estimates d d
A AM Mπ =  and 1S Aπ π= −  are calculated. The small scenario samples , SA mm

i iΩ Ω , 
1 ,i I= , ..., are then randomly selected in 

d
AMΩ  and 

d
SMΩ , respectively. Through this hierarchical 

sampling procedure, one makes sure that all the scenarios in Am
iΩ  and Sm

iΩ  are equiprobable, 
with probability 1 Am/  and 1 Sm/  respectively. Based on  Sπ   and on the risk-aversion overshoot 
factor Δ, the weights , ,  1,...,i i

A Sw w i I= , can also be generated from the [ ]Uniform ,S Sπ π + Δ  dis-
tribution. Note that the samples obtained include scenarios coming from all the evolutionary 
paths k K∈ . If Am  and Sm  are relatively large, then each evolutionary path is well represented 
in the samples. However, if the sample size is small, one may want to force a good representation 
of each evolutionary path by hierarchically sampling kAm  scenarios for path k to get the samples 

, , kA kSm m
i i k KΩ Ω ∈ , 1i I= , ..., . The objective function (9) must then be replaced by: 

( ) ( ) ( )( )1
ˆ, 1

ˆ ˆˆ ˆmax , ,  
kPm

i

k

k K kP

i d d u
n tP

P A S n t T

p
m

w C C C
ω

ω ω ω
∈= >∈Ω ∈

⎧ ⎫⎪ ⎪+⎨ ⎬
⎪ ⎪⎩ ⎭

+∑∑ ∑ ∑ ∑x x y   (12) 

The procedure in Figure 11 can also be used to generate all the scenarios required by the de-
sign evaluation phase. To this end, another large sample of scenarios 

eMΩ  is independently gen-
erated and partitioned into acceptable-hazard scenarios 

e
AMΩ  and serious-hazard scenarios 

e
SMΩ , 

based again on the hazard tolerance level κ. From these samples, two moderate size subsets of 
scenarios are randomly selected to perform the design evaluation: a subset 

e
A AM MΩ ⊂ Ω  of AM  

acceptable-hazard scenarios, and a subset 
e

S SM MΩ ⊂ Ω  of SM  serious-hazard scenarios. In order 
to obtain worst-case scenarios, a subset 

e
W SM MΩ ⊂ Ω  of tail scenarios is also selected in the dis-

tribution of the number of hits (see Figure 9). These scenarios are then taken as is, or modified 
manually by adding imaginative elements, to get the required set of worst-case scenarios UMΩ .  
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SCN Designs Evaluation  

The aim of the design evaluation phase is to select the best SCN design among those gener-
ated ( 1 , 1,...,j j J=x ) and to compare them to the status quo 0

1x . If we were applying the standard 
SAA approach, this would be done by solving the second stage program, obtained by fixing 1

jx  
and , \{1}ˆ j

n n N∈x , in (9)-(11), with the scenarios SA MMΩ ∪ Ω , and then by comparing the de-
signs expected value. However, since the SAA model is based on several approximations, there 
is no reason to restrict ourselves to such a gross assessment. The evaluation of the designs should 
be based on a response optimization model as close as possible to the real user model. Moreover, 
to obtain the SAA( m

iΩ ) model, we assumed that the design adaptation decisions needed to be 
made at the beginning of the planning horizon. However, these decisions can be reoptimized to 
improve the assessment process. Finally, to obtain SAA( m

iΩ ), we simplified the objective func-
tion, but when comparing the designs, there is no reason not to use the performance evaluation 
measures (4)-(7). 

Consequently, for a given design 1
jx  and a given scenario Mω ∈Ω  (recall that 

0{ }S UA M MMM ωΩ = Ω ∪ Ω ∪ Ω ∪ ) the mathematical program to solve to obtain the net revenues 
provided by the design under this scenario is the following:  

 ( ) ( ) ( )
2 3
1 2

1 'ˆ ˆ, ... 1 ', ...

, = ˆ ˆmax , ,
u

du j d u
n

n T

C C C τ
τ

ω ω ω
> ∈

+∑ ∑x x
y y

x x y
% %

% % %                                                                          (13) 

     1ˆˆs.t. , \{1}n
n n n N−∈ ∈xx X                                                                                    (14) 

 ( )n uTτ
τ τ ω τ∈ ∈xy Y , %% ( )

' ' '                                                               (15) 

In this model, the response variables τy% ' , sets ( )n τ
τ ωxY% ( )

'  and functions ( )' ,
uC τ ωy% %  are accentu-

ated with a ‘~’ instead of a ‘ ^ ’ to reflect the fact that the user response can be anticipated more 
precisely than in the design model, even if an exact anticipation is usually not possible. Also, the 
index τ '  instead of t is used to indicate that the time unit used can be a compromise between the 
working period τ and the planning period t. For example, one could use months or seasons as in 
tactical planning models. Since this model is solved for a single scenario at the time, it is much 
easier to solve than SAA( m

iΩ ). Note finally that ( )1 ,du jC ωx%  does not include the investment costs 
associated to design 1

jx . The design values for the sample of evaluation scenarios are thus pro-
vided by: 

 ( ) ( ) ( )1 1 1, , , , j d j du j MC C Cω ω ω ω= + ∈Ωx x x% % %            (16) 

These design values can be used to evaluate performance measures based on (4)-(7). Given 
the evaluation scenario samples generated, this yield the following measures: 

 ( ){ } ( ){ } ( ){ }1 1 1M M MA A A

j j j
AA A A

C C Cϕ
Ω Ω Ω

= +x x x% % %, . , . , .ER D                           (17)                         
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 ( ){ } ( ){ } ( ){ }1 1 1M M MS S S

j j j
SS S S

C C Cϕ
Ω Ω Ω

= +x x x% % %, . , . , .ER D                            (18) 

            ( ){ } ( ){ }1 1MU MU

j j
UU

C Min C
ω

ω
Ω ∈Ω

=x x% %, . ,R D                      (19) 

 ( ){ } ( ){ } ( ){ }1 1 1 1( ) (1 ) ,. ,. ,.M M MA S U

j j j j
A SA S U

R w C w C Cψ ψ
Ω Ω Ω

⎡ ⎤= − + +⎣ ⎦x x x x% % %R R R         (20) 

We are left with a classical multicriteria decision making problem to determine the most effec-
tive and robust design *

1x . Formal multicriteria decision making techniques (Triantaphyllou, 
2000) can be used to reach a decision, but simpler filtering and pegging methods can also help to 
examine the designs from different points of view. Filtering techniques can be used to eliminate 
dominated designs. Pegging can be performed to compare specific solutions with the status quo 

0
1x  for specific scenarios. In practice, managers particularly like to make such comparisons for 

the historical scenario 0ω  and for worst case scenarios UMω ∈Ω . Sensitivity analysis can be per-
formed for the various risk-attitude weights Aϕ , Sϕ , Aw , Sw  and ψ . In other words, several 
multicriteria/multi-scenario views can be elaborated to help select the best design.  

Conclusions 

This paper proposes a new methodology to design effective and robust SCNs. It underlines 
the temporal hierarchy between design time and utilization time, and it proposes to evaluate ro-
bustness through a high-quality anticipation of user decisions for a sample of adequately selected 
plausible future scenarios. In order to design superior SCNs, it is not sufficient to maximize 
overall effectiveness under normal operations, as is usually done in the literature: robustness un-
der unpredictable disruptions must also be considered. An approach is proposed to take such dis-
ruptions into account in the design process. In addition to considering expected values, the ap-
proach considers the risk attitude of the decision maker. However, incorporating all these ele-
ments in the SCN design model yields an intractable multi-stage stochastic program. Given that, 
an approximate design methodology is proposed to capture the essence of the problem while pre-
serving solvability. Complementary work performed to test the approach (Klibi et al., 2009b; 
Klibi and Martel, 2009) indicates that it offers a judicious accuracy-solvability trade-off. We also 
believe that our framework provide ample opportunities for additional research. 
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