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1 Introduction

Auctions have received a lot of attention in the last two decades in economics, operations

research and computer science literature. This is in part due to the growing popularity

of electronic markets and to the efficiency and fairness characterizing these mechanisms

(Anandalingan et al., 2005). Auction design requires the market maker and participants

to address several important issues: Who should be the final winners? What should every

participant pay or receive? What is the best bidding strategy? Is it attractive for bidders to

reveal their true values? Etc. Some of these problems become more complex when the so-

called combinatorial auctions are used. Combinatorial auctions refer to auction mechanisms

in which bids on combinations of items are permitted. Such package bids are beneficial when

synergy exists between the traded items (e.g. Rassenti et al., 1982; Ledyard et al., 2002;

de Vries and Vohra, 2003; Pekec̃ and Rothkopf, 2003). Participants are thus offered

the possibility to express their valuations for any collection of items they want to trade and

the well-known exposure problem is avoided (Rothkopf et al., 1998).

The majority of research on eMarkets and auctions design considers one-sided markets,

i.e., markets including either one seller and multiple buyers (a one-to-many or forward auc-

tion), or one buyer and multiple sellers (a many-to-one or reverse auction). Determining

winning bids is often done with respect to an objective function that, depending on the

type of market considered, maximizes the seller’s revenue (forward auction) or minimizes

the buyer’s cost (reverse auction). When only simple bids are permitted (i.e. bids on single

items), winners are straightforwardly determined (Pekec̃ and Rothkopf, 2003). When

bids on combinations of items are allowed, the winner determination problem (WDP) how-

ever must be formulated as a set packing, a set covering or a set partitioning problem and

is much harder to solve (Abrache et al., 2007).

The pricing problem is another important issue that must be tackled when designing

auctions. One must indeed specify the price that must be paid or received by each participant

at the end of the auction process. Pricing rules have to be consistent in regards to winning

and losing bids and explain why some bids win and others lose (Xia et al., 2004). For

iterative auctions, i.e., auctions made up of several rounds, the pricing problem is generally

addressed at each round to disclose price information to bidders and help them elaborate

efficient bidding strategies.

Both winner determination and pricing problems were intensively studied in the last two

decades for unilateral markets. A few studies dealt with bilateral markets, i.e., markets in-

cluding multiple buyers and multiple sellers. Many-to-many auctions, also called exchanges,

were proposed in which both buyers and sellers submit package bids. Applications of com-
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binatorial exchanges have been suggested for trading assets in financial markets (e.g., Fan

et al., 2000, 2002), supply chain formation and coordination (Walsh et al., 2000), and mar-

ket clearing in process industries (Kalagnanam et al., 2001). Few papers addressed the

problem of designing combinatorial exchanges (Parkes et al., 2001; Kothari et al., 2002;

Smith et al., 2002). Some others focused on modeling and solving the winner determi-

nation problem (Xia et al., 2005) or considered only non-combinatorial bids (Bourbeau

et al., 2005). Abrache et al. (2004) and Cavallo et al. (2005) suggested bidding lan-

guages for combinatorial exchanges that allow participants to express preferences for both

buying and selling goods in the same structure. Recently, Chu (2009) considered a bilateral

bundle/multiunit market in which each buyer requests some bundles of heterogeneous items

and each seller provides multiple units of a single item. The proposed mechanism is proved

to be strategy-proof (i.e., bidding truthfully is the best strategy for each bidder), individual

rational (each bidder has a nonnegative utility function), budget-balanced (the payoff of the

auctioneer is nonnegative) and asymptotically efficient.

In this paper, we propose a trading mechanism for bilateral markets based on combina-

torial auctions. The proposed approach deals with the market bilateral aspect differently

by considering one-sided reverse auctions rather than exchanges during the trading process.

The bilateral component is then reconsidered at the end of the auction to decide on the

price to be paid or received by each participant. The proposed approach takes advantage of

the simplicity of one-sided auctions compared to exchanges, while exploiting combinatorial

bidding as a mean to enforce collaboration between buyers. More specifically, we consider a

particular trading context in which a set of buyers requiring given services or goods, or more

generally, contracts, decide to participate in the same procurement market together with a

number of competing sellers. Buyers’ requests are private information that are submitted at

the beginning of the trade and are not permitted to change during the whole process. Par-

ticipating sellers try then to win some of these requests by submitting combinatorial bids. A

seller may combine in its combinatorial bid contracts submitted by different buyers. At this

stage, only the WDP and the bidder pricing problems need to be solved. When the auction

ends, given the results output of the one-sided auction, one knows exactly the winning sellers,

the price they should receive, and consequently the total price to be paid by all buyers. The

next step consists in determining the price to allocate to each buyer individually. The main

object of this paper is to propose, evaluate and compare different procedures for allocating

costs to buyers at this post-auction pricing phase. In fact, by participating together in the

same combinatorial auction, buyers give sellers more possibilities for combining contracts

and offering interesting sell prices in their package bids which, in turn, should result in a

gain on the total payment to be handled out by buyers when compared to the situation

2
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where buyers participate independently in the same auction. This gain must be perceived

by buyers through the payment they are allocated.

When defining the buyer-cost allocation procedures, we looked for satisfying three prop-

erties: fairness, proposal neutral , and budget balance. The proposal-neutral property ensures

that the cost allocated to a given buyer is independent of its identity. Budget balance means

that the total amount paid by buyers as a result of the cost allocation procedures must be

equal to the total payment to be received by the winning bidders as output by the auction

process. To satisfy the proposal-neutral property, cost allocation procedures are defined

with respect to individual contracts rather than individual buyers. Once these prices are

determined, each buyer pays an amount equal to the sum of the prices of the contracts it

requested. This contract-pricing approach assumes that one can determine the price of each

contract separately at the end of the auction process. Such an approach is in fact closely re-

lated to the problem of determining linear prices in iterative combinatorial auctions that has

been treated for one-sided markets (e.g. Xia et al., 2004; Kwasnica et al., 2005; Bichler

et al., 2009). In the reported studies, exact or approximate, and possibly multiple, linear

prices are derived with respect to winning and losing bids. Some of these studies limited

the search to determining single-item prices although they were non-unique (O’Neill et al.,

2005). Others proposed procedures to ensure unicity in a way that guided bidders solve the

threshold problem in multi-round auctions (Kwasnica et al., 2005). The procedures that

we propose in this paper to determine exact or approximate (and possibly multiple) contract

prices recall the main ideas already exposed in the literature and adapt them to reverse

auctions. For contracts price unicity, we propose a new approach directed toward auction-

eer rather than bidders’ interests. In fact, the unicity procedures reported in the literature

were elaborated for price-feedback information purposes in iterative one-sided auctions to

help bidders construct interesting and potentially winning bids for the next rounds. Prices

unicity was thus met with respect to some arbitrary or bidder-specific criteria. In this paper,

linear prices are used to determine the price that should be paid by each buyer individually,

once the whole auction process terminates. Hence, unlike previous work, fixing contract

prices is done with respect to auctioneers (i.e., buyers) so as to define fair payments for

them. Moreover, based on the idea that combinatorial bidding is a mean to incitate buyers

to collaborate and participate in the same auction, the proposed procedures are inspired

by a number of cooperative game theory concepts, namely the nucleolus and the Shapley

value. We define two procedures that are based on the concept of the nucleolus applied to a

particular cooperative game with restrictions. We define two other procedures based on the

Shapley value concept adapted to a series of sub-games. We prove that these two procedures

are equivalent and will always yield the same price allocation.

3
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Regarding the budget-balance property, we prove that when a set partitioning formulation

is used to model the winner determination problem, the proposed contract-pricing approach

is always budget-balanced independently of the unicity procedure used. We also prove that

a set covering formulation may yield an unbalanced budget, in some cases, and propose a

simple way to recover the budget balance.

The proposed cost allocation procedures differ in the method used to fix contract prices

when multiple solutions exist after the exact or approximate contract-pricing phase. Yet,

even though defined on a contract level to satisfy the proposal-neutral property, these meth-

ods are used to determine the payment to be paid by a buyer (i.e., a subset of contracts). We

thus propose performance-measure criteria, defined at buyer level, to compare the quality of

the solutions output by these procedures.

We tested the proposed cost-allocation procedures on instances derived from the CATS

generator elaborated by Leyton-Brown et al. (2000). All the proposed procedures need

relatively short computing times even for large problems.

The remainder of the paper is organized as follows. The next section defines the problem

addressed and the related assumptions. In Section 3, we adapt the exact and approximate

procedures for determining linear prices in combinatorial auctions to procurement markets.

In Section 4, we prove that the budget-balance property is not always satisfied when a

contract-pricing approach is used and propose a simple idea to recover it. Section 5 de-

scribes the procedures proposed to ensure contracts price unicity. Section 6 presents the

performance-measure criteria used to evaluate the quality of the allocations yielded by these

procedures and reports the experimental results obtained for different sets of instances. We

conclude in Section 7.

2 Problem Setting

We consider a bilateral procurement market including multiple buyers and multiple sellers

trading heterogeneous contracts. A contract is specific to a buyer. It refers to either services

or goods and may include other additional information such as trading conditions, buyer

specifications, etc. As already mentioned, the trading process is modeled as a one-sided

procurement auction in which all buyers are grouped and treated as a single “artificial”

auctioneer and sellers are the bidders. It is assumed that contracts are not allowed to

change during the auction process. Moreover, all contracts are indivisible implying that

each must be served by a unique seller offer. In transportation markets, for example, buyers

correspond to shippers who need to move commodities between specified locations and sellers

are carriers that make offers to win shipping contracts. A contract, in this context, specifies

4
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the commodities to move, their volumes, and possibly other components such as pick-up

and delivery time windows, carrying conditions, etc. Contract indivisibility implies that the

commodities within a shipper contract have to be carried together by a single transportation

service.

The “artificial” auctioneer, acting as representative of the buyers, communicates the buyer

contracts to participating sellers. The latter make offers in form of package bids. A seller

presents in its bid a set of contracts it is ready to perform and the price it asks for this

service. Seller bids are assumed indivisible in the sense that the contracts submitted in a

package must be all allocated or none. Hereafter, we illustrate the problem for the more

general iterative auction process. In such contexts, bidders have the possibility to submit

new bids in different rounds of the auction. In each round, the set of winning bids are

determined by solving a winner determination problem. Prices information together with

current winning bids are communicated to bidders to help them in their bidding tasks, and

the process is repeated until some stopping criteria are met.

2.1 Winner Determination Problem

Let K denote the set of contracts submitted by the buyers. Set K is fixed at the beginning

of the auction and is not permitted to change during the trading process. A combinatorial

bid b submitted by a seller is described by a pair (Kb, Pb), where Kb is the set of contracts

the seller offers to perform in bid b (Kb ⊆ K) and Pb is the price asked if bid b wins. Let

Br denote the set of bids considered in a round r of the auction. This set includes the new

bids submitted in round r, as well as the winning bids of the previous round. The WDP

corresponding to round r is modeled by using binary variables xb defined for each bid b ∈ Br:

variable xb equals 1 if bid b wins; 0 otherwise. The constant parameter δbk is defined for each

contract k and each bid b to indicate whether bid b covers contract k or not, i.e., δbk = 1 if

k ∈ Kb; 0 otherwise.

The WDP associated with round r can be formulated as follows:

(P1r) : min
∑

b∈Br

Pbxb

s.t.
∑

b∈Br

δbkxb = 1 ∀k ∈ K, (1)

xb ∈ {0, 1} ∀b ∈ Br. (2)

(P1r) is a set partitioning formulation that minimizes the total cost paid by the buyers.

Constraints (1) guarantee that each buyer contract is covered exactly once by one seller bid.

Constraints (2) are integrality constraints. Notice that, given this formulation, a seller can

5
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win more than one bid assuming the bids submitted by a bidder at a given round are OR

bids (Nisan, 2006).

Formulation (P1r), using set-partitioning constraints, has some drawbacks. Indeed, it is

well known that set partitioning formulations are more difficult to solve than set covering

and set packing ones. Moreover, in our particular case, bidders submit bids independently

of one another in a way that maximizes their own utility functions. Hence, there is no

guarantee that the set of bids considered at a given round will cover all buyers’ contracts.

To be feasible, a set partitioning formulation requires that there exists, at each round of the

auction, a set of bids that not only cover all buyers’ contracts but are also disjoint. Finally, a

set partitioning formulation may yield negative dual values, that is, negative marginal costs

to serve a contract.

In the following, we will rather consider a relaxed set covering formulation, (P2r), and

assume that a contract can be “theoretically” covered more than once. Formulation (P2r)

is identical to (P1r), except that equality constraints (1) are replaced by the following set of

inequality constraints:

∑

b∈Br

δbkxb ≥ 1 ∀k ∈ K. (3)

Obviously, by allowing two bids covering the same contract to win, the WDP is more likely

to be feasible. It is noteworthy that, in practice, a contract covered twice will in fact be

served only once by the “appropriate” bidder. Both winning bidders will however receive

a payment as if they both were serving it. We will prove in Section 4 that if a contract is

covered more than once (constraints 3 are not tight), the price of serving this contract is

necessarily null.

Even though the risk of infeasibility is decreased for set covering formulations compared to

set partitioning ones, there is no guarantee that the set of bids of a given round will cover

all the contracts in K. To circumvent such problems, we assume that each buyer associates

with each contract a reserve price representing the maximum price that it is ready to pay for

the contract. These reserve prices are private information and are not permitted to change

during the auction process. Buyers’ reserve prices are assumed to be submitted as simple

bids at each round of the auction. More precisely, the set of bids Br considered in a given

round will always include a subset of simple bids, Ba = {(k,Mk), k ∈ K}, where Mk is the

reserve price associated with contract k. One should notice that these simple bids then can

be used to circumvent infeasibilities in set partitioning formulations. However, we wanted

them to be the last alternative for ensuring feasibility, once all sellers’ bids are exploited.

6
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2.2 Bidder Pricing Mechanism

Different bidder pricing schemes exist for combinatorial bidding (e.g., see Xia et al., 2004,

for more details). The well-known Vickrey-Clarke-Groves (VCG) mechanism, also known as

second-price mechanism, was proposed to ensure the incentive-compatibility property im-

plying that bidding truthfully is a dominant strategy for bidders (Vickrey, 1961; Clarke,

1971; Groves, 1973). VCG mechanisms present serious limitations, however, e.g., com-

putational complexity, sensitivity to collusion and cheating, and the fact that they do not

guarantee the budget-balance of the market and may give a seller a marginally small rev-

enue (Rothkopf et al., 1990; Sakurai et al., 2000; Ausubel and Milgrom, 2002, 2006).

The latter stands out since it can be shown that for the important case of exchanges (even

non-combinatorial ones), budget-balance may not be achieved. Moreover, Ausubel and

Milgrom (2006) showed that the VCG auction loses its dominant-strategy property when

bidders face effective budget constraints.

Another, simpler pricing mechanism, which has been largely considered in the literature,

is the so-called first-price mechanism in which each winning bidder “receives” (in the case

of reverse auctions) exactly the amount requested in its bid. Day and Raghavan (2007)

consider that first-price mechanisms for sealed-bid auctions may lead to inefficient outcomes

since incomplete information about the preferences of other participants considerably com-

plicates the task of determining the maximum price that should be submitted to secure a

particular bundle of items. Indeed, the shortcomings pointed out by Day and Raghavan

(2007) can be circumvented by considering price-directed iterative auctions. In such iterative

auctions, pricing information is revealed to bidders at each round to help them construct

promising bids for the next rounds. This price information may take several forms. A first

and easiest alternative is to assume that the price of a package represents the sum of the

prices of the items it contains. These are called linear or additive prices. A second alter-

native, that takes into account the possible synergy between items, assigns a price to the

bundle as a whole. In this case, the bundle price may be anonymous (i.e., it does not depend

on the bidder), or discriminatory implying a different bundle price for different participants.

In this paper, we consider iterative auctions with a first-price rule. Formally, a seller

winning a bid b must receive an amount exactly equal to Pb, the price asked in its bid. The

object of the paper being more about buyer-pricing problem once the auction process is

finished, we will not go into more details regarding price feedback for iterative auctions. We

refer the reader to the papers by Kwasnica et al. (2005) and Bichler et al. (2009) for an

overview on this topic.

7
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2.3 Buyer Cost-Sharing Problem

At the end of the auction process, once the bidder-pricing problem is solved, the “artificial”

auctioneer knows exactly the total amount that must be paid by the buyers. Formally, this

amount is given by C(A) =
∑

b∈BR Pbx
∗
b , where A denotes the set of buyers and x∗ is an

optimal solution of the WDP (P2R) in the final round R. The question is: what is the

amount that must be paid by each buyer? In other words, how the total cost, C(A), should

be shared among buyers?

Cost-sharing problems are commonly encountered in cooperative game theory. In coop-

erative games, different agents interact and try to form coalitions. A coalition is defined as

a subset of players (or agents) that cooperate in order to obtain gains (see, e.g., Young,

1994, for more details on cooperative game theory concepts). In our context, we assume

that by participating in the same auction, buyers obtain gains when compared to the case

where each buyer participates in the auction separately. In other words, if each buyer runs

a one-sided auction with the same set of sellers, then the total amount paid by all buyers

with their one-sided auctions is greater than the total amount they would pay if they partic-

ipate all together in the same auction. Such situations are common in procurement markets.

For transportation markets, for example, by putting together different lanes (i.e., origin-

destination pairs), carriers can make interesting offers that minimize empty movements and

other related costs (Caplice and Sheffi, 2006). Thus, shippers would generally pay a total

transportation cost that is lower than the amount they would have paid had they submitted

their lanes separately.

Cost-sharing methods proposed in cooperative game theory imply the determination of

the cost associated with some or all possible coalitions of players. The cost associated with

a coalition represents the cost the coalition would incur working on its own. In traditional

cooperative games, such a cost is determined by solving an optimization problem restricted

to the members of the coalition. In our case, the problem is more complex. In fact, the total

cost paid by all buyers (the grand coalition) is determined through a multi-round auction

process. Determining the cost incurred by a subset of buyers is not an easy task. Ideally,

one would run multiple multi-round auctions, one for each sub-coalition of buyers. Clearly,

such a process is impossible in practice because: (1) Sellers are not disposed to run such

auctions: they see no interest in doing this (the interest is more for buyers) (2) Running a

multitude of auctions is computationally intractable and would take a long time.

In this paper, we propose a new approach for determining cost allocations that combines

some results obtained for linear prices in one-sided combinatorial auctions and some key-

concepts of cooperative game theory. More precisely, we consider a contract-pricing approach

8
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in which prices are defined for single contracts rather than buyers. Recall that this is done

to ensure the proposal-neutral property so as the cost allocated to a buyer does not depend

on its identity. Afterward, if pk denotes the price assigned to contract k, and K(a) is the

set of contracts requested by buyer a, then the total amount that must be paid by buyer a

is C(a) =
∑

k∈K(a) pk.

Contract prices are determined at the end of the auction with respect to winning and losing

bids by using exact and approximate procedures as will be described in Section 3. We prove

in Section 4 that a simple extension of the existing linear-pricing procedures may yield, in

some cases, an unbalanced budget and we propose a simple way to ensure the budget-balance

property. Besides, contract prices obtained by the exact or the approximate procedures may

be not unique. Considering that buyers will gain by participating in the same combinatorial

auction, we propose in Section 5 to fix contract prices using unicity procedures that are

inspired by the nucleolus and the Shapley value methods, two concepts that are traditionally

used in cooperative games.

3 Contract Prices

Linear prices must be coherent with the set of losing and winning bids to explain why some

bids win and others lose. In our context, we are only interested in contract prices at the end

of the auction, i.e., at the final round R. At this round, solving model (P2R) yields two sets

of bids: the set of winning bids WR and the set of losing bids ER. Clearly WR ∪ ER = BR

where BR is the set of all bids considered at round R. Let pk denote the price associated with

contract k. Recall that the bidder-pricing scheme that we adopted follows a first-price or a

“receive-as-bid” rule. Hence, contract prices must ideally satisfy the following constraints:

∑

k∈K

δbkpk = Pb ∀b ∈ WR, (4)

∑

k∈K

δbkpk ≤ Pb ∀b ∈ ER. (5)

3.1 Exact Contract Prices

When the WDP is a pure linear program, we can easily prove that the system of equations

(4)-(5) is always feasible. In such cases, contract prices are derived from the optimal values

9
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of dual variables. In fact, consider the following linear relaxation of model (P2R):

(LP2R) : min
∑

b∈BR

Pbxb

s.t.
∑

b∈BR

δbkxb ≥ 1 ∀k ∈ K,

xb ≥ 0 ∀b ∈ BR.

Its dual, (DP2R), is given by:

(DP2R) : max
∑

k∈K

Πk

s.t.
∑

k∈K

δbkΠk ≤ Pb ∀b ∈ BR,

Πk ≥ 0 ∀k ∈ K.

By duality theory, a feasible primal solution x and a feasible dual solution π are optimal

if and only if they satisfy the following complementary slackness conditions:

(Pb −
∑

l∈L

δbkΠk)xb = 0 ∀b ∈ BR, (6)

(1 −
∑

b∈B

δbkxb)Πk = 0 ∀k ∈ K. (7)

Primal conditions (6) ensure that when a bid b wins (i.e., when xb = 1), then
∑

k∈K δbkΠk =

Pb, which is equivalent to the “receive-as-bid” rule (4). Dual constraints in model (DP2R)

ensure inequalities (5) for losing bids. Thus, if the optimal solution of the linear relaxation

of model (P2R) is integral, the corresponding optimal dual solution, (Π∗
k)k∈K , represents the

prices of serving contracts k ∈ K. This remains true when the WDP is an integer problem

for which the linear relaxation yields an integer solution. Many previous researches aimed

to determine some of these particular WDP (e.g. Rothkopf et al., 1998; de Vries and

Vohra, 2003).

For general WDP, the correspondence between contract prices and optimal dual values

is no longer possible. Furthermore, there is no guarantee that the linear system (4)-(5) is

always feasible (e.g., Kwasnica et al., 2005; Shabalin et al., 2005; Bichler et al., 2009).

In such cases, one can approximate contract prices by adequate linear programs that take

back the main constraints of the dual as will be explained in the next section.

10
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3.2 Approximate Contract Prices

In this section, we propose to adapt some of the LP-based approximation procedures pro-

posed in the literature to the context of procurement markets. In such approaches, equality

constraints (4) modeling the “receive-as-bid” rule are maintained as hard constraints, while

inequality constraints (5), representing also the dual constraints in model (DP2R), are per-

mitted to be violated. The objective is thus to determine contract prices such that these

violations (also called “distortions”) are reduced as much as possible. This is done by solv-

ing a series of LP models. In these models, a variable pk is defined for each contract k to

represent the price allocated to it. In addition, a continuous variable ∆b is defined for each

losing bid b ∈ E to model the possible deviation with regard to the corresponding constraint

(5) (the index of the final round ‘R’ is omitted here to simplify the presentation). As in

the RAD auction proposed by Kwasnica et al. (2005), we consider an objective function

that minimizes the maximum of all these distortions. A continuous variable, Z, representing

the upper bound over all distortions is thus introduced. The LP problem approximating

contract prices is thus given by:

(AP 0) min Z (8)

s.t.
∑

k∈K

δbkpk = Pb ∀b ∈ W, (9)

∑

K∈K

δbkpk − ∆b ≤ Pb ∀b ∈ E, (10)

∆b − Z ≤ 0 ∀b ∈ E, (11)

pk ≥ 0 ∀k ∈ K, (12)

∆b ≥ 0 ∀b ∈ E. (13)

Objective function (8) minimizes the maximum distortion. Constraints (9) ensure the

“receive-as-bid” rule. Constraints (10) aim at satisfying inequalities (5) with some deviation.

Constraints (11) express the fact that Z represents an upper bound for distortions. Finally,

constraints (12) and (13) are non-negativity constraint on price and distortion variables.

Kwasnica et al. (2005) proved that improvement may still be possible with respect to

the optimal solution (Z∗, ∆∗, p∗) of model (AP 0) when Z∗ 6= 0. In fact, there may exist

constraints (10) corresponding to some losing bids b ∈ E for which ∆∗
b < Z∗ and can be

further lowered. They propose to lower distortions iteratively by solving a series of LP

problems. An adaptation of their approach to our context consists in solving sequentially a

number of LP problems, the problem solved at iteration 0 being (AP 0). The LP problem
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considered at iteration t, denoted hereafter (AP t), is similar to its predecessor (AP t−1) except

for some inequality constraints (10) of (AP t−1) that are replaced by equality constraints

with fixed distortions. This is done for the losing bids for which the distortions cannot

be further improved, i.e., the set of bids b for which the optimal distortion is equal to the

optimal objective function. Thus, distortions are fixed progressively, inequality constraints

are replaced by equality constraints, and problems are solved until no distortion can be

further improved.

Formally, let Êt denote the set of distortions fixed at iteration (t − 1) and ∆̂t
b their

corresponding values. The problem to be solved at iteration t is given by:

(AP t) : min Z

s.t.
∑

k∈K

δbkpk = Pb ∀b ∈ W, (14)

∑

k∈K

δbkpk = Pb + ∆̂t
b ∀b ∈ Êt, (15)

∑

k∈K

δbkpk − ∆b ≤ Pb ∀b ∈ E \ Êt, (16)

∆b − Z ≤ 0 ∀b ∈ E \ Êt, (17)

pk ≥ 0 ∀k ∈ K, (18)

∆b ≥ 0 ∀b ∈ E \ Êt. (19)

Both exact and approximate contract-pricing phases may yield multiple feasible solutions.

Kwasnica et al. (2005) propose a procedure that fixes prices in a way that helps bidders

construct potentially winning bids for subsequent rounds by solving the threshold problem,

i.e., situations where a set of bidders desiring to acquire small packages must coordinate

their efforts to outbid another single bidder bidding on the larger combination of all these

packages. They propose a series of LP models that sequentially maximize the minimum price

of the contracts in each winning bundle. Shabalin et al. (2005) showed that the procedures

proposed by Kwasnica et al. (2005) may still not guarantee unique prices. They propose

a procedure that sequentially minimizes the maximum of all prices and then minimizes the

sum of the prices of the items in the optimal set.

In our context, price unicity is a fundamental issue in determining the payment each

buyer individually has to make when the auction ends. Fixing contract prices in case of

multiple feasible solutions must thus take into account the interests of the buyers rather

than of the bidders. The object of the next sections is to propose procedures for fixing

contract prices in a way that allocates fair payments to buyers, and ensures that the total
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payment allocated to buyers is equal to the total price asked by winning sellers. We will

prove in the next section that this budget-balance property is not always satisfied when using

a contract-pricing approach.

In the following, let P = {(pk)k∈K} denote the set of contract-price vectors deduced from

either the exact or the approximate contract-pricing phase.

4 Recovering budget-balance

This section deals with the budget-balance property and thus assumes, throughout, that

contract prices are unique (i.e., |P∗| = 1).

The contract-pricing approach we consider in this paper attributes to each buyer a a

payment P (a) equal to
∑

k∈K(a) pk. Thus, the total amount allocated to buyers with such

an approach is:

P (A) =
∑

a∈A

P (a) =
∑

a∈A

∑

k∈K(a)

pk =
∑

k∈K

pk.

Besides, the total amount that must be paid by all buyers at the end of the auction process

is:

C(A) =
∑

b∈BR

Pbx
∗
b =

∑

b∈W

Pb,

where x∗ denotes the optimal solution obtained by solving model (P2R). Thus, the budget

is balanced if the two amounts P (A) and C(A) are equal. We prove next that this is not

always true.

Proposition 1

A contract-pricing approach satisfies the budget-balance property if and only if at least

one of the following conditions is met:

• The set of winning bids at the final round is such that each contract is covered exactly

once.

• If a contract is covered more than once at the final round, then its price is null.

Proof: Recall that, in Section 2.1, we choose to formulate the winner determination problem

as a set covering model thus allowing a contract to be covered more than once. We have

also noticed that, even though a contract is covered twice by two seller bids, it will be served

only once in practice and the winning sellers will receive payments as if they both served it.

Let K+ denote the set of contracts covered more than once in the final solution of the WDP

(P2R), that is, ∀k ∈ K+,
∑

b∈BR δbkx
∗
b > 1. For each k ∈ K, define µk as the number of

times the contract k is over covered. That is, µk =
∑

b∈BR δbkx
∗
b − 1, or written differently
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∑

b∈BR δbkx
∗
b − µk = 1. Clearly, ∀k ∈ K+, µk > 0 and ∀k ∈ K \ K+, µk = 0. The total

payment allocated to buyers with the contract-pricing approach is thus given by:

P (A) =
∑

k∈K

pk

=
∑

k∈K

pk

(

∑

b∈BR

δbkx
∗
b − µk

)

=
∑

k∈K

pk

∑

b∈BR

δbkx
∗
b −

∑

k∈K+

pkµk

=
∑

b∈BR

x∗
b

(

∑

k∈K

δbkpk

)

−
∑

k∈K+

pkµk.

Recall that x∗
b = 1,∀b ∈ W and x∗

b = 0,∀b /∈ W . Moreover,
∑

k∈K δbkpk = Pb,∀b ∈ W .

Thus:
∑

b∈BR

x∗
b

(

∑

k∈K

δbkpk

)

=
∑

b∈W

∑

k∈K

δbkpk =
∑

b∈W

Pb = C(A).

Thus, P (A) = C(A)−
∑

k∈K+ pkµk. Hence, one can assert that a contract-pricing approach

satisfies the budget-balanced property if and only if at least one of the following conditions

is met:

• K+ = ∅ implying that each contract is covered only once.

• K+ 6= ∅ and ∀k ∈ K+, pk = 0 (Since µk > 0,∀k ∈ K+ and ∀k ∈ K, pk ≥ 0).2

Corollary 1 When the WDP has the integrality property, a contract-pricing approach will

always satisfy the budget-balance property.

Proof: When the WDP has the integrality property, contract prices correspond to values

of the optimal dual variables (Π∗
k)k∈K as shown in Section 3.1. In this case, if a contract k is

served more than once (i.e., the corresponding covering constraint in (LP2R) is slack), then

by dual conditions (7), Π∗
k = 0, which means that the price of serving this contract is zero.

It is worth mentioning that budget balance in this case is a classical result in duality theory

since, at optimum, primal and dual objective values must be identical. 2.

Corollary 2 When the WDP is modeled as a set partitioning problem, a contract-pricing

approach will always satisfy the budget-balance property.

Proof: In this case, each contract is covered exactly once 2.

In the following, the budget balance property is ensured by simply adding to approximate
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models (AP t), the budget balance constraint:

∑

k∈K

pk =
∑

b∈W

Pb. (20)

5 Price Unicity

When participating together in the same procurement auction, buyers offer a large choice

to sellers to combine contracts and to propose low ask prices in their bids. Consequently,

buyers will realize gains when compared to the case where each buyer participates on its own

in the same auction. This can be be considered as a form of collaboration between buyers,

a concept addressed in cooperative game theory. In cooperative games, a set of players,

also called agents, collaborate in order to obtain gains. A cooperative game is generally

described by a rule that computes the gain realized by any coalition of players once it is

formed. Cooperative game theory deals with sharing gains, or costs, among the players of

the game.

In our context, the proposal-neutral property implies considering contracts rather than

buyers when determining cost distribution. In other words, being present at the same time

in the same market is a form of collaboration between contracts. This collaboration is of

course primarily due to combinatorial bidding. Hence, we are in presence of a cooperative

game in which the players are the contracts and the total cost to be shared is C(A), the

output of the auction process. The assignment of these individual costs must inevitably be

consistent with the set of losing and winning bids arguing why some bids win and others not.

In other words, the prices affected to contracts must lie within set P . In the following, we

propose four procedures to ensure the unicity of contract prices in situations where multiple

solutions exist in P . These procedures are inspired by two cooperative game theory concepts:

the nucleolus and the Shapley value (see Boyer et al., 2006, for example, for a survey on

cost-sharing procedures).

5.1 Nucleolus-based procedures

The nucleolus is a classical cooperative game theory concept that aims at maximizing the

social welfare of the least-satisfied coalition of players (e.g., Granot et al., 1998). Let N

be the set of all the players of the game, and α = (α1, α2, ..., αn) be the cost incurred by

each player i, i = 1, . . . , n output by some cost-sharing procedure. For each sub-coalition S

of players, let g(α, S) represent its “satisfaction” with allocation α. In general, a coalition

satisfaction is measured through the marginal gain obtained by sub-coalition S with allo-

cation α. Formally, g(α, S) = C(S) −
∑

i∈S αi, where C(S) is the total cost incurred by
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sub-coalition S if working on its own. Define also g(α) as the vector of the g(α, S) values

for the 2n −2 possible sub-coalitions of players, placed in a nondecreasing order with respect

to their values. The nucleolus is defined as the unique allocation α∗ that lexicographically

maximizes g(α). In other words, α∗ is the allocation that maximizes the lowest coalition

gain, the second lowest gain, etc. The unicity procedures we propose next are inspired by

this concept of maximizing the satisfaction of the least satisfied coalitions without properly

applying the nucleolus method in its classical definition.

In our context, we consider a game in which the players are the contracts and a cost

allocation consists in choosing a feasible price vector p among the set of vectors P . To

circumvent the difficultly related to enumerating and determining all coalition costs, we

consider only single-player coalitions, i.e., coalitions that are composed of a unique contract.

Moreover, we prove next that P is a bounded convex set implying thus that a feasible price

for a contract k necessarily lies within a finite interval [p
k
, pk], where p

k
, respectively pk,

denotes the minimum, respectively the maximum, price that could be assigned to contract

k within set P . When prices are chosen arbitrarily, a contract is likely to be attributed

its maximum, minimum or any other price within [p
k
, pk]. Based on this, we propose two

ways for defining the satisfaction associated with a contract k and an allocation p̃ ∈ P ,

denoted here after by g(p̃, k). First, g(p̃, k) can be computed as the marginal gain obtained

by contract k with respect to its maximum price. Formally, g(p̃, k) = pk − p̃k. In this case,

we consider that when no appropriate unicity procedure is used, a contract is assigned its

maximum price pk. Second, g(p̃, k) can be represented by the distance between p̃k and the

minimum cost that could be assigned to k within P , p
k
. In this case, we assume that a

contract receives its minimum price when arbitrary choices are made. It is more appropriate

then to speak of marginal loss rather than marginal gain since the price assigned to the

contract with allocation p̃ is necessarily greater than or equal to its minimum price. The

marginal loss of a contract k with allocation p̃ is given by: l(p̃, k) = p̃k − p
k
.

Proposition 2 The set P of feasible contract prices output either by the exact or the

approximate contract-pricing phase is a bounded convex set.

Proof: When the WDP has the integrality property, we established in Section 3.1 that P

is defined by the constraints defining the dual of the LP relaxation of the WDP which can
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be written as:

∑

k∈K

δbkpk = Pb ∀b ∈ W,

∑

k∈K

δbkpk ≤ Pb ∀b ∈ E,

pk ≥ 0 ∀k ∈ K.

When the approximate phase is necessary, P is defined by the set of constraints:

∑

k∈K

δbkpk = Pb ∀b ∈ W, (21)

∑

k∈K

δbkpk = Pb + ∆∗
b ∀b ∈ Ê, (22)

∑

k∈K

δbkpk ≤ Pb ∀b ∈ E \ Ê, (23)

pk ≥ 0 ∀k ∈ K, (24)

where ∆∗ is the vector of optimal distortions output by the approximate contract-pricing

phase (refer to Section 3.2). Thus, in both definitions, P consists of a set of linear inequalities

implying that it is a polyhedron and thus a convex set (Nemhauser and Wolsey, 1988).

Moreover, recall that a reserve price Mk is associated with each contract k and that

simple bids Ba = {(k,Mk), k ∈ K} are considered at each round of the auction to ensure

the feasibility of the WDP. Hence, ∀p ∈ P and ∀k ∈ K:

• If (k,Mk) is a winning bid at the final round R, then pk = Mk.

• If (k,Mk) is a losing bid at the final round R, then:

– if the WDP has the integrality property, P is defined by dual constraints and we

have 0 ≤ pk ≤ Mk.

– Otherwise, P is defined by the set of constraints (21)-(24) and we have either :

0 ≤ pk ≤ Mk or pk = ∆∗
(k,Mk) + Mk

In all cases, we prove that ∀p ∈ P and ∀k ∈ K, either 0 ≤ pk ≤ Mk or pk equals a finite

value. Thus P is bounded. 2

Based on the above definitions of marginal gain and marginal loss, two cost allocation pro-

cedures are derived, each determining the “nucleolus” with respect to its respective definition

of “player satisfaction”.
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5.1.1 Procedure 1: maximizing the minimal marginal gain

The satisfaction associated with a contract k with an allocation p̃ is given by its marginal

gain g(p̃, k) = pk − p̃k, where pk is the maximum price that can be attributed to contract k

given the set of vector prices P . These maximum prices are obtained by solving a series of

LP problems, one for each contract k in K. The LP problem corresponding to contract k

is given by: {pk = max pk s.t. p ∈ P and
∑

k∈K pk =
∑

b∈W Pb}.

The object of Procedure 1 is to assign prices to contracts within set P in a way that

maximizes the minimum distance with respect to contract maximum prices. This is done

iteratively until all contract prices are fixed. One avoids thus situations where some contracts

are assigned their maximum prices where as other contracts receive their minimum prices.

To use a cooperative game theory jargon, let g(p̃) be the vector of the g(p̃, k) = pk − p̃k

values obtained with allocation p̃ for the |K| single-contract sub-coalitions, these values

being placed in non-decreasing order. The procedure we propose consists in finding the

allocation, or equivalently the vector p̃ in P , that lexicographically maximizes g(p̃). This,

in fact, reduces to iteratively solving a series of LP problems. The LP problem solved at

iteration 0 is given by:

(PRO10) : max w (25)

s.t. p ∈ P , (26)
∑

k∈K

pk =
∑

b∈W

Pb, (27)

pk + w ≤ pk, ∀k ∈ K (28)

w ≥ 0. (29)

In this model, continuous variable w represents the minimal contract marginal gain given

the set of multiple price vectors P and the budget-balance constraint (27). The objective

function (25) maximizes this minimal gain. At each iteration t, a contract k for which

constraint (28) was tight at the previous iteration (t− 1) is allocated a fixed price p̃k. More

precisely, p̃k = pk − w∗,t−1, where w∗,t−1 is the optimal objective function resulting from

solving the LP model at iteration (t − 1). The set of contracts for which prices are fixed

is denoted by K̃. The process continues until all contract prices are fixed, i.e., K̃ = K.
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Formally, the LP model considered at iteration t is formulated as follows:

(PRO1t) : max w

s.t. p ∈ P,
∑

k∈K

pk =
∑

b∈W

Pb,

pk = pk − w∗,t−1 ∀k ∈ K̃,

pk + w ≤ pk ∀k ∈ K \ K̃,

w ≥ 0.

5.1.2 Procedure 2: minimizing the maximal marginal loss

This procedure is based on the same idea as Procedure 1 except that the coalition satisfaction

is defined in a different way. For this approach, a contract k is fully satisfied with a given

allocation p̃ ∈ P if it is assigned its minimum cost p
k
. We thus defined the concept of

marginal loss of a single-contract coalition k, with an allocation p̃, as the difference between

its price with allocation p̃, p̃k, and its minimal price p
k
. As in Procedure 1, the minimum

prices p
k
, k ∈ K are obtained by solving a series of LP problems one for each contract

k ∈ K. The LP problem associated with a contract k ∈ K is given by: {p
k

= min pk s.t. p ∈

P and
∑

k∈K pk =
∑

b∈W Pb}. Marginal losses of all contracts are then lexicographically

minimized by iteratively solving a series of LP problems. The problem solved at iteration 0

is given by:

(PRO20) : min β (30)

s.t. p ∈ P , (31)
∑

k∈K

pk =
∑

b∈W

Pb, (32)

pk − β ≤ p
k

∀k ∈ K, (33)

β ≥ 0, (34)

where β represents the maximal deviation with respect to the minimum price for all contracts.

At each iteration t, the contracts k for which constraints (33) are tight are allocated a fixed

price p̃k = p
k

+ β∗,t, where β∗,t is the optimal objective function obtained after solving the

model of iteration t. The process is iterated until all prices are fixed.
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5.2 Shapley value-based procedures

The Shapley value is a very common cost-sharing procedure in cooperative game theory

essentially based on the so-called incremental costs (Shapley, 1953; Shapley and Shubik,

1969). The incremental cost is defined for a coalition of players S and a player i /∈ S as

the additional cost incurred by the new coalition S ∪ i when player i joins S. Formally,

if C(S) denotes the cost incurred by a coalition S in the given game, the incremental cost

associated with coalition S and player i is given by: C(S, i) = C(S ∪ i) − C(S). Assume

that we consider a cost-sharing procedure in which each player pays its incremental cost for

joining the players already in the game. For example, consider a game with three players,

i1, i2 and i3. Assume that player i1 is the first player of the game, i2 is the second player to

join the game and player i3 is the last one. Then, player i1 is allocated a cost C({i1}), player

i2 is allocated a cost C({i1, i2}) − C({i1}), and player i3 a cost C({i1, i2, i3}) − C({i1, i2}).

Obviously, one should consider all the alternatives for the order of arrival of the players in

the game. The Shapley value indeed assumes that this order of arrival is random and the

probability that a player joins first, second, third, etc. a coalition is the same for all players.

The cost allocated to a player i is computed as the expected mean value of its incremental

costs for the different orders of arrival. More generally, the cost allocated to a player i in a

game including a set N of players is given by:

ci =
∑

S⊆N :i∈S

(|S| − 1)!(|N | − |S|)!

|N |!
[C(S) − C(S \ {i})],

or equivalently,

ci =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[C(S ∪ {i}) − C(S)].

Recall that in our context, we are given a set of multiple contract prices P , and we need

to fix prices in a unique way so as to derive fair payments for buyers. We propose hereafter

an approach that adapts the Shapley rule concept to our problem.

Unlike traditional games, computing a cost associated with each coalition of contracts

is not straightforward in our case. Moreover, when the number of contracts is too large,

enumerating all possible sub-coalitions becomes time consuming. To circumvent such a

difficulty, we propose to adapt the Shapley value concept to a series of restricted games. A

restricted game is defined for each subset of contracts Kb corresponding to a winning bid b

in WR and the corresponding total cost to be shared is Pb, the price asked in bid b. We refer

to such a game G(Kb).
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This idea of separating the original large game G(K) into small sub-games is due to the

“receive-as-bid” pricing scheme adopted for the auction. In fact, the total cost C(A) to

be shared among the contracts corresponds to the sum of the asked prices of the winning

bids. Thus, assigning costs to contracts may be reduced to sharing each asked price Pb of a

winning bid b in WR among the contracts covered by this bid. Applying the Shapley value

to these separate sub-games G(Kb), b ∈ W , obviously reduces the number of sub-coalitions

to be considered and thus the combinatorial dimension of the problem when compared to

the case where the whole game G(K) is considered.

Formally, consider a sub-game G(Kb) associated with a given winning bid b ∈ WR. The

Shapley rule assumes that one can determine the cost incurred by each sub-coalition of

players in Kb. Let S be a sub-coalition of Kb composed of l contracts k1, k2, ..., kl. One way

of determining the cost incurred by S when working on its own is to determine the maximum

total price that could be attributed to {k1, k2, ..., kr} given that individual prices are in P .

Formally, the cost associated with S with this first method, denoted by C1(S), is given

by: C1(S) = Max{
∑l

i=1 pki
: p ∈ P and

∑

k∈K pk =
∑

b∈W Pb}.

Thus, the price allocated to a contract k ∈ Kb when considering cost function C1 is given

by:

p1
k =

∑

S⊂Kb:k∈S

(|S| − 1)!(|Kb| − |S|)!

|Kb|!
[C1(S) − C1(S \ {k})].

A second way of determining the cost incurred by a sub-coalition S = {k1, k2, ..., kl} of Kb

is to compute the total minimum price that could allocated to k1, k2, ..., kl within P . That

is, C2(S) = Min{
∑l

i=1 pki
: p ∈ P and

∑

k∈K pk =
∑

b∈W Pb}. The price allocated to a

contract k ∈ Kb, in this case, is given by:

p2
k =

∑

S⊂Kb:k∈S

(|S| − 1)!(|Kb| − |S|)!

|Kb|!
[C2(S) − C2(S \ {k})].

It is well known that, when applied to a given game, the Shapley value results in a unique

cost distribution (Shapley, 1953; Shapley and Shubik, 1969). In our case, we apply the

Shapley value concept to a series of sub-games G(Kb) for each winning bid b. These winning

bids are output by a WDP that we formulated as a set covering problem enabling thus a

contract to be covered more than once. In other words, it may happen that a contract k is

covered by two winning bids b1 and b2 in the final round. This would imply that contract

k is allocated two different prices, a first price deduced from applying the Shapley rule

to game G(Kb1) and a second price derived from game G(Kb2). We prove next, that the

Shapley-based procedures we propose yield in fact unique contract prices.
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Proposition 3 The Shapley-based procedure using either cost functions C1 or C2 determines

contract prices in a unique way.

Proof: The proof is based on the observation that when a contract k is covered more than

once, its price is necessarily equal to 0.

In fact, when the WDP has the integrality property, by duality theory, it is well known

that the dual variable associated with a slack constraint is necessary null (refer to the proof

of Proposition 1 ).

For general WDPs, we established in the proof of Proposition 1 (Section 4) that P (A) =

C(A) −
∑

k∈K+ pkµk, where P (A) is the total price to be paid by buyers with a contract-

pricing approach, C(A) is the total payment that must be done to winning bidders and

µk is the number of times a contract k is over covered. Moreover, in order to satisfy the

budget balance property, we incorporated the equality constraint C(A) = P (A) in all unicity

models. Thus,
∑

k∈K+ pkµk = 0.

Recall that ∀k ∈ K, pk ≥ 0 and in case where K+ 6= ∅, µk > 0,∀k ∈ K+ . Thus

∀k ∈ K+, pk = 0. 2

Proposition 4 When considering the Shapley-based procedure, cost functions C1 and C2

yield the same prices allocation. That is, ∀k ∈ K, p1
k = p2

k.

Proof: Consider a contract k ∈ K and let Wk be the set of winning bids covering it.

• If |Wk| > 1, the proof of Proposition 3 shows that pk = 0 independently of the contract-

pricing approach used. Thus, p1
k = p2

k = 0.

• If |Wk| = 1, let b = (Kb, Pb) denote the winning bid covering contract k, i.e., k ∈ Kb.

– If Kb includes only one contract (i.e. b is a simple bid), the receive-as-bid rule

implies that pk = Pb and there is no need to apply the unicity procedures.

– Consider thus the non-trivial case where |Kb| > 1. Cost function C1 yields a price

p1
k for k equal to :

p1
k =

∑

S⊂Kb:k∈S

(|S| − 1)!(|Kb| − |S|)!

|Kb|!
[C1(S) − C1(S \ {k})] (35)

Let S, be a subset of Kb including k.

We have, C1(S) = Max{
∑

k∈S pk : p ∈ P and
∑

k∈K pk =
∑

b∈W Pb}.

Recall that, given the receive-as-bid rule,
∑

k∈Kb
= Pb.
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Thus,
∑

k∈S pk = Pb −
∑

k∈Kb\S
pk and

C1(S) = Max{
∑

k∈S

pk : p ∈ P and
∑

k∈K

pk =
∑

b∈W

Pb}

= Max{Pb −
∑

k∈(Kb\S)

pk : p ∈ P and
∑

k∈K

pk =
∑

b∈W

Pb}

= Pb − Min{
∑

k∈(Kb\S)

pk : p ∈ P and
∑

k∈K

pk =
∑

b∈W

Pb}

= Pb − C2(Kb \ S)

Replacing C1(S) by (Pb − C2(Kb \ S)) in equation (35), we obtain:

p1
k =

∑

S⊂Kb:k∈S

(|S| − 1)!(|Kb| − |S|)!

|Kb|!
[(Pb − C2(Kb \ S)) − (Pb − C2((Kb \ S) ∪ {k}))]

=
∑

S⊂Kb:k∈S

(|S| − 1)!(|Kb| − |S|)!

|Kb|!
[C2((Kb \ S) ∪ {k}) − C2(Kb \ S)]

=
∑

S′⊂Kb:k/∈S′

(|Kb \ S ′| − 1)!|S ′|!

|Kb|!
[C2(S ′ ∪ {k}) − C2(S ′)]

=
∑

S′⊂Kb\{k}

(|Kb| − |S ′| − 1)!|S ′|!

|Kb|!
[C2(S ′ ∪ {k}) − C2(S ′)] (36)

Equality (36) corresponds in fact to the equivalent formulation of the Shapley

value rewritten with cost function C2 for contract k. Thus, p1
k = p2

k. 2

In the following, the Shapley-based procedure described above using cost function C1 (or

equivalently C2) is referred to as Procedure 3.

Relying on the observations made in this section, both nucleolus-based and Shapley-based

procedures can be accelerated by fixing some contracts prices before running them. First,

the set of contracts K+ can be easily deduced from solving the WDP at the final round R

(determining slack constraints (3)). The prices of all contracts in K+ are then fixed to 0

independently of the procedure used. This would especially be beneficial for the Shapley-

based procedures for which the size of the grand coalition has a major impact on computing

performances. Second, one can fix the price of each contract k for which p
k

= pk: for these

contracts, prices are already unique.
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6 Computational Experiments

In previous sections, we proposed three cost-allocation procedures, Procedures 1, 2 and 3, for

bilateral markets where one-sided combinatorial auctions are used as trading mechanisms.

These procedures are conceived for satisfying three properties: proposal neutral, budget

balance and fairness. In this section, we define criteria for evaluating the quality of the

allocation yielded by the proposed procedures. These performance measures are then used

to compare the results obtained with the three procedures on a large set of instances.

6.1 Criteria for Evaluating Cost-Allocation Procedures

In order to satisfy the proposal-neutral property, the proposed procedures are based on a

contract-pricing approach in which prices are assigned to contracts in a unique way and the

payment to be done by a buyer corresponds to the sum of the prices of the contracts it

requested. The procedures differ from one another in the way contract prices are fixed when

multiple contract-price vectors are yielded by either the exact or the approximate contract-

pricing phase (i.e., set P includes more than one element). However, one should keep in

mind that these procedures will finally be used to determine the price to be paid by each

buyer individually given the set of contracts it submitted. Relying on this, we propose to

compare the proposed procedures on a buyer rather than a contract level.

One can determine for each buyer a ∈ A, the minimum and maximum prices it could pay

given the set of multiple contract price vectors P . The minimum price is given by:

C(a) = min{
∑

k∈K(a)

pk s.t. p ∈ P and
∑

k∈K

pk =
∑

b∈W

Pb} ∀a ∈ A,

and the maximum price is given by:

C(a) = max{
∑

k∈K(a)

pk s.t. p ∈ P and
∑

k∈K

pk =
∑

b∈W

Pb} ∀a ∈ A.

Observe that set P is bounded. Consequently, this minimum and maximum values are

necessarily finite.

Hence, within P , a buyer a would pay on average

Ĉ(a) =
C(a) + C(a)

2
,

which, represents Ĉ(a)
C(A)

% of the total ask price. In the following, this percentage is referred

to as the buyer central payment.
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To measure the fairness of a given unicity procedure, we propose to compute, for each

buyer, the relative gap between the cost allocated to it with this procedure and its central

payment. For a procedure χ and a buyer a ∈ A , this relative gap is given by:

G(χ, a) =

Ĉ(a)
C(A)

− χ(a)
C(A)

Ĉ(a)
C(A)

=
Ĉ(a) − χ(a)

Ĉ(a)
.

To compare Procedures 1, 2 and 3, we compute for each the average relative gap it yields

with respect to buyers central payments as well as the corresponding standard deviation. In

other words, we consider the following measures:

Ê(χ) =
1

|A|

∑

a∈A

G(χ, a).

σ̂(χ) =

√

∑

a∈A(G(χ, a) − Ê(χ))2

|A|
.

Given these two measures, one can have a good idea on how the payments allocated to

buyers are spread around their central payments. More precisely, a procedure for which both

the average relative gap and the standard deviation take small values assigns costs to buyers

that are close to their central payments without favoring one buyer over another. On the

opposite, a procedure for which the standard deviation is large, even though it results in a

relatively small average relative gap, suggests that this procedure assigns low costs to some

buyers relatively to their central payments and very large costs to other ones.

6.2 Problem Tests

One-sided one-shot combinatorial auction instances can be generated easily using the CATS

generator developed by Leyton-Brown et al. (2000). CATS consists in a suite of “distri-

bution families for generating realistic, economically motivated combinatorial bids”. Com-

binatorial bids are constructed with respect to some adjacency relationships between the

auctioned items arising in real-life situations.

In our context, we opted for the PATHS distribution since it better fits procurement

markets. For this distribution, complementarities are based on adjacency in space. Buyers

can thus be viewed as shippers who need to move some commodities from some origins to

some destinations, bidders are the carriers who make offers in form of bids to win shipping

contracts, and the auctioned items are the origin-destination pairs.

We used the CATS suite as a black box to which we passed as input the following param-
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eters:

• the number of auctioned items (i.e., the number of contracts, |K|),

• the number of bids to generate (|B|).

Since the generator yields one-sided combinatorial auctions for unilateral markets, to handle

the bilateral aspect, we fixed the number of participating buyers, |A|, and randomly assigned

contracts (the ones already defined in CATS) to them.

We tested Procedures 1, 2 and 3 on different problem settings (21 in total) obtained with

CATS through varying the number of auctioned items, |K|, the number of bids, |B|, and the

number of buyers |A|. A total of 2100 single-round combinatorial auctions were generated,

100 instances for each of the 21 problem settings. These instances were such that winning bids

include no more than seven contracts. In fact, the purpose of this experimental study was to

compare the quality of the solutions yielded by the proposed unicity procedures. Obviously,

when the number of contracts in a winning bid is relatively large, the Shapley value-based

procedures would require large computing times since the number of sub-coalitions grows

exponentially with the number of contracts in winning bids. Such an assumption remains

realistic in some trading contexts where the number of contracts won by a given seller may be

restricted, thus avoiding one seller winning “the lion’s share” (Caplice and Sheffi, 2006).

Table 1 hereafter describes the instances considered. As mentioned in Section 6.1, one

can determine, for each buyer a ∈ A and each instance i, the minimum and maximum

prices, [Ci(a), Ci(a))], that it could pay given the set of multiple contract prices. Hence, to

measure the variation in the payments that could be allocated to a buyer a, one can simply

compute the ratio V (a, i) = (Ci(a)−Ci(a))
C(A)

which gives this variation relatively to the total cost.

Obviously, a large variation in a buyer payment makes the problem of choosing good cost

allocation procedures more relevant.

Thus, in order to describe the instances considered, we determine for each problem setting

(|K|, |B|, |A|), the variation in the payments that could be attributed to a buyer on average

for an instance. These amounts are reported in the column denoted by “A.V.”. Formally,

the average variation associated with a problem setting (|K|, |B|, |A|) is given by:

A.V.(|K|, |B|, |A|) =
1

100

100
∑

i=1

∑

a∈A

(Ci(a) − Ci(a))

|A| × C(A)
.

In the second column denoted by “PIP”, we report the percentage of instances for which

the winner determination problem has the integrality property. For these instances, contract

prices correspond to the optimal dual values and there is no need to use the approximate

contract-pricing phase.
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(|K|, |B|, |A|) A.V. PIP
(20,60,3) 3.61 19
(20,60,4) 2.98 11
(20,60,5) 2.91 15
(40,120,3) 2.34 8
(40,120,4) 3.23 2
(40,120,5) 3.05 1
(60,180,4) 3.39 1
(60,180,5) 2.62 2
(60,180,6) 2.48 0
(80,240,4) 3.15 0
(80,240,5) 2.80 1
(80,240,6) 2.40 2
(100,300,5) 2.30 0
(100,300,6) 2.34 0
(100,300,7) 1.98 1
(150,450,5) 2.31 0
(150,450,6) 2.09 0
(150,450,7) 1.77 0
(200,600,6) 1.90 0
(200,600,7) 1.48 0
(200,600,8) 1.56 0

Table 1: Description of problem tests

6.3 Results

The branch-and-bound algorithm of CPLEX 10.1 was applied to all formulations on a 1.8

GHz Pentium III PC. The results obtained with the three procedures are summarized in

Tables 2 and 3. Table 2 displays for each procedure and each problem setting, the average

values (on the 100 instances) of the performance measures described in Section 6.1. Thus,

column Ê(.) associated with a problem setting (|K|, |B|, |A|) and a procedure χ, reports

the average relative gap with regard to buyers central payments over the 100 instances of

(|K|, |B|, |A|). That is,

Ê((|K|, |B|, |A|), χ) =
1

100

∑

i∈(|K|,|B|,|A|)

Ê(χ, i).

Similarly,

σ̂((|K|, |B|, |A|), χ) =
1

100

∑

i∈(|K|,|B|,|A|)

σ̂(χ, i).

One can see from Table 2 that Procedure 1 outperforms the other procedures in terms
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Problem Procedure 1 Procedure 2 Procedure 3

setting Ê(.) σ̂(.) Ê(.) σ̂(.) Ê(.) σ̂(.)

(20,60,3) - 0.06 1.12 - 0.06 4.29 - 0.03 0.48
(20,60,4) 0.04 1.92 0.32 7.02 - 0.10 0.59
(20,60,5) - 0.05 1.94 0.57 8.00 - 0.13 0.66
(40,120,3) 0.32 3.39 0.81 6.81 - 0.08 0.59
(40,120,4) 0.09 1.78 0.26 5.27 - 0.05 0.83
(40,120,5) 0.02 2.28 0.31 6.50 - 0.11 1.04
(60,180,4) 0.00 1.44 0.20 4.48 - 0.05 0.64
(60,180,5) 0.02 2.71 0.50 7.60 - 0.13 0.83
(60,180,6) 0.10 2.42 0.43 7.17 - 0.04 1.04
(80,240,4) 0.06 1.43 0.29 3.80 - 0.02 0.67
(80,240,5) 0.14 1.78 0.29 4.56 - 0.04 0.67
(80,240,6) 0.19 3.28 0.86 8.03 - 0.03 1.04
(100,300,5) 0.19 4.42 1.26 10.39 - 0.20 1.10
(100,300,6) 0.04 0.11 0.16 0.09 - 0.04 11.95
(100,300,7) 0.29 3.41 0.28 7.44 - 0.02 0.85
(150,450,5) 0.11 1.61 - 0.08 4.55 0.09 0.62
(150,450,6) 0.03 1.64 0.01 4.09 0.05 0.58
(150,450,7) 0.29 0.20 0.66 0.15 0.06 35.13
(200,600,6) 0.03 1.54 - 0.13 3.71 0.01 0.43
(200,600,7) 0.29 2.60 - 0.04 5.67 0.04 0.41
(200,600,8) 0.03 1.83 - 0.05 5.19 0.05 0.51

Average 0.10 2.04 0.33 5.47 -0.04 2.89

Table 2: Average relative gap and average standard deviations for procedures 1, 2 and 3

of the quality of the allocations yielded. In fact, Procedure 1 yields an average relative gap

Ê that varies between −0.06% (for problem setting (20, 60, 3) ) and 0.29% (for problem

settings (100, 300, 7), (150, 450, 7) and (200, 600, 8)) resulting in a total average of 0.10%

for all problem settings. Moreover, the corresponding average standard deviation σ̂ does

not exceed 3.41% (problem setting (100, 300, 7)) with a minimum value of 0.11% (obtained

for problem setting (100, 300, 6)). These results show that, for the instances considered,

Procedure 1 sets contract prices in a way that ensures all buyers to pay an amount relatively

close to their central payments. Although Procedures 2 and 3 yield an average relative gap

that is also relatively small; 0.33% on average for Procedure 2 and −0.04% for Procedure 3,

there is an important variation of the average standard deviations throughout the problem

settings. Observe, for instance, the results obtained for Procedure 2 in problem setting

(100, 300, 5): the average relative gap equals 1.26% while the average standard deviation

reaches 10.39%. This suggests that even though, with Procedure 2, a buyer, on average,

pays an amount that is 1.26% lower than its corresponding central payment, the payments

allocated vary considerably from one buyer to another. The same behavior is observed for
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Procedure 3 in problem setting (150, 450, 7) where the average standard deviation exceeds

35.13%.

Table 3 reports the average computing time, in seconds, required by each procedure for

each problem setting. Procedures 1 and 2 need no more than 0.13 seconds on average.

For large instances in which 600 contracts are considered, these computing times remain

relatively small for both procedures: 0.46 sec. on average for Procedure 1 and 0.37 sec. on

average for Procedure 2. When compared to Procedures 1 and 2, Procedure 3 shows worse

computing times especially for the large problems where the average computing time exceeds

102.41 sec. However, on the 2, 100 instances considered, Procedure 3 requires no more than

19 sec. on average, which represents very small computing times. As a conclusion, all three

procedures need relatively short computing times enabling one to use them in practice for

real-life applications.

Problem setting Procedure 1 Procedure 2 Procedure 3

(20,60,3) 0.01 0.01 0.01
(20,60,4) 0.01 0.01 0.01
(20,60,5) 0.01 0.01 0.01
(40,120,3) 0.03 0.02 0.08
(40,120,4) 0.02 0.02 0.09
(40,120,5) 0.02 0.02 0.09
(60,180,4) 0.04 0.03 0.73
(60,180,5) 0.04 0.03 1.03
(60,180,6) 0.04 0.04 0.77
(80,240,4) 0.09 0.07 3.89
(80,240,5) 0.09 0.07 4.82
(80,240,6) 0.09 0.07 4.67
(100,300,5) 0.14 0.11 12.13
(100,300,6) 0.11 0.10 11.95
(100,300,7) 0.13 0.10 11.69
(150,450,5) 0.30 0.23 45.10
(150,450,6) 0.30 0.23 44.65
(150,450,7) 0.20 0.15 35.13
(200,600,6) 0.28 0.21 50.02
(200,600,7) 0.27 0.22 49.91
(200,600,8) 0.46 0.37 102.41

Average 0.13 0.10 18.06

Table 3: Average solution times (in seconds) for Procedures 1 ,2 and 3

7 Conclusion

This paper considers a bilateral procurement market in which multiple buyers and sellers

trade heterogeneous indivisible contracts. The market bilateral aspect is initially ignored and
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the trading process is modeled as a classical one-sided combinatorial reverse auction where

sellers are the only bidders. At the end of the auction process, given the winning bids and

the “receive-as-bid” pricing rule, one can determine the total price to be paid by all buyers.

At this stage, the bilateral aspect is reconsidered to allocate costs to buyers individually.

Three cost allocation procedures were proposed. All these procedures are proposal-neutral

in the sense that the cost allocated to a buyer is independent of its identity. To handle

this, a contract-pricing approach was considered implying that prices are allocated to single

contracts rather than buyers. The price to be paid by a buyer is then computed as the sum

of the prices of the contracts it requested. Even though such an approach is closely related to

the problem of determining linear prices in combinatorial auctions, this paper focuses on the

unicity of contract prices. It presents a new approach for fixing prices when multiple feasible

linear prices exist. Unlike previous unicity methods, we propose new procedures defined with

respect to the interests of buyers rather than bidders. Moreover, these procedures are defined

so as to ensure a balanced budget, that is, a total payment for buyers that is equal to the

total ask price output by the auction process. Relying on the observation that simultaneous

participation of the buyers is a form of collaboration, the proposed unicity procedures are

inspired by two cooperative game theory concepts: the nucleolus and the Shapley value.

The proposed procedures were compared through a set of instances generated with varying

the numbers of buyers, contracts, and submitted bids. The procedures were compared with

respect to solution time and quality. The results obtained prove that the three procedures

yield cost allocations in relatively short computing times. Regarding solution quality, we

define two performance measures with respect to buyer central payments. A buyer central

payment corresponds to the central value of its min-max payment interval defined over the

set of multiple contract price vectors. For the instances considered, Procedure 1 obtains the

best results.
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Université de Montréal, and the Department of Economics and Business Administration,

Molde University College, Norway. Partial funding for this project has been provided by

the Natural Sciences and Engineering Council of Canada (NSERC), through its Industrial

Research Chair and Discovery Grants programs, by the partners of the Chair, CN, Rona,

Alimentation Couche-Tard and the Ministry of Transportation of Québec, and by the Fonds
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