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Abstract. We consider the stochastic capacitated transshipment problem for freight 

transportation where an optimal location of the transshipment facilities, which minimizes 

the total cost, must be found. The total cost is given by the sum of the total fixed cost plus 

the expected minimum total flow cost, when the throughput costs of the facilities are 

random variables with unknown probability distribution. By applying the asymptotic 

approximation method derived from the extreme value theory, a deterministic nonlinear 

model, which belongs to a wide class of Entropy maximizing models, is then obtained. The 

computational results show a very good performance of this deterministic model when 

compared to the stochastic one. 
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1 Introduction

In this paper we consider the capacitated transshipment problem for freight transporta-
tion where an optimal location of the transshipment facilities must be found. In any
transshipment problem the transportation process takes place in two stages: from ori-
gins to transshipment facilities and from transshipment facilities to final destinations.
From an economic point of view this process implies three kinds of cost: the fixed cost of
locating a transshipment facility, the transportation cost from an origin to a destination
through a transshipment facility and the throughput operation cost at each transship-
ment facility. The throughput operation cost is due to freight treatment operations, such
as loading/unloading, but also to inventories and postponed processing, such as pack-
aging, testing etc. [15]. While the fixed costs and the transportation costs are usually
well defined, deterministic and quite easy to be measured, the throughput operation
costs are ill defined, stochastic and non easily measurable, so that their probability dis-
tribution remains in general unknown. Nevertheless, the costs of different throughput
operation scenarios inside a transshipment facility play an important role in the choice of
the transshipment facility itself by the freight suppliers, and this role becomes more and
more economically relevant when moving from local to regional transshipment facilities.

The most significant contribution of this paper to the existing literature is to explicitly
consider such stochastic throughput operation costs in the capacitated transshipment
problem, where we want to find an optimal facility location while minimizing the total
cost, given by the sum of the total fixed cost plus the expected total flow cost, subject
to supply and demand satisfaction and to facility capacity constraints.

In a recent paper dedicated to the memory of Charles ReVelle [22], ReVelle et al.
identify among new fields in location theory the following one:

• “models ranging from gravity types to Logit functions (which appear to be most
promising in the context of location modeling)”.

This paper addresses this field. In fact, we will prove that under a very mild assump-
tion the probability distribution of the minimum cost becomes a Gumbel (or double
exponential) distribution, and the expected optimal flows turn to be multinomial Logit
functions.

From the above results, a deterministic mixed-integer nonlinear model for the Ca-
pacitated Transshipment Location Problem under Uncertainty, which belongs to a wide
class of Entropy maximizing models, is then derived.

The stochastic model under different probability distributions and its deterministic
approximation are solved for different instances showing a mean gap between the two
optima around 2%.
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The remainder of the paper is organized as follows. Following a brief overview of
some key papers in Section 2, we introduce the Capacitated Transshipment Location
Problem under Uncertainty as a two-stage stochastic program with recourse in Section
3. Firstly, we consider only the allocation sub-problem, called Stochastic Flow Problem,
and in Section 4 this problem is solved. Thanks to an equivalence between the Stochastic
Flow Problem and an Entropy Maximizing Problem derived in Section 5, a deterministic
approximation of the Capacitated Transshipment Location Problem under Uncertainty
is then given in Section 6. In Section 7 the performance of this approximation is compu-
tationally tested. Finally, the conclusions of our work are reported in Section 8.

2 Literature review

In the huge literature on the transshipment facility location problem there are just a
few papers were stochasticity is considered, but this stochasticity concerns mainly the
demand, while random costs are generally ignored. Given the limited literature on costs
stochasticity for the the transshipment facility location problem, in the following we give
a short review over a broader set of related problems.

In [16] Klose and Drexl present a review of some contributions to the current state-
of-the-art on facility location problems. In particular, models and applications for con-
tinuous location, network location, and mixed-integer programming are considered. Also
probabilistic models are presented were some of the input data of the location models
are subject to uncertainty. Also Ozdemir et al. give a literature review on transshipment
theory, but limited to deterministic cases [21]. A more recent review covering stochastic
and some non-linear facility location problems is due to Snyder [26]. In particular, this
survey considers some classical problems, including the p-median problem.

Glockner and Nemhauser [10] consider a dynamic network flow problem where arc
capacities are random variables and derive a multistage stochastic linear program. In
[21] and [20] the different cases of transshipment capacity are modeled as a capacitated
network flow problem embedded in a stochastic optimisation problem. In these papers
the demand is random and with known probability distribution. In [24] the authors
analyze a stochastic fractional transshipment problem with uncertain demands and pro-
hibited routes, which is solved reformulating the stochastic transshipment problem into
an equivalent deterministic transportation problem. In [29] a two-stage linear program
with recourse formulation is developed to determine the optimal storage capacity to
be installed on transshipment nodes by shippers in a dynamic shipper carrier network
under stochastic demand. In the first stage, the shipper decides the optimal capac-
ity to be installed on transshipment nodes. In the second stage, the shipper chooses a
routing strategy based on the realized demand. Also in [32] the authors formulate the
multi-location transshipment as a two-stage stochastic program with recourse, where the
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demand is stochastic. An interesting the paper is [31] where the authors investigate
the location problem of the logistics distribution centers under the condition that setup
costs, turnover costs and customer demands are fuzzy variables. As a result, a fuzzy
chance-constrained programming model is developed. In [33] a capacitated location-
allocation problem with stochastic demands is originally formulated as expected value
model, chance-constrained programming and dependent-chance programming according
to different criteria. In practice, the authors focus on a stochastic Location-Allocation
problem where the demands are random.

About stochastic costs, the literature is very limited. Ricciardi et al. [23] consider a p-
median problem with random throughput costs at the facilities and develop a non-linear
deterministic approximation model which is then solved heuristically. Daskin et al. [5]
introduce a location-inventory model that minimizes the expected cost of locating facil-
ities, transporting material, and holding inventory under stochastic daily demand. The
stochastic model is then reduced to a deterministic model whose objective function is a
function of the means and variances of the random parameters. Snyder et al. [27] consider
a scenario-based stochastic version of the joint location-inventory model of Daskin et al.
[5], allowing demand means and variances to be stochastic, as well as costs, lead times,
and some other parameters. One of the most recent papers on stochastic location is due
to Tadei et al. [28]. In this paper the authors consider a stochastic p-median problem
where the cost for using a facility is a stochastic variable with unknown probability dis-
tribution. Under mild hypotheses, the authors are able to approximate this stochastic
problem to a non-linear deterministic model.

3 Problem definition

Let be:

• I: set of origins
• J : set of destinations
• K: set of potential transshipment locations
• Lk: set of throughput operation scenarios at transshipment facility k ∈ K
• Pi: supply at origin i ∈ I
• Qj: demand at destination j ∈ J
• Uk: throughput capacity of transshipment facility k ∈ K
• fk: fixed cost of locating a transshipment facility k ∈ K
• yk: binary variable which takes value 1 if transshipment facility k ∈ K is located,

0 otherwise
• ckij: unit transportation cost from origin i ∈ I to destination j ∈ J through trans-

shipment facility k ∈ K
• θkl: unit throughput cost of transshipment facility k ∈ K in throughput operation

3
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scenario l ∈ Lk
• skij: flow from origin i ∈ I to destination j ∈ J through transshipment facility
k ∈ K.

Let us assume

i) the system is balanced, i.e.
∑

i∈I Pi =
∑

j∈J Qj = T
ii) the unit throughput costs θkl are independent and identically distributed (i.i.d.)

random variables with a common and unknown probability distribution

Pr{θkl ≥ x} = F (x). (1)

Assumption i) is a standard one and it is straightforward to balance the system if nec-
essary. Assumption ii) is justified by the fact that the unit throughput costs usually vary
among transshipment facilities and inside each of them in a random way and are quite
difficult to be measured. Thus they become random variables with unknown probability
distribution. Moreover, these random variables are independent each other and there is
no reason to consider different shapes for their unknown probability distributions ([17],
[18], [19]).

Let rklij (θ) be the stochastic generalized unit transportation cost from origin i to
destination j through transshipment facility k in throughput operation scenario l given
by

rklij (θ) = ckij + θkl, i ∈ I, j ∈ J, k ∈ K, l ∈ Lk (2)

with unknown probability distribution

Pr
{
rklij (θ) ≥ x

}
= Pr

{
ckij + θkl ≥ x

}
= Pr

{
θkl ≥ x− ckij

}
= F (x− ckij). (3)

Let us define
θk = min

l∈Lk

θkl, k ∈ K (4)

with unknown probability distribution

H(x) = Pr
{
θk ≥ x

}
(5)

As θk ≥ x⇐⇒ θkl ≥ x, l ∈ Lk and θkl are independent, using (1) one gets

H(x) = Pr
{
θk ≥ x

}
=
∏
l∈Lk

Pr {θkl ≥ x} =
∏
l∈Lk

F (x) = [F (x)]nk (6)

where nk = |Lk| is the number of the different throughput operation scenarios at the
transshipment facility k.

4
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The stochastic generalized unit transportation cost from origin i to destination j
through transshipment facility k is the minimum among the costs for the different
throughput operation scenarios at facility k and becomes

rkij(θ) = min
l∈Lk

rklij (θ) = ckij + min
l∈Lk

θkl = ckij + θk, i ∈ I, j ∈ J, k ∈ K. (7)

In order to write our stochastic problem as a two-stage program with fixed recourse [1],
let us consider the variables yk and skij as the first-stage decision variables and introduce
the second-stage decision variables xkij(θ), such that xkij(θ) = skij, ∀θkl, k ∈ K, l ∈ Lk.

The CTLPu may be formulated as follows

min
y

∑
k∈K

fkyk + IEθ

[
min
s

∑
i∈I

∑
j∈J

∑
k∈K

rkij(θ)s
k
ij

]
(8)

subject to ∑
j∈J

∑
k∈K

skij = Pi, i ∈ I (9)

∑
i∈I

∑
k∈K

skij = Qj, j ∈ J (10)

∑
i∈I

∑
j∈J

skij ≤ Ukyk, k ∈ K (11)

xkij(θ) = skij, ∀θkl, i ∈ I, j ∈ J, k ∈ K, l ∈ Lk (12)

xkij(θ) ≥ 0, ∀θkl, i ∈ I, j ∈ J, k ∈ K, l ∈ Lk (13)

skij ≥ 0, i ∈ I, j ∈ J, k ∈ K (14)

yk ∈ {0, 1}, k ∈ K (15)

where IEθ denotes the expected value with respect to θ; the objective function (8) ex-
presses the minimization of the total cost given by the sum of the minimum total fixed
cost plus the expected minimum total flow cost; constraints (9) and (10) ensure that
supply at each origin i and demand at each destination j are satisfied; constraints (11)
ensure the capacity restriction at each transshipment facility k; constraints (12) tie the
first-stage decision variables skij (revealed flows) to the second-stage decision variables
xkij(θ) for any occurrence of the random variables θkl; (13), (14) are the non-negativity
constraints, and (15) are the integrality constraints.
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4 Solving the Stochastic Flow Problem

Let us consider first the Stochastic Flow Problem obtained from problem (8)-(15) by
disregarding the demand satisfaction constraints (10) and the capacity constraints (11),
and assuming that a location of the transshipment facilities {yk} is already known. Flows
skij remain the only unknowns and the Stochastic Flow Problem becomes

IEθ

min
s

∑
i∈I

∑
j∈J

∑
k∈K/yk=1

rkij(θ)s
k
ij

 (16)

subject to ∑
j∈J

∑
k∈K/yk=1

skij = Pi, i ∈ I (17)

xkij(θ) = skij, ∀θkl, i ∈ I, j ∈ J, k ∈ K/yk = 1, l ∈ Lk (18)

xkij(θ) ≥ 0, ∀θkl, i ∈ I, j ∈ J, k ∈ K/yk = 1, l ∈ Lk (19)

skij ≥ 0, i ∈ I, j ∈ J, k ∈ K/yk = 1. (20)

Let define ri(θ) as the minimum stochastic generalized unit transportation cost among
the different alternatives (j, k) for a supplier i. Due to (7), this cost is given by

ri(θ) = min
j,k/yk=1

{
rkij(θ)

}
= min

j,k/yk=1

{
ckij + θk

}
, i ∈ I (21)

with probability distribution

G(x) = Pr {ri(θ) ≥ x} = Pr

{
min

j,k/yk=1

{
ckij + θk

}
≥ x

}
. (22)

As
min

j,k/yk=1

{
ckij + θk

}
≥ x⇐⇒

{
ckij + θk

}
≥ x, j ∈ J, k ∈ K/yk = 1 (23)

and the random variables θk are independent (because θkl are independent), using (5)
and (6) the probability distribution (22) becomes

G(x) =
∏
j∈J

∏
k∈K/yk=1

Pr
{
ckij + θk ≥ x

}
=
∏
j∈J

∏
k∈K/yk=1

Pr
{
θk ≥ x− ckij

}
=

∏
j∈J

∏
k∈K/yk=1

H(x− ckij) =
∏
j∈J

∏
k∈K/yk=1

[
F (x− ckij)

]nk . (24)
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The fact that the probability distribution F (x) is unknown prevents the use of the
probability distribution given by (24). A possible way to overcome this problem and get
an explicit form for G(x) is to consider its asymptotic approximation. A similar approach
has been adopted by the authors for a different problem in [28].

4.1 The asymptotic approximation for the probability distribu-
tion G(x) of the minimum stochastic generalized unit trans-
portation cost

The asymptotic approximation method to derive G(x) is based on the following obser-
vation. If under mild conditions on the probability distribution F (x) of the random unit
throughput costs θkl, the distribution of the stochastic variables rklij (θ) (and then of their
minimum ri(θ)) tends to a specific functional form as the number nk of the different
throughput operation scenarios at any transshipment facility k becomes large, we do not
need further specific knowledge of the probability distribution F (x).

Galambos [9] gives a sufficient condition on F (x) to guarantee the existence of se-
quences an, bn > 0 of constants such that the following limit

lim
n→∞

G(x | n) = lim
n→∞

G(bnx+ an) = G(x) (25)

does exist for all continuity points of G(x), where G(x) is a nondegenerate distribution
function. In other terms, the distribution function G(x | n) weakly converges (we remind
that G(x | n) is said to weakly converge if, as n→∞, limG(x | n) = G(x) exists for all
continuity points x of the limit G(x)).

The Galambos’ sufficient condition requires that the probability distribution F (x) is
asymptotically exponential in its left tail, i.e. there is a constant β > 0 such that

lim
y→−∞

1− F (x+ y)

1− F (y)
= eβx. (26)

We then assume condition (26) and prove that G(x) assumes a specific form as the
number nk of the different throughput operation scenarios at any transshipment facility
k becomes large (condition that can be easily verified in our case).

Consider first the following aspect: the solution of problem (16)-(20) does not change
if an arbitrary constant is added to the random variables θkl.

Let us choose this constant as the root ank
of the equation

1− F (ank
) = 1/nk. (27)

7
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Replacing θk with θk − ank
in (24)

G(x | nk) =
∏
j∈J

∏
k∈K/yk=1

[
F (x− ckij + ank

)
]nk . (28)

Let us assume that nk, k ∈ K/yk = 1 are large enough to use limnk→∞G(x | nk) as
an approximation of G(x).

The following property holds

Property 1 Under condition (26), the unknown probability distribution G(x) becomes

G(x) = lim
nk→∞

G(x | nk) = exp
(
−Aieβx

)
(29)

where
Ai =

∑
j∈J

∑
k∈K/yk=1

e−βc
k
ij , i ∈ I (30)

is the accessibility, in the sense of Hansen [12], of a supplier in i to the overall system
of located transshipment facilities and destinations.

Proof. By (28) one has

G(x) = lim
nk→∞

G(x | nk) = lim
nk→∞

∏
j∈J

∏
k∈K/yk=1

[
F (x− ckij + ank

)
]nk =

=
∏
j∈J

∏
k∈K/yk=1

lim
nk→∞

[
F (x− ckij + ank

)
]nk . (31)

As limnk→∞ ank
= −∞, from (26) one obtains

lim
nk→∞

1− F (x− ckij + ank
)

1− F (ank
)

= eβ(x−ckij). (32)

By (32) and (27) one has

lim
nk→∞

F (x− ckij + ank
) = lim

nk→∞

(
1− [1− F (ank

)]eβ(x−ckij)
)

= lim
nk→∞

(
1− eβ(x−ckij)

nk

)
(33)

and, by reminding that limn→∞(1 + x
n
)n = ex

lim
nk→∞

[
F (x− ckij + ank

)
]nk = lim

nk→∞

(
1− eβ(x−ckij)

nk

)nk

= exp
(
−eβ(x−ckij)

)
. (34)
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Substituting (34) into (31) and using (30) one finally gets

G(x) =
∏
j∈J

∏
k∈K/yk=1

exp
(
−eβ(x−ckij)

)
= exp

(
−Aieβx

)
. � (35)

The only hypothesis made by Property 1 is that F (x) is an exponential function in
its left tail. This is a very mild hypothesis, in fact we observe that many probability
distributions show such a behavior, among them the following widely used distributions:
Gamma, Gumbel, Laplace, and Logistic.

It is interesting to observe that G(x) in (29) becomes a Gumbel (or double exponen-
tial) distribution [11].

4.2 Finding the optimum of the Stochastic Flow Problem

Using the probability distribution G(x) given by (29) we are now able to calculate the
expected value of the minimum stochastic generalized unit transportation cost for a
supplier in i as follows

r̂i = IEθ [ri(θ)] = −
∫ +∞

−∞
xdG(x) =

∫ +∞

−∞
x exp

(
−Aieβx

)
Aie

βxβdx, i ∈ I. (36)

Substituting for t = Aie
βx one gets

r̂i = 1/β

∫ +∞

0

ln(t/Ai)e
−tdt =

= 1/β

∫ +∞

0

e−t ln tdt− 1/β lnAi

∫ +∞

0

e−tdt =

= −γ/β − 1/β lnAi =

= −1/β(lnAi + γ) (37)

where γ = −
∫ +∞

0
e−t ln t dt ' 0.5772 is the Euler constant.

It is clear that the optimum of the Stochastic Flow Problem (16)-(20), due to (37),
is given by

∑
i∈I

Pir̂i = − 1

β

∑
i∈I

Pi(lnAi + γ) (38)

9
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which can also be interpreted as an additive expected utility model [19], where the
term 1

β
(lnAi + γ) is the expected utility for a supplier in i.

If one defines the total accessibility of the overall transshipment system as

Φ =
∏
i∈I

APi
i (39)

one easily derives from (38)

∑
i∈I

Pir̂i = − 1

β

∑
i∈I

Pi lnAi −
γ

β

∑
i∈I

Pi = − 1

β

∑
i∈I

lnAPi
i −

γ

β
T =

= − 1

β
ln
∏
i∈I

APi
i −

γ

β
T = − 1

β
ln Φ− γ

β
T. (40)

Then we get a very interesting result: the optimum of the Stochastic Flow Problem
(16)-(20) (i.e. the expected minimum total cost) is proportional (but the constant − γ

β
T )

to the opposite of the logarithm of the total accessibility Φ.

We are now interested to calculate the optimal flows skij of the Stochastic Flow Prob-
lem, which is done in the next Section.

4.3 Finding the optimal flows of the Stochastic Flow Problem

Let define pkij as the probability for a supplier i to choose the alternative (j, k) for freight
shipping.

The following property holds

Property 2 At optimality, the probability pkij is given by

pkij =
e−βc

k
ij∑

j∈J
∑

k∈K/yk=1 e
−βckij

, i ∈ I, j ∈ J, k ∈ K/yk = 1. (41)

Proof. At optimality, the probability that a supplier i chooses the alternative (j, k)
is equal to the probability that such alternative is that of minimum cost. Then, from the

10
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Total Probability Theorem [6], condition (26) and eq. (30), one obtains

pkij =

∫ +∞

−∞
Pr
{
x < ckij ≤ x+ dx

}
Pr {csir > x, ∀(r, s) 6= (j, k)} =

=

∫ +∞

−∞
βeβ(x−ckij)exp(−Aieβx)dx =

= e−βc
k
ij

∫ +∞

0

e−Aitdt =
e−βc

k
ij

Ai
=

=
e−βc

k
ij∑

j∈J
∑

k∈K/yk=1 e
−βckij

i ∈ I, j ∈ J, k ∈ K/yk = 1 (42)

where t = eβx. �

The optimal flows skij then become

skij = Pip
k
ij = Pi

e−βc
k
ij∑

j∈J
∑

k∈K/yk=1 e
−βckij

, i ∈ I, j ∈ J, k ∈ K/yk = 1 (43)

and it is trivial to check the satisfaction of constraints (17).

The formulation of skij in (43) represents a multinomial Logit model [7], which is
widely used in choice theory. In our case it describes how the freight delivered by a
supplier i is split among the different alternatives (j, k), due to the stochasticity of the
throughput costs of the transshipment facilities which the freight passes through.

We need now one last step to eventually obtain a deterministic model for the Capaci-
tated Transshipment Location Problem under Uncertainty. This step consists in proving
that the Stochastic Flow Problem (16)-(20) is equivalent to a well known Entropy Max-
imizing Problem.

5 Equivalence between the Stochastic Flow Problem

and a Entropy Maximizing Problem

In general, given a location of the transshipment facilities {yk} and a corresponding flows
{skij}, the Entropy [30] of the flow system is defined as

11
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E = −
∑
i∈I

∑
j∈J

∑
k∈K/yk=1

skij ln skij (44)

and it gives a measure of the uncertainty represented by the discrete probability distribu-
tion of the flows [25]. It is clear that, to make inferences which avoid bias on the basis of
partial information, one must use that flow probability distribution which has maximum
Entropy [13]. So that, the flows are derived as solution of a problem which maximizes
the Entropy of the flow system.

We show now that the Stochastic Flow Problem (16)-(20) is equivalent to a Entropy
Maximizing Problem, whose objective function expresses the maximization of the En-
tropy of the flow system plus a term, which is a combination of the opposite of the total
deterministic transportation cost multiplied by β plus a constant, and subject to the
supply satisfaction constraints at the origins.

The following property holds

Property 3 The Stochastic Flow Problem (16)-(20) is equivalent to the following En-
tropy Maximizing Problem

max
s

−∑
i∈I

∑
j∈J

∑
k∈K/yk=1

skij ln skij − β
∑
i∈I

∑
j∈J

∑
k∈K/yk=1

skij(c
k
ij −

1

β
)

 (45)

subject to ∑
j∈J

∑
k∈K/yk=1

skij = Pi, i ∈ I (46)

skij ≥ 0, i ∈ I, j ∈ J, k ∈ K/yk = 1. (47)

Proof. Clearly, see (40), the optimum of the Stochastic Flow Problem is equivalent
to −lnΦ.

Firstly, we show that −lnΦ is equivalent to

min
νi

[
−
∑
i∈I

Aie
−νi −

∑
i∈I

Piνi

]
(48)

where νi, i ∈ I are real variables.
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Then, we prove that (48) is equivalent to problem (45)-(47), and this ends the proof.

1) Equivalence between −lnΦ and (48).

By imposing the necessary first order conditions for the variables νi in (48) one gets

∂

[
−
∑
i∈I

Aie
−νi −

∑
i∈I

Piνi

]
/∂νi = e−νiAi − Pi = 0 (49)

then

e−νi = Pi/Ai (50)

and

νi = − lnPi + lnAi. (51)

By substituting (50) and (51) into (48) one obtains

−
∑
i∈I

Pi +
∑
i∈I

Pi lnPi −
∑
i∈I

Pi lnAi =

= −
∑
i∈I

Pi lnAi −
∑
i∈I

Pi(1− lnPi) =

= − ln Φ−
∑
i∈I

Pi(1− lnPi)

which coincides with −lnΦ, but the additive constant −
∑

i∈I Pi(1− lnPi).

2) Equivalence between (48) and problem (45)-(47).

Let us consider (45) and the constraints (46). By making a Lagrangian relaxation of
these constraints by means of the Lagrangian multipliers νi, i ∈ I given by (51) one gets
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min
s

∑
i∈I

∑
j∈J

∑
k∈K/yk=1

skij ln skij + β
∑
i∈I

∑
j∈J

∑
k∈K/yk=1

skij(c
k
ij −

1

β
) +

∑
i∈I

νi(
∑
j∈J

∑
k∈K/yk=1

skij − Pi)

 .
(52)

Then, by imposing the necessary first order conditions for the optimal flows skij one
gets

∂

∑
i∈I

∑
j∈J

∑
k∈K/yk=1

skij ln skij + β
∑
i∈I

∑
j∈J

∑
k∈K/yk=1

skij(c
k
ij −

1

β
)

+
∑
i∈I

νi(
∑
j∈J

∑
k∈K/yk=1

skij − Pi)

 /∂skij =

= ln skij + βckij + νi = 0

and the optimal flows become

skij = e−νie−βc
k
ij , i ∈ I, j ∈ J, k ∈ K/yk = 1. (53)

Using (50) and (30), it is easy to see that the optimal flows in (53) are equal to the
optimal flows of the Stochastic Flow Problem given by (43).

By substituting (53) into (52) one gets

−
∑
i∈I

e−νi

∑
j∈J

∑
k∈K/yk=1

e−βc
k
ij −

∑
i∈I

Piνi =

= −
∑
i∈I

Aie
−νi −

∑
i∈I

Piνi

which is exactly (48). �

We are now able to derive a deterministic approximation for the Capacitated Trans-
shipment Location Problem under Uncertainty, which is presented in the next Section.

6 The deterministic approximation of CTLPu

We remind that problem (45)-(47) is a deterministic approximation of the Stochastic
Flow Problem (16)-(20), obtained from the original CTLPu by disregarding the demand
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satisfaction constraints at the destinations (10) and the capacity constraints of the trans-
shipment facilities (11), and assuming a given location for the transshipment facilities.
Now, by reintroducing those constraints, dropping the assumption of a given optimal lo-
cation and multiplying the objective function (45) by 1/β, we get the final Deterministic
Approximation of the Capacitated Transshipment Location Problem under Uncertainty,
named CTLPd, as follows

min
y

∑
k∈K

fkyk + max
s

[
− 1

β

∑
i∈I

∑
j∈J

∑
k∈K

skij ln skij −
∑
i∈I

∑
j∈J

∑
k∈K

skij(c
k
ij −

1

β
)

]
(54)

subject to ∑
j∈J

∑
k∈K

skij = Pi, i ∈ I (55)

∑
i∈I

∑
k∈K

skij = Qj, j ∈ J (56)

∑
i∈I

∑
j∈J

skij ≤ Ukyk, k ∈ K (57)

skij ≥ 0, i ∈ I, j ∈ J, k ∈ K (58)

yk ∈ {0, 1}, k ∈ K (59)

which is a mixed-integer deterministic nonlinear model in the unknowns yk and skij.

We observe that the nonlinearity affects only the objective function through the En-
tropy term
− 1
β

∑
i∈I
∑

j∈J
∑

k∈K s
k
ij ln skij, while the constraints are all linear.

It is interesting to note that when β →∞ problem (54)-(59) turns into the classical
Capacitated Transshipment Location Problem. In fact, the Entropy term in the objective
function disappears and only the linear classical total transportation cost does remain.
This is also coherent with the well-known property of the multinomial Logit model which
states that this model collapses into a classical minimum transportation cost choice model
as β →∞ [7].

We also observe that, provided maxs− 1
β

∑
i∈I
∑

j∈J
∑

k∈K s
k
ij ln skij ≥ 0, the optimum

of the classical Capacitated Transshipment Location Problem is a Lower Bound for the
Capacitated Transshipment Location Problem under Uncertainty.

15

The Capacitated Transshipment Location Problem under Uncertainty

CIRRELT-2009-38



7 Computational results

In this section we compare the Capacitated Transshipment Location Problem under Un-
certainty CTLPu, given by (8)-(15), with its Deterministic Approximation CTLPd, given
by (54)-(59).
This section is organized as follows. As no instance for CTLPu is available in literature,
new instances are generated and introduced in Subsection 7.1. The setting of a commer-
cial stochastic solver for solving CTLPu as well as the identification of an appropriate
nonlinear solver for solving CTLPd are given in Subsection 7.2. A detailed comparison
between CTLPu under different probability distributions and its deterministic approxi-
mation CTLPd is discussed in Subsection 7.3. Finally, in order to show the effect of the
Entropy term in CTLPd, in Subsection 7.4 we compare CTLPd with the classical CTLP ,
and we evaluate the speed of convergence of CTLPd to the classical CTLP , when the
value of parameter β does increase.

7.1 Instance generation

We consider a subset of the test classes given in [15], where the authors generate 4
classes with 20 instances in each class. Here, due to the much higher computational
effort required to solve the stochastic and the nonlinear problems, we consider only the
first class from [15] and generate 10 instances instead of 20, using uniform distribution
with corresponding ranges according to the following criteria:

• number of depots |I| is drawn from U [2, 3];
• number of customers |J | is drawn from U [30, 40];
• number of possible locations for the transshipments |K| is drawn from U [10, 20];
• supply Pi is drawn from U [900, 1000];
• demand Qj is drawn from U [1,

∑
i∈I Pi/ | J |]. If necessary, the demand of the last

customer is adjusted so that the total demand is equal to the total supply;
• capacity Uk is drawn from U [0.5avU, 3avU ], where avU =

∑
i∈I Pi/ | K |;

• unit transportation cost ckij is drawn from U [1, 10];
• fixed cost fk = TC Uk/(| I || J |), where TC is the total unit transportation cost

over all the possible arcs.
• random cost θk is generated using three different probability distributions, Gum-

bel, Laplace, and Uniform, as follows (the cumulative distribution functions are
considered):

– Gumbel: exp−e−βx (with mode equal to 0).
The parameter β is set to 0.1, which ensures to have a mean of the Gumbel
distribution (' 5.7) quite close to the mean of the distribution used to obtain
the deterministic unit costs ckij. In this way, the random costs θk have the
same order of magnitude of the deterministic unit costs ckij;

16

The Capacitated Transshipment Location Problem under Uncertainty

CIRRELT-2009-38



– Laplace: {
0.5 exp(x−µ

b
) if x < µ

1− 0.5 exp(−x−µ
b

) if x ≥ µ

with mean equal to µ. The parameters of the distribution are set such that
the mean of the Laplace distribution is the same of the Gumbel one;

– Uniform 
0 if x < a
x−a
b−a if a ≤ x < b

1 if x ≥ b

The costs are generated in the range [a, b] = [1, 10], such that the mean of the
Uniform distribution is quite close to the Gumbel one.

The random unit generalized transportation costs rkij in (8) are computed by (7).
If some of them become negative, they are set to 1.

7.2 Stochastic solver setting and nonlinear solver identification

As stated above, we compare CTLPu with its deterministic approximation CTLPd.
The solution of CTLPu is generated by means of a two-stage implementation of the
stochastic model in XPress-SP, the stochastic programming module provided by XPress
[8]. The tests are performed by generating an appropriate number of scenarios for each
instance. In order to tune this number, we start with 50 scenarios and increase them
by step 50. Then we solve each instance 10 times, reinitializing every time the pseudo-
random generator of the stochastic components with a different seed, and compute the
standard deviation and the mean of the optima over the 10 runs. The appropriate num-
ber of scenarios is then fixed to the smallest value ensuring for each instance a maximum
ratio between the standard deviation and the mean less than 0.5% [14]. According to our
tests, this value is fixed to 100 scenarios, which show a maximum ratio between standard
deviation and mean equal to 0.17%.

In order to solve the deterministic approximation CTLPd we consider the most effi-
cient and effective state-of-the-art nonlinear solvers: BonMIN, MinLP, KNITRO, LINGO
and FilMINT. In order to have uniformity in input, output and computational results,
we use the NEOS infrastructure [4] to make the tests, giving to the solvers a time limit
of 1000 seconds per instance. According to our results, BonMIN and KNITRO outper-
form the other solvers, obtaining the best solutions on the overall set of instances. By
comparing each other these two solvers, BonMIN is 10 times faster than KNITRO, which
also shows some memory problems when running large instances (with more than 50000
arcs). For these reasons, we select BonMIN (release 1.1) [2, 3] for solving CTLPd within
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a time limit of 1000 seconds. The parameters are set to their default values, which show
a satisfactory behavior both in accuracy and computational effort.

7.3 Comparison between CTLPu under different probability dis-
tributions and CTLPd

In the following we analyze the performance of the deterministic approximation CTLPd,
by comparing its results with those obtained from CTLPu under the three different
probability distributions. All the tests are done on a Pentium Q6600 2.4GHz Machine
with 2 Gb of RAM. The parameter β in the CTLPd objective function (54) is set to 0.1
as the corresponding β value in the Gumbel distribution for CTLPu.

A comparison between the optimum of the deterministic approximation CTLPd and
that of the stochastic model CTLPu under the three different probability distributions
is presented in Table 1.

The table columns have the following meaning:

• Column 1: instance number;
• Column 2: optimum of CTLPd;
• Columns 3-5: optimum of CTLPu using Gumbel, Laplace, and Uniform distribu-

tions, respectively;
• Columns 6-8: percentage gap between the stochastic optimum using Gumbel,

Laplace, and Uniform distributions, respectively, and the deterministic approxi-
mation one. The gap is computed as 100(S − D)/S, where S is the optimum of
CTLPu and D the optimum of CTLPd.

Table 1 reports the results for each instance, as well as their mean in the last row.

The optima of the stochastic problem and its deterministic approximation are quite
close together, with a mean gap around 2%. The gap is lower for the Gumbel and Laplace
distributions than the Uniform one, which is coherent with the assumption done for the
probability distribution used to derive CTLPd (i.e. it acts as an exponential function
in its left tail). About the negative value for some gap values present in Table 1, we
remind that when the random cost θk is generated and added to the deterministic unit
cost in (7), if the resulting rkij is negative it is set to 1. This implies a slight change in
the distribution functions, producing such negative gap values.

The results of Table 1, even if satisfactory, are not sufficient to qualify the performance
of CTLPd. In fact, besides the optimum, another important comparison concerns the
optimal solution of the two models. This is considered in Tables 2 and 3.

18

The Capacitated Transshipment Location Problem under Uncertainty

CIRRELT-2009-38



Table 1: Comparison between the optimum of the deterministic approximation CTLPd
and that of the stochastic model CTLPu under the three different probability distribu-
tions

Objective function Gap
Instances Det Stoch

Gumbel Laplace Uniform Gumbel Laplace Uniform
1 142713 137460 139664 134570 3.82% 2.18% 6.05%
2 209429 207013 209238 202495 1.17% 0.09% 3.42%
3 150860 144510 145031 147152 4.39% 4.02% 2.52%
4 167359 164393 165939 161654 1.80% 0.86% 3.53%
5 157160 151061 152683 148561 4.04% 2.93% 5.79%
6 211108 210291 210567 213969 0.39% 0.26% -1.34%
7 244105 243214 245251 239280 0.37% -0.47% 2.02%
8 248086 243645 245213 249019 1.82% 1.17% -0.37%
9 247005 243887 246621 239930 1.28% 0.16% 2.95%
10 188291 181987 184353 185853 3.46% 2.14% 1.31%

Mean 196612 192746 194456 192248 2.25% 1.43% 2.93%

Table 2 compares the optimal solution of CTLPd with that of CTLPu, in terms of
open facilities. The table columns have the following meaning:

• Column 1: instance number;
• Columns 2-5: number of open facilities in CTLPd and CTLPu under Gumbel,

Laplace, and Uniform distributions, respectively;
• Columns 6, 8, 10: number of open facilities which are equal in the optimal solution

of CTLPd and CTLPu under the three different distributions;
• Columns 7, 9, 11: percentage of open facilities which are equal in the optimal

solution of CTLPd and CTLPu under the three different distributions.

Table 2 reports the results for each instance, as well as their mean in the last row.

The main conclusion we can draw from these results is that the optimal solution
of the stochastic model under the three different distributions is quite similar to that
of its deterministic approximation, since on average 75% of the open facilities are the
same. Let us consider instance 1 with Laplace and Uniform distributions, for which the
open facilities in the optimal solution are exactly the same of those of the deterministic
approximation. Nevertheless, the gap between the two optima is 2.18% and 6.05% (see
Table 1), respectively. We should then conclude that this gap is due to a different flow
distribution in the two optimal solutions.

In order to verify this conclusion we consider the optimum of CTLPu when the open
facilities are those of the CTLPd optimal solution and we compare this optimum with
the original CTLPu optimum in Table 3.
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Table 2: Comparison of the open facilities in the optimal solutions of the determinis-
tic approximation CTLPd and the stochastic model CTLPu under different probability
distributions

Number of open facilities Common open facilities
Instances Det Stoch

Gumbel Laplace Uniform Gumbel Laplace Uniform
Number % Number % Number %

1 8 6 8 8 4 67% 8 100% 8 100%
2 9 7 7 8 5 71% 5 71% 6 75%
3 12 10 10 10 8 80% 8 80% 7 70%
4 9 6 7 8 4 67% 3 43% 6 75%
5 9 8 8 8 5 63% 6 75% 6 75%
6 13 12 12 12 9 75% 10 83% 10 83%
7 9 7 7 7 5 71% 3 43% 5 71%
8 9 8 9 8 7 88% 9 100% 6 75%
9 9 8 9 8 6 75% 6 67% 5 63%
10 13 12 11 11 11 92% 9 82% 9 82%

Mean 10 8 9 9 6 75% 7 74% 7 77%

Table 3: Performance of the optimal solution of the deterministic approximation CTLPd
when used as optimal solution of the stochastic model CTLPu

Instances Gumbel Laplace Uniform
1 0.30% 0.00% 0.00%
2 0.22% 0.16% 0.36%
3 0.19% 0.47% 0.34%
4 0.73% 0.08% 0.29%
5 1.31% 0.40% 0.77%
6 0.57% 0.81% 0.03%
7 0.36% 0.45% 0.06%
8 0.27% 0.40% 0.79%
9 0.53% 0.26% 0.15%
10 0.38% 0.45% 0.84%

Mean 0.49% 0.35% 0.38%
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The table columns have the following meaning:

• Column 1: instance number;
• Column 2-4: percentage gap between the stochastic optimum when the facilities are

compulsory opened as in the CTLPd optimal solution and the stochastic optimum
when CTLPu can decide which facilities must be opened.

According to these results, the gap between the optimum of CTLPu obtained with given
open facilities and the original one is on average less than 0.5 for all the three distributions.
This implies that the optimal decisions taken by CTLPd and CTLPu in terms of open
facilities are equivalent (i.e. they generate almost the same optimum) and that the gap
between the CTLPd optimum and the CTLPu one when the open facilities are different
is mainly due to a different flow distribution in the two optimal solutions.

7.4 Comparison between CTLPd and the classical CTLP

The discussion of the computational results ends by showing the behavior of the Entropy
term of CTLPd in (54).

In Table 4 the contribution given by the Entropy term to the optimum of CTLPd is
presented. The table compares the optimum of CTLPd with that of the classical CTLP ,
which differs from the former by the Entropy term. The table columns have the following
meaning:

• Column 1: instance number;
• Column 2: percentage gap between the optimum of CTLPd and that of the classical
CTLP ;
• Column 3: number of open facilities which are equal in the two optimal solutions;
• Column 4: percentage of open facilities which are equal in the two optimal solutions.

Table 4 reports the results for each instance, as well as their mean in the last row.

According to the results, even if a large part of the open facilities are common to the
two optimal solutions, the gap between the two optima is relevant, showing an important
role played by the Entropy term in CTLPd.

We remind (see Section 6) that when β → ∞ the coefficient of the Entropy term
tends to 0 and CTLPd turns into the classical CTLP .

The last test we perform is devoted to show the speed of convergence of CTLPd to
the classical CTLP , while the value of parameter β increases. Figure 1 reports the mean
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Figure 1: Convergence of the deterministic approximation CTLPd to the classical CTLP
as β →∞

gap between the optimum of CTLPd and that of the classical CTLP while β varies.
According to Figure 1, the gap is almost zero for β equal to 5, so a very fast convergence
is guaranteed.

Table 4: Contribution of the Entropy term in CTLPd
Comparison

Instances Gap Common Common
open facilities open facilities (%)

1 14.68% 5 71%
2 11.89% 6 75%
3 6.48% 8 73%
4 10.59% 5 71%
5 13.66% 6 75%
6 3.85% 10 77%
7 8.93% 9 100%
8 8.87% 6 75%
9 10.24% 5 71%
10 3.89% 11 92%

Mean 9.31% 7 78%

8 Conclusions

In this paper the Capacitated Transshipment Location Problem under Uncertainty CTLPu,
which is a two-stage stochastic program with recourse, has been approximated to an
equivalent non-linear deterministic Capacitated Transshipment Location Problem CTLPd,

22

The Capacitated Transshipment Location Problem under Uncertainty

CIRRELT-2009-38



which belongs to a wide class of Entropy maximizing models. The performance of CTLPd
is quite good. In fact, the mean gap betwwen the two optima is around 2%.

In particular, when the probability distribution of the random costs in CTLPu acts
as an exponential function in its left tail the performance of CTLPd is particularly good.
This is coherent with the Galambos’ sufficient condition of the extreme values theory on
which the deterministic approximated problem has been derived.

It is interesting to observe that the optimal transshipment facility location obtained
by CTLPd is equivalent (in terms of optimum) to that of CTLPu and the remaining
small gap is due to a slightly different distribution of the flows from origins to facilities
and from those to destinations.

The role of the Entropy term in CTLPd, weighted by the non-negative parameter β
set to 0.1, is particularly relevant. Nevertheless, this role is highly affected by the value of
the parameter β. In fact, as this parameter does increase the contribution of the Entropy
term to the optimum rapidly decreases and for β = 5 CTLPd collapses into the classical
linear Capacitated Transshipment Location Problem.

Both CTLPu and CTLPd have been exactly solved for small size instances (up to 3 ori-
gins, 20 potential transshipment locations and 40 destinations) in 1000 seconds by means
of existing solvers. Larger instances will probably deserve some heuristic approaches.
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