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Abstract.  This paper presents a dynamic (or multi-period) hub location problem. It 

proposes a branch-and-bound algorithm that uses a Lagrangean relaxation to obtain lower 

and upper bounds at the nodes of the tree. The Lagrangean function exploits the structure 

of the problem and can be decomposed into smaller subproblems which can be solved 

efficiently. In addition, some reduction procedures based on the Lagrangean bounds are 

implemented. These yield a considerable reduction of the size of the problem and thus, 

help reduce the computational burden. Numerical results on a battery of instances with up 

to 100 nodes and 10 time periods are reported. 
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1. Introduction

Hub Location Problems (HLPs) lie at the heart of network design plan-
ning in transportation systems, namely in the airline and trucking industries.
The performance of these systems can be improved by using transshipment
points, usually called hubs, where the flows between O/D pairs are consoli-
dated and rerouted to their destinations, sometimes via another hub. Thus,
the locations of the hubs as well as the paths for sending the flows between the
origin-destination pairs have to be determined. There are two assumptions
underlying most HLPs. The first is that all flows have to be consolidated
by hubs. Thus, the paths between O/D pairs must include at least one hub
node. The second is that it is possible to fully interconnect hubs with more
effective, higher volume pathways that allow a discount factor α (0 < α < 1)
to be applied to the transportation cost of the flows between any pair of
hubs. Broadly speaking, HLPs consist of locating hubs on a network so as
to minimize the total flow cost, subject to the above assumptions.

Due to their multiple applications these problems have recently received
increasing attention. There exist several variants of HLPs, which differ ac-
cording to various assumptions regarding the number of hubs to be located,
the way the O/D points are assigned to hubs, the existence of limited capac-
ity on the hubs, the way hubs are interconnected, or the independence of the
flow discounted costs on all inter-hub links. See Alumur and Kara (2008)
and Campbell et al. (2002) for recent surveys.

One common feature of real applications is the dynamic nature of the
problem. Scenarios (costs, demand, resources, etc.) often vary over the plan-
ning horizon. From the location point of view this gives rise to different types
of multi-period, or dynamic, problems. In classical discrete location, dynamic
location models have been investigated since the early works of Warszawski
(1973) and Van Roy and Erlenkotter (1982), until the more recent contri-
butions of Drezner (1995), Current et al. (1998), Melo et al. (2006), and
Albareda-Sambola et al. (2008), among others. Most of these papers have
studied the design of supply structures by deciding when and where to locate
facilities and when these facilities should be closed. In this type of problems,
not only an assignment (or transportation) plan has to be made, but the
times at which facilities are opened or closed must be determined.
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To the best of the authors’ knowledge, there is only one published paper
related to dynamic hub location. Campbell (1990) develops a continuous
approximation model to locate transportation terminals (hubs) for a general
freight carrier serving an increasing demand in a fixed region. It can be seen
as a continuous dynamic hub location model in which it is assumed that the
origin and destination points of shipments are scattered randomly over the
service region. The author investigates the performance of myopic location
strategies based only on the current demands and terminal locations, not
on the forecasts of future demand patterns. These myopic terminal location
strategies, which are analyzed in both one and two dimensions, provide up-
per and lower bounds on the transportation cost for the (unknown) optimal
strategy.

In this paper we introduce the Dynamic Uncapacitated Hub Location
Problem (DUHLP) which consists in minimizing the total cost over a finite
time planning horizon while ensuring that at each single period all demand
is fully routed through the network. The costs include those for the location,
operation and closing of hub facilities over time, and the costs of routing the
flow through the network. We assume that the demand between O/D pairs
varies over the time horizon. Moreover, we allow hub facilities to be opened
and closed at different time periods to provide a flexible hub network. The
problem is clearly NP-hard since it reduces to the classical Uncapacitated
Hub Location Problem (UHLP) (O’Kelly, 1992), when the planning horizon
consists of a single period.

One of the main difficulties in solving HLPs is the huge number of vari-
ables and constraints needed to model them. For this reason, formulations
with fewer variables and constraints should be preferred. However, very fre-
quently larger formulations lead to tighter bounds associated with their LP
relaxations. This is the case for the UHLP (see for instance, Campbell, 1994;
Skorin-Kapov et al., 1997; Ernst and Krishnamoorthy, 1998) where formula-
tions based on four-index variables (or path variables) are much tighter than
formulations based on three-index variables (or flow variables). In fact, the
recently improved path-based formulations (Hamacher et al., 2004; Cánovas
et al., 2006; Maŕın, 2005) only uses facet defining inequalities. Nevertheless,
the main disadvantages of these path-based formulations are the considerable
increase in CPU times and memory requirements. We must therefore resort
to decomposition techniques to handle these type of formulations.
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We propose a quadratic integer programming formulation for the DUHLP
based on the formulation of Hamacher et al. (2004) for the UHLP. This for-
mulation has a quadratic objective function with linear constraints. In order
to solve it, we propose a Lagrangean relaxation procedure that relaxes the
linking constraints of the location and routing variables. As a consequence,
we obtain a Lagrangean function that can be decomposed into two indepen-
dent subproblems which can be solved efficiently.

The remainder of this paper is organized as follows. Section 2 formally
defines the problem and presents a mathematical programming formulation
for the DUHLP. Section 3 describes the proposed Lagrangean relaxation,
and analyzes the structure of the subproblems and their solutions. Section
4 theoretically compares the LP bounds obtained with the quadratic formu-
lation and a linearized formulation of the problem. The reduction tests are
presented in Section 5. Section 6 presents the exact algorithms that we have
developed. The description of the computational results and the analysis of
the obtained results are given in Section 7, followed by conclusions in Section
8.

2. Formal Definition and Formulation of the Problem

Let H be a set of potential hub locations, T a set of time periods in the
considered time horizon, and K1, . . . , K|T | the sets of commodities for each
time period. Let W t

k denote the amount of commodity k to be transported
at period t. For each node i ∈ H, f ti denotes the fixed cost of opening a
hub at node i at the beginning of period t, gti denotes the cost of operating
a hub at node i in period t, and qti denotes the recovery gain associated with
closing a hub located at node i at the beginning of period t. The distance
between nodes i and j in period t satisfies the triangle inequality. These
distances are weighted by a discount factor α between two hub nodes to rep-
resent the economies of scale obtained by consolidating flows. The DUHLP
consists in selecting a set of hubs to be established and the routing of flow
through the network at every time period, with the objective of minimizing
the sum of net fixed and operational hub costs, plus the transportation costs.

Given that hubs are fully interconnected and the triangle inequality holds,
O/D paths will always contain at least one and at most two hub nodes. For
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this reason, all paths are of the form (o(k), i, j, d(k)), where o(k) and d(k)
represent the origin and destination nodes of commodity k, respectively, and
(i, j) ∈ H ×H is the ordered pair of hubs (not necessarily distinct) to which
o(k) and d(k) are allocated, respectively. Therefore, the transportation cost
of routing commodity k along the path (o(k), i, j, d(k)) at period t is given
by

F̂ t
ijk = W t

k

(
dto(k)i + αdtij + dtjd(k)

)
.

However, given that in any optimal solution every commodity will use
at most one direction of a hub edge e = (e1, e2) ∈ H × H (the one with
cheaper transportation cost) we can define undirected transportation costs
(see Hamacher et al., 2004). Hence, let E = {L ⊆ H : 1 ≤ |L| ≤ 2} be a
set of subsets of H containing one or two hubs. We define the undirected
transportation cost F t

ek for each e ∈ E, k ∈ Kt and t ∈ T as

F t
ek ∈ min

{
F̂ t
ijk, F̂

t
jik

}
.

In what follows, we present an integer quadratic programming formulation
for the DUHLP based on the formulation proposed by Hamacher et al. (2004)
for the UHLP. For each k ∈ Kt, e ∈ E and t ∈ T we define

xtek =

{
1 if commodity k at period t uses hub edge e;
0 otherwise.

For modeling the location of hubs we define

zti =

{
1 if a hub facility is located at node i in period t;
0 otherwise

for each i ∈ H and t ∈ T . Using these two sets of variables, the DUHLP can
be stated as
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(QM) minimize
∑
i∈H

∑
t∈T

f ti (1− zt−1
i )zti +

∑
i∈H

∑
t∈T

gtiz
t
i

−
∑
i∈H

∑
t∈T

qti(1− zti)zt−1
i +

∑
e∈E

∑
k∈Kt

∑
t∈T

F t
ekx

t
ek

subject to
∑
e∈E

xtek = 1 k ∈ Kt, t ∈ T (1)∑
{e∈E : i∈e}

xtek ≤ zti i ∈ H, k ∈ Kt, t ∈ T (2)

zti ∈ {0, 1} i ∈ H, t ∈ T (3)

xtek ≥ 0 e ∈ E, k ∈ Kt, t ∈ T. (4)

The first term of the objective function represents the opening cost of the
hub facilities. In particular, an opening cost is incurred at node i in time
period t if there exists an open hub at i in period t and if there is no open hub
at i in period t − 1. The second term represents the total operational cost,
whereas the third term represents the total recovery gain generated by closing
hub facilities. In particular, there is a recovery gain at node i in time period
t if there exists an open hub at i in period t−1 and if there is no open hub at
i in period t. The last term represents the total routing cost. The constraints
are almost the same as in the UHLP except that here, they depend on the
time period. Constraints (1) guarantee that for each commodity there exists
a single path connecting its origin and destination nodes at each time period
t. Constraints (2) prohibit commodities from being routed via a node that
is not a hub, at each time period t. Finally, constraints (3) and (4) are the
usual integrality and non-negativity constraints.

3. Lagrangean Relaxation

Lagrangean Relaxation (LR) is a well known method for solving large-
scale combinatorial optimization problems. It exploits the inherent structure
of the problems to compute lower bounds on the value of the optimal solution.
In the case of model QM, if we relax constraints (2) in a Lagrangean fashion,
weighting their violations with a multiplier vector u of appropriate dimension,
we obtain the following Lagrangean function:
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L(u) = minimize
∑
i∈H

∑
t∈T

f ti (1− zt−1
i )zti +

∑
i∈H

∑
t∈T

gtiz
t
i

−
∑
i∈H

∑
t∈T

qti(1− zti)zt−1
i +

∑
e∈E

∑
k∈Kt

∑
t∈T

F t
ekx

t
ek

+
∑
i∈H

∑
k∈Kt

∑
t∈T

utik

 ∑
{e∈E : i∈e}

xtek − zti


subject to (1), (3), (4).

Note that L(u) is separable into two subproblems: 1) a problem in the space
of the z variables, and 2) a problem in the space of the x variables. After
some algebra, the first subproblem can be expressed as

Lz(u) = minimize
∑
i∈H

∑
t∈T

[(
f ti + gti − qt+1

i −
∑
k∈Kt

utik

)
zti −

(
f ti − qti

)
ztiz

t−1
i

]
subject to (3),

and the second subproblem can be expressed as

Lx(u) = minimize
∑
e∈E

∑
k∈Kt

∑
t∈T

F
t

ekx
t
ek

subject to (1), (4),

where the coefficients of the objective function are:

• F t

ek =

{
F t
ek + ue1k + ue2k, if |e| = 2
F t
ek + ue1k, if |e| = 1.

Therefore, we obtain the following result:

Proposition 1.

L(u) = Lz(u) + Lx(u).
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3.1. Solution to subproblem Lz(u)

Observe that subproblem Lz(u) can be decomposed into |H| independent
problems, one for each candidate hub node i ∈ H, of the form:

(QADi) Q∗i (u) = minimize Qi =
∑
t∈T

(
αtiz

t
i − βtiztizt−1

i

)
subject to zti ∈ {0, 1} t ∈ T, (5)

where the coefficients of the objective function are

• αti =

(
f ti + gti − qt+1

i −
∑
k∈Kt

utik

)
• βti = (f ti − qti) .

Each subproblem QADi can be efficiently solved to optimality by using
dynamic programming. Let Qs

i denote the expression of Qi for the first s
time periods of the dynamic program, Qs

i (0) the best value of Qs
i if zti = 0,

and Qs
i (1) the best value if zti = 1. Then, for s = 1,

Q1
i = α1

i z
1
i − β1

i z
1
i z

0
i

so that

• Q1
i (0) = 0

• Q1
i (1) = α1

i − β1
i z

0
i

and for 1 < s ≤ |T |,

Qs+1
i =

∑
t=1...s+1

(
αtiz

t
i − βtiztizt−1

i

)
= Qs

i + αs+1
i zs+1

i − βs+1
i zs+1

i zsi

so that,

• Qs+1
i (0) = min {Qs

i (0), Qs
i (1)}
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• Qs+1
i (1) = min

{
Qs
i (0), Qs

i (1)− βs+1
i

}
+ αs+1

i .

Finally,

Q∗i (u) = min
{
Q
|T |
i (0), Q

|T |
i (1)

}
and therefore,

Lz(u) =
∑
i∈H

Q∗i (u) =
∑
i∈H

min
{
Q
|T |
i (0), Q

|T |
i (1)

}
.

For a given candidate hub node i ∈ H, the time required to solve QADi by
dynamic programming is dominated by that needed to obtain the coefficients
αti, t ∈ T . For each t, αti can be computed in O(|Kt|) operations. Then, solv-
ing each QADi by dynamic programming has a complexity of O(

∑
t∈T |Kt|).

Thus, the overall complexity for solving Lz(u) is O(
∑

t∈T |Kt| · |H|).

3.2. Solution to subproblem Lx(u)

Subproblem Lx(u) is a semi-assignment problem which, in turn, can be
decomposed into

∑
t∈T |Kt| independent semi-assignment problems, corre-

sponding to each commodity k ∈ Kt and to each period t, of the form:

(SAP t
k) q

t
k(u) = minimize

∑
e∈E

F
t

ekx
t
ek

subject to
∑
e∈E

xtek = 1 (6)

xtek ≥ 0 e ∈ E. (7)

For a given k ∈ Kt and a given t, the optimal value to SAP t
k is

qtk(u) = F
tbek,

where ê ∈ E is arbitrarily selected such that

F
tbek = min

{
F
t

ek : e ∈ E
}
. (8)
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Therefore,

Lx(u) =
∑
k∈Kt

∑
t∈T

qtk(u) =
∑
k∈Kt

∑
t∈T

min
{
F
t

ek : e ∈ E
}
.

For a given commodity k ∈ Kt and a given t, evaluating the closed ex-
pression (8) has a complexity of O(|E|). Thus, the overall complexity for
solving Lx(u) is O(

∑
t∈T |Kt| · |E|).

3.3. The solution of the Lagrangean Dual

Proposition 2. For a given vector of multipliers (u) the Lagrangean func-
tion L(u) can be solved in O(

∑
t∈T |Kt| · |E|) time.

Proof Solving Ly(u) has complexity O(
∑

t∈T |Kt| · |H|), whereas solving
Lx(u) has complexity O(

∑
t∈T |Kt| · |E|). Given that |H| < |E|, and because

of Proposition 1, the result follows. �

In order to obtain the best lower bound one must solve the Lagrangean
dual of QM, which is given by

(D) zD = max
u≥0

L(u). (9)

We apply subgradient optimization to solve problem D. It is well known
that classical subgradient algorithms tend to suffer from slow convergence
when solving the Lagrangean dual problem. We therefore propose a deflected
subgradient method (see Camerini et al., 1975) to improve the convergence
of the algorithm. Whereas the classical subgradient algorithm only uses
the subgradient of the current iteration to compute the direction of move-
ment, that is dk = sk, deflected subgradient algorithms take into account
the direction of the previous iteration to obtain the current direction, that
is dk = sk + θkdk−1. The effectiveness of these methods relies on the choice
of the deflection parameter θk and several attempts have been described to
provide clever choices of this parameter (for instance, Crowder, 1976; Sher-
ali and Ulular, 1989; Camerini et al., 1975; Brännlund, 1995). We use the
following rule based on geometrical arguments (see Camerini et al., 1975):

θk =

{ ∥∥sk∥∥ /∥∥dk−1
∥∥ if skdk−1 < 0,

0 otherwise.
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Now, for a given vector (u), let z(u), and x(u) denote the optimal solution
to L(u). Then, a subgradient of L(u) is given by

γ(u) =

 ∑
{e∈E : i∈e}

xtek − zti


i,k,t

 .

An implementation of the deflected subgradient algorithm is depicted in Al-
gorithm 1. The output of the algorithm is a lower bound zD, and η̄ denotes
a known upper bound on the optimal value of the original problem. The
parameter λk is halved after 25 consecutive iterations without improvement
in the lower bound and is reset to 2 every 200 iterations.

Algorithm 1 Deflected Subgradient Method
Iteration 0

Initialize zD = −∞; u0 = 0; d0 = 0; λk = 2.
Let η̄ be a known upper bound on the optimal solution value.

Iteration k
Solve the lagrangean function L(uk).
if
(
L(uk) > zD

)
then

zD ← L(uk)
end if
Evaluate the subgradient γ(uk).
if
(
γ(uk)dk−1 < 0

)
then

θk =
∥∥γ(uk)

∥∥ / ∥∥dk−1
∥∥

else
θk = 0

end if
Obtain the direction dk = γ(uk) + θkdk−1.

Calculate the step length tk ← λk
(η̄−L(uk))
γ(uk)dk−1 .

Set
(
uk+1

)
←
(
uk
)

+ tkdk.
Set k ← k + 1.

3.4. Upper bounds from primal solutions

We can exploit the primal information obtained from the Lagrangean
function to construct feasible solutions. Let Ĥ t(u) = {i : zti(u) = 1, i ∈ H}
and Êt(u) = {L ⊆ Rt(u) : 1 ≤ |L| ≤ 2} be the current set of open hub fa-
cilities and available hub edges at period t, respectively, associated with the
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primal solution z(u) obtained by solving Lz(u). In the case of the UHLP,
when the location of the hub facilities is known, we can solve the routing
problem of the commodities very efficiently. The same situation occurs in
the case of the DUHLP because once we know the location of the hub fa-
cilities in the entire planning horizon, we can decompose the problem into
independent routing problems, one for each time period t ∈ T .

In order to construct a feasible solution we only need to ensure that there
exists at least one hub node at each time period t ∈ T , that is

∑
i∈H z

t
i(u) ≥ 1.

If this is the case at a given primal solution z(u), we can compute an upper
bound for QM as

η̄(u) =
∑
i∈H

∑
t∈T

[(
f ti + gti − qt+1

i

)
zti(u)−

(
f ti − qti

)
zti(u)zt−1

i (u)
]

+
∑
k∈Kt

∑
t∈T

min
{
F t
ek : e ∈ Êt(u)

}
.

4. Comparison of Bounds

Consider the following linear mixed integer programming problem ob-
tained by linearizing model QM in the classical way:

(LM) minimize
∑
i∈H

∑
t∈T

(f ti + gti − qt+1
i )zti −

∑
i∈H

∑
t∈T

(f ti − qti)yti

+
∑
e∈E

∑
k∈Kt

∑
t∈T

F t
ekx

t
ek

subject to (1)− (4)

yti ≤ zt−1
i i ∈ H, t ∈ T (10)

yti ≤ zti i ∈ H, t ∈ T (11)

yti ∈ {0, 1} i ∈ H, t ∈ T. (12)

Observe that the usual constraints zti + zt−1
i − yti ≤ 1 for each i ∈ H and

t ∈ T are not necessary because of the non-positive coefficient of yti variables
and the minimization of the objective function. Now, the following result
states the equivalence of the optimal solution value of the LP relaxations of
models LM and QM.
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Proposition 3. The value of the LP relaxation of model LM coincides with
the value of the dual problem D of model QM.

Proof The Lagrangean function can be stated as

L(u) = Ly(u) + Lx(u) = minimize
∑
i∈H

∑
t∈T

(
αtiz

t
i − βtiztizt−1

i

)
+
∑
k∈Kt

∑
t∈T

qtk(u)

subject to (3).

Following the scheme of the proof given in Billionnet and Elloumi (1992)
and Chardaire et al. (1996), as βti ≥ 0, i ∈ H and t ∈ T , calculating the La-
grangean function amounts to minimizing a quadratic pseudo-Boolean sub-
modular function. This can be done solving a continuous linear program (see
Rhys, 1970). Let us now consider a linearization of the Lagrangean function

L(u) = minimize
∑
i∈H

∑
t∈T

(
αtiz

t
i − βtiyti

)
+
∑
k∈Kt

∑
t∈T

qtk(u)

subject to yti ≤ zt−1
i i ∈ H, t ∈ T (13)

yti ≤ zti i ∈ H, t ∈ T (14)

zti , y
t
i ∈ {0, 1} i ∈ H, t ∈ T. (15)

Since (13)–(14) define a totally unimodular matrix, we can remove the
integrality constraints (15) and replace them with 0 ≤ zti ≤ 1 and 0 ≤ yti ≤ 1,
for all i ∈ H, and all t ∈ T . The Lagrangean function is equal to the solution
of the associated continuous problem. Thus, the dual problem D can be con-
sidered as the Lagrangean dual problem of the continuous relaxation of LM
obtained by relaxing constraints (2). Therefore, the optimal solution value
of the dual problem D is equal to that of the continuous relaxation of LM. �

5. Reduction Tests

As mentioned earlier, one of the main drawbacks of model QM is its very
large number of variables and constraints, even for small size instances. In
the previous sections, we have described a Lagrangean relaxation approach
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that is able to handle this huge number of constraints and to solve in poly-
nomial time the resulting Lagrangean function. Unfortunately, as the size of
the instances increases, the number of variables in the Lagrangean function
is so large that it takes a considerable amount of computational time to eval-
uate this function.

One way of reducing the size of the model is to develop some reduction
tests capable of eliminating variables for which it is known that either they
do not appear, or they take value one in at least one optimal solution. In
this section, we develop simple reduction tests capable of determining if, in
a given time period, a hub will be open or closed in an optimal solution
of a given instance. Similar reduction tests have been successfully applied
for other HLPs (see Contreras et al., 2009). Both tests use the information
obtained from the Lagrangean function at a given iteration to estimate the
location and traffic costs, in case that a node is chosen to become a hub or
not. The idea of the tests is to consider subsets Si ⊆ H of candidate time
periods for each i ∈ H, while ensuring that the bounds derived from the
Lagrangean function are still valid. To this end, for every i ∈ H we partition
the set of time periods T into S ∪ S0

i ∪ S1
i , where S0

i and S1
i , are the sets of

indices of time periods that take value 0 and 1, respectively, in the optimal
solution of the problem. Let S = {Si}i∈H , S0 = {S0

i }i∈H , S1 = {S1
i }i∈H be

the set of all subsets of indices of time periods that are not fixed, that take
value 0 and 1, respectively. For each t ∈ T , let Rt = {i : t ∈ Si ∪ S1

i , i ∈ H}
be the set of candidate hub nodes at period t. Given a multiplier vector (u),
a node j ∈ H, and a time period r ∈ Sj, we define:

∆1
rj(u, S

1, S0, S) = Q̂∗j(u, S
1
j ∪ r, S0

j , Sj \ r) +
∑

i∈H\{j}

Q̂∗i (u, S
1
i , S

0
i , Si)

+
∑
k∈Kt

∑
t∈T

qtk(u,R
t)

and

∆0
rj(u, S

1, S0, S) = Q̂∗j(u, S
1
j , S

0
j ∪ r, Sj \ r) +

∑
i∈H\{j}

Q̂∗i (u, S
1
i , S

0
i , Si)

+
∑
k∈Kt

∑
t∈T\{r}

qtk(u,R
t) +

∑
k∈Kt

qrk(u,R
t \ {j})
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where

Q̂∗i (u,O,C, U) = minimize
∑
t∈T

(
αtiz

t
i − βtiztizt−1

i

)
subject to zti = 0 t ∈ C

zti = 1 t ∈ O
zti ∈ {0, 1} t ∈ U,

and

q̂tk(u,A) = min
{
F
t

ek : e ∈ {L ⊆ A : 1 ≤ |L| ≤ 2}
}
.

Observe that ∆1
rj(u, S

1, S0, S) is the value of L(u) when i) we locate a hub
at node j in time r, ii) a hub is located at node j in each t ∈ S1

j , iii) in Lz(u)
at node j we restrict the set of additional candidate time periods to Sj \ {r}
and, iv) in Lx(u) we restrict the hub edges to Rt for every t ∈ T . Similarly,
∆0
rj(u, S

1, S0, S) is the value of L(u) when i) a hub is located at node j in
each t ∈ S1

j , ii) we restrict the set of additional candidate time periods to
Sj \{r} for node j, iii) in Lx(u) we restrict the candidate hub nodes to Rt for
every t ∈ T \ {r} and , iv) for period r we restrict the candidate hub nodes
to Rt \ {j}. The following result gives reduction tests for fixing the status of
hubs.

Proposition 4. Let η̄ be an upper bound on the optimal solution value η∗

and (u) a multipliers vector. For each i ∈ H, let T = S ∪ S0
i ∪ S1

i be a
partition such that a hub is located at node i at any time period of S1

i in any
optimal solution and, for each t ∈ T , Rt contains the optimal set of hubs for
period t. Then

• If there exists j ∈ H and r ∈ Sj such that ∆1
rj(u, S

1, S0, S) > η̄, then
zrj = 0 in any optimal solution.

• If there exists j ∈ H and r ∈ Sj such that ∆0
rj(u, S

1, S0, S) > η̄, then
zrj = 1 in any optimal solution.

Proof

• Given that Sj is such that Sj ∪ S1
j contains the optimal set of hubs,

∆1
rj(u, S

1, S0, S) is a lower bound on the objective function value if a
hub is located at node j in time period r. Therefore, if ∆1

rj(u, S
1, S0, S)

> η̄, it holds that zrj = 0 in any optimal solution.

The Dynamic Uncapacitated Hub Location Problem

CIRRELT-2009-41 14



• Similarly, ∆0
rj(u, S

1, S0, S) is a lower bound on the objective function
value if no hub is located at node j in time period r. Therefore, if
∆0
rj(u, S

1, S0, S) > η̄, it holds that zrj = 1 in any optimal solution.

�

In our algorithmic framework, the above result is used in the following
way. At the beginning of the subgradient optimization we consider all time
periods as candidates for each i ∈ H, that is Si = T , S0

i = S1
i = ∅. Then,

everytime we obtain an improved lower bound, we apply the reduction tests
for every i ∈ H and r ∈ Si. When a particular zrj variable is fixed, the
set Sj is updated to Sj \ {r}. In addition, when we fix zrj = 1, we update
S1
i := S1

i ∪{r}, whereas when we fix zrj = 0, we update S0
i := S0

i ∪{r}. Finally,
we update Rt := Rt \ {j}. Proposition 4 guarantees that in both cases the
updated set Rt always contains the optimal set of hubs for each time period t.

When the sets of potential time periods reduce to Si $ T for i ∈ H, the
expression of the Lagrangean function is updated accordingly to L(u, S, S1, S0).
Observe that, since for each variable that is fixed there is an important reduc-
tion on the number of variables, the evaluation of Lx(u, S, S

1, S0) can be per-
formed more efficiently. In fact, the complexity for solving the updated La-
grangean function is O(

∑
t∈T |Kt| · |At|), where At = {L ⊆ Rt : 1 ≤ |L| ≤ 2}.

6. Proving Optimality

As we will see in the computational experiments section, for some of the
test instances the Lagrangean relaxation algorithm enables us to prove the
optimality of the best found solution. When optimality cannot be proven,
most often the duality gap is very small. However, our goal is to propose an
exact algorithm that proves the optimality of the obtained solutions. Thus,
when the Lagrangean relaxation algorithm does not prove optimality of the
best solution found we must resort to an enumeration algorithm. In this sec-
tion we describe two different enumeration approaches for solving the prob-
lem to optimality. The first one is a standard branch-and-bound method in
which at every node of the branching tree we obtain lower and upper bounds
by using the Lagrangean relaxation algorithm. The second one includes a
partial enumeration phase which enhances the application of the reduction
tests. It is applied at the beginning of the branch-and-bound procedure so
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as to reduce the number of variables to branch on, and the sizes of the sub-
problems in the nodes of the branching tree.

Let S = {Si}i∈H , Rt = {i : t ∈ Si ∪ S1
i , i ∈ H}, and (ẑ, x̂) denote the set

of sets of candidate time periods for each node i ∈ H, the set of candidate hub
nodes at period t, and the best solution found at the end of the Lagrangean
relaxation algorithm, respectively.

6.1. Standard branch-and-bound

As mentioned, the proposed Lagrangean relaxation can be incorporated
in a branch-and-bound algorithm in order to obtain the optimal solution of
the problem and verify it. Thus, Algorithm 3.3 is used as a bounding proce-
dure at every node of the enumeration tree to produce both lower and upper
bounds.

The branching strategy that we have used works as follows. If there are
any unfixed zti variables such that ẑti = 1, we identify among these the one
with the largest reduced cost, i.e. αti, and explore the 1-branch. This way,
the algorithm starts with the branch that seems to be optimal and leaves for
later the branch that seems to be non-optimal (the 0-branch).When there
are no more unfixed zti variable such that ẑti = 1, we branch on the remaining
unfixed variables by identifying again the one with the largest reduced cost
and explore the 1-branch. Now, the algorithm starts with the branch that
seems to be non-optimal and leaves the 0-branch for later.

We explore the branch-and-bound tree in a depth first search fashion.
Instead of starting from scratch when solving the dual problem associated to
a particular node, dual solutions from its parent node often provide a natural
and very good starting point for the subgradient method. In fact, we set the
number of subgradient iterations to 200 for all nodes of the branching tree
(except at the root node where it is set to 1500).

Given that our solution method in the nodes of the search tree is approx-
imate, since branching is made when the subgradient method stops but does
not necessarily converge to the optimal solution, in many cases unnecessary
branching is performed. Therefore, we can expect the branch-and-bound
tree to be larger than it would be for a branch-and-bound procedure based
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on the LP relaxation. However, as we will see in the computation experi-
ments section, we are able to obtain much more efficiently the lower bound of
the Lagrangean relaxation than that of the LP relaxation. Thus, this could
compensate for the increase of the tree.

6.2. Branch and bound with partial enumeration

The partial enumeration works as follows. For each i ∈ H and t ∈
Si, we temporarily fix zti = 1 and solve the resulting Lagrangean problem
L(u, S \ t, S1∪ t, S0). If the resulting lower bound lb1

it is greater than the cur-
rent best upper bound, we set zti = 0 and the related x variables, and we up-
date the sets Si, S

0
i and Rt accordingly. Otherwise, we temporarily fix zti = 0

(but only if ẑti = 1) and solve the resulting Lagrangean L(u, S \ t, S1, S0 ∪ t).
If the obtained lower bound lb0

it is greater than the current best upper bound,
we set zti = 1, and we update the sets Si, S

0
i and Rt accordingly.

If there are still some unfixed variables zti at the the end of the par-
tial enumeration phase we continue with the branch-and-bound scheme just
described. However, the branching strategy is determined by the output
of the partial enumeration phase. For each element in Si and i ∈ H, we
consider δti = max {lb0

it, lb
1
it}, and we branch on the variable zrj such that

δrj = max {δti : t ∈ Si, i ∈ H}. Then, if δrj = lb0
rj, we explore the branch cor-

responding to zrj = 1; otherwise, we explore the branch corresponding to
zrj = 0.

7. Computational Experiments

We have run extensive computational experiments in order to analyze
and compare the performance of the formulation, the Lagrangean relaxation,
the reduction tests and the exact algorithms. All algorithms were coded in
C and run on a Dell Studio PC with an Intel Core 2 Quad processor Q8200
with 2.33 GHz and 8 GB of RAM memory under a Linux environment.

We have used the AP (Australian Post) set of instances which can be
downloaded from mscmga.ms.ic.ac.uk/jeb/orlib/phubinfo.html to generate a
set of benchmark instances for the DUHLP. This data set, which is com-
monly used in the literature, consists of the Euclidean distances between 200
cities in Australia, a code to reduce the size of the set by grouping cities,
and the values of Wk (postal flow between pair of cities). We took a static
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instance of the AP data set and transformed it to a dynamic instance in
the following way. At the first period of the planning horizon (t = 1), a
subset of commodities K1 is randomly selected from the set of commodities
K = {(i, j) : (i, j) ∈ H ×H} associated to its corresponding static instance.
In subsequent time periods t > 1, subsets of commodities are randomly se-
lected in such a way that K1 ⊆ K2 ⊆ · · · ⊆ K |T | = K. The first time
a given commodity appears its demand is set to Wk, otherwise its demand
either randomly increases up to 30% of its value (with probability 90%), or
randomly decreases up to 25% of its value (with probability 10%). In the
case of the set-up cost, we consider two possibilities: tight (T), when they
increase with the amount of flow generated in the node, and loose (L), when
the instances do not exhibit this characteristic. Moreover, we vary set-up
costs over time by setting them to f ti = fi(1 + θ), where θ ∼ U(−0.1, 0.2)
and fi is the corresponding set-up cost of the associated static instance. Op-
erating costs are set to gti = f ti ρ, where ρ ∼ U(0.1, 0.15) and recovery gains
are set to qti = f ti δ, where δ ∼ U(0.4, 0.6). Finally, the different values we
have considered for the discount factor are α = 0.2, 0.5 and 0.8.

We have considered four sets of instances: the first one contains 30 small
to medium size instances with up to 50 nodes and five time periods. This
set contains six instances of each of the sizes |H| = 10, 20, 25, 40, and 50.
The second set contains 30 medium to large size instances with up to 100
nodes and five time periods. In particular, this set contains six instances of
each of the sizes |H| = 60, 70, 75, 90, and 100. These two sets of instances
were generated in such a way that the number of commodities in the differ-
ent time periods are |K1| u (0.25)|K|, |K2| u (0.50)|K|, |K3| u (0.75)|K|,
|K4| u |K|, and |K5| = |K|. The third set contains 30 instances with up
to 50 nodes and 10 time periods. This set contains six instances of each of
the sizes |H| = 10, 20, 25, 40, and 50. Finally, the fourth set contains 30 in-
stances with up to 100 nodes and 10 time periods. It contains six instances of
each of the sizes |H| = 60, 70, 75, 90, and 100. The last two sets of instances
were generated in such a way that the number of commodities in the differ-
ent time periods are |K1| u (0.20)|K|, |K2| u (0.40)|K|, |K3| u (0.50)|K|,
|K4| u (0.65)|K|, |K5| u (0.75)|K|, |K6| u (0.90)|K|, |K7| u (0.95)|K|,
|K8| u |K|, and |K9| = |K10| = |K|. For each problem size in each set,
the six instances correspond to different combinations of characteristics for
the fixed set-up costs and the discount factor α. There are thus 120 test
instances in total.
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In all the experiments, the subgradient optimization algorithm terminates
when one of the following criteria is met:

i) All the components of the subgradient are zero. In this case the current
solution is proven to be optimal;

ii) The difference between the upper and lower bounds is below a threshold
value, i.e.

∣∣z∗ − zkD∣∣ < ε;

iii) The improvement on the lower bound after t consecutive iterations is
below a threshold value γ;

iv) The maximum number of iterations Itermax is reached.

After some tuning, we set the following parameter values: Itermax = 1500,
t = 350, ε = 10−6, and γ = 0.005%.

Our preliminary computational results focus on the comparison between
two different Lagrangean relaxations LR and LRRT . LR considers the La-
grangean relaxation without the reduction tests whereas LRRT considers the
Lagrangean relaxation with the reduction tests. Moreover, we compare both
relaxations with the LP relaxation of the linearized model LM obtained with
CPLEX 10.1. The detailed results of these comparisons using the first set
of instances are given in Table 1. The first three columns give the num-
ber of nodes, the type of fixed cost and the discount factor, respectively, of
each instance. The next three columns under the heading %Deviation de-
pict the duality gap relative to: i) the linear programming relaxation bound
(LP ) obtained with model LM , ii) the best lower bound obtained with LR
and iii) the best lower bound obtained with LRRT , respectively. That is
Gap = 100(OPT −LBT )/(OPT ), where OPT is the optimal value and LBT

is the lower bound obtained with T = LP,LR,LRRT , respectively. The next
four columns under the heading Time(sec) give the CPU time in seconds
needed to obtain an optimal solution of the LP relaxation in case of LM and
the CPU time in seconds needed to obtain the lower and upper bounds in
case of LR and LRRT , respectively. The next column under the heading %
Red Time gives the percentage of reduction in time of LRRT with respect to
LR. Finally, the last column % Red Hubs gives the percentage of hubs that
where fixed by the reduction tests in LRRT , that is RED = 100(FH/|H|),
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%Deviation Time(sec) % Red % Red
|H| FC α LP LR LRRT LP LR LRRT time hubs
10 L 0.2 0.00 0.00 0.00 0.15 0.13 0.04 69.23 77.78

0.5 0.00 0.00 0.00 0.12 0.05 0.06 -20.00 82.22
0.8 0.00 0.00 0.00 0.13 0.06 0.06 0.00 82.22

T 0.2 0.00 0.00 0.00 0.22 0.10 0.05 50.00 82.22
0.5 0.19 0.20 0.19 0.12 0.34 0.35 -2.94 26.67
0.8 0.06 0.11 0.13 0.08 0.32 0.23 28.13 35.56

20 L 0.2 0.00 0.00 0.00 8.58 7.24 2.49 65.61 91.58
0.5 0.00 0.00 0.00 6.03 2.66 1.70 36.09 94.74
0.8 0.00 0.27 0.10 4.25 4.06 3.64 10.34 51.58

T 0.2 0.00 0.00 0.00 13.51 5.54 1.36 75.45 91.58
0.5 0.00 0.00 0.00 6.85 1.94 1.38 28.87 91.58
0.8 0.06 0.16 0.07 3.45 5.86 3.34 43.00 86.32

25 L 0.2 0.00 0.05 0.00 56.46 15.58 6.21 60.14 92.50
0.5 0.00 0.28 0.25 30.50 9.57 6.13 35.95 59.17
0.8 0.00 0.14 0.18 16.65 14.82 8.21 44.60 41.67

T 0.2 0.00 0.10 0.20 119.01 15.34 8.54 44.33 25.00
0.5 0.00 0.25 0.29 53.60 17.72 8.76 50.56 78.33
0.8 0.00 0.17 0.00 25.18 13.21 5.40 59.12 99.17

40 L 0.2 0.00 0.00 0.00 1413.40 76.96 36.41 52.69 95.90
0.5 0.07 0.45 0.57 804.56 77.11 47.59 38.28 41.03
0.8 0.00 0.44 0.33 426.49 114.05 81.88 28.21 46.15

T 0.2 0.00 0.27 0.00 2190.62 102.77 46.89 54.37 98.97
0.5 0.00 0.00 0.00 702.06 94.54 21.87 76.87 98.97
0.8 0.00 0.00 0.00 279.77 105.17 21.33 79.72 98.97

50 L 0.2 n.a. 0.51 0.41 n.a. 278.53 187.89 32.54 53.06
0.5 n.a. 0.22 0.11 n.a. 279.10 184.40 33.93 77.14
0.8 n.a. 0.40 0.40 n.a. 279.52 253.40 9.34 24.08

T 0.2 n.a. 0.05 0.00 n.a. 277.11 75.02 72.93 97.96
0.5 n.a. 1.07 0.97 n.a. 250.45 141.83 43.37 44.90
0.8 n.a. 1.17 1.17 n.a. 276.34 138.95 49.72 35.51

Table 1: Comparison of bounds for instances from 10 to 50 nodes and five time periods

where FH is the number of hubs fixed.

The results presented in Table 1 appear to be very good. As can be seen
we have proven the optimality of the solution obtained with the Lagrangean
dual in 12 out of the 30 instances with LR and in 15 out of the 30 instances
with LRRT . For the remaining instances, the percent deviation is below 1.2%
for both LR and LRRT . Also, it can be seen that the LP bound of model
LM is very tight since it is able to close the duality gap in 20 out of the 24
instances with up to 40 nodes. However, for the 50-node instances, eight GB
of memory are not enough for loading the problem into the CPLEX solver
optimizer. In contrast, our Lagrangean relaxation is able to obtain tight
bounds for the 50 node instances by using less than one GB of memory.

The columns Time(sec) indicate that, particularly for LRRT , the La-
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Number of Nodes Time(sec) % Fixed
|H| FC α CPLEX BBRC BBPE CPLEX BBRC BBPE hubs
10 L 0.2 0 0 0 0.15 0.04 0.04 100.00

0.5 0 0 0 0.12 0.06 0.06 100.00
0.8 0 0 0 0.13 0.06 0.06 100.00

T 0.2 0 0 0 0.22 0.05 0.05 100.00
0.5 6 8 0 0.78 0.51 0.44 100.00
0.8 7 4 0 0.69 0.31 0.30 100.00

20 L 0.2 0 0 0 8.58 2.49 2.49 100.00
0.5 0 0 0 6.03 1.70 1.70 100.00
0.8 0 10 0 4.25 5.21 4.04 100.00

T 0.2 0 0 0 13.51 1.36 1.36 100.00
0.5 0 0 0 6.85 1.38 1.38 100.00
0.8 6 2 0 13.64 3.50 3.44 100.00

25 L 0.2 0 0 0 56.46 6.21 6.21 100.00
0.5 0 14 0 30.50 11.58 7.24 100.00
0.8 0 18 0 16.65 17.08 9.58 100.00

T 0.2 0 6 0 119.01 11.92 9.97 100.00
0.5 0 2 0 53.60 9.15 9.70 100.00
0.8 0 0 0 25.18 5.40 5.40 100.00

40 L 0.2 0 0 0 1413.40 36.41 36.41 100.00
0.5 3 10 0 1287.87 79.97 57.87 100.00
0.8 0 14 0 426.49 125.18 87.92 100.00

T 0.2 0 0 0 2190.62 46.89 46.89 100.00
0.5 0 0 0 702.06 21.87 21.87 100.00
0.8 0 0 0 279.77 21.33 21.33 100.00

50 L 0.2 n.a. 32 2 n.a. 386.03 232.42 97.46
0.5 n.a. 2 0 n.a. 189.83 193.96 100.00
0.8 n.a. 12 0 n.a. 407.53 301.24 100.00

T 0.2 n.a. 0 0 n.a. 75.02 75.02 100.00
0.5 n.a. 28 2 n.a. 352.01 202.68 98.03
0.8 n.a. 52 2 n.a. 659.70 187.72 97.65

Table 2: Results of exact algorithms for instances from 10 to 50 nodes and five time periods

grangean relaxation requires much less computation time than CPLEX. Ex-
cept for two 10-node instances, our Lagrangean relaxation is always much
faster than CPLEX. For the case of the 40-node instances, the Lagrangean
relaxation is at least one order of magnitude faster than CPLEX. For the
case of the 50-nodes instances, the Lagrangean relaxation is able to compute
really tight bounds in less than five minutes. The last two columns show that
the proposed reduction tests are very effective in fixing hub nodes. The per-
centage of hubs fixed ranges from 25% to 99% and the average percentage is
70%. As can be seen in the % Red Time column, LRRT clearly outperforms
LR because it is able to considerably reduce the computational effort in all
cases except two. Finally, the average percentage of reduction time of LRRT

relative to LR is 41%.

In order to analyze the efficiency of our exact algorithms we have run a
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second series of computational experiments using the first set of instances.
These results are summarized in Table 2. The first three columns have the
same meaning as in Table 1. The next three columns under the heading
Number of Nodes provide the number of nodes of the branch-and-bound tree
required for solving to optimality the problem for: i) the CPLEX MIP op-
timizer using all its machinery (prepossessing phase, cuts, heuristics), ii)
our standard branch-and-bound algorithm (BBRC) described in Section 6.1
and iii) our branch-and-bound algorithm with the partial enumeration phase
(BBPE) described in Section 6.2. The next three columns under the heading
Time(sec) give the CPU time in seconds needed to obtain the optimal so-
lution for CPLEX, BBRC and BBPE, respectively. Finally, the last column
% Red hubs gives the percentage of hubs that where fixed at the end of the
partial enumeration of BBPE.

The results of Table 2 confirm the efficiency of our exact algorithms. Both
BBRC and BBPE are able to obtain the optimal solution of each of the 30
instances. In contrast, CPLEX is only able to solve instances with up to 40
nodes. Moreover, the CPU times for solving to optimality the problem are
much better with both BBRC and BBPE algorithms than with CPLEX. As
can be seen in the Time(sec) columns, both BBRC and BBPE beat CPLEX
in 28 of the 30 instances and in all instances, respectively, and for the larger
instances both algorithms are at least one order of magnitude faster than
CPLEX. Furthermore, BBPE seems to outperform BBRT because it is able
to obtain better CPU times for all instances, except one. The last column
shows that the partial enumeration phase is really effective in fixing the hub
nodes. In 27 of the 30 instances it is able to fix all hub nodes, thus no enu-
meration is required. For the rest of the 3 instances, BBPE only needs to
explore two nodes of the tree. On the contrary, BBRT needs a larger amount
of branching nodes to prove optimality.

In order to further analyze the efficiency of our exact algorithms, we have
run a series of computational experiments using the second set of instances,
ranging from 60 to 100 nodes and five time periods. The results are sum-
marized in Table 3. The columns have the same meaning as in the previous
table. However, these results now include the percent deviation, CPU time
and percent of fixed hubs of LRRT . Therefore, in the last two columns under
the heading % Fixed hubs, we differentiate between the percentage of fixed
hubs in the LR and in the partial enumeration by using LRRT and PE, re-
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% Dev Number of Nodes Time(sec) % Fixed hubs
|H| FC α LRRT BBRC BBPE LRRT BBRC BBPE LRRT PE
60 L 0.2 0.00 0 0 253.78 253.78 253.78 96.27 100.00

0.5 0.00 0 0 142.52 142.52 142.52 98.31 100.00
0.8 0.00 0 0 145.33 145.33 145.33 98.31 100.00

T 0.2 0.19 10 0 137.71 188.30 156.14 89.49 100.00
0.5 0.24 26 2 121.80 251.76 151.66 86.78 98.46
0.8 0.00 0 0 133.92 133.92 133.92 98.64 100.00

70 L 0.2 0.76 188 0 1219.04 10766.42 1349.01 24.06 100.00
0.5 0.59 122 2 1151.32 8163.13 1453.79 17.39 95.87
0.8 0.76 152 0 1355.28 10034.95 1641.76 17.10 100.00

T 0.2 0.00 0 0 325.40 325.41 325.41 98.55 100.00
0.5 0.56 6 2 467.65 492.70 509.52 83.48 99.12
0.8 0.33 14 2 346.17 441.15 388.83 84.64 98.44

75 L 0.2 2.13 176 2 1705.39 23161.25 4847.96 0.54 97.49
0.5 1.00 90 2 1502.52 9184.80 2005.61 15.14 98.78
0.8 0.80 80 0 1522.79 8207.66 1823.72 15.41 100.00

T 0.2 0.68 102 0 504.35 2035.89 548.34 72.97 100.00
0.5 0.58 80 2 507.20 1333.20 561.99 82.16 98.96
0.8 0.56 26 0 485.74 666.14 520.56 80.81 100.00

90 L 0.2 1.04 220 2 3949.44 44983.24 7001.63 9.44 96.22
0.5 0.71 172 2 3427.76 23426.18 4444.81 26.97 97.56
0.8 0.43 118 0 3208.93 13351.90 3616.97 36.85 100.00

T 0.2 0.61 250 22 1243.21 8251.10 1985.34 72.13 95.43
0.5 0.51 56 6 1028.60 2213.48 1297.58 78.88 97.66
0.8 0.41 60 2 1065.29 2418.86 1193.73 77.08 98.12

100 L 0.2 1.21 312 2 8076.34 106574.40 16168.74 9.90 95.45
0.5 1.19 272 10 8662.50 115741.93 19220.28 8.28 93.23
0.8 0.91 192 4 8450.40 68711.20 15857.56 11.72 97.35

T 0.2 0.85 74 0 1813.93 4054.97 1908.75 83.84 100.00
0.5 0.36 8 2 1241.91 1359.07 1306.25 91.92 98.54
0.8 0.00 0 0 961.91 961.95 961.95 100.00 100.00

Table 3: Results of exact algorithms for instances from 60 to 100 nodes and five time
periods

spectively.

The results of Table 3 further confirm the efficiency of our proposed al-
gorithms. As can be seen we have proven the optimality of the solution
obtained with LRRT in six out of the 30 instances. For the remaining in-
stances, the percent deviation is below 2.2%. Once more, the reduction tests
proved to be very effective in fixing hub nodes, particularly for the T-type
of instances. In the case of the L-type of instances, the percentage of fixed
hubs ranges from 0.5% to 98.3% and the average is 32.4%. For the case of
the T-type of instances, the percentage of fixed hubs ranges from 72.1% to
100.0% and the average is 85.4%.

Once again, both BBRC and BBPE are able to obtain the optimal solu-
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% Deviation Number of Nodes Time(sec) % Fixed hubs
|H| FC α LP LRRT CPLEX BBPE CPLEX LRRT BBPE LRRT PE
10 L 0.2 0.00 0.09 0 0 0.31 0.91 1.31 1.11 100.00

0.5 0.00 0.00 0 0 0.33 1.21 1.34 55.56 100.00
0.8 0.00 0.03 0 0 0.38 0.75 0.94 24.44 100.00

T 0.2 0.00 0.00 0 0 0.32 0.21 0.21 47.78 100.00
0.5 0.00 0.03 0 0 0.43 0.88 1.05 33.33 100.00
0.8 0.00 0.00 0 0 0.27 0.50 0.50 75.56 100.00

20 L 0.2 0.00 0.00 0 0 21.67 5.30 5.30 88.42 100.00
0.5 0.13 0.16 6 0 49.45 9.61 13.15 16.84 100.00
0.8 0.00 0.00 0 0 8.50 2.54 2.54 91.58 100.00

T 0.2 0.00 0.00 0 0 23.30 3.64 3.64 84.74 100.00
0.5 0.00 0.07 5 0 57.74 11.15 12.87 55.79 100.00
0.8 0.06 0.17 7 2 48.89 7.35 10.74 38.95 98.44

25 L 0.2 0.00 0.10 0 0 79.44 29.25 34.49 37.92 100.00
0.5 0.00 0.00 0 0 81.58 6.22 6.23 87.92 100.00
0.8 0.00 0.02 0 0 64.58 23.14 25.06 72.50 100.00

T 0.2 0.00 0.10 0 0 195.55 25.92 29.37 58.75 100.00
0.5 0.00 0.24 0 2 208.16 30.26 39.82 32.08 98.86
0.8 0.06 0.27 4 0 206.61 18.01 23.42 47.50 100.00

40 L 0.2 0.39 0.76 7 2 12587.05 243.81 1069.89 0.00 94.32
0.5 0.05 0.22 4 2 4822.09 184.90 268.28 30.26 95.89
0.8 0.00 0.00 0 0 1734.13 84.03 84.03 96.15 100.00

T 0.2 0.07 0.91 4 2 10728.40 211.28 732.11 18.72 98.34
0.5 0.05 0.60 3 6 6582.90 217.06 405.90 18.72 96.43
0.8 0.00 0.45 0 2 1688.05 187.50 254.37 42.05 98.34

50 L 0.2 n.a. 0.16 n.a. 0 n.a. 424.96 562.18 32.65 100.00
0.5 n.a. 0.41 n.a. 2 n.a. 421.91 850.44 12.04 98.32
0.8 n.a. 0.54 n.a. 2 n.a. 549.44 1479.83 4.29 97.65

T 0.2 n.a. 0.09 n.a. 0 n.a. 277.48 311.68 74.90 100.00
0.5 n.a. 0.42 n.a. 0 n.a. 311.20 378.09 54.49 100.00
0.8 n.a. 1.00 n.a. 2 n.a. 371.97 645.29 39.80 98.32

Table 4: Results of exact algorithms for instances from 10 to 50 nodes and 10 time periods

tion of all instances. However, BBPE clearly outperforms BBRC in both the
required CPU times and number of nodes in the tree. As can be seen in the
last column, the partial enumeration phase is able to fix all hub nodes in 14
out of the 30 instances. For the rest of the instances, the percentage of fixed
hubs is always above 95%. Columns Number of Nodes indicate that BBPE

requires to explore much less nodes than BBRC . The maximum number of
explored nodes in BBPE is 22, while in BBRC is 312. As for CPU times,
BBPE is always much better than BBRC expect in one single instance in
which the difference is lees than 100 seconds. For the rest of the instances,
most of the times BBPE is one order of magnitude faster than BBRC .

In order to further analyze the efficiency and robustness of our best exact
algorithm (BBPE), we have run a final series of computational experiments
using the third and fourth sets of instances, ranging from 10 to 50 nodes
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and from 60 to 100 nodes and 10 time periods, respectively. The results are
summarized in Tables 4 and 5. The columns have the same meaning as in
the previous tables.

The results of Table 4 confirm the efficiency and robustness of our pro-
posed algorithms. As can be seen we have proven the optimality of the
solution obtained with LRRT in 8 out of the 30 instances. For the remaining
instances, the percent deviation is below 1.0%. Once again, it can be seen
that the LP bound of model LM is very tight since it is able to close the
duality gap in 17 out of the 24 instances with up to 40 nodes. As expected,
for the 50-node instances, CPLEX is not able to load the problem because of
memory requirements. Once more, the reduction tests proved to be effective
in fixing hub nodes. In the case of the L-type of instances, the percentage of
fixed hubs ranges from 0.0% to 96.1% and the average is 43.4%. For the case
of the T-type of instances, the percentage of fixed hubs range from 18.7% to
84.7% and the average is 48.2%.

Once again, BBPE is able to obtain the optimal solution of all instances.
In contrast, CPLEX is only able to solve to optimality instances with up to
40 nodes. Furthermore, BBPE is much faster than CPLEX for all instances
except in the smaller ones of 10 nodes. As can be seen in the last column,
the partial enumeration phase is able to fix all hub nodes in 20 out of the
30 instances. For the rest of the instances, the percentage of fixed hubs is
always above 94% and the number of explored nodes is always two except
for one instance with six nodes.

The results of Table 5 assess the efficiency of our proposed approach for
solving large-size instances. Given the dimension of the considered instances,
LRRT is only able to prove the optimality of the obtained solutions in 3 out
of the 30 instances and for the rest of the instances the percent deviation
never exceeds 2% except for one single instance which has 2.77% of devi-
ation. Once again the reduction tests proved to be effective in fixing hub
nodes, particularly for the T-type instances. In the case of the L-type in-
stances, the percentage of fixed hubs ranges from 0.0% to 40.6% and the
average is 9.5%. For the case of the T-type instances, the percentage of fixed
hubs range from 53.4% to 98.6% and the average is 71.5%.

The BBPE algortihm is again able to obtain the optimal solution of all
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% Dev Nodes Time(sec) % Fixed hubs
|H| FC α LRRT BBPE LRRT BBPE LRRT PE
60 L 0.2 0.26 2 1108.97 1523.87 24.58 97.34

0.5 0.35 12 1263.44 2162.50 14.41 94.56
0.8 0.20 0 1378.70 1697.07 15.76 100.00

T 0.2 0.06 0 340.67 386.09 87.46 100.00
0.5 0.22 2 376.87 654.40 80.51 98.23
0.8 0.30 2 320.25 502.13 74.41 98.23

70 L 0.2 0.53 2 3607.09 5756.87 8.55 96.43
0.5 0.35 2 3376.94 5760.98 10.87 95.27
0.8 0.13 0 2166.26 2495.50 40.58 100.00

T 0.2 0.00 0 473.97 474.02 96.67 100.00
0.5 0.00 0 499.28 499.31 98.55 100.00
0.8 0.00 0 352.05 352.08 98.55 100.00

75 L 0.2 0.92 4 4343.41 19706.27 1.62 95.34
0.5 1.83 2 4463.57 21365.67 0.00 97.65
0.8 0.89 2 3907.23 21532.27 3.51 96.55

T 0.2 1.38 12 1354.38 3511.32 60.54 93.21
0.5 0.96 2 1486.34 2530.99 59.73 98.34
0.8 1.30 24 1325.52 2723.43 64.19 95.76

90 L 0.2 1.01 2 8714.84 31231.50 2.81 94.36
0.5 0.67 2 7903.07 17902.46 11.12 95.43
0.8 0.84 6 8868.38 29652.33 7.19 94.36

T 0.2 1.16 2 3015.72 5330.32 56.63 97.89
0.5 0.82 6 3016.10 5601.41 61.69 96.98
0.8 1.42 6 3113.38 6701.70 53.37 96.98

100 L 0.2 2.77 252 15437.98 291925.06 0.00 86.48
0.5 1.71 18 15290.67 225999.74 0.30 96.52
0.8 1.50 156 15440.98 241895.49 1.31 88.60

T 0.2 1.78 2 5423.55 14511.74 54.04 97.90
0.5 1.24 2 4988.45 8323.31 62.12 99.00
0.8 1.45 2 5154.50 7963.00 63.94 99.10

Table 5: Results of exact algorithms for instances from 60 to 100 nodes and 10 time periods
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instances. As can be seen in the last column, the partial enumeration phase
can fix all hub nodes in 6 out of the 30 instances and for the rest of them,
the percentage of fixed hubs is always above 86.5%. Taking into account the
size of the instances, the number of explored nodes is considerably small. In
particular, for 28 out of 30 of the instances the number of branching nodes
is always less than 24 and for the other two instances is less than 252.

8. Conclusions

In this paper we have introduced the dynamic uncapacitated hub loca-
tion problem. The problem was tackled by means of a branch-and-bound
algorithm that uses a Lagrangean relaxation as a bounding procedure at the
nodes of the enumeration tree. Computational results confirm the efficiency
and robustness of the proposed approach. Benchmark instances involving up
to 100 nodes and 10 time periods were solved to optimality. To the best of
the authors’ knowledge, this is the first attempt at solving a discrete dynamic
version of the hub location problem.
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L. Cánovas, M. Landete, A. Maŕın, New formulations for the uncapacitated
multiple allocation hub location problem, European Journal of Operational
Research, 172 274–292 (2006).

P. Chardaire, A. Sutter, M.C. Costa, Solving the dynamic facility location
problem, Networks, 28 117–124 (1996).

I. Contreras, J.A. Dı́az, E. Fernández, Lagrangean relaxation for the capac-
itated hub location problem, OR Spectrum, 31 483–505 (2009).

H. Crowder, In: Computational improvements for subgradient optimization,
Symposia Mathematica, Vol. XIX, Academic Press, London, 1976.

J.R. Current, S.J. Ratick, C.S. ReVelle, Dynamic facility location when the
total number of facilities is uncertain: A decision analysis approach, Eu-
ropean Journal of Operational Research, 110 597–609 (1998).

Z. Drezner, Dynamic facility location: the progressive p-median problem.
Location Science, 3 1–7 (1995).

A. Ernst, M. Krishnamoorthy, Exact and heuristic algorithms for the unca-
pacitated multiple allocation p-hub median problem, European Journal of
Operational Research 104 100–112 (1998).
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