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Abstract. We address the service network design problem with asset management 

considerations for consolidation-based freight carriers. Given a set of demands to be 

transported from origins to destinations and a set of transshipment facilities, the objective 

is to select services and their schedules, build routes for the assets (vehicles) operating 

these scheduled services, and move the demands (commodities)  through the resulting 

service network as efficiently as possible. We propose a first branch-and-price framework 

for the mixed integer formulation of the problem with integer cycle-design and continuous 

flow-path variables. The proposed method includes particular column generation 

subproblems for dynamically constructing these cycles and paths, as well as an 

acceleration technique to identify integer solutions rapidly. The computational study shows 

that the proposed method finds better solutions for large network instances than reported 

previously. 
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Introduction 
Improvements in solution techniques and computational capacity continuously increase the range 

of tractable optimization problems. Simultaneously, real-world planning problems challenge the 
Operations Research community to study increasingly larger and more complex optimization 
problems. New requirements from practical applications result in new constraints that have to be 
modeled and trigger the development of solution methods to address these new models.   

We focus on scheduled service network design problems for consolidation-type carriers, where 
services represent transportation operations defined in terms of origin and destination terminals, 
route, speed and capacity. The major decisions are selecting the services and their departure times, 
as well as routing of origin-to-destination commodity loads through the service network, such that a 
given demand for transportation is satisfied at minimum total system cost. Such problems are 
generally modeled as mixed integer formulations on time-space networks, where binary design 
variables select the scheduled services, while continuous variables represent commodity flows 
through the resulting service network; see, e.g., the reviews of Christiansen et al. (2007) for 
maritime transportation, Cordeau et al. (1998) for rail transportation, Crainic (2003) for long-haul 
transportation, Crainic and Kim (2007) for intermodal transportation, and Crainic (2000) for service 
network design in freight transportation. 

The class of Service Network Design planning problems with Asset Management (SNDAM) has 
attracted increased interest recently. Asset is a generic term for something a person or an 
organization owns. In carrier terms, it generally refers to what is also sometimes called resources: 
power units (tractors, locomotives, etc.), carrying units (railcars, trailers, containers, ships, etc.), 
loading/unloading units (cranes in terminals), crews, and so on. The goal of these models is to 
integrate operational concerns into tactical planning. The literature and the problem considered in 
this paper address the management of one type of asset only. In the rest of the paper we therefore 
refer to assets as “vehicles”. 

Most service network design models with vehicle management presented in the literature focus 
on enforcing the requirement of an equal number of services entering and leaving each node 
(terminal) in the network, see for instance Pedersen and Crainic (2007), Pedersen et al. (2009), 
Smilowitz et al. (2003),  Lai and Lo (2004),  Barnhart and Schneur (1996), and  Kim et al. (1999). 
This is achieved through design-balance constraints (Pedersen et al., 2009) in problem settings 
where it is assumed that each service requires a single vehicle to operate.  Andersen et al. (2009a) 
assumed the same hypotheses, but introduced additional aspects of vehicle management, including 
the management and coordination of multiple fleets and fixed-length, cyclic schedules, i.e., 
schedules operated repetitively over a certain period of time (e.g., a season). They denoted this 
problem the Service Network Design with Asset Management constraints problem (SNDAM), 
which is the problem setting used in this paper as well. 

 The design of scheduled services can be formulated using either binary service design arc 
variables or cycle-design variables (Pedersen et al., 2009), see also (Sigurd et al., 2005) and 
(Agarwal and Ergun, 2008) for ship scheduling modeling. Similarly, for the flow of commodities 
one can either make use of arc flow variables or path flow variables. Andersen et al. (2009b) 
studied the four alternative formulations of SNDAM obtained from all combinations of the arc and 
cycle-design variables with the arc and path-flow variables for commodities. Their computational 
study indicated that cycle-design and path-flow variables contribute to efficient model solving. The 
focus of Andersen et al. (2009b) was on model development, however, and their computational 
study was based on a priori enumeration of cycles and paths. This approach is obviously not 
appropriate for problem instances of realistic dimensions. There is thus a need for more advanced 
solution strategies for this class of problems. The goal of this paper is to address this need. 

We present a branch-and-price (B&P) solution method for the SNDAM problem, which relies on 
a decomposition of the problem into 1) a master problem, handling a variant of the multicommodity 
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network design problem with vehicle management constraints, and 2) two types of subproblems for 
generating design-cycles and path-flows, respectively. The outcome is a tailormade column 
generation-based method with branching in both the master problem and the subproblems. An 
acceleration technique is introduced to identify integer solutions rapidly. Different implementations 
of the B&P algorithm are presented and compared, together with simpler approaches such as a 
priori generation of columns and use of column generation in the branch-and-bound tree root node 
only combined with a commercial MIP solver. A comparative analysis of variants of the B&P 
method is also presented.  The major contribution of the paper is the first B&P framework for 
SNDAM, a method that is able to solve larger instances than presented earlier.  

The outline of this paper is as follows. In Section 1, we present the SNDAM formulation. In 
Section 2, we propose a B&P algorithm for solving the SNDAM. The computational study is 
presented in Section 3, while concluding remarks follow in Section 4. 

 

1 Service Network Design with Asset Management  
We describe in this section the Service Network Design problem with Asset Management 

constraints, SNDAM, presented in (Andersen et al., 2009b).  The problem description follows in 
Section 1.1, while the SNDAM model with cycle-design and path-flow variables is given in Section 
1.2.  

 

1.1 Problem Description  
SNDAM is a time-dependent service network design problem (Crainic, 2000), where major 

decisions are the selection of services and their departure times, and the routing of demand through 
the selected service network. We assume that the schedule length is given, and that the services and 
their schedule are to be operated in a repetitive, cyclic manner representing the fixed schedules of 
real-world transportation services. 

Demand is defined in terms of commodities (products) requiring transport through the network. 
Each commodity has an associated volume to be transported from the commodity’s origin node to 
its destination node. In the problem setting we consider, commodities have specific times when they 
become available, but they may arrive at their destinations at any time, as long as it is within the 
length of the schedule.  

Operation of services requires vehicles. In the current problem setting, a single vehicle is required 
for each service. The route a vehicle performs is a cycle composed of a series of services, waiting at 
terminals, and, eventually, repositioning movements. Vehicles are in limited supply and are subject 
to a rich set of management constraints (Andersen et al., 2009b):   

An equal number of services and vehicles enters and leaves a terminal at any moment.  

The fleet size restricts the number of vehicles operating simultaneously.  

There are minimum and maximum limits on the number of occurrences (departures) of each 
service in the schedule, e.g., a service should be operated at least 3 times and at most 7 times each 
week.   

The duration or length of vehicle routes is limited to the length of the schedule.  

Most service network design models in the literature assume fixed service-selection costs and 
unit flow costs associated with moving commodities using the selected services (Crainic, 2000). The 
fixed service costs are usually derived from the cost of operating the associated vehicles. In the 
SNDAM problem we include vehicle associated costs only, since vehicle activities are explicitly 
considered. It is noteworthy, however, that including service-selection fixed costs does not 
introduce any structural changes to the SNDAM model presented in the next subsection. 
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1.2 The Cycle-Path SNDAM Model 
We define a static, hereafter referred to as physical, network with nodes i ∈ N  representing 
terminals connected by services s ∈ S . To simplify the presentation, but without loss of generality, 
we do not consider services consisting of multiple arcs.  

The schedule length is divided into a set of time periods { }1,..,T=T= . We introduce a time-
space network with one node ti  for each terminal i ∈ N  at each time period t ∈T . Each service 
s ∈ S  may be operated at each of the T  periods, and, thus, it is represented T  times in the time-
space network through a service arc for each potential departure time. The duration (length) of a 
service is given as a number of periods, the same for all its occurrences, while its total capacity is 
denoted sU . Holding arcs link consecutive time realizations of the same terminal where vehicles 
and commodities may wait. Holding arcs have a length of one period and are assumed to have 
infinite capacity for both vehicles and flows. The time-space network is cyclic, that is, period T  
precedes period 1. 

Figure 1 illustrates the cyclic time-space network for a five-terminal system over T = 7 
periods. For clarity sake, only one occurrence for each of eight services and two holding arcs are 
shown. The grey service of length one from node 3 in period 7 to node 2 in period 1 and the black 
holding arc from period 7 to period 1 at terminal 4 illustrate the cyclic nature of the network.  

Transportation services are provided by a homogeneous fleet of vehicles v ∈V , of cardinality 
  | |V = V |. Any selected service departure uses one of these vehicles, sLF  and sUF  standing for the 

lower and upper bounds, respectively, on the number of departures one may select for service s ∈ S
. We define a vehicle design-cycle k ∈Kv, as a sequence of service and, possibly, holding arcs 
satisfying design-balance requirements and covering each time period exactly once (Requirements 
A and D). The cost of cycle k is denoted kF , while stkM  takes value 1 if service s ∈ S  departing at 
time t ∈T  is included in cycle k  and 0 otherwise.  No explicit vehicle repositioning arcs are 
included in the space-time network. To simplify the presentation and without loss of generality, 
service arcs without flow in the final solution represent the repositioning of vehicles (when needed). 
Figure 1 illustrates two vehicle routes supporting in total eight services and satisfying the 
requirements A-D described above. The figure also illustrates the fact that it is possible for a node 
to be visited by more than one vehicle at the same time.  

With respect to demand, we define for each commodity c ∈C the volume cW to be 

transported from its origin node to its destination node, which yields { }min ,sc c sB W U=  as the 
upper limit on volume of commodity c that may use service s . Let cP represent the set of paths that 

may be used to transport commodity c , where stcpA =1 if path cp ∈P  for commodity c uses service 

s ∈ S  departing at period t ∈T , 0 otherwise. The unit flow cost on path p is denoted cpK (we 
include both indices, c and p , to increase readability). 

Two sets of decision variables are defined: 

• Vehicle cycle-design variables: kg  takes value 1 if cycle k ∈Kv is selected and 0 
otherwise;  

• Commodity path-flow variables cph  giving the volume of commodity c on its path p . 
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Figure 1. Time-space network with two vehicles operating. 

 

The SNDAM model with cycle-design and path-flow variables is then formulated as follows:  
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The objective function (1) minimizes the sum of the fixed costs for selected cycles and the flow 
costs on paths. Constraint (2) restricts the cycle selection to the number of available vehicles 
(Requirement B). Through constraints (3), we enforce that each service s ∈ S departing at time 
t ∈T can be supported by at most one cycle (vehicle).  These constraints (3) may take different 
forms for particular applications; the current formulation corresponds to the rail freight 
transportation planning problem (Andersen et al., 2009b) used to generate the test problem 
instances for this paper. Lower and upper bounds on the number of service occurrences are imposed 
in (4) (Requirement C), while demand satisfaction is ensured in (5). Weak and strong forcing 
constraints are given in (6) and (7), respectively, enforcing service capacity restrictions and forcing 
flows to zero on unselected service departures. Finally, variable-type constraints appear in (8) – (9).  
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The SNDAM model is particularly relevant and important for the transportation industry with 
consolidation-based freight carriers as for instance freight train services and liner shipping. For such 
problems there are relatively many commodities and time periods compared to the number of 
physical nodes, and therefore the SNDAM deviates from a large class of vehicle routing problems. 
Notice that, as for other network design formulations, the strong forcing constraints (7) are 
redundant and their introduction increases the size of the problem considerably. Yet, it is known 
that the strong forcing constrains may significantly strengthen bounds obtained from linear 
relaxations, and that they may be gradually added as valid inequalities during the resolution process. 
We follow this approach for SNDAM and discuss implementation and impacts in Section 3. 

Magnanti and Wong (1984) showed that the uncapacitated fixed charge network design problem 
is NP -hard. Capacitated versions are even harder (Balakrishnan et al., 1997) and also belong to 
the class of NP -hard problems. Incorporating additional constraints such as (2) – (4) adds further 
complexity to the problem.  Even finding feasible solutions to SNDAM is far from trivial. In the 
case of the network design formulation, a (not necessarily good) feasible solution may be easily 
found by setting all arc design variables to one (opening all arcs) and solving the corresponding 
network flow problem. This is not the case for the SNDAM problem, where the cycle-design 
variables and constraints (2) – (4) prevent the trivial “all arcs open” solution to be feasible, except 
for special instances.  

 

2 A Branch-and-Price Algorithm for SNDAM 
Andersen et al. (2009b) generated a priori all design-cycle and flow-path variables for the 

SNDAM model (1) – (9). However, this approach suffers from poor scaling capabilities, and other 
solution methods are required to solve large problem instances. Pedersen et al. (2009) proposed a 
metaheuristic for a simpler problem setting (only design-balance constraints were included), but no 
exact method has been proposed yet.  Column generation embedded within a branch-and-price 
framework appears as a promising exact solution method due to the path and cycle structure of the 
problem. We describe such a method in this section.  

The column generation approach solves the linear relaxation of the model (1) – (9) constituting 
the master problem. The basic principle is to work on a Restricted Master Problem (RMP) that 
includes all the rows, but only a subset of the variables (or columns). Starting with a limited set of 
columns (artificial or real cycle and path variables), the method then iteratively adds new cycle and 
path columns to the RMP, providing they improve its objective function. The method continues to 
dynamically generate columns until no additional promising columns may be found. One can then 
conclude that the current RMP solution is an optimal solution to the linear relaxation of the original 
formulation (1) – (9) and a lower bound of its mixed-integer version. We use the simplex method to 
solve the RMP, which yields primal and dual solutions. This dual information is used to identify 
“new” columns with negative reduced costs in problem specific subproblems, and these columns 
are then added to the RMP. One subproblem generates cycles with negative reduced cost for the 
homogeneous fleet of vehicles, while another type of subproblems generates negative reduced cost 
path-flows for each commodity. The subproblems correspond to two types of shortest path 
problems that can easily be solved by dynamic programming. 

Branching occurs when no new columns improve the RMP and the LP-relaxed solution does not 
satisfy the integrality conditions of the original formulation. Column generation is applied in every 
node in the search tree resulting in a branch-and-price (B&P) method. We impose branching 
decisions by modifying either the networks in the subproblems or the constraints (or bounds) in the 
master problem. Several column generation topics are covered in Desaulniers et al. (2005), and 
general introductions to B&P and column generation can be found in Barnhart et al. (1998) and 
Lübbecke and Desrosiers (2005). 
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The rest of this section is organized as follows: Section 2.1 discusses the RMP for the SNDAM 
formulation, while Sections 2.2 and 2.3 are dedicated to the subproblems for the design- cycle and 
path-flow generation, respectively. Branching strategies are discussed in Section 2.4, while an 
acceleration technique for upper bound computations is presented in Section 2.5. 

 

2.1  Restricted Master Problem 
The restricted master problem (RMP) is the linear relaxation of the SNDAM formulation (1) – (9) 

with some adjustments. We work on subsets of cycles and paths; ⊆%K K and c c⊆%P P , respectively. 
To obtain the linear relaxation, we replace the integrality requirements (9) with (9b). We also 
reformulate (4) to (4b) by introducing explicit slack variables, ,sq s S∀ ∈ , 0 ( )s s sq UF LF≤ ≤ − , 
which halves the number of  constraints (4). Similarly, constraints (2) are reformulated to (2b) by 
introducing an explicit slack variable r  for the difference between the fleet size and the actual 
number of vehicles in use, 0 r V≤ ≤ . We describe in Section 2.4 how these slack variables are used 
for branching. The objective function (1) and the constraints (3) and (5) - (8) remain the same, 
except for the reduced number of variables in the RMP, and domain-definition constraints are added 
for the slack variables:   

k
k

g r V
∈

+ =∑
%K

,  (2b) 

stk k s s
tk

M g q UF
∈∈

+ =∑∑
% TK

, s∀ ∈ Sv, (4b) 

0 1kg≤ ≤ , k∀ ∈ %k K , (9b) 

0 ( )s s sq UF LF≤ ≤ − , s∀ ∈ Sv, (10) 

0 r V≤ ≤ .  (11) 

We associate dual variablesα , stβ , sθ , cσ , stη , and stcρ to constraints (2b), (3), (4b), (5), (6), and 
(7), respectively. The dual information from the solution of the RMP is transferred to the 
subproblems for the generation of design-cycles and flow-paths. The RMP can be solved by use of 
a commercial LP-solver.  The solution times may however be substantial for large instances.  We 
hence solve the cycle and all the path generation subproblems for a given set of dual multipliers 
before returning to the RMP.  

The restricted master problem (1), (2b), (3), (4b), (5)-(8), (9b), (10), and (11) yields the strong 
linear relaxation of the SNDAM formulation (1)-(9), the weak linear relaxation being obtained 
when the strong forcing constraints (7) are excluded. For large networks with many arcs and 
commodities, the number of strong forcing constraints grows extremely large. Consequently, we 
initially exclude the strong forcing constraints (7) from the formulation, and then, we generate 
dynamically those strong forcing constraints that are violated in the optimal solution of the RMP. 
To do this, we first solve the weak linear relaxation to optimality with column generation. Then, for 
each arc in the network having flow in the linear solution, we verify if any strong forcing 
constraints are violated for the products having paths traversing that arc. All such violated 
constraints are then added to the formulation. The new problem is then solved to optimality with 
column generation, followed by a new search for violated strong forcing constraints. This process is 
repeated until no strong forcing constraints are violated, and we have obtained the solution to the 
strong linear relaxation. When the strong forcing constraints are generated dynamically during the 
B&P, the resulting approach is denoted branch-and-price-and-cut. 
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The drawback of this approach is that for large instances, testing whether the strong forcing 
constraints are violated and reoptimizing after new constraints are added may become 
computationally expensive. An important issue is thus to which degree strong forcing constraints 
should be generated: at all branch-and-bound nodes, at the root node only, each time the lower 
bound is updated, or none of these. We address this issue in Section 3. 

 

2.2  Design-Cycle Subproblem 
A feasible design-cycle is a closed path that consists of a set of arcs satisfying the design-balance 

requirements, and not covering a time period more than once. The objective of the design-cycle 
subproblem is to find feasible cycles with minimum reduced costs to improve the objective function 
value of the current RMP.  Let kCC , given in (12), represent the reduced cost of cycle variable kg . 

k k st s st sc stc s stk
s t c

CC F u B Mα β η ρ θ
∈ ∈ ∈

⎛ ⎞
= − − − − +⎜ ⎟

⎝ ⎠
∑∑ ∑

S T C
 (12)

The underlying network is the time-space network with additional artificial origin (s) and 
destination (d) nodes. We construct arcs from the artificial origin node to all physical nodes at time 
period 1. We also extend the network with nodes, denoted end nodes, for time period 1 beyond the 
planning horizon (the first period in the next repetition of the schedule), and link them to the 
artificial destination node, to provide the possibility to generate cycles through direct application of 
a shortest path routine. Additional start nodes and arcs need to be added to capture services with 
duration greater than one, since these may be part of cycles that are not visiting a node at time 1. 
For services with a duration of two time periods, one additional start node must be added at time T  
representing the origin of that service. For services with a duration of three time periods, a similar 
start node must be added at time 1T −  in addition to the one at timeT , etc. Then, one arc is added 
from the artificial start origin to each start node, and a service arc that “passes by” time period 1 
connects the start node with the corresponding destination node of the service. 

 We illustrate these ideas in Figures 2 and 3. Figure 2 illustrates a tiny example of a network 
consisting of three physical nodes and three service arcs with the indicated time durations. The 
corresponding time-space network is given in Figure 3 with arcs from the artificial origin to all 
nodes in period 1, as well as to the start nodes of services starting in period 4 with duration superior 
to 1 (e.g., arc from node 3 at time 4 to node 2 at time 2, indicated by dotted lines). The figure also 
illustrates the end nodes, indicated with stripes, and the corresponding arcs to the artificial 
destination.  

 
Figure 2. Example network with three physical nodes and arcs with associated travel durations. 
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Figure 3. Time-space network for cycle generation.  

 

The network is acyclic and the problem can be solved as a shortest path problem by dynamic 
programming (DP) in polynomial time. We use a label-correcting method with two labels. One 
label corresponds to the reduced costs for the partial path from the artificial origin node up to the 
present node. In addition, we need to ensure that the first physical node visited in a path is the same 
as the last physical node in the path in order to design a cycle. Hence, we introduce a label for this 
first physical node. Figure 4 illustrates two feasible cycles, where the dotted cycle uses the arc 
passing by time period 1. 

Figure 4.Two feasible cycles in the time-space network. 

There exists just one subproblem for cycle-generation, but several cycles may exist in the final 
solution of the problem (1)-(9). The DP algorithm allows the generation of several cycles by 
starting from different first nodes. 

  

2.3 Flow-Path Subproblems 
A flow-path subproblem is solved for each commodity, the objective being to find a path with 

minimum reduced cost. The reduced cost cpCP  of variable cph   is defined as follows: 
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( )cp cp c st stc stcp
s t

CP K Aσ η ρ
∈ ∈

= − − +∑∑
S T

 (13) 

Paths start at the origin node of the commodity and must end at one of the time realizations of its 
destination node. Because the subproblem networks are acyclic, we can solve the shortest path 
problem by an efficient label-correcting DP algorithm in polynomial time. From model (1) – (9), we 
know that the dual variable cσ  is a free variable taking either positive or negative values. Note that 
dual variables stη  and stcρ cannot become positive. Hence, the subproblem can contribute a path 
with a negative reduced cost only if dual variable cσ  is strictly positive. Therefore, if at any stage 
the calculated reduced costs during the DP exceeds cσ  we can stop evaluating that path because it 
cannot result in a path with negative reduced costs. Similarly, because the reduced cost of a path 
increases with each arc, we can terminate it if the reduced cost at any stage is higher than the cost of 
a feasible origin-destination path.  

 

2.4 Branching strategies for the integer problem 
To obtain integer solutions for the SNDAM problem, we embed the column generation procedure 

into a branch-and-bound framework, where the solution obtained from the linear relaxation of the 
problem represents the root node of the search tree. At each node of the search tree, all existing 
feasible columns are kept and new columns are generated to obtain an optimal solution to the RMP. 
In this subsection, we present branching strategies for the exploration of the search tree. As is 
known from the B&P literature (e.g., Lübbecke and Desrosiers, 2005), it is not desirable to branch 
directly on the column variables. We consider instead three alternative branching strategies where 
we either alter the subproblem networks in order to generate feasible columns with respect to a 
branching decision, branch on the slack variables in the RMP, or modify the constraints in the 
master problem. 

The first approach, BB-1, uses branching on service occurrences in the underlying network 
structure, i.e. arcs in the time-space network. In evaluating the solutions of the RMP, we choose the 
arc with fractional value closest to a threshold value, and fix this arc to 1 in one branch and to 0 in 
the other branch. In the 1-branch, we change the ≤  sign in constraints (3) to an = sign ensuring that 
the sum of the cycle variables using this arc is 1. When the branch is fixed to zero, all generated 
cycles using this arc are fixed to 0 as well. In addition, we remove this service arc from the 
underlying network in the subproblems.  This branching strategy alone will lead to an integer 
solution, but a drawback is that it gives an unbalanced search tree. The decision to fix an arc to one 
gives a strong decision, while fixing it to zero results in a very weak decision with little impact on 
the subproblems. We always chose the 1-branch first. 

The second branching strategy, BB-2, uses the slack variables sq  from (4b). For integer 
solutions to (1) – (9), the integrality of sUF and of stkM also ensures the integrality of the sq
variables. When we obtain fractional sq variables in the linear solution, we branch by identifying 
the sq variable with fractional value closest to a threshold value and round it down to the nearest 
integer in one branch and round it up to the nearest integer in the other branch. However, even if all 

sq are integer, we do not necessarily have integer values on the cycles.  

The third approach, BB-3, utilizes the fact that the number of cycles in the optimal solution is 
integer. Hence, we branch on the slack variable in constraint (2b). This branching strategy alone 
cannot guarantee finding integer solutions for the design-cycle variables.    

We have implemented a depth-first tree-exploration strategy with backtracking. Within this 
approach, we have tested the three different branching strategies extensively to find the best 
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combination to use. The computational result section presents the results from the experimentation 
of the different branching strategies.  

  

2.5 An acceleration technique for upper bound computations 
The upper bound is updated each time a new best integer solution is found. In order to encourage 

fathoming, it is of high importance to obtain good integer solutions early in the traversal of the tree. 
We introduce an acceleration technique with the aim of finding integer solutions quickly through a 
depth-first search strategy and thus improve the performance of the B&P algorithm.  

From the solution of the linear RMP, we fix the cycle variables kg with fractional values above a 
given threshold to one, or if no variables kg have fractional values above the threshold, the cycle 
variable with highest fractional value is fixed to one. Then, new columns are generated until the 
solution of the RMP cannot be improved further. This procedure is repeated until an integer solution 
has been found, the solution is worse than the current best integer solution, or the problem becomes 
infeasible.  The success of this technique depends on the value of the threshold. If it is set too low, 
we expect to find a poor integer solution. However, a high value of the threshold may slow down 
the process of fixing columns to 1. It is possible to change this threshold value during the solution 
process.  

This acceleration technique can be used at the end of some branch-and-bound nodes in the tree or 
at the end of all nodes. It is a trade-off between finding a good upper bound and the extra 
computational time needed by this technique. Due to our testing, we have chosen to perform the 
technique at the end of each branch-and-bound node. When the technique is completed at each 
node, we “unfix” the involved variables. In addition, we delete the columns generated during the 
fixing procedure, before branching further on in the tree. We may restrict the application of the 
acceleration technique by defining a maximum time for it at each node. 

 

3 Computational Study 
We present a computational study based on the branch-and-price (B&P) algorithm introduced in 

Section 2 for the SNDAM problem. The algorithms are programmed in C++ and run on 64 bits 
computers with 3 GHz processors and 8 GB RAM running under Rock Cluster v 4.2.1 operating 
system.  The restricted master problems are solved with the LP-solver of XPRESS Optimizer v 
17.1. We first discuss implementation and calibration issues in Section 3.1, before introducing the 
data sets used in Section 3.2. Finally, computational results appear in Section 3.3. 

 

3.1 Implementation and Calibration 
The computational study explores three different solution approaches, denoted “A”, “B”, and “C” 
mainly targeted at different instance sizes. The three solution approaches are developed through 
extensive testing in a calibration phase, and the parameter setting is based on what was observed to 
yield reasonable performance over a set of instances. We summarize significant implementation 
issues and parameter values in Table 1.  

For all approaches, we implement a depth-first strategy in exploring the B&P tree, and set a 
maximum running time of 10 hours (36000 seconds), which is the same as in the computational 
study in Andersen et al. (2009b) and thus facilitates comparisons. In solving the RMP, we save the 
basis before adding columns, and we reoptimize with the primal simplex from the saved basis once 
new columns are added. As pointed out in Sections 2.2 and 2.3, it is computationally cheap to add 
more than one cycle or path when the subproblems are solved. There is a trade-off between the 
gains of saving iterations as a consequence of adding multiple columns, versus the increased 
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computational time from having more columns in the master problem. There are a significant 
amount of commodities in our data sets, and we therefore allow inclusion of at most one path for 
each commodity in an iteration of the column generation. However, because of the many 
commodities, it makes sense to include multiple cycles in each iteration if there are several cycles 
with negative reduced costs. We allow most cycles in solution approach C, which is targeted at the 
largest instances   

Table 1. Implementation issues and parameter values. 

Issues and parameters Approach A Approach B Approach C 
Search strategy Depth first 
Maximum search time 36000 seconds 

How often is the master problem solved? All subproblems are solved for given dual information before the 
master problem is resolved 

Strategy for solving RMP at each BB-node Save basis before adding columns, reoptimize with primal simplex 
from this basis when columns have been added  

Branching strategies BB-2/BB-1  (BB-3)  / BB-2 / BB-1 
How often are strong forcing constraints (SFC) generated? All nodes Nodes where lower bounds are updated 
How long do we keep on generating strong forcing constraints at 
a node? 

As long as they are 
violated 

No new iterations after 18000 seconds or if 
improvement < 0.1% 

Should we keep SFC in the problem after generation? Yes No   
Max number of paths generated in each iteration One per commodity 
Max no of new cycles in each col.gen. iteration in BB-node  5 10 
Max no of new cycles in each col gen iteration in acc. techn. 1 2 
Min and max threshold for fixing cycle var to 1 in acc. technique 0.55-0.7  0.55-0.65  
Simplex tolerance level and no of iterations without improvement 10E-6 / 50 10E-6 / 10 
Maximum time for acceleration technique at each BB-node No restrictions 30 min 

 

For branching, the calibration phase indicated that one should branch on either service frequency 
(BB-2) or fleet size (BB-3) slack variables, before branching on arcs (services) in the underlying 
network. In solution approach A, we first branch on BB-2 until all service frequency slack variables 
take integer values, and then switch to BB-1. In solution approaches B and C, we use BB-3, then 
BB-2, and again BB-1 if all slack variables take integer values, but we also implement these 
approaches with BB-2 and BB-1 only.  

An important difference between the three approaches is the role of the strong forcing 
constraints. These constraints improve the lower bounds and could also contribute to better 
branching decisions and better performance of the acceleration technique, since including such 
constraints removes parts of the solution space that is feasible for the weak linear relaxation of the 
problem, but not for the original mixed integer version. The generation of strong forcing constraints 
is time-consuming for large problem instances, however, due to the many constraints that could be 
added.  

In solution approach A we test the effect of generating strong forcing constraints at all the nodes 
of the tree. The limit for fixing cycles for the acceleration technique described in Section 2.5 is 
initially set to 0.7, and sequentially reduced to 0.55. At most 5 cycles may be added at each iteration 
of the column generation procedure. To avoid instability in the column generation, a tolerance level 
of 610− for relative change in objective function value is introduced. If the objective function does 
not improve by this value in fifty iterations, we stop the iterations and the algorithm continues.  

In solution approach B, strong forcing constraints are generated only at the nodes where the 
lower bounds are updated, which should allow the exploration of more nodes within the time limit. 
The tolerance level for simplex is reduced to 10 iterations without a relative objective function 
value improvement of 610−  .  
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Solution approach C is targeted at huge problem instances with several hundred commodities. 
The acceleration technique starts with a limit for fixing cycles at 0.65. At most 10 cycles with 
negative reduced cost may be added at each  iteration of the column generation algorithm, but only 
two within the acceleration technique. Strong forcing constraints are generated only when the lower 
bound is updated. Moreover, the strong forcing constraints are removed from the problem as soon 
as the bound is updated, to facilitate faster exploration of the search tree.  For both solution 
approaches B and C, we include the opportunity to stop this process if the time exceeds 18000 
seconds or if the improvement in the objective function value at the last iteration was below 0.1%.  

For all solution approaches, we strengthen the calculation of lower bounds by rounding k
k

g
∈
∑

%K

up 

and down to the nearest integer values. In particular, if the rounding down yields an infeasible 
problem, this contributes to a stronger bound and thus a smaller optimality gap. Furthermore, for all 
solution approaches, the tolerance level is increased to 510− and five iterations at nodes where we 
cannot improve the lower bound, and also within the acceleration technique. 

 

3.2 Data Sets 
Andersen et al. (2009b) addressed SNDAM problem instances with all design-cycles and 

commodity paths generated a priori with the CPLEX MIP-solver. We test the B&P algorithm on a 
few of these instances (1 to 5 in Table 2), but the computational study is focused on significantly 
larger instances than what can be solved with a priori generation. The new instances are based on a 
real-life case study in rail transportation planning, but are randomly generated with increased 
numbers of terminals, services, time periods, and commodities to challenge the branch-and-price 
algorithm. The instances are available from http://www.iot.ntnu.no/users/mc, We present in Table 2 
the dimensions of the instances. Columns two to four give the number of terminals and services in 
the physical network, as well as the number of time periods, respectively. We present the 
corresponding number of possible service departures and holding arcs in column five and the 
number of commodities in column six. A size indicator for problem dimension is presented in the 
seventh column, computed as the product of the number of possible service departures, time 
periods, and commodities and divided by 1000. This measure gives a fair description of the relative 
dimensions of the instances. As pointed out in Section 3.1, initial testing has suggested that 
different approaches should be applied depending on the sizes of the instances. We thus indicate in 
the last column the solution approaches that are applied to each instance.  

Instances 1-5 are small and we apply solution approaches A and B. Only approach B is applied to 
instances 6 to 12, for which the size indicator is in the range 120 to 450, and significantly larger 
than for instances 1-5. Finally, for the largest instances 13-15, the size indicator exceeds 1000 and 
we apply solution approaches B and C.  For each of the reasonably large instances 6-12, we 
generate five different data sets to assess the variability of the algorithm performance. 

 

3.3 Results 
In this section we present the experimental results for the problem instances defined in Table 2. 

We present results for problems that have previously been solved with a priori generation of 
columns (Andersen et al., 2009b) in Section 3.3.1, while Section 3.3.2 presents results for new 
problem instances. More detailed results are presented in Annex A for all fifteen instances. 
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Table 2. Dimensions of problem instances. 

Problem 
id # 

Terminals 
N  Services S  Time periods T  

Service + holding 
arcs  

Commodities 
C  Size indicator 

Solution 
approaches 

1 5 10 20 200 + 100 20 4 A and B 
2 5 15 20 300 + 100 25 8 A and B 
3 5 15 25 375 + 125 25 9 A and B 
4 5 15 15 225 + 75 100 23 A and B 
5 5 15 15 225 + 75 200 45 A and B 
6 5 15 40 600 + 200 200 120 B 
7 5 15 50 750 + 250 400 300 B 
8 7 30 30 900 + 210 200 180 B 
9 7 30 30 900 + 210 400 360 B 
10 7 30 50 1500 + 350 300 450 B 
11 10 40 30 1200 + 300 200 240 B 
12 10 50 30 1500 + 300 100 150 B 
13 10 50 30 1500 + 300 1000 1500 B and C 
14 7 30 60 1800 + 420 800 1440 B and C 
15 10 50 50 2500 + 500 400 1000 B and C 

3.3.1 Instances solved with a priori generation of columns 

Table 3 displays the results for instances 1-5. Two rows are presented for each instance, one for 
each solution approach A and B (the latter with branching strategies BB-2/BB-1). In each case, we 
report in column three and four the lower bound and the best MIP solution at termination, which 
occurs after 10 hours of CPU time or once the algorithm has found a provably optimal integer 
solution. The fifth column displays either the solution time in CPU seconds for finding the provably 
optimal solution with B&P, or the optimality gap after 10 hours of CPU time. The last two columns 
display the best integer solution obtained with a priori enumeration of cycles and paths and the 
corresponding solution time or remaining optimality gap (Andersen et al., 2009b). The a priori 
enumeration was implemented on different computers but with comparable specifications and a 
maximum running time of 10 hours. The numbers of constraints and columns generated and the 
shares of time used for the master problem, subproblems, and management are presented in Annex 
A. 

Table 3. Results for instances previously addressed with a priori generation of columns. 

  Branch-and-price algorithm  A priori enumeration 

Instance 
Solution 
approach Lower bound MIP solution 

Solution time (sec) / 
Optimality gap  

 

MIP solution 
Solution time (sec) / 

Optimality gap 

1 A 48 838 48 838 237  
48 838 9 B 48 838 48 838 161  

2 A 52 156 52 156 28 578  
52 156 1235 

B 52 156 52 156 16 508  

3 
A 47 805 47 805 921  

47 805 143 B 47 805 47 805 1 271  

4 A 171 532 174 687 1.80 %  
174 233* 0.7% B 171 532 174 687 1.80 %  

5 A 378 347 381 040 0.71 %  
381 533* 0.5% 

B 378 347 380 999 0.70 %  
*For these instances, the a priori approach did not return a provably optimal solution within 10 hours. 
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The results reported in Table 3 are very similar for approaches A and B. For instances 1-3, 
the B&P algorithm returned provably optimal integer solutions with both solution approaches. For 
instances 1 and 3, the solutions were obtained reasonably quickly, while instance 2 required around 
16500 and 28600 seconds, respectively. As expected, a top commercial MIP solver performed 
significantly faster when all variables were generated a priori. It is nevertheless good news that the 
B&P algorithm returns provably optimal integer solutions for problems where these optimal 
solutions are known. No method returned provably optimal solutions within 10 hours of CPU time 
for instances 4 and 5. For instance 4, the integer solutions obtained were slightly better with a priori 
enumeration, and the gap was also smaller. For instance 5, both approaches A and B of the branch-
and-price algorithm returned better integer solutions than what was obtained with a priori 
enumeration. However, the remaining optimality gap after 10 hours is smaller with a priori 
enumeration.  The stronger focus on bounding in a commercial MIP-solver explains most of these 
observations. To conclude this phase of the experimentation, the proposed B&P algorithm solves 
small instances to proven optimality, and yields solutions of similar quality as a priori enumeration 
for instances at the limit of what could be handled with this approach (Andersen et al., 2009b). 

 

3.3.2  Larger instances 

We present results for problem instances 6-12 in Table 4. All integer solutions were obtained 
using the acceleration technique presented in Section 2.5. No instance was solved to proven 
optimum within 10 hours of CPU time. There are five rows for each instance in the table, 
representing the five data sets for each instance. The results in Table 4 were obtained with 
branching strategies BB-2/BB-1, which appeared to produce the smallest optimality gaps. Results 
obtained with BB-3/BB-2/BB-1 are presented in Annex B. 

The third column of Table 4 presents the lower bounds for the original problem at termination, 
which in all cases corresponds to the lower bound obtained at the root node, because the depth-first 
search did not return to the root node within 10 hours for any of these instances. Best integer 
solutions and optimality gaps are reported in the next two columns, followed by the average gap for 
each instance. The following columns report the node number where the best integer solution was 
found and the elapsed time, respectively. In the last two columns, we report the number of branch-
and-price nodes visited during the tree search, and the time needed to solve the root node. The 
numbers of constraints and columns generated and the shares of time used for the master problem, 
subproblems, and management are presented in Annex A. 

From Table 4 we observe that the optimality gaps range from 1.2% to 14.7%, and the averages 
for each instance are in the range 3.8% - 7.3%. The results are in other words reasonably stable with 
optimality gaps around 4-7%, but with a few outliers. The optimal integer solutions are not known 
for these problems. In testing smaller but similar problems (Andersen et al., 2009b) we observed, 
however, that the gaps between the strong linear relaxation at the root node and the optimal integer 
solution were in the range 0-9%, with an average of about 3%. It is thus likely that the integer 
solutions reported in Table 4 represent near-optimal solutions to the instances. Similar figures 
appear in computational studies of similar problems, e.g., (Ghamlouche et al., 2004) and (Pedersen 
et al., 2009).  

We report results obtained for instances 13-15 using branching strategy BB-2/BB-1 in Table 5. 
Results obtained with BB-3/BB-2/BB-1 are presented in Annex B. The columns of Table 5 are 
identical to those of Table 4, except that we also indicate whether solution approach B or C was 
used and we do not present averages for each instance. The number of constraints and columns 
generated and the shares of time used for the master problem, subproblems, and management are 
presented in Annex A. 
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Table 4. Results from model runs for instances 6-12 using branching strategies BB-2/BB-1. Maximum 
computational time is 10 hours. 

Instance Data set 
Lower 
bound 

Best MIP- 
solution 

Optimality 
gap 

Average 
gap 

Best MIP- 
node 

Best MIP- 
time 

Nodes 
visited Root time 

6 

A 199 276 207 073 3.9 % 

3.8 % 

3 1 837 582 1 589 
B 76 979 79 850 3.7 % 10 14 363 127 5 210 
C 211 662 222 962 5.3 % 48 10 394 564 1 383 
D 242 283 254 038 4.9 % 42 6 317 1 224 410 
E 334 026 337 970 1.2 % 5 185 1 657 83 

7 

A 380 049 399 942 5.2 % 

4.5 % 

3 2 465 93 1 870 
B 472 281 492 329 4.2 % 3 1 823 135 1 252 
C 132 022 137 247 4.0 % 9 26 687 14 6 595 
D 178 064 188 468 5.8 % 3 8 811 32 6 973 
E 465 997 481 169 3.3 % 18 24 797 29 6 717 

8 

A 416 312 438 209 5.3 % 

4.4 % 

4 3 113 955 449 
B 156 979 163 073 3.9 % 3 10 134 269 4 172 
C 416 949 436 242 4.6 % 31 12 990 1 140 350 
D 360 192 376 045 4.4 % 28 13 120 915 2 247 
E 360 466 373 555 3.6 % 2 2 412 1 338 2 181 

9 

A 234 843 248 498 5.8 % 

4.3 % 

3 14 418 10 7 814 
B 346 985 363 165 4.7 % 3 5 269 45 3 310 
C 724 181 749 700 3.5 % 15 13 354 128 2 403 
D 743 061 766 424 3.1 % 2 735 358 512 
E 363 332 378 938 4.3 % 8 17 188 28 3 854 

10 

A 460 244 480 772 4.5 % 

5.6 % 

1 14 551 5 16 506 
B 276 288 293 161 6.1 % 1 26 134 2 28 404 
C 286 209 306 029 6.9 % 1 31 314 2 31 713 
D 498 922 526 916 5.6 % 3 16 444 9 10 905 
E 504 950 529 821 4.9 % 8 27 518 12 9 216 

11 

A 301 161 314 763 4.5 % 

7.3 % 

6 21 917 13 5 404 
B 585 457 611 721 4.5 % 7 5 508 91 936 
C 183 394 210 386 14.7 % 1 12 394 3 14 634 
D 189 225 201 251 6.4 % 15 34 971 15 4 238 
E 412 463 439 784 6.6 % 3 6 728 21 3 835 

12 

A 157 695 161 507 2.4 % 

4.0 % 

3 9 834 22 5 788 
B 215 855 217 811 0.9 % 3 4 824 368 2 489 
C 142 153 152 875 7.5 % 3 13 768 6 7 466 
D 261 486 277 024 5.9 % 18 18 161 37 2 939 
E 284 210 293 856 3.4 % 9 5 453 292 388 

 

 

Table 5 displays that integer solutions were found for all instances with solution approach C, the 
gaps ranging from 13. 5% to 21.5%. With solution approach B, integer solutions were found for 
instances 13 and 14, but not for instance 15. When integer solutions were found, the resulting 
optimality gaps were 4,9% and 11.2%, which is compatible with the results reported in Table 4. 
Thus, as long as solution approach B worked, good solutions were obtained, while with solution 
approach C the remaining optimality gaps were considerably larger. The main difference between 
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approaches B and C is that the generated strong forcing constraints are kept in the problem with 
approach B, which again “drive” the acceleration technique in a desirable direction. But the cost of 
this benefit is that the time associated with solving the problem increases, and there is thus a risk 
that no solution is obtained for the largest instances 

Table 5. Results from model runs for instances 13-15. Maximum computational time is 10 hours. 

Instance 
Solution 
approach Lower bound 

Best MIP- 
solution Optimality gap 

Best MIP- 
node 

Best MIP- 
time 

Nodes 
visited Root time 

13 
B 733 766 769 808 4.9 % 1 22 631 2 23 833 
C 733 766 851 055 16.0 % 3 20 508 6 12 699 

14 
B 645 452 717 475 11.2 % 1 27 214 2 29 752 
C 644 264 782 793 21.5 % 1 32 980 2 35 016 

15 
B 632 116 - - - - 2 35 937 
C 624 306 708 632 13.5 % 2 29 687 3 24 353 

 

3.3.3 Comparison with Simpler Approaches 

The aim of this paper is to develop an exact solution method for the SNDAM problem that could 
handle larger instances than what was solved by a priori column generation (Andersen et al., 
2009b). In this section, we compare the B&P algorithm with two simpler approaches, where column 
generation is performed once (corresponding to the root node), and then a commercial MIP solver is 
used to solve the problem with the resulting set of columns.  

Approach “MIP-solver I” solves the root node in the same way as the B&P method, but 
without the acceleration technique. It then exports the problem to Xpress-Optimizer, which is 
allowed to use the remaining time from the initial 36000 seconds. Approach “MIP-solver II” 
includes the acceleration technique from the root node to allow more columns into the problem, and 
keeps those columns in the problem exported to Xpress-Optimizer in the same way as in approach 
“MIP-solver I”. However, if the acceleration technique has identified integer solutions, these are 
used for cut-off to enhance the performance of the commercial solver. A comparison of the 
optimality gaps obtained with B&P and the two simpler approaches is presented in Figure 5. Only 
instances 1-12 are illustrated to maintain the readability of the figure. The averages over the five 
data sets for each instance are presented for instances 6-12.  Detailed integer solutions for all 
instances are presented in Annex C. 

The results illustrated in Figure 5 indicate that the B&P algorithm generally performs 
significantly better than the two simpler approaches. “MIP-solver II” is the second best, mainly 
because it uses integer solutions from the acceleration technique applied at the root node. The 
“MIP-solver I” approach yields the largest gaps and suffers from huge fluctuations from instance to 
instance. We thus conclude that a full B&P algorithm offers a more reliable solution approach than 
the considered simpler approaches. 
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Figure 5. Optimality gaps obtained with the B&P algorithm and the two MIP-solver approaches. 

 

4 Concluding Remarks 
We presented a branch-and-price (B&P) algorithm for addressing the service network design 

problem with asset management constraints (SNDAM). Such problems arise when decisions on 
vehicle management are considered jointly with service network design issues, and represent an 
important potential for improved planning of transportation systems.  

The proposed method integrates two column-generation subproblems for integer cycle-design and 
continuous flow-path variables, a combination of branching strategies, a mechanism to dynamically 
add violated strong linear relaxation cuts, and an acceleration technique to assist in rapidly 
identifying integer solutions. Experimental studies have shown that the proposed algorithm 
performs very satisfactorily. It is comparable for small problem instances with a commercial solver 
applied with a priori complete enumeration of cycle and path variables and is able to address much 
larger instances. The performance of the B&P algorithm was compared to two simpler approaches 
based on column generation in the root node of the tree combined with the use of a commercial 
MIP-solver. The experiments showed that the B&P algorithm performed significantly better than 
the simpler appraoches, and the experiments thus indicate that a tree exploration is required to 
identify high-quality solutions. 

Future work will focus on enhancing the proposed method. Interesting perspectives are offered by 
the improvement of the acceleration technique, for instance by reversing  earlier variable-fixing 
decisions to foster diversity, the development of tighter lower bounds, the introduction of stronger 
cuts, e.g. (Chouman et al., 2009), and the design of parallel computing strategies.  

 

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12

G
ap

 ( 
%
)

Instance

MIP Solver I

MIP Solver II

Branch‐and‐price

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2009-58 17



Acknowledgements 
This work has received financial support from The Norwegian Research Council through the 

Polcorridor Logchain project. Partial funding has also been supplied by the Natural Sciences and 
Engineering Research Council of Canada (NSERC) through its Discovery and Industrial Research 
Chair programs. While working on this project, Dr. Teodor Gabriel Crainic was NSERC Industrial 
Research Chair in Logistics Management, ESG UQAM (Canada) and Adjunct Professor at Molde 
University College and the department of Computer Science and Operations Research of the 
Université de Montréal. 

 

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2009-58 18



References 
Agarwal, R., Ö. Ergun. 2008. Ship scheduling and network design for cargo routing in liner 

shipping. Transportation Science 42, 175-196.  

Andersen, J., T.G. Crainic, M. Christiansen. 2009a. Service network design with management 
and coordination of multiple fleets. European Journal of Operational Research 193(2), 377-389. 

Andersen, J., T.G. Crainic, M. Christiansen. 2009b. Service network design with asset 
management: Formulations and comparative analyzes. Transportation Research Part C, 17, 197-
207. 

Balakrishnan, A., T.L. Magnanti, P. Mirchandani. 1997. Network Design. In Annotated 
bibliographies in combinatorial optimization, Dell’Amico, M., F. Maffoli F, S. Martello (eds), John 
Wiley & Sons: New York, NY. 

Barnhart, C., R.R. Schneur. 1996. Air network design for express shipment service. Operations 
Research 44, 852- 863. 

Barnhart, C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, P.H. Vance. 1998. Branch-
and-price: Column generation for solving huge integer programs. Operations Research 46, 316–
329. 

Christiansen, M., K. Fagerholt, B. Nygreen, D. Ronen. 2007. Maritime transportation. In:  
Barnhart, C., Laporte, G. (Eds.), Transportation, volume 14 of Handbooks in Operations Research 
and Management Science, North-Holland, Amsterdam, pp. 189-284. 

Chouman, M., T.G. Crainic, Gendron, B. 2009, A Cutting-Plane Algorithm for Multicommodity 
Capacitated Fixed-Charge Network Design, Publication CIRRELT-2009-03, Interuniversity 
Research Centre on Enterprise Networks, Transportation and Logistics, Université de Montréal, 
Canada. 

Cordeau, J.-F., P. Toth, D. Vigo. 1998. A survey of optimization models for train routing and 
scheduling. Transportation Science 32, 380-404. 

Crainic, T.G. 2000. Service network design in freight transportation. European Journal of 
Operational Research 122, 272-288. 

Crainic, T.G. 2003. Long-haul freight transportation. In: Hall, R.W. (Ed.), Handbook of 
Transportation Science, 2nd Edition, Kluwer Academic Publishers, New York, pp. 451-516. 

Crainic, T.G., K.H. Kim. 2007. Intermodal transportation. In:  Barnhart, C., Laporte, G. (Eds.), 
Transportation, volume 14 of Handbooks in Operations Research and Management Science, North-
Holland, Amsterdam, pp. 467-537. 

Desaulniers, G., J. Desrosiers, M.M. Solomon (Eds.). 2005. Column generation. GERAD 25th 
Anniversary Series. Springer.New York, NY. 

Ghamlouche, I., T.G. Crainic, M. Gendreau. 2004. Path relinking, cycle-based neighbourhoods 
and capacitated multicommodity network design. Annals of Operations Research 131, 109-133. 

Kim, D., C. Barnhart, K. Ware, G. Reinhardt. 1999. Multimodal express package delivery: a 
service network design application. Transportation Science 33, 391-407. 

Lai, M.F., H.K. Lo. 2004. Ferry service network design: optimal fleet size, routing and 
scheduling. Transportation Research A 38, 305-328. 

Lübbecke, M.E., J. Desrosiers. 2005. Selected topics in column generation. Operations Research 
53, 1007-1023. 

Magnanti, T.L., R.T. Wong. 1984. Network design and transportation planning: models and 
algorithms. Transportation Science 18, 1-55. 

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2009-58 19



Pedersen, M.B., T.G. Crainic. 2007. Optimization of intermodal freight train service schedules 
on train canals. Publication CIRRELT-2007-51. Centre interuniversitaire de recherche sur les 
réseaux d'entreprise, la logistique et le transport, Université de Montréal.  

Pedersen, M.B., T.G. Crainic, O.B.G. Madsen. 2009. Models and tabu search metaheuristics for 
service network design with asset-balance requirements. Transportation Science, 43, 158-177. 

Sigurd, M., N.L. Ulstein, B. Nygreen, D.M. Ryan. 2005. Ship scheduling with recurring visits 
and visit separation requirements. In: Column generation, Desaulniers, G., J. Desrosiers, M.M. 
Solomon (Eds.), GERAD 25th Anniversary Series. Springer. New York, NY, pp. 225-245. 

Smilowitz, K.R., A. Atamtürk, C.F. Daganzo. 2003. Deferred item and vehicle routing within 
integrated networks. Transportation Research E 39, 305-323. 

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2009-58 20



Annex A. Detailed results 
The following table displays measures related to the performance of the branch-and-price algorithm 
with branching strategy BB-2/BB-1. Columns three and four indicate the numbers of strong forcing 
constraints generated at the root node and during the entire tree exploration, respectively. Columns 
five to ten display the number of cycles and paths generated in the model runs. For the root node, 
cycles and paths generated within the acceleraing technique (“Root acc.”) are presented separate 
from the cycles and paths generated in the standard node solving (“Root std”). The last three 
columns display the percentage of the total CPU seconds required to address 1) the restricted master 
problem, 2) the cycle and path generation subproblems, and 3) everything else in the code which is 
not direct Xpress Optimizer solution time for the master problem or time needed to solve the 
subproblems. 

Inst. 
Solution 
approach 

Generated strong 
forcing constraints Generated cycles Generated paths Distribution of time use 

Root Tree 
search Root std. Root acc. Tree 

search Root std. Root acc. Tree 
search Master Sub Admin* 

1 A 196 215 218 14 9 022 372 79 17 706 95 % 2 % 3 % 
B 196 7 218 14 7 390 372 79 13 147 95 % 2 % 3 % 

2 A 315 795 463 214 398 371 723 240 379 456 97 % 1 % 2 % 
B 315 94 463 214 347 197 723 240 239 262 98 % 1 % 2 % 

3 A 462 75 779 1 117 7 371 1 198 211 1 244 97 % 1 % 2 % 
B 484 13 784 803 8 735 1 205 125 1 398 97 % 1 % 2 % 

4 A 313 1 109 296 33 216 421 987 178 840 866 94 % 1 % 5 % 
B 313 0 296 33 376 384 987 178 1 036 790 93 % 2 % 5 % 

5 A 131 39 609 265 0 95 987 2 928 75 571 318 88 % 1 % 11 % 
B 131 0 265 0 289 203 2 928 75 1 312 073 83 % 4 % 13 % 

6 

A B 768 0 4 035 1 199 24 529 2 263 444 11 917 99 % 0 % 1 % 
B B 3 612 0 6 194 340 4 974 4 619 706 6 001 100 % 0 % 0 % 
C B 729 0 5 040 672 21 564 2 208 341 12 957 99 % 0 % 1 % 
D B 618 0 3 175 89 43 382 3 465 301 15 948 98 % 0 % 1 % 
E B 537 0 1 050 251 39 383 4 261 180 19 656 97 % 0 % 2 % 

7 

A B 1 035 0 4 740 491 18 617 6 801 435 21 294 96 % 0 % 4 % 
B B 839 0 4 275 383 18 685 6 303 438 24 176 96 % 0 % 3 % 
C B 4 299 0 6 628 38 1 622 5 037 699 9 460 99 % 0 % 1 % 
D B 2 236 0 7 410 135 3 264 3 988 657 12 957 99 % 0 % 1 % 
E B 3 093 0 6 370 172 4 992 7 762 605 12 949 99 % 0 % 1 % 

8 

A B 1 082 0 2 087 244 28 519 4 095 805 47 587 97 % 0 % 2 % 
B B 4 834 0 3 407 385 6 215 7 188 1 736 22 844 99 % 0 % 1 % 
C B 1 141 0 1 829 92 34 714 4 360 823 45 531 96 % 1 % 3 % 
D B 1 328 0 2 433 2 079 28 552 4 311 1 148 42 718 97 % 0 % 2 % 
E B 1 250 0 2 474 2 053 33 507 4 199 1 352 34 661 99 % 1 % 0 % 

9 

A B 7 576 0 3 045 433 1 058 11 153 3 493 24 538 99 % 0 % 1 % 
B B 3 473 0 2 429 903 4 631 7 843 1 998 52 188 97 % 0 % 2 % 
C B 1 160 0 2 171 1 974 21 551 9 821 1 072 55 507 93 % 1 % 6 % 
D B 1 270 0 1 874 121 20 545 8 683 1 363 88 362 95 % 1 % 4 % 
E B 3 537 0 2 616 1 072 5 158 8 273 2 580 45 307 98 % 0 % 2 % 

10 

A B 1 834 0 9 455 227 691 5 814 655 2 840 99 % 0 % 1 % 
B B 3 639 0 11 010 167 98 6 058 1 349 946 99 % 0 % 1 % 
C B 3 663 0 11 385 103 56 6 538 1 185 588 99 % 0 % 1 % 
D B 1 520 0 9 365 179 1 733 6 123 617 4 539 99 % 0 % 1 % 
E B 1 478 0 8 115 430 2 365 6 083 735 6 229 99 % 0 % 1 % 

11 A B 4 198 0 3 860 399 1 813 8 227 3 672 33 371 99 % 0 % 1 % 
B B 1 638 0 2 379 171 12 528 7 423 2 442 97 965 98 % 1 % 2 % 
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Inst. 
Solution 
approach 

Generated strong 
forcing constraints Generated cycles Generated paths Distribution of time use 

Root Tree 
search Root std. Root acc. Tree 

search Root std. Root acc. Tree 
search Master Sub Admin* 

C B 7 142 0 4 239 438 208 11 740 5 332 7 880 99 % 0 % 0 % 
D B 5 894 0 3 571 70 1 570 8 777 3 806 44 507 99 % 0 % 1 % 
E B 1 837 0 3 133 978 5 202 7 265 2 740 46 385 98 % 0 % 2 % 

12 

A B 2 793 0 5 640 343 1 189 5 209 1 280 12 607 100 % 0 % 0 % 
B B 1 925 0 3 826 1 001 9 854 3 522 1 345 34 621 99 % 0 % 1 % 
C B 5 224 0 5 031 41 366 9 425 1 922 9 682 100 % 0 % 0 % 
D B 1 327 0 3 820 1 143 5 440 4 083 1 631 35 657 99 % 0 % 1 % 
E B 1 015 0 2 278 96 15 622 2 604 1 083 42 244 99 % 0 % 1 % 

13 B 6 934 0 4 139 179 182 24 824 4 547 4 501 98 % 0 % 1 % 
C 6 947 0 4 896 2 059 9 908 21 235 821 4 123 93 % 1 % 6 % 

14 B 3 212 0 6 830 463 280 15 850 1 807 1 835 98 % 0 % 2 % 
C 3 110 0 10 460 2 395 92 12 208 426 38 98 % 0 % 2 % 

15 B 2 153 0 9 675 203 15 10 671 1 248 4 99 % 0 % 1 % 
C 1 310 0 13 040 882 1 870 8 797 797 1 216 98 % 0 % 2 % 

 

. 
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Annex B. Results obtained by branching on fleet size (BB-3) 
In the third column lower bound from the root node is presented. In columns four and five the best 
integer solutions and corresponding optimality gaps using branching strategies BB-2/BB-1 are 
repeated from the main text. Then in columns six to nine, we present best integer solutions and 
corresponding optimality gaps when also BB-3 is included. In columns six and seven, we report 
results with BB-3 rounding the fleet size obtained in the root node down to the nearest integer, 
while columns eight and nine contain results obtained while rounding the fleet size from the 
solution in the root node up to the nearest integer. 

 

Service freq. (BB-2/BB-1) Incl BB-3 fleet size down Incl BB-3 fleet size up 
Instance Lower bound Best MIP Opt. gap Best MIP Opt. gap Best MIP Opt. gap 

6 

A 199 276 207 073 3.9 % 210 083 5.4 % 210 081 5.4 % 
B 76 979 79 850 3.7 % 81 024 5.3 % 81 024 5.3 % 
C 211 662 222 962 5.3 % 223 816 5.7 % 221 584 4.7 % 
D 242 283 254 038 4.9 % 254 648 5.1 % 254 475 5.0 % 
E 334 026 337 970 1.2 % 342 752 2.6 % 340 505 1.9 % 

7 

A 380 049 399 942 5.2 % 404 638 6.5 % 400 776 5.5 % 
B 472 281 492 329 4.2 % 493 830 4.6 % 493 830 4.6 % 
C 132 022 137 247 4.0 % 137 722 4.3 % 137 983 4.5 % 
D 178 064 188 468 5.8 % 188 052 5.6 % 189 056 6.2 % 
E 465 997 481 169 3.3 % 481 194 3.3 % 484 684 4.0 % 

8 

A 416 312 438 209 5.3 % 433 572 4.1 % 437 562 5.1 % 
B 156 979 163 073 3.9 % 181 292 15.5 % 163 655 4.3 % 
C 416 949 436 242 4.6 % 432 258 3.7 % 436 197 4.6 % 
D 360 192 376 045 4.4 % 374 852 4.1 % 373 687 3.7 % 
E 360 466 373 555 3.6 % 374 331 3.8 % 373 555 3.6 % 

9 

A 234 843 248 498 5.8 % 248 969 6.0 % 248 969 6.0 % 
B 346 985 363 165 4.7 % 367 062 5.8 % 363 946 4.9 % 
C 724 181 749 700 3.5 % 750 649 3.7 % 754 654 4.2 % 
D 743 061 766 424 3.1 % 766 704 3.2 % 763 246 2.7 % 
E 363 332 378 938 4.3 % 379 852 4.5 % 382 082 5.2 % 

10 

A 460 244 480 772 4.5 % 480 772 4.5 % 480 772 4.5 % 
B 276 288 293 161 6.1 % 292 854 6.0 % 292 854 6.0 % 
C 286 209 306 029 6.9 % 306 029 6.9 % 306 029 6.9 % 
D 498 922 526 916 5.6 % 525 194 5.3 % 531 406 6.5 % 
E 504 950 529 821 4.9 % 539 546 6.9 % 537 781 6.5 % 

11 

A 301 161 314 763 4.5 % 320 581 6.4 % 317 540 5.4 % 
B 585 457 611 721 4.5 % 611 721 4.5 % 611 721 4.5 % 
C 183 394 210 386 14.7 % 210 386 14.7 % 210 386 14.7 % 
D 189 225 201 251 6.4 % 202 874 7.2 % 202 874 7.2 % 
E 412 463 439 784 6.6 % 435 961 5.7 % 435 414 5.6 % 

12 

A 157 695 161 507 2.4 % 163 418 3.6 % 162 439 3.0 % 
B 215 855 217 811 0.9 % 221 747 2.7 % 218 104 1.0 % 
C 142 153 152 875 7.5 % 160 554 12.9 % 160 083 12.6 % 
D 261 486 277 024 5.9 % 268 739 2.8 % 274 160 4.8 % 
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E 284 210 293 856 3.4 % 288 793 1.6 % 291 623 2.6 % 

13 
Sol B 733 766 769 808 4.9 % 769 808 4.9 % 769 808 4.9 % 
Sol C 733 766 851 055 16.0 % 817 693 11.4 % 850 540 15.9 % 

14 
Sol B 645 452 717 475 11.2 % 717 475 11.2 % 717 475 11.2 % 
Sol C 644 264 782 793 21.5 % 782 793 21.5 % 782 793 21.5 % 

15 
Sol B 632 116 - - - - - - 
Sol C 624 306 708 632 13.5 % 717725 15.0 % 708427 13.5 % 
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Annex C. Integer solutions obtained with various approaches  
The following table displays the values of the integer solutions obtained with the methods presented 
in this paper. The second and third columns display the solutions obtained using the “MIP-solver I” 
approach and the acceleration technique in the root node, respectively. The latter procedure is used 
for both the branch-and-price and the” MIP-solver II” approach. The fourth and the fifth columns 
thus indicate if branch-and-price and “MIP-solver II”, respectively, improved the solution obtained 
in the root node. The last column sums up the experimental results indicating the solution method 
that yielded the best solution. 

 

Instances MIP-solver I Root node 
Branch-and-

price MIP-solver II Best approach 
1 49 127 - 48 838 49 127 Branch-and-price 
2 52 685 53 209 52 156 52 685 Branch-and-price 
3 47 805 47 805 - - All equal 
4 175 819 174 687 - - Branch-and-price / MIP Solver II 
5 380 565 383 238 380 999 380 363 MIP Solver II 

6 

A - 210 081 207 073 - Branch-and-price 
B 85 329 81 024 79 850 - Branch-and-price 
C 229 948 223 816 222 962 - Branch-and-price 
D 261 920 255 329 254 038 - Branch-and-price 
E 337 282 342 752 337 970 337 131 MIP Solver II 

7 

A 420 619 404 638 399 942 - Branch-and-price 
B 510 406 493 830 492 329 - Branch-and-price 
C 146 863 143 154 137 247 - Branch-and-price 
D 206 885 189 564 188 468 - Branch-and-price 
E 509 786 - 481 169 583 943 Branch-and-price 

8 

A 441 750 448 387 438 209 442 073 Branch-and-price 
B 170 057 181 292 163 073 175 487 Branch-and-price 
C 442 660 - 436 242 442 054 Branch-and-price 
D 381 943 378 723 376 045 - Branch-and-price 
E 380 568 374 331 373 555 - Branch-and-price 

9 

A 279 878 248 969 248 498 - Branch-and-price 
B 373 372 367 062 363 165 - Branch-and-price 
C 751 967 758 346 749 700 750 088 Branch-and-price 
D 778 008 766 704 766 424 - Branch-and-price 
E 397 062 393 020 378 938 - Branch-and-price 

10 

A 494 476 480 772 - - Branch-and-price / MIP Solver II 
B 302 398 293 161 - - Branch-and-price / MIP Solver II 
C 312 334 306 029 - - Branch-and-price / MIP Solver II 
D 535 521 - 526 916 546 876 Branch-and-price 
E 535 240 539 823 529 821 - Branch-and-price 

11 

A 337 979 320 581 314 763 - Branch-and-price 
B - - 611 721 - Branch-and-price 
C 220 875 210 386 - - Branch-and-price / MIP Solver II 
D 235 117 206 718 201 251 - Branch-and-price 
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Instances MIP-solver I Root node 
Branch-and-

price MIP-solver II Best approach 
E 451 617 439 784 - - Branch-and-price / MIP Solver II 

12 

A 161 137 167 208 161 507 - MIP Solver I 
B 218 592 221 747 217 811 219 004 Branch-and-price 
C 153 043 160 529 152 875 153 454 Branch-and-price 
D 274 960 322 829 277 024 277 571 MIP Solver I 
E 297 886 309 899 293 856 297 216 Branch-and-price 

13 A 819  488 769 808 - - Branch-and-price / MIP Solver II 
14 B - 717 475 - - Branch-and-price / MIP Solver II 
15 C 714 676 - - - MIP Solver I 
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