
Large Neighborhood Search for
the Single Vehicle Pickup and
Delivery Problem with Multiple
Loading Stacks

Jean-François Côté
Michel Gendreau
Jean-Yves Potvin

November 2009

CIRRELT-2009-47

G1V 0A6

Bureaux de Montréal : Bureaux de Québec :
Université de Montréal Université Laval
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau 2642
Montréal (Québec) Québec (Québec)
Canada H3C 3J7 Canada G1V 0A6
Téléphone : 514 343-7575 Téléphone : 418 656-2073
Télécopie : 514 343-7121 Télécopie : 418 656-2624

 www.cirrelt.ca

Large Neighborhood Search for the Single Vehicle Pickup and
Delivery Problem with Multiple Loading Stacks

Jean-François Côté1,2, Michel Gendreau1,3, Jean-Yves Potvin1,2,*

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation
(CIRRELT)

2 Department of Computer Science and Operations Research, Université de Montréal, P.O. Box
6128, Station Centre-ville, Montréal, Canada H3C 3J7

3 Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal, P.O.
Box 6079, Station Centre-ville, Montréal, Canada H3C 3A7

Abstract. This paper studies a single vehicle pickup and delivery problem with loading

constraints. In this problem, the vehicle contains a number of (horizontal) stacks of finite

capacity for loading items from the rear of the vehicle. Each stack must satisfy a last-in-

first-out constraint where any new item must be loaded on top of a stack and any

unloaded item must be on top of its stack. A large neighborhood search is proposed for

solving this problem. Computational results are reported on different types of randomly

generated instances. Results are also reported on benchmark instances for two special

cases of our problem and a comparison is provided with state-of-the-art methods.

Keywords. Vehicle routing, pickup, delivery, loading, multiple stacks, large neighborhood

search.

Acknowledgements. Financial support for this work was provided by the Natural

Sciences and Engineering Council of Canada (NSERC). This support is gratefully

acknowledged.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Jean-Yves.Potvin@cirrelt.ca

Dépôt légal – Bibliothèque et Archives nationales du Québec,
 Bibliothèque et Archives Canada, 2009

© Copyright Côté, Gendreau, Potvin and CIRRELT, 2009

1 Introduction

In this work, we consider a single vehicle Pickup and Delivery Problem (PDP), where
items are loaded in (horizontal) stacks from the rear of the vehicle. Each customer
request has a pickup location, where the items are loaded, and a delivery location,
where the items are unloaded. The loading and unloading operations in each stack
must satisfy a Last-In-First-Out (LIFO) constraint. That is, any new item must be
loaded on top of a stack and an item can be unloaded only if it is on top of its stack.
This constraint prevents reordering of the items along the route, which is desirable
when large items are transported. It is also assumed that the stacks are independent
(i.e., each item fits within a single stack) and are of finite capacity. Furthermore,
the demand at each customer cannot be split among different stacks. The goal is to
design a least-cost route for the vehicle, starting from and ending at a central depot,
that serves all customer requests while satisfying the side constraints, namely, the
precedence constraint between the pickup and delivery location of each request, the
capacity constraint of each stack and the LIFO loading constraint. This problem
will be referred to as the single vehicle Pickup and Delivery Problem with Multiple
Stacks (1-PDPMS) in the following.

This problem is a generalization of the Traveling Salesman Problem with Pickup
and Delivery and LIFO Loading constraint (TSPPDL), where the vehicle contains
a single stack of infinite capacity [2, 3]. It is also a generalization of the Double
Traveling Salesman Problem with Multiple Stacks (DTSPMS), where all pickups,
and then all deliveries, are performed in two different routes, and where each stack
must satisfy the LIFO loading constraint [12]. Problems that generalize ours are
the Multi-Pile Vehicle Routing Problem (MPVRP) [5] where items can extend over
a number of stacks, and various two- and three-dimensional PDPs where the items
have different shapes that must be loaded within a finite surface or volume [6, 7, 8,
9, 10].

A Large Neighborhood Search (LNS) [1, 16] is proposed here to solve the 1-
PDPMS. In this iterative method, a large neighborhood of the current solution is
obtained by removing a number of customer requests and by reinserting them to ob-
tain a new, hopefully better, solution. This approach, based on the ruin-and-recreate
principle [15], involves a number of removal and reinsertion operators, including in-
novative ones, like a stack-based removal operator and an insertion operator based
on the adaptation of a generalized regret measure [13] that accounts for multiple
stacks.

It is empirically demonstrated that the adaptation of the LNS framework to our
problem produces high quality solutions. Furthermore, it outperforms specialized
state-of-the-art methods for particular cases of our problem, namely the TSPPDL
and DTSPMS. The remainder of the paper is organized as follows. The problem
is formally introduced in Section 2. Then, our problem-solving methodology is
described in Section 3. Computational results are reported in Section 4. Finally, a
conclusion follows.

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 1

2 Problem Formulation

The 1-PDPMS can be formally stated as follows. Let G = (V, A) be a complete
graph where V = {0, 1, ..., 2n} is the vertex set and A is the arc set. Vertex 0 stands
for the depot while vertices i and n + i are the pickup and delivery locations of
customer request i, 1 ≤ i ≤ n. We denote P = {1, ..., n} and D = {n+1, ..., 2n} the
set of pickup and delivery locations, respectively. With each pickup location i ∈ P

is associated a demand di. We assume that a demand d0 = 0 is associated with the
depot and a demand −di with delivery location n + i ∈ D. We also have a cost cij

on each arc (i, j) ∈ A.

The vehicle contains a set M = {1, 2, ..., m} of loading stacks, each of capacity
Q, to transport the demand between pickup and delivery locations. The goal is to
find a least-cost route for the vehicle, starting from and ending at the depot, that
serves all customer requests while satisfying the side constraints.

This problem can be mathematically formulated using the following decision
variables:

• xij is 1 if vertex j is visited immediately after vertex i, 0 otherwise, i, j ∈ V ,
i 6= j;

• yik is 1 if the demand at pickup location i is loaded in stack k, 0 otherwise,
i ∈ P , k ∈M ;

• 0 ≤ ui ≤ 2n is the position of vertex i in the route, i ∈ V (with u0 = 0);

• 0 ≤ sik ≤ Q is the load of stack k upon leaving vertex i, i ∈ V , k ∈ M (with
s0k = 0, k ∈M).

We then have:

min
∑

i∈V

∑

j∈V
j 6=i

cijxij (1)

subject to

∑

j∈V

xij = 1, ∀i ∈ V (2)

∑

j∈V

xji = 1, ∀i ∈ V (3)

∑

k∈M

yik = 1, ∀i ∈ P (4)

uj ≥ ui + 1− 2n(1− xij), ∀i ∈ V, ∀j ∈ P ∪D (5)

un+i ≥ ui + 1, ∀i ∈ P (6)

sjk ≥ sik + djyjk −Q(1− xij), ∀i ∈ V, ∀j ∈ P, ∀k ∈M (7)

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 2

s(n+j)k ≥ sik + dn+jyjk −Q(1− xi(n+j)), ∀i ∈ V, ∀j ∈ P, ∀k ∈M (8)

s(n+j)k ≥ sjk + dn+jyjk −Q(1− yjk), ∀j ∈ P, ∀k ∈M (9)

u0 = 0 (10)

1 ≤ ui ≤ 2n, ∀i ∈ P ∪D (11)

s0k = 0, ∀k ∈M (12)

0 ≤ sik ≤ Q, ∀i ∈ P ∪D, ∀k ∈M (13)

In this formulation, the objective function (1) is aimed at minimizing the total
cost which corresponds here to the distance traveled by the vehicles. Each vertex
is visited exactly once through constraints (2) and (3). Constraint (4) states that
the demand of each pickup location is loaded in exactly one stack. The position of
each vertex in the route is defined through (5). The precedence constraint between
the pickup and delivery locations is found in (6). Constraints (7) and (8) define the
status of the stacks after each pickup and delivery. The LIFO loading constraint is
stated in (9). Constraints (10) and (11) define the vertex positions along the route.
Finally, constraints (12) and (13) take into account the capacity of each stack.

This model allows m! different representations of the same solution (by inter-
changing the contents of the stacks). To break this symmetry, the two following
constraints are added:

y11 = 1 (14)

yik ≤
i−1
∑

j=1

yj(k−1) for k > i ,∀i ∈ P (15)

Constraint (14) forces the demand at pickup location 1 to be on stack 1. Then,
constraint (15) states that the demand at pickup location i can be loaded in stack
k > i only if stack k − 1 is used.

3 Large Neighborhood Search

In the two following subsections, the removal and insertion operators of our LNS
algorithm are described. Then, the iterative search mechanism based on these op-
erators is presented.

3.1 Removal operators

These operators remove q customer requests from the current route. Clearly, a
feasible route remains feasible after their application. These operators are described
in the following subsections.

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 3

3.1.1 Customer-based operators

Random removal

This is a very straightforward operator where q requests are removed at random.

Distance-based removal

This operator is inspired from [16], where related requests are removed, based on
different metrics. Our distance-based operator is described in the pseudo-code that
follows, where S denotes the current solution and p(i) and d(i) return the pick-up
and delivery vertex of request i, respectively.

1. i← RandomRequest(S) ;

2. L← {i} ;

3. S ← S \ {p(i), d(i)} ;

4. While | L |< q do

4.1 i← Random(L) ;

4.2 B ← ∅ ;

4.3 For each request j ∈ S do

4.3.1 bj ← cp(i)p(j) + cd(i)d(j) ;

4.3.2 B ← B ∪ {j} ;

4.4 Sort B in increasing order of bj ;

4.5 r ← RandomNumber(0, 1) ;

4.6 pos← ⌈| B | · rd⌉ ;

4.7 Select request j at position pos in B ;

4.8 L← L ∪ {j} ;

4.9 S ← S \ {p(j), d(j)} ;

5. Return L.

Starting with a randomly chosen request, which starts the whole procedure, the
removal of the next requests is (probabilistically) biased toward those that are close
to one of the previously removed requests, based on the distance metric. Parameter
d in step 4.6 controls the intensity of the bias. Namely, a high value for parameter d

strongly favors the removal of requests that are close to previously removed requests
(and conversely). Based on preliminary experiments, this parameter was set to 6.

3.1.2 Route-based removal

The goal of this operator is to remove a sequence of consecutive vertices from the
route. Clearly, if the vertex is a pickup then the corresponding delivery also needs

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 4

to be removed (and conversely). In the pseudo-code below, pred req(i) returns the
request whose pickup or delivery vertex is the immediate predecessor of the pickup
vertex of request i (it returns 0 if this predecessor is the depot). Similarly, succ req(i)
returns the request whose pickup or delivery vertex is the immediate successor of
the pickup vertex of request i.

1. i← RandomRequest(S) ;

2. L← ∅ ;

3. While | L |< q − 1 do

3.1 j ← pred req(i) ;

3.2 If j 6= 0 then

3.2.1 L← L ∪ {j} ;

3.2.2 S ← S \ {p(j), d(j)} ;

3.3 if | L |< q − 1 then

3.3.1 j ← succ req(i) ;

3.3.2 If j 6= 0 then

L← L ∪ {j} ;

S ← S \ {p(j), d(j)} ;

4. L← L ∪ {i} ;

5. S ← S \ {p(i), d(i)} ;

6. Return L.

A request i is first randomly chosen and q−1 requests around i are then removed
by first considering the predecessor, and then, the successor of its pickup vertex. If
the predecessor happens to be the depot, then the remaining requests are removed
by considering only the successors (and conversely). At the end, request i is also
removed.

3.1.3 Stack-based removal

Here, customer requests are removed from the current solution with the distance-
based removal operator (see subsection 3.1.1), except that the distance metric is
based on the difference between their positions in the stack. Thus, given two requests
i and j in the same stack, step 4.2.1 becomes:

bj ←| pos(i)− pos(j) | ;

where pos(i) and pos(j) are the positions of the pickup vertices of requests i and j

in the stack.

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 5

n+ji j n+i

Figure 1: Blocks Bk(i, n + i) and Bk(j, n + j) overlap

3.2 Insertion operators

The proposed methodology is based on a partial destruction of the current solution
at each iteration and its reconstruction with an insertion operator. In the latter
case, all feasible insertion places of a given request must be considered in order to
identify the best one. This procedure thus needs to be efficient. Fortunately, the
LIFO constraint imposes a particular structure on the route, which can be exploited
by the insertion procedure.

Extending the terminology in [3], if we assume that a given request i is put in
stack k then a block Bk(i, n + i) in the current route is the path from the pickup
to the delivery location of customer request i. The block Bk(i, n + i) is simple if
there is no block Bk(j, n + j) between i and n + i. It is composed if Bk(i, n + i)
contains one ore more subblocks Bk(j, n + j). Two customer requests i and j in
stack k satisfies the LIFO constraint if Bk(i, n+ i) and Bk(j, n+ j) do not have any
vertex in common or if one block is a subblock of the other. Otherwise, the two
blocks overlap and violate the LIFO constraint (see Figure 1).

Accordingly, after the insertion of pickup location i, only a restricted number of
insertion places for the delivery location n + i satisfies the LIFO constraint. These
insertion places are identified as follows. First, the position just after i is clearly
feasible for n + i. Then, the route after i is swept as follow:

• if the vertex is not in the same stack than i, then it is possible to insert n + i

just after that vertex;

• If the vertex is in the same stack k than i and is a pickup j, the block Bk(j, n+j)
is jumped and the search restarts from n+j. That is, if n+i is inserted within
Bk(j, n + j), the two blocks Bk(i, n + i) and Bk(j, n + j) would violate the
LIFO constraint.

• if the vertex is in the same stack k than i and is a delivery n + j, then

– if j is after i in the route, n + j has been reached by jumping from j.
Hence, it is possible to insert n + i just after n + j.

– if j is before i in the route, there is no other feasible location along the
route. Clearly, the insertion of n+ i at any place after n+j would violate
the LIFO constraint.

The two insertion operators will now be described.

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 6

3.2.1 Least-cost insertion

Here, the next request is inserted at the feasible location that incurs the smallest
additional cost. This is the detour, in our case, since the objective is to minimize
the total distance. More precisely if the pickup i is inserted between vertex j and
its immediate successor succ(j) and the delivery n + i between l and succ(l), the
detour δ is:

δi,j,l = (cj,i + ci,succ(j) − cj,succ(j)) + (cl,n+i + cn+i,succ(l) − cl,succ(l)) (16)

It should be noted that the requests are reinserted one by one based on their
removal order.

3.2.2 Regret-based insertion

An alternate insertion heuristic has been designed that alleviates the myopic behav-
ior of the previous insertion heuristic. This is done through a variable reinsertion
order based on a regret measure. The classical regret considers the difference be-
tween the cost of the second best and best insertion places in the solution. If this
difference is large, the corresponding request gets high priority because a large cost
is incurred if its best insertion place becomes infeasible (due to the insertion of other
requests). A generalized variant for a multi-vehicle routing problem [13] considers
the best feasible insertion place in each route and sums up the differences, over all
routes, between the best insertion cost in the route and the best overall insertion
cost. Here, this idea is exploited by considering stacks instead of routes. Namely,
the impact on the route of each (previously) removed request is evaluated by con-
sidering its addition at every feasible position in each stack, in order to identify its
best position in each stack. Then, its generalized regret measure is calculated.

Let us assume that the minimum detour in the route when request i is put in
stack k ∈ M is δ′i,k and that the overall minimum detour is obtained when the
request is put in stack k∗. Then, the generalized regret measure ri is:

ri =
∑

k=1,...,m

(

δ′i,k − δ′i,k∗

)

. (17)

The next request chosen for reinsertion is the one with the largest generalized
regret. Obviously, this request is put at the best position in its best stack, namely
the one which leads to the smallest detour in the route. It should be noted that
a classical 2-regret insertion heuristic is also available, where only the difference
between the second-best stack and the best stack is considered. For problems with
only one stack, the regret heuristic is based on the difference between the second
best and best positions in the same stack.

3.3 Algorithmic framework

The general search scheme of LNS can now be described as follows, where S and S∗
denote the current and best solution, respectively, and f is the objective function:

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 7

1. Create an initial solution S ;

2. S∗ ← S ;

3. iter ← 1 ;

4. While iter ≤ itermax do

4.1 Select a number of requests 1 ≤ q ≤ n ;

4.2 Select a removal operator and an insertion operator ;

4.3 Apply the removal and insertion operators to solution S to obtain S′ ;

4.4 If f(S′) < f(S) then

4.4.1 S ← S′ ;

4.4.2 If f(S′) < f(S∗) then S∗ ← S′ ;

4.5 If f(S′) ≥ f(S) then

S ← S′ according to some acceptance criterion ;

4.6 iter ← iter + 1 ;

5. Return S∗.

LNS is a rather simple iterative algorithm, which is applied for a fixed number
of iterations itermax from an initial solution obtained with the least-cost insertion
heuristic presented in section 3.2.1. The acceptance criterion in step 4.5, when
solution S′ does not improve S, is the one used in simulated annealing [11]. That is,

S′ is accepted with probability e−
f(S′)−f(S)

T where T is the temperature parameter.
Starting from some initial value, the temperature is reduced from one iteration to
the next by setting T ← αT . Clearly, the probability of accepting a non improving
solution diminishes with the value of T , as the algorithm unfolds. This behavior
allows the algorithm to progressively settle in a (hopefully) good local optimum.
In our experiments, the starting temperature was set to 1.05f(S0), where S0 is the
initial solution, and α to 0.99975, as suggested in [14].

3.4 Postprocessing

An exact dynamic programming algorithm is applied at the end to find the optimal
route based on the evolution of the stacks observed in the solution returned by
LNS. To this end, the evolution of each stack is represented by a feasible sequence
of pickup and delivery vertices. For example, [1, n+1, 2, n+2, 0] indicates that the
demand at pickup location 1 is successively loaded and unloaded. Then, the same
applies to the demand at pickup location 2. A different evolution can be represented
by [1, 2, n+1, n+2, 0] to indicate that the two demands are first loaded before being
unloaded. It should be noted that the depot 0 is always the last vertex in this
representation.

We have:

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 8

• M = {M1, ..., Mk, ..., Mm}, the set of feasible sequences of pickups and deliv-
eries associated with each stack (see the representation above);

• Mk, the sequence of pickups and deliveries associated with stack k, 1 ≤ k ≤ m;

• T = {t1, ..., tk, ..., tm} the set of current positions in the sequences of pickups
and deliveries;

• Mk,tk , the pickup or delivery vertex at position tk in Mk;

• hk(T) a function that increments the current position in stack k; that is, T

becomes {t1, ..., tk + 1, ..., tm}.

The recurrence relation is then written as follows:

f∗(x, T) = mink∈M,Mk,tk
6=0{cx,Mk,tk

+ f∗(Mk,tk , hk(T))} if Mk,tk 6= 0 for at
least one k, 1 ≤ k ≤ m,

f∗(x, T) = cx0 otherwise

At the start, the current route is empty, vertex x is the depot 0 and T indicates
the first position in each sequence. At each step, a vertex at one of the positions
indicated by T is selected and inserted at the end of the current route. The recur-
rence stops when T indicates the last position in each sequence, which corresponds
to the depot 0.

4 Computational Results

The experiments reported in this section have been performed on a 2.2 GHz AMD
Opteron 275. In the following, the generation of our 1-PDPMS test instances is first
described. Then, different sensitivity analysis experiments are reported, involving
the number of requests q to be removed and the various removal and insertion
operators. The final results obtained with LNS are then reported. This is followed
by a comparison of LNS with state-of-the-art methods on benchmark instances for
the TSPPDL and DTSPMS, which are special cases of the 1-PDPMS.

4.1 1-PDPMS instances

Our 1-PDPMS instances are derived from those for the TSPPDL in [3]. These
instances contain between 25 and 751 vertices (including the depot). Three different
classes were designed: class C1 adds a second stack to the original instances, while
keeping an infinite capacity for each stack; class C2 contains instances with 2 to 5
stacks, a unit demand for every customer request and a capacity constraint on each
stack; class C3 also contains instances with 2 to 5 stacks, but the demand varies
between 1 and 10 units and the capacity constraint is tighter. Clearly, the degree of
difficulty increases from class C1 to C3. The characteristics of these instances are

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 9

Identifier Size C1 C2 C3
Stacks Cap. # Stacks Cap. # Stacks Cap.

brd14051 25 2 ∞ 3 2 3 16
51 2 ∞ 3 3 3 14
75 2 ∞ 3 4 3 18
101 2 ∞ 4 2 4 10
251 2 ∞ 3 14 3 28
501 2 ∞ 3 20 3 35
751 2 ∞ 2 25 2 35

d15112 25 2 ∞ 3 2 3 12
51 2 ∞ 4 1 4 10
75 2 ∞ 3 4 3 18
101 2 ∞ 2 6 2 22
251 2 ∞ 2 14 2 28
501 2 ∞ 3 20 3 35
751 2 ∞ 3 25 3 35

d18512 25 2 ∞ 3 2 3 12
51 2 ∞ 5 2 5 10
75 2 ∞ 2 4 2 18
101 2 ∞ 4 1 4 10
251 2 ∞ 3 14 3 28
501 2 ∞ 2 5 2 18
751 2 ∞ 3 25 3 35

fnl4461 25 2 ∞ 3 2 3 12
51 2 ∞ 3 3 3 14
75 2 ∞ 5 2 5 13
101 2 ∞ 3 6 3 22
251 2 ∞ 4 5 4 19
501 2 ∞ 2 20 2 35
751 2 ∞ 3 25 3 35

nrw1379 25 2 ∞ 2 1 2 10
51 2 ∞ 4 2 4 10
75 2 ∞ 3 8 3 10
101 2 ∞ 2 11 2 10
251 2 ∞ 2 6 2 10
501 2 ∞ 2 10 2 10
751 2 ∞ 3 15 3 10

pr1002 25 2 ∞ 3 1 3 10
51 2 ∞ 3 2 3 14
75 2 ∞ 4 2 4 10
101 2 ∞ 3 4 3 20
251 2 ∞ 3 4 3 14
501 2 ∞ 3 8 3 25
751 2 ∞ 2 8 2 25

Table 1: 1− PDPMS instances

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 10

shown in Table 1. The identifier, number of vertices, number of stacks and capacity
for each class, are shown in this order.

In the following sections, a number of sensitivity analysis experiments are de-
scribed. For these experiments, 16 instances with 251 vertices or less were selected
over the three classes and 10 runs were executed on each instance, with 25,000 iter-
ations per run (for a total of 250,000 iterations). The number of iterations was set
large enough for the improvement curve to stabilize even on the largest instances.

4.2 Number of removed requests

The number of requests that are removed from the current solution has a clear im-
pact on the computation time, but its impact on solution quality is not so clear.
Different removal strategies have thus been devised to study this issue. These strate-
gies use four non negative values nmin, nmax, frmin and frmax, which correspond
to the minimum and maximum number of requests to be removed, represented ei-
ther as an absolute number or a fraction (between 0 and 1) of the total number of
requests. More precisely, the number q is randomly chosen at each iteration in the
interval [min{n · frmin, nmin}, min{n · frmax, nmax}], where n · frmin and n · frmax

are rounded to the nearest integer. The four strategies can now be described as
follows.

• strategy S1 sets nmin = nmax = ∞ and frmin = frmax. A fixed number of
requests is thus removed at each iteration.

• strategy S2 sets nmin = 1, nmax = ∞ and frmin = 1. Here, the minimum
number of requests is 1 and the maximum is determined by frmax. Thus, a
variable number of requests is removed at each iteration.

• strategy S3 sets nmin = nmax =∞, while frmin and frmax are set to different
values such that frmin < frmax. Thus, the interval of admissible values for
q is defined through frmin and frmax for which the lower bound is typically
larger than 1 (as opposed to S2).

• strategy S4 does not impose any specific values as long as nmin < nmax and
frmin < frmax. This approach avoids the removal of too few requests in the
case of small instances or too many requests in the case of large instances, by
explicitly setting an absolute minimum and maximum number of requests.

We have implemented the four strategies with different values for nmin, nmax,
frmin and frmax. We do not show the detailed results here. Only the best results,
which were all obtained with S4, are presented in Table 2. In this table, the solution
quality corresponds to the gap in percentage of the average solutions obtained with a
given interval over the average of the best known solutions for the 16 test instances.
The average computation time in seconds for a single run is also reported.

Strategy S4 is quite robust for the intervals reported in the table, with a gap
varying only between 1.62% and 1.94%. The first interval, which is the least com-
putationally expensive, was finally chosen for the next experiments.

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 11

Test Interval Sol CPU
(%) (s)

1 [min{10, 0.15n}, min{35, 0.45n}] 1.85 30.6
2 [min{15, 0.15n}, min{40, 0.45n}] 1.72 33.0
3 [min{20, 0.15n}, min{45, 0.45n}] 1.93 35.0
4 [min{30, 0.15n}, min{50, 0.45n}] 1.86 36.1
5 [min{10, 0.20n}, min{35, 0.55n}] 1.76 41.2
6 [min{15, 0.20n}, min{40, 0.55n}] 1.80 46.0
7 [min{20, 0.20n}, min{45, 0.55n}] 1.94 48.9
8 [min{30, 0.20n}, min{50, 0.55n}] 1.62 51.1
9 [min{10, 0.30n}, min{35, 0.60n}] 1.82 53.9
10 [min{15, 0.30n}, min{40, 0.60n}] 1.69 55.0
11 [min{20, 0.30n}, min{45, 0.60n}] 1.75 60.0
12 [min{30, 0.30n}, min{50, 0.60n}] 1.77 64.0

Table 2: Results of strategy S4 with different intervals

Insertion Removal Sol CPU
(%) (s)

Least-cost Random 2.59 5.3
Distance 2.54 9.0
Route 3.67 5.1
Stack 2.31 8.9
All 2.28 6.9

All minus Route 2.55 7.1

Regret Random 1.79 51.5
Distance 1.81 54.4
Route 2.94 49.6
Stack 1.77 55.1
All 1.63 53.0

All minus Route 1.73 53.2

All Random 1.84 42.5
Distance 1.69 45.8
Route 3.09 41.6
Stack 1.73 46.0
All 1.65 43.7

All minus Route 1.66 43.9

Table 3: Results with different subsets of operators

4.3 Operators

This subsection studies the impact of the various removal and insertion operators
on solution quality. To this end, we consider variants of LNS using only a subset
of operators. As indicated in Table 3, implementations based on only one insertion
operator, either Least-Cost or Regret, or both insertion operators are tested in
combination with only one removal operator, with all removal operators or with all
removal operators minus the Route-based operator, which proved to be the worst.

Although the Route-based removal operator is much worse than the other re-
moval operators, its inclusion seems to be beneficial (perhaps, by providing a form of
diversification), as solution quality degrades when it is discarded. The Stack-based
removal operator alone is quite good and performs well overall when compared with
the other implementations based on a single removal operator. The table also in-

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 12

LNS
Class Size Best Avg CPU

(%) (%) (s)

C1 25 0.00 0.00 0.4
51 0.00 0.01 2.9
75 0.00 0.57 9.4
101 0.04 0.19 25.1
251 0.10 1.11 184.4
501 0.00 2.43 519.2
751 0.85 2.77 1112.5

C2 25 0.00 0.00 0.4
51 0.00 0.09 2.9
75 0.00 0.50 10.3
101 0.00 0.46 26.8
251 0.00 1.33 182.4
501 3.00 4.15 548.0
751 2.75 3.56 1126.9

C3 25 0.00 0.00 0.4
51 0.00 0.19 2.8
75 0.00 0.93 9.0
101 0.13 0.74 25.3
251 0.44 3.53 178.0
501 0.51 2.47 517.0
751 1.43 3.38 938.4

Table 4: Results on 1-PDPMS instances

dicates that the Regret-based insertion outperforms the Least-cost one, but is also
more computationally expensive. When all insertion operators are combined with
all removal operators, a very small degradation in solution quality is observed, as
compared with the use of Regret-based insertion alone (0.02%), but the CPU time
is significantly reduced. Based on these observations, all operators were kept in the
final implementation.

Finally, it is worth noting that the postoptimization with the dynamic program-
ming algorithm allows a further average improvement of 0.2% in solution quality in
only 0.04 second of computation time.

4.4 1-PDPMS

The results obtained with the final implementation of LNS on the full test set are
shown in Table 4, based on 10 runs on each instance with 25,000 iterations for each
run. The results are summarized by taking averages over instances of the same
size in classes C1, C2 and C3. For each class and size, the following numbers are
reported: the average of the best solutions, the average solution and the average
CPU time in seconds (for a single run). Solution quality is reported as a gap in
percentage over the average of the best known solutions for the corresponding class
and size. The best known solutions have been obtained by running different variants
of LNS for large run times.

Note that the instances in class C1 have been created by adding a second stack
of infinite capacity to the original instances in [3]. By comparing the results on

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 13

class C1 with those reported in [3], we observed an average improvement of 22% in
total distance. This is not a surprise, given the additional flexibility provided by
the second stack.

4.5 TSPPDL

Benchmark instances for the TSPPDL, which is a special case of the 1-PDPMS
when the vehicle contains a single stack of infinite capacity, are found in [2, 3]. The
63 instances in [2] are small because they were designed to test an exact algorithm.
This exact algorithm found the optimum on 52 of these instances. A second test
set of 42 instances is reported in [3]. These instances range in size from 25 to 751
vertices and were designed to test a Variable Neighborhood Search (VNS).

The results on the first test set are shown in Table 5 in the usual format. When
the optimum is not known for a given instance, the best known solution, as reported
in [2], is shown in italic. This table shows that LNS found the optimum or best
known in all cases but one, when the best of 10 runs is considered. It also improved
the best known solution for the instance nrw1379 with 35 vertices. Even when the
average of 10 runs is considered, the solutions obtained are only 0.06% over those
reported in [2] with CPU times that do not exceed 1 second.

The results on the larger instances in the second test set are found in Table 6,
including those obtained with the VNS heuristic [3]. In the latter case, the authors
report the average solution values over 10 runs on each instance. As usual, the gap
in percentage over the best known solution is shown, where the best solution has
been obtained by running different variants of our LNS algorithm on each instance
for large run times. It should also be noted that the CPU times of VNS should
be halved to account for the greater speed of our machine. With regard to the
average over 10 runs, LNS provides significant improvements over VNS (i.e., 0.49%
versus 2.6%) in less CPU time (even after halving it for VNS). By taking the best
of 10 runs, LNS can also find solutions that are only 0.1% over the best known, on
average.

4.6 DTSPMS

The 1-PDPMS can be transformed into a DTSPMS by modifying the cost matrix
to force a pickup route to be followed by a delivery route. Let us assume that the
pickup and delivery routes start and end at depots 0p and 0d, respectively, and that
the travel cost between 0p and 0d is ignored. Then, we have:

ci,j = ci,0p + c0d,j , cj,i = c0p,j = ci,0d
=∞, i ∈ P, j ∈ D.

That is, the travel cost between a pickup and a delivery vertex is equal to the
travel cost from the pickup to 0p and from 0d to the delivery. Furthermore, the
travel cost from a delivery to a pickup vertex is set to infinity to force all pickups
to be performed before the deliveries. Finally, the travel cost between two pickups
or two deliveries remains the same.

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 14

LNS
Instance Size Optimum Best Avg CPU

(%) (%) (s)

a280 19 402 0.00 0.00 0.2
23 468 0.00 0.00 0.2
27 505 0.00 0.00 0.3
31 560 0.00 0.00 0.4
35 647 0.00 0.00 0.6
39 691 0.00 0.00 0.8
43 752 0.00 0.00 1.0

att532 19 4250 0.00 0.00 0.2
23 5038 0.00 0.00 0.2
27 5800 0.00 0.00 0.3
31 6173 0.00 0.00 0.4
35 6361 0.00 0.00 0.6
39 6725 0.00 0.00 0.8
43 10714 0.00 0.05 1.0

brd14051 19 4555 0.00 0.00 0.2
23 4655 1.29 1.29 0.2
27 4936 0.00 0.00 0.3
31 5186 0.00 0.00 0.4
35 5196 0.00 0.00 0.6
39 5629 0.00 0.00 0.7
43 5719 0.00 0.00 1.0

d15112 19 76203 0.00 0.00 0.2
23 88272 0.00 0.16 0.2
27 93158 0.00 0.25 0.3
31 109166 0.00 0.22 0.5
35 115554 0.00 0.00 0.6
39 119863 0.00 0.00 0.8
43 128798 0.00 0.00 1.0

d18512 19 4446 0.00 0.00 0.2
23 4658 0.00 0.00 0.2
27 4704 0.00 0.00 0.3
31 5120 0.00 0.00 0.5
35 5186 0.00 0.00 0.6
39 5419 0.00 0.00 0.7
43 5634 0.00 0.00 1.0

fnl4461 19 1866 0.00 0.00 0.2
23 2067 0.00 0.00 0.2
27 2483 0.00 0.00 0.3
31 2672 0.00 0.00 0.4
35 2852 0.00 0.00 0.6
39 3109 0.00 0.00 0.7
43 3269 0.00 0.00 1.0

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 15

LNS
Instance Size Optimum Best Avg CPU

(%) (%) (s)

nrw1379 19 2691 0.00 0.00 0.2
23 2919 0.00 0.00 0.2
27 3366 0.00 0.00 0.3
31 3554 0.00 0.00 0.5
35 3652 -0.22 -0.22 0.6
39 4002 0.00 0.00 0.8
43 4282 0.00 0.00 1.0

pr1002 19 12947 0.00 0.00 0.2
23 13872 0.00 0.00 0.2
27 15566 0.00 0.00 0.3
31 16255 0.00 0.00 0.4
35 17564 0.00 0.00 0.6
39 18862 0.00 0.00 0.7
43 20173 0.00 0.00 1.0

ts225 19 21000 0.00 0.00 0.2
23 25000 0.00 0.00 0.2
27 32395 0.00 0.00 0.3
31 33395 0.00 1.65 0.5
35 36703 0.00 0.13 0.6
39 39395 0.00 0.00 0.8
43 43082 0.00 0.00 1.0

Avg 0.02 0.06 0.5

Table 5: Results on the first test set of Carrabs, Cerruli and Cordeau

A test set with 60 randomly generated Euclidean DTSPMS instances is reported
in [12], where the distances have been rounded to the nearest integer. More precisely,
there are 20 instances with 12, 33 and 66 customer requests (i.e, 26, 68 and 132
vertices, including the two depots). All customer requests have a unit demand. In
each instance, the vehicle contains three stacks and the capacity of each stack is one
third of the total demand. The optimal solutions are known for the instances with
12 requests, but for the larger ones, the best known solutions have been obtained
by Petersen and Madsen [12] after multiple 2-hour runs of their algorithm on each
instance. Solution quality is thus represented as the gap in percentage with either
the optimal solutions or the best known solutions produced by Petersen and Madsen.

In Tables 7, 8 and 9, the solutions obtained with our algorithms are compared
with the solutions of Petersen and Madsen for the instances with 12, 33 and 66
requests, respectively. The algorithm of Madsen and Petersen is a combination of
a large neighborhood search (using insertion and removal operators different from
ours) and a local search based on vertex exchanges. In the tables, Short and Long

refer to two different calibrations of this algorithm for short (10 seconds) and long (3
minutes) runs. It should be noted that the machine and programming language used
in our implementation lead to running times that are about 3 times faster than those
of Petersen and Madsen. Accordingly, Short and Long would approximately run for
3 seconds and 1 minute, respectively, on our machine. The solutions reported by
Felipe et al. in [4], obtained with a variable neighborhood search approach, are also
shown in Tables 8 and 9 (the authors do not provide detailed results on each instance

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 16

VNS LNS
Instance Size Avg CPU Best Avg CPU

(%) (s) (%) (%) (s)

fnl4461 25 0.00 0.0 0.00 0.00 0.3
51 0.00 0.1 0.00 0.00 1.5
75 2.20 0.2 0.00 0.00 4.6
101 3.78 0.7 0.00 0.32 10.5
251 2.51 23.9 0.00 0.66 71.5
501 3.95 458.6 0.00 1.29 215.1
751 3.53 2172.5 0.00 0.57 532.8

brd14051 25 0.22 0.0 0.00 0.00 0.3
51 0.30 0.1 0.00 0.00 1.5
75 1.07 0.3 0.00 0.00 4.0
101 2.82 0.7 0.00 0.01 10.2
251 8.44 36.7 0.00 1.83 72.0
501 5.56 478.7 0.89 1.68 213.2
751 4.63 2169.8 0.75 1.32 482.8

d15112 25 0.00 0.0 0.00 0.00 0.3
51 1.03 0.0 0.00 0.00 1.4
75 1.20 0.2 0.00 0.00 4.5
101 4.41 0.5 0.00 0.36 10.8
251 4.80 24.6 0.00 0.94 73.0
501 3.01 385.9 0.03 1.03 218.1
751 2.22 1968.6 0.00 0.83 465.8

d18512 25 0.24 0.0 0.00 0.00 0.3
51 0.85 0.1 0.00 0.00 1.4
75 1.77 0.2 0.00 0.00 3.9
101 0.88 0.5 0.00 0.00 10.2
251 6.94 32.9 0.15 0.99 70.2
501 5.65 486.0 0.00 0.71 243.4
751 3.58 2508.5 0.51 0.86 576.2

nrw1379 25 0.09 0.0 0.00 0.00 0.3
51 0.79 0.1 0.00 0.00 1.4
75 0.50 0.2 0.00 0.00 4.5
101 3.88 0.5 0.00 0.34 9.9
251 5.54 24.5 0.00 0.89 72.3
501 3.60 380.1 0.22 1.20 218.9
751 2.23 2447.1 0.00 0.74 516.4

pr1002 25 0.00 0.0 0.00 0.00 0.3
51 0.81 0.1 0.00 0.00 1.5
75 0.67 0.3 0.21 0.22 4.4
101 3.44 0.8 0.00 0.19 10.8
251 5.86 31.3 1.19 1.87 68.6
501 3.57 471.9 0.00 1.25 213.5
751 2.80 2785.4 0.04 0.49 500.7

Avg 2.60 402.2 0.10 0.49 117.2

Table 6: Results on the second test set of Carrabs, Cordeau and Laporte

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 17

for the test set with 12 requests). Average solutions, over 3 runs, are reported after
10 seconds and 3 minutes of computation times. No CPU time adjustment is needed
here, because the machine used by Felipe et al. is similar to ours.

Table 7 provides comparisons with the optimum on the small 12-request in-
stances. In the case of Petersen and Madsen, the results are averages of three runs,
and the optimum has been found in all cases. The average solution value of LNS is
0.08% over the optimum, but the best of 10 runs is always optimal. These 10 runs
execute in 10 · 0.5 = 5 seconds which is comparable to the Short runs of Petersen
and Madsen. It should be noted that Felipe et al. report an average gap (over three
runs on each instance) of 0.2%, in only one second of CPU time. They did not find
the optimum on two instances.

Tables 8 and 9 show the results for the larger instances with 33 and 66 customer
requests. On the instances with 33 requests, the average run of LNS is 0.65% over
the best known using only 11.1 seconds of CPU time. This is an improvement over
the (single) Long run of Petersen and Madsen which provides a solution which is
1% over the best known in 1 minute of equivalent CPU time. When the best of 10
runs is considered, LNS gets as close as 0.05% over the best known in 10 · 11.1 =
111 seconds. The results produced by LNS are very similar to those obtained by
Felipe et al. who report average gaps of 0.65% after 10 seconds and 0.05% after 3
minutes. On the instances with 66 requests, LNS is 2.76% over the best known on
average in less than 2 minutes of CPU time. This is better than the (single) Long

run of Petersen and Madsen which is 8% over the best known, admittedly after only
1 minute of equivalent CPU time. By reducing the number of iterations of LNS from
25,000 to 12,500, to obtain runs of approximately 1 minute, the average solution of
LNS remains at 3.28% over the best known, which is still better than Petersen and
Madsen. The average gap of 2.76% in less than 2 minutes is also better than the
Long run of Felipe et al. which is 3.2% over the best known after 3 minutes of CPU
time. When the best of 10 runs is considered, LNS gets solutions that are 1.17%
over the best known, on average. Furthermore, a best known solution was found on
instance R05-66.

Finally, Felipe et al. [4] have produced a test set of 20 instances with 132
requests, which were generated like the previous instances. They report results
obtained with their algorithm after 10 seconds, 3 minutes, 5 minutes and 8 minutes
of computation time. They are reported in Table 10 with the results of LNS. The
best solutions of Felipe et al. have been obtained by running their algorithm for 12
hours on each instance. As observed in this table, the average run of LNS is 1.64%
over the best solutions produced by Felipe et al., after less than 7 minutes. This
is to be compared with an average gap of 3.4% for Felipe et al. after 8 minutes.
Furthermore, when the best of 10 runs is considered (for a total computation time
slightly larger than one hour), LNS has found 12 new best solutions out of 20 and
the average of these solution values is better than the average of the best solutions
produced by Felipe et al. after 12 hours of computation time. It thus seems that
the difference in performance between LNS and the VNS approach of Felipe et al.
increases with problem size.

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 18

Petersen & Madsen LNS
Instance Optimal Short Long Best Avg CPU

(%) (%) (%) (%) (s)

R00-12 694 0 0 0.00 0.52 0.5
R01-12 710 0 0 0.00 0.31 0.5
R02-12 606 0 0 0.00 0.00 0.5
R03-12 680 0 0 0.00 0.00 0.5
R04-12 607 0 0 0.00 0.00 0.5
R05-12 567 0 0 0.00 0.00 0.5
R06-12 747 0 0 0.00 0.00 0.5
R07-12 557 0 0 0.00 0.00 0.5
R08-12 690 0 0 0.00 0.00 0.5
R09-12 669 0 0 0.00 0.00 0.5

R10-12 633 0 0 0.00 0.00 0.5
R11-12 591 0 0 0.00 0.00 0.5
R12-12 722 0 0 0.00 0.17 0.5
R13-12 664 0 0 0.00 0.00 0.5
R14-12 650 0 0 0.00 0.26 0.5
R15-12 595 0 0 0.00 0.27 0.5
R16-12 577 0 0 0.00 0.00 0.5
R17-12 737 0 0 0.00 0.00 0.5
R18-12 724 0 0 0.00 0.01 0.5
R19-12 753 0 0 0.00 0.16 0.5

Avg 0 0 0.00 0.08 0.5

Table 7: Results on the DTSPMS instances of Petersen and Madsen with 12 requests

Petersen & Madsen Felipe et al. LNS
Instance Best Short Long Short Long Best Avg CPU

(%) (%) (%) (%) (%) (%) (s)

R00 1063 4 1 0.8 0.0 0.00 0.57 10.6
R01 1032 4 1 0.8 0.0 0.00 0.24 10.7
R02 1065 4 1 0.8 0.0 0.00 0.25 10.7
R03 1100 6 1 0.0 0.0 0.00 1.00 11.2
R04 1052 5 2 0.5 0.0 0.00 1.14 11.2
R05 1008 3 1 2.2 0.0 0.00 0.84 11.0
R06 1110 6 2 0.0 0.0 0.00 0.31 11.2
R07 1105 5 1 0.4 0.0 0.36 0.90 11.1
R08 1109 4 1 0.0 0.0 0.00 0.55 11.1
R09 1091 4 1 0.0 0.0 0.00 0.54 11.1

R10 1016 5 0 0.0 0.0 0.00 0.00 11.3
R11 1001 6 1 0.0 0.0 0.00 0.60 11.1
R12 1109 4 1 0.2 0.0 0.18 0.74 11.1
R13 1084 4 1 0.0 0.0 0.00 0.62 11.0
R14 1034 3 0 1.7 0.0 0.00 0.69 11.1
R15 1142 4 1 1.4 0.0 0.26 1.02 11.3
R16 1093 2 0 0.0 0.0 0.00 0.15 11.2
R17 1073 4 0 0.9 0.0 0.00 0.57 10.9
R18 1118 5 1 2.8 0.7 0.00 1.33 11.3
R19 1089 3 1 0.6 0.2 0.28 0.91 11.2

Avg 4 1 0.66 0.05 0.05 0.65 11.1

Table 8: Results on the DTSPMS instances of Petersen and Madsen with 33 requests

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 19

Petersen & Madsen Felipe et al. LNS
Instance Best Short Long Short Long Best Avg CPU

(%) (%) (%) (%) (%) (%) (s)

R00-66 1594 19 7 3.8 3.1 0.31 2.65 108.9
R01-66 1600 20 8 6.4 4.3 1.25 3.09 110.1
R02-66 1576 20 12 7.7 6.2 3.55 4.90 109.6
R03-66 1631 14 6 5.9 2.5 0.67 2.02 111.3
R04-66 1611 18 9 7.7 2.9 1.49 3.16 111.4
R05-66 1528 18 7 6.9 3.3 -0.13 1.30 112.1
R06-66 1651 17 7 10.5 3.6 0.42 2.13 111.5
R07-66 1653 17 8 6.4 1.0 1.21 3.02 111.6
R08-66 1607 18 7 11.1 3.4 0.62 3.04 111.6
R09-66 1598 18 8 8.6 3.1 2.07 2.78 112.1

R10-66 1702 17 9 7.8 3.9 0.59 1.77 112.4
R11-66 1575 19 8 6.7 5.3 0.44 2.98 111.9
R12-66 1652 19 10 6.0 2.2 0.30 1.96 112.4
R13-66 1617 19 10 8.7 2.5 1.98 3.21 111.6
R14-66 1611 21 9 6.6 1.4 0.56 2.59 111.7
R15-66 1608 19 10 6.5 1.9 1.31 2.20 111.2
R16-66 1725 16 7 8.2 2.6 0.87 2.07 111.8
R17-66 1627 21 10 7.5 5.1 2.03 3.34 112.0
R18-66 1671 18 8 6.5 2.3 1.97 3.88 112.5
R19-66 1635 17 9 5.2 2.9 1.83 3.13 112.5

Avg 18 8 7.2 3.2 1.17 2.76 111.5

Table 9: Results on the DTSPMS instances of Petersen and Madsen with 66 requests

Felipe et al. LNS
Instance Best 10s 3min 5min 8min Best Best Avg CPU

(%) (%) (%) (%) (%) (%) (s)

R00-132 2591 15.7 6.6 6.3 3.8 2590 -0.04 2.57 400.4
R01-132 2645 16.7 5.4 4.2 4.5 2650 0.19 2.14 403.8
R02-132 2639 13.9 5.2 4.6 3.1 2679 1.52 2.97 401.1
R03-132 2752 12.4 3.2 4.2 1.7 2698 -1.96 0.65 398.7
R04-132 2603 13.1 4.6 3.0 2.9 2590 -0.50 0.41 405.7
R05-132 2616 15.8 5.7 4.7 4.7 2651 1.34 2.27 401.2
R06-132 2576 16.0 7.1 4.6 4.9 2579 0.12 1.93 403.2
R07-132 2615 14.7 7.5 4.8 3.6 2559 -2.14 1.00 401.2
R08-132 2638 14.3 5.3 4.6 3.4 2636 -0.08 1.71 402.8
R09-132 2554 13.6 3.5 2.5 1.3 2499 -2.15 -0.50 399.8

R10-132 2646 19.0 6.4 3.7 3.6 2663 0.64 1.92 400.1
R11-132 2632 13.3 4.6 5.2 2.7 2621 -0.42 1.77 401.8
R12-132 2555 18.5 6.8 5.3 5.4 2544 -0.43 2.56 401.5
R13-132 2659 15.7 5.0 3.3 2.1 2664 0.19 1.76 404.2
R14-132 2605 14.0 3.7 2.5 2.7 2568 -1.42 1.13 403.5
R15-132 2626 18.5 5.3 5.4 3.8 2634 0.30 1.75 402.1
R16-132 2534 16.0 6.7 4.5 4.6 2585 2.01 3.30 400.4
R17-132 2569 14.2 4.6 4.3 3.5 2559 -0.39 1.58 402.7
R18-132 2652 15.1 3.5 2.0 1.9 2628 -0.90 0.66 402.3
R19-132 2644 16.0 4.2 4.6 2.8 2624 -0.76 1.31 401.6

Avg 15.3 5.3 4.2 3.4 -0.24 1.64 401.9

Table 10: Results on the DTSPMS instances of Felipe et al. with 132 requests

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 20

5 Conclusion

This paper has described a large neighborhood search which is both efficient and
effective for solving the 1-PDPMS. This is also true for special cases of this problem,
like the TSPPDL and DTSPMS, as empirically demonstrated through comparisons
with state-of-the-art methods on different sets of benchmark instances. Building on
these results, our aim is now to address the more challenging multi-vehicle extension
of the problem.

Acknowledgments. Financial support for this work was provided by the Canadian
Natural Sciences and Engineering Research Council (NSERC). This support is grate-
fully acknowledged.

References

[1] Ahuja R.K., Ergun Ö., Orlin J.B., Punnen A.P., “A Survey of Very Large-Scale
Neighborhood Search Techniques”, Discrete Applied Mathematics 123, 75–102,
2002.

[2] Carrabs F., Cerulli R., Cordeau J.-F., “An Additive Branch-and-Bound Algo-
rithm for the Pickup and Delivery Traveling Salesman Problem with LIFO or
FIFO Loading”, INFOR 45, 223-238, 2007.

[3] Carrabs F., Cordeau J.-F., Laporte G., “Variable Neighborhood Search for
the Pickup and Delivery Traveling Salesman Problem with LIFO Loading”,
INFORMS Journal on Computing 19, 618-632, 2007.

[4] Felipe A., Ortuno M.T., Tirado G., “The Double Traveling Salesman Problem
with Multiple Stacks: A Variable Neighborhood Search Approach”, Computers

& Operations Research 36, 2983-2993, 2009.

[5] Doerner K.F., Fuellerer G., Gronalt M., Hartl R.F., Iori M., “Metaheuristics
for the Vehicle Routing Problem with Loading Constraints”, Networks 49, 294–
307, 2007.

[6] Fuellerer G., Doerner K.F., Hartl R.F., Iori M., “Ant Colony Optimization
for the Two-Dimensional Loading Vehicle Routing Problem”, Computers &

Operations Research 36, 655-673, 2009.

[7] Fuellerer G., Doerner K.F., Hartl R.F., Iori M., “Metaheuristics for Vehicle
Routing Problems with Three-Dimensional Loading Constraints”, European

Journal of Operational Research, forthcoming, 2009.

[8] Gendreau M., Iori M., Laporte G., Martello S., “A Tabu Search Algorithm for a
Routing and Container Loading Problem”, Transportation Science 40, 342-350,
2006.

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 21

[9] Gendreau M., Iori M., Laporte G., Martello S., “A Tabu Search Heuristic
for the Vehicle Routing Problem with Two-Dimensional Loading Constraints”,
Networks 51, 4-18, 2008.

[10] Iori M., Salazar-González J.-J., Vigo D., “An Exact Approach for the Vehicle
Routing Problem with Two-Dimensional Loading Constraints”, Transportation

Science 41, 253–264, 2007.

[11] Kirkpatrick S., Gelatt Jr. C.D., Vecchi M.P., “Optimization by Simulated An-
nealing”, Science 220, 671–680, 1983.

[12] Petersen H.L., Madsen O.B.G., “The Double Traveling Salesman Problem with
Multiple Stacks - Formulation and Heuristic Solution Approaches”, European

Journal of Operational Research 198, 139–147, 2009.

[13] Potvin J.-Y., Rousseau J.-M., “An Exchange Heuristic for Routing Problems
with Time Windows”, Journal of the Operational Research Society 46, 1433–
1446, 1995.

[14] Ropke S., Pisinger D., “An Adaptive Large Neighborhood Search Heuristic for
the Pickup and Delivery Problem with Time Windows”, Transportation Science

40, 455–472, 2006.

[15] Schrimpf G., Schneider J., Stamm-Wilbrandt H., Dueck G., “Record Break-
ing Optimization Results using the Ruin and Recreate Principle”, Journal of

Computational Physics 159, 139–171, 2000.

[16] Shaw P., “Using Constraint Programming and Local Search Methods to solve
Vehicle Routing Problems”, Proceedings of the Fourth International Conference

on Principles and Practice of Constraint Programming, M. Maher and J.-F.
Puget eds., Lecture Notes in Computer Science 1520, Springer-Verlag, Berlin,
417–431, 1998.

Large Neighborhood Search for the Single Vehicle Pickup and Delivery Problem with Multiple Loading Stacks

CIRRELT-2009-47 22

