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Abstract. We present an algorithmic scheme, which we call the Structured Dantzig-Wolfe 
decomposition method, that can be used for solving large-scale structured Linear 
Programs (LPs). The required structure of the LPs is the same as in the original Dantzig-
Wolfe approach, that is, a polyhedron over which optimization is “easy” plus a set of 
“complicating” constraints. Under the hypothesis that an alternative model for the “easy” 
polyhedron and a simple map between the formulations are available, we propose a finite 
procedure which solves the original LP. The original Dantzig-Wolfe decomposition method 
is easily seen to be a special case of the new procedure corresponding to the standard 
choice for the model of the “easy” polyhedron where there is a variable for each of its 
extreme points and rays. Furthermore, some techniques developed for the standard DW 
decomposition can be easily adapted to the new approach, giving rise to Stabilized 
Structured Dantzig-Wolfe decomposition methods that can be more efficient than their 
non-stabilized brethren. We show the usefulness of our new approach with an application 
to the multicommodity capacitated network design problem, exploiting some recent results 
which characterize the polyhedral properties of the multiple choice formulation of the 
problem. 
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1 Introduction

The celebrated Dantzig-Wolfe (DW) decomposition method [12], inspired by an algorithm due to
Ford and Fulkerson [13] for optimal multicommodity flow computations, can be considered one of
the most far-reaching results of mathematical programming. Although in its original development
it was strongly linked with the inner workings of the simplex algorithm, its current form is very
elegant and easy to understand and implement. It allows to efficiently deal with problems with a
very general and common structure, that is

(P ) minx { cx : Ax = b , x ∈ X }

where the set X is “easy”, i.e., linear optimization over X is “significantly easier” than (P ). In
other words, (P ) would be an “easy” problem if the complicating constraints Ax = b could be
removed, i.e., the constraints Ax = b break down the structure of X. One typical example is that
of a separable X (see Section 2.1.2), i.e., the one where (P ) would decompose into a number of
smaller independent subproblems if the linking constraints Ax = b could be removed. This is for
instance the case of multicommodity flow problems, such as those who originally inspired the DW
approach [13] and our application described in Section 4. The DW method is strongly tied with
Lagrangian algorithms; in fact, it can be shown (see, for instance, [17, 25]) to be equivalent to
Kelley’s cutting-plane method [24] applied to the Lagrangian Dual of the original problem. Hence,
a large number of algorithms can be considered to be variants of the DW approach, as discussed
in [16, 17, 25].

In this paper, we extend the DW approach, building a broader algorithmic paradigm that
encompasses and generalizes it. The essential observation that leads to this new paradigm, broadly
discussed in the following, is that the DW algorithm is based on a reformulation approach. In fact,
the idea behind the DW algorithm is that of substituting a formulation of the “easy” polyhedron
X in the original variables with a reformulation in a different space of variables, namely the convex
(and conical) multipliers that allow to express any point of X as a convex combination of its extreme
points (plus a conical combination of its extreme rays). Optimization over X can then be seen as
a variable generation procedure, in that it allows to either add to the partial formulation one new
relevant variable, or to establish that the current partial formulation already provides the optimal
solution.

Under appropriate conditions, it is possible to mirror the DW approach using any other model
of X. In order for the approach to be of interest, the model must be “large”, i.e., the number
of constraints and variables must be such that it is not convenient to insert the whole model in
one single LP and solve the whole problem at once. However, as shown in the actual application
to the multicommodity capacitated network design problem (see Section 4), the model can be
“significantly smaller” than that of the classical DW approach, e.g. by having “only” pseudo-
polynomially many constraints and variables as opposed to exponentially many variables (and
maybe few constraints, except the simple ones). As our computational experience shows, this can
have an impact on the relative efficiency of the corresponding decomposition procedures. Because
our approach further exploits structural information on the problem to define a proper model of
X, we call it the Structured Dantzig-Wolfe (SDW) decomposition approach.

One interesting feature of the SDW approach is that it does not change most the requirements of
the original DW algorithm. In other words, provided that a proper map can be established between
a solution in the original space of variables and the one used for reformulating X, the subproblem
to be solved at each iteration remains the same; only the master problem changes. Hence, if an
implementation of the DW approach is available for one problem for which an alternative model of
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X is known, then implementing the SDW approach for that problem only requires relatively minor
changes to the existing code. Furthermore, we will show that the SDW approach can be stabilized
exactly in the same way as the standard DW. This gives rise to Stabilized Structured Dantzig-Wolfe
(S2DW) algorithms, that can be analyzed by the general theory developed in [16], which provides
a comprehensive convergence analysis for a large choice of stabilizing terms and several different
algorithmic options.

The structure of the paper is as follows. In Section 2, the original Dantzig-Wolfe decomposition
method is first reviewed, then the Structured Dantzig-Wolfe decomposition method is presented and
discussed. Section 3 is devoted to describing how the SDW approach can be stabilized, providing
the appropriate discussion and convergence results. Section 4 presents an application of the SDW
approach to the Multicommodity Capacitated Network Design problem (MCND); in particular, the
results of extensive computational experiments comparing SDW and S2DW with other alternatives
are presented and discussed. Finally, conclusions are drawn in Section 5.

2 The Structured Dantzig-Wolfe Decomposition Method

The DW approach can be used to solve the convexified relaxation of (P )

minx
{
cx : Ax = b , x ∈ conv(X)

}
(1)

where conv(·) denotes the convex hull. If X is convex then the DW approach directly solves
(P ), otherwise the (repeated) solution of (1) can be instrumental for solving (P ), e.g. within an
enumerative (Branch&Bound) approach. It is well-known [17, 25] that solving (1) is equivalent to
forming the Lagrangian relaxation of (P ) with respect to the complicating constraints Ax = b and
one generic vector π of Lagrangian multipliers

(Pπ) f(π) = minx
{
cx+ π(b−Ax) : x ∈ X

}
and solving the corresponding Lagrangian dual

maxπ
{
v(Pπ) : π ∈ Rm

}
(2)

where v(·) denotes the (possibly infinite) optimal objective function value of an optimization prob-
lem and m denotes the number of complicating constraints Ax = b. The Lagrangian function
f(π) = v(Pπ) is well-known to be concave; thus, (2) is an “easy” problem. As rapidly recalled
below, solving (2) by means of Kelley’s cutting-plane method [24] is equivalent to solving (1) by
the DW approach. This provides both an optimal solution x∗ of (1) and an optimal solution π∗ of
(2).

2.1 Dantzig-Wolfe Decomposition

To simplify the exposition, we temporarily assume that X is a compact set; later on in this section,
we recall how this assumption can be dropped at the only cost of slightly complicating the notation.
We also assume that X is nonempty, otherwise (P ) is not feasible (this is discovered the first time
(Pπ) is solved, whatever the vector π).

As anticipated in the introduction, the fundamental idea under the Dantzig-Wolfe decomposition
algorithm is that of reformulation. The simple observation is that (1) can be rewritten as the large-
scale (possibly even semi-infinite) Linear Program

minθ
{
c
(∑

x∈X xθx
)

: A
(∑

x∈X xθx
)

= b , θ ∈ Θ
}

(3)
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where Θ = { θ ≥ 0 :
∑

x∈X θx = 1 } is the unitary simplex of proper dimension. In most cases
(3) is an ordinary LP because only a finite set of “relevant” points of x ∈ X need to be associated
a convex multiplier θx. If X is a polyhedron, only its finitely many extreme points need to be
included; in other cases X itself is finite, as in most combinatorial optimization problems. We will
henceforth assume that the sums in (3) are in fact restricted to the proper finite set of relevant
points in X, in order to restrict our treatment to finite LPs only.

After having reformulated (1) as (3), the idea of the DW algorithm is just that of column
generation (CG). A subset B ⊆ X is selected, and the corresponding primal master problem

minθ
{
c
(∑

x∈B xθx
)

: A
(∑

x∈B xθx
)

= b , θ ∈ Θ
}

(4)

is solved; here, each (relevant) point x ∈ X becomes a column in the LP (4), corresponding to the
variable θx. Note that the “explicit form” (4) is equivalent to the “implicit form”

minx
{
cx : Ax = b , x ∈ XB = conv(B)

}
. (5)

The primal master problem is therefore the restriction of (3) to the subset of columns B or, equiv-
alently, an inner linearizaton of (1) where conv(X) is substituted with the “simpler” set conv(B).
An optimal solution θ∗ yelds a feasible solution x̃ =

∑
x∈B xθ

∗
x for (1), and is typically accompanied

by a dual optimal solution (ṽ, π̃) for the dual master problem

maxv,π
{
v : v ≤ cx+ π(b−Ax) , x ∈ B

}
. (6)

It is now immediate to verify whether or not x̃ is optimal for (1) by checking if (ṽ, π̃) is actually
feasible for the dual of (3) (that is, (6) with B = X). This can be done by solving the pricing
problem (Pπ̃), which determines the point (column) x̄ ∈ X of least reduced cost (c − π̃A)x̄. The
complete Dantzig-Wolfe decomposition algorithm is summarized in the following pseudo-code.

〈 initialize B 〉;
do
〈 solve (4) and (6) for x̃ and (ṽ, π̃), respectively 〉;
x̄ ∈ argminx { (c− π̃A)x : x ∈ X }; /* (Pπ̃) */
B = B ∪ {x̄};

while( ṽ > cx̄+ π̃(b−Ax̄) );

Figure 1: The Dantzig-Wolfe decomposition algorithm

We remark that, in order for the algorithm to be well-defined, it is necessary that the initial
set B is “sufficiently large” to ensure that (6) has a finite optimal solution; however, we postpone
the discussion to this point until Section 3.1. The DW algorithm has a “dual” interpretation in
terms of Kelley’s cutting-plane algorithm [24]: at each step, the dual master problem maximizes
the cutting-plane model

fB(π) = minx { cx+ π(b−Ax) : x ∈ B } (7)

which is an outer approximation of the Lagrangian function f(π) (i.e., fB ≥ f). The set B can then
be interpreted in dual terms as the bundle of available information that describes the Lagrangian
function f (function value and first-order behavior) at some points in the space. Solving the pricing
problem simply means evaluating f in π̃, and adding x̄ to B means refining fB until it is “exact” in
some optimal point of (2). This dual interpretation allows to modify the standard DW approach
in a number of ways aimed at improving its performances in practice, as discussed in Section 3.
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2.1.1 The Noncompact Case

The DW algorithm can be easily extended to the case where X is noncompact, provided that the
algorithm that solves the pricing problem is capable of providing an unbounded descent direction ν
for conv(X) whenever f(π) = −∞. Since (Pπ) is unbounded for any π such that (c − πA)ν < 0,
each such ν is associated with a linear constraint (c−πA)ν ≥ 0 that is valid for the effective domain
π of f(π) (the set of all points where it is finite-valued); in other words, the extreme rays of the
recession cone C of conv(X) characterize the effective domain of f . Then, one can replace B by
B0 ∪ B1, where B0 ⊆ C and B1 ⊆ X. The primal and dual master problem become, respectively

minθ


c
(∑

x∈B1 xθx +
∑

ν∈B0 νθν
)

A
(∑

x∈B1 xθx +
∑

ν∈B0 νθν
)

= b∑
x∈B1 θx = 1 , θ ≥ 0

maxv,π


πb+ v

v ≤ (c− πA)x x ∈ B1

0 ≤ (c− πA)ν ν ∈ B0

(8)

or, equivalently,

minx
{
cx : Ax = b , x ∈ conv(B1) + cone(B0)

}
maxπ

{
fB1(π) : π ∈ πB

}
, (9)

where πB = { π : (c − πA)ν ≥ 0 , ν ∈ B0 } is an outer approximation of the effective domain
of f . At each iteration of the algorithm, the pricing problem computes either an optimal solution
x̄ ∈ X, that is added to B1, or a feasible unbounded direction ν̄ ∈ C, that is added to B0. We do
not go into further details of the convergence proofs of the DW algorithm, since they are subsumed
by the theory of the SDW decomposition method that is developed next.

2.1.2 The Decomposable Case

The DW algorithm can also be specialized to the decomposable case, where X = Xk∈K Xk is
the Cartesian product of |K| sets (which we can assume to be compact, least applying the same
approach as in Section 2.1.1 to each Xk). This means that the Lagrangian relaxation decomposes
into k independent problems, i.e., any optimal solution x̄ has the form [x̄k]k∈K , where x̄k is an
optimal solution of the k-th subproblem. In other words, the Lagrangian function

f(π) = πb+
∑

k∈K f
k(π)

is the sum of its k component functions

fk(π) = minxk

{
(ck − yAk)xk : xk ∈ Xk

}
.

In this case, one possibility is to solve at each iteration the disaggregated primal master problem

minθ


∑

k∈K c
k
∑

x∈Bk xθx∑
k∈K A

k
∑

x∈Bk xθx = b∑
x∈Bk θx = 1 k ∈ K , θ ≥ 0

(10)

instead of (4). Each component xk of each of the solutions generated so far in the process is kept in
the set Bk and has an associated convex multiplier θxk , independent from the multiplier associated
to other components belonging to the same solution. The corresponding disaggregated dual master
problem is

maxv,π
{
πb+

∑
h∈K v

k : vk ≤ (ck − πAk)xk xk ∈ Bk k ∈ K
}

= maxπ
{ ∑

k∈K f
k
B(π)

}
,
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where fkB = fBk is the cutting-plane model of the k-th component fk of f . Analogously, (10) can
be rewritten as

minx
{ ∑

k∈K c
kxk :

∑
k∈K A

kxk = b , xk ∈ Xk
B = conv(Bk) k ∈ K

}
where Xk

B is an inner approximation of conv(Xk). It is easy to see that, for the same set of
Lagrangian solutions B ⊆ X, the feasible set of (10) strictly contains that of (5); in fact, (4) is the
restriction of (10) where all the components x̄k corresponding to the same solution x̄ must have the
same convex multiplier. In other words, Xk∈K conv(Bk) is a better approximation of conv(X) than
conv(B); equivalently, the sum of the separate cutting-plane models fkB is a better approximation
of f than the “aggregated” cutting-plane model fB. The tradeoff is that the disaggregated master
problems are roughly |K| times larger than the corresponding aggregated ones, and therefore they
are more costly to solve; however, they use the available information more efficiently, which often
results in a much faster convergence, and ultimately in better overall performances [23].

2.2 Structured Dantzig-Wolfe Decomposition

The SDW method can be applied to solving problem (1) provided that the same assumptions than
in the DW approach hold, and some extra knowledge about the structure of conv(X) is available.

Assumption 1 For a finite vector of variables θ and matrices C, Γ and γ of appropriate dimen-
sion,

conv(X) = { x = Cθ : Γθ ≤ γ } .

In other words, one needs a proper reformulation of conv(X) in a different space of variables θ. Of
course, we assume θ to be “large” but amenable to solution through variable restriction. That is,
let B be any subset of the index set of the variables θ; we denote by θB the corresponding subvector
of variables, and with ΓB, γB, respectively, the coefficient matrix and the right-hand side of all (and
only) the constraints concerning variables with indices in B. Analogously, we denote by CB the
restriction of the matrix (linear mapping) C to the indices in B. With this notation, we introduce
a further assumption.

Assumption 2

ΓBθ̄B ≤ γB ⇒ Γ
[
θ̄B
0

]
≤ γ .

This assumption simply means that we can always “pad” with zeroes a partial solution without
fear of losing feasibility, even if we do not know “many” constraints of the reformulation; this is
clearly necessary in order to apply a variable/constraint generation procedure. Hence, by denoting

XB =
{
x = CBθB : ΓBθB ≤ γB

}
we always have that XB ⊆ conv(X). In other words, the function

fB(π) = minx { cx+ π(b−Ax) : x ∈ XB } (11)

is still an “outer approximation” of the Lagrangian function f , in the sense that fB ≥ f . We will
therefore keep the name “bundle” for B, since it still can be interpreted as a subset of the whole
information required to describe the behavior of f .

Finally, we need to assume that, given a solution that cannot be expressed by means of a given
index set B, it must be easy to update the index set and the partial description of the constraints
in order to incorporate at least some of the information provided by that solution.
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Assumption 3 Let B be an index set of θ and let x̄ be a point such that x̄ ∈ conv(X) \XB; then,
it must be easy to update B and the associated partial description of the constraints ΓB, γB to a set
B′ ⊃ B such that there exists B′′ ⊇ B′ with x̄ ∈ XB′′.

This assumption is purposely stated in a rather abstract form. What one expects is that given
a solution x̄ /∈ XB, it should be relatively easy to find out “why” it is not feasible; that is, to
find at least one variable that is not present in the description of XB, and that is necessary to
represent the given solution x̄. A nontrivial example of such a procedure is described in Section 4,
and other cases can be easily devised. For instance, the well-known Gilmore-Gomory formulation
of the cutting stock problem [6] is usually solved by DW/CG approaches; there, X is the set of
all valid cutting patterns, that is, all feasible solutions to an integer knapsack problem. Owing to
the well-known reformulation of integer knapsack problems in terms of longest path problems on a
directed acyclic network, one can devise the arc-flow model of the cutting stock problem [4], that
provides the same lower bound at the cost of a pseudo-polynomial number of variables (one for each
arc in the graph representing the knapsack) and constraints (one for each node in the same graph).
Thus, the arc-flow model provides the alternative reformulation of Assumption 1, whose pricing
problem is an integer knapsack as in the standard DW decomposition applied to the Gilmore and
Gomory model. Each feasible cutting pattern produced by the pricing problem is a path in the
directed graph underlying the arc-flow model. Thus, one can easily devise a restricted formulation
XB corresponding to a (small) sub-graph of the (large) full directed graph; each time a new cutting
pattern x̄ is generated, it is easy to check whether or not it corresponds to a path in the current
subgraph. If not, at least one new arc (and, possibly, node) can be identified to produce B′.

It is now immediate to extend the DW approach. The primal master problem becomes, in
“explicit” form

minx,θ
{
cx : Ax = b , x = CBθB , ΓBθB ≤ γB

}
. (12)

This has the same “implicit form” (5) as the standard DW, except that B does not (necessarily)
denote a set of extreme points of X, and XB is therefore not (necessarily) their convex hull. The
Structured Dantzig-Wolfe decomposition method is then described in the following pseudo-code.

〈 initialize B 〉;
repeat
〈 solve (12) for x̃; let ṽ = cx̃ and π̃ be optimal dual multipliers of Ax = b 〉;
x̄ ∈ argminx { (c− π̃A)x : x ∈ X }; /* (Pπ̃) */
if( ṽ = cx̄+ π̃(b−Ax̄) )

then STOP; /* x̃ optimal */
else 〈 update B as in Assumption 3 〉;

until ∼ STOP

Figure 2: The Structured Dantzig-Wolfe decomposition algorithm

We now turn to proving finiteness and correctness of the proposed algorithm. While this may be
deemed not strictly necessary, in view of the convergence theory available for the more sophisticated
Stabilized versions (cf. §3), it is useful to emphasize the role of Assumptions 1, 2 and 3. We start
assuming that

• X is compact;

• at the first iteration (and, therefore, at all the following ones) (12) has a feasible solution;
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but we later show how to remove these assumptions.

Lemma 4 At all iterations of the SDW algorithm we have ṽ ≥ cx̄ + π̃(b − Ax̄); if equality holds
then x̃ is optimal for (1).

Proof. Due to Assumption 2, (12) is a restriction of (1) while (Pπ̃) is a relaxation of (1). Therefore
cx̄+ π̃(b−Ax̄) = v(Pπ̃) ≤ v(1) ≤ v(12) = ṽ.

Lemma 5 At all iterations where the SDW algorithm does not stop, for any optimal x̄ for (Pπ̃)
and any θ̄ such that x̄ = Cθ̄ there must be at least one nonzero variable in θ̄ whose index does not
belong to B.

Proof. It is well-known that any optimal solution x̃ of (12) is also an optimal solution of

minx,θ
{
cx+ π̃(b−Ax) : x = CBθB , ΓBθB ≤ γB

}
(13)

since π̃ are optimal dual multipliers for the constraints Ax = b in (12). It is also clear that
ṽ = cx̃ = v(13). Now, assume by contradiction that there is an optimal solution x̄ for (Pπ̃) and a θ̄
such that x̄ = Cθ̄, and all the nonzeroes in θ̄ belong to B. Then, [x̄, θ̄] is a feasible solution of (13)
with cost cx̄+ π̃(b−Ax̄) < ṽ = cx̃, contradicting optimality of x̃.

Theorem 6 The SDW algorithm finitely terminates with an optimal solution of (1).

Proof. By Lemma 4, if the algorithm terminates then it provides an optimal solution of (1). By
Lemma 5, at each iteration where the algorithm does not terminate the solution x̄ of the pricing
problem “points out” at least one variable whose index does not currently belong to B. Thus, by
Assumption 3, the size of B increases by at least one. Hence, the algorithm terminates in a finite
number of iterations.

The convergence of the algorithm can be ensured even if (proper) removal of indices from B is
allowed.

Theorem 7 Let ṽk be the optimal objective function value of (12) at iteration k; the SDW algorithm
finitely terminates with an optimal solution of (1) even if, at each iteration k such that ṽk < ṽk−1,
all the indices of variables in B that have zero value in the current optimal solution of (12) are
removed from B.

Proof. By the above analysis, it is clear that {ṽk} is a nonincreasing sequence. Hence, no two
iterations h > k can have the same B: either ṽh < ṽk, and therefore B must be different, or ṽh = ṽk,
and therefore the size of B must have strictly increased. Therefore, only a finite number of iterations
can be performed.

Clearly, the SDW algorithm generalizes the original DW approach. In fact, the reformulation
used in the DW approach is

conv(X) =
{ ∑

x∈X xθx : θ ∈ Θ
}

.

In other words, C is the matrix having as columns the (extreme) points of X, and Γ, γ just describe
the unitary simplex Θ. Clearly, Assumptions 2 and 3 are satisfied; for the latter, in particular, the
optimal solution x̄ of the pricing problem uniquely identifies the variable θx̄ that has to be nonzero
in order to be able to comprise x̄ into XB (the variables are indexed by the points in X). The
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generality of the DW approach stems from the fact that is it always possible to express conv(X)
by means of the (extreme) points of X. However, the SDW approach allows to exploit any other
known reformulation of conv(X). As shown in Section 4.5, this may improve the performances of
the approach with respect to the standard reformulation used in the DW method.

As for the original DW approach (cf. §2.1.1), the SDW algorithm can be easily extended to the
case where X is not compact, provided that, as usual, the algorithm that solves the pricing problem
is capable of providing an unbounded ascent direction ν for conv(X) whenever f(π) = −∞, and
that the following strengthened form of Assumption 3 holds.

Assumption 8 Let Assumption 3 hold. Furthermore, let B be an index set of θ and let ν be an
unbounded ascent direction for conv(X) which is not an unbounded ascent direction for XB. Then,
it must be easy to update B and the associated partial description of the constraints ΓB, γB to a
B′ ⊃ B such that there exists a B′′ ⊇ B′ such that ν is an unbounded ascent direction for XB′′.

Under these assumptions, the SDW method extends directly to the non-compact case. Indeed, the
form of the primal master problem does not even change: if an unbounded ascent direction ν is
produced by the pricing problem, then it is used to update B exactly as any point x̄. Note that,
in order for (12) to be able to represent a noncompact set, some of the θ variables must not be
bounded to lie in a compact set, see e.g. (8).

The SDW approach that we have presented and analyzed generalizes the DW decomposition
method by allowing to exploit available information about the structure of the “easy” set X which
would otherwise go unnoticed. The basic ingredients of the approach are the same as in the DW
approach: reformulation and variables generation. For DW, however, the reformulation part is
standard, and therefore tends to be overlooked; this is not the case for the SDW approach.

3 Stabilizing Structured Dantzig-Wolfe Decomposition

3.1 Issues in the SDW Approach

The SDW approach in the above form is simple to describe and, given the availability of efficient
and well-engineered linear optimization software, straightforward to implement. However, several
nontrivial issues have to be addressed.

Empty master problem. In order to be well-defined, the DW method needs a starting B such
that (4) has a finite optimal solution. There are two basic strategies for ensuring this. One is having
x̂ ∈ B where x̂ is a feasible solution for (1) (e.g., a feasible solution to (P )), which corresponds
to inserting the constraint v ≤ cx̂ into (6). Alternatively, a standard “Phase 0” approach can be
implemented where

minx,θ
{ ∣∣∣∣A (∑x∈B xθx

)
− b
∣∣∣∣
∞ : θ ∈ Θ

}
(and the corresponding dual) is solved at each iteration instead of (3) until a B which provides a
feasible solution is found, or (1) is proved to be unfeasible. Similar ideas work for the SDW method.
If some x̂ is available, a B can be (iteratively applying Assumption 3 if necessary) determined which
“entirely covers” it, i.e., allow to have it expressed as a feasible solution to (12). If that is not possible
(e.g., (1) is not known a priori to have a feasible solution), a “Phase 0” approach can be used where
we initially consider

minx { ||Ax− b||∞ : x ∈ conv(X) } (14)
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instead of (1). Since v(14) = 0 if and only if (1) has a feasible solution, we apply the SDW approach
to (14) until either a feasible solution of (1)—more to the point, a B such that (12) has a feasible
solution—is found, or it is proven that v(14) > 0. In order to apply the SDW approach to the
solution of (14), the primal master problem becomes

minx,θ { ||Ax− b||∞ : x = CBθB , ΓBθB ≤ γB } (15)

or, more explicitly,

minw,x,θ { w : −we ≤ Ax− b ≤ we , x = CBθB , ΓBθB ≤ γB } (16)

where e is the vector of all ones of proper dimension. The pricing problem (the Lagrangian relax-
ation with respect to the constraints −we ≤ Ax− b ≤ we) is

minx
{

(π+ − π−)(b−Ax) : x ∈ X
}

(17)

where π+ and π+ are nonnegative Lagrangian multipliers such that π+e + π−e = 1, which is a
constraint of the dual of (16), and therefore is automatically satisfied by the dual solutions used in
the SDW algorithm (without this constraint, the “true” pricing problem would be unbounded). It
is now immediate to mirror the proofs of Lemmas 4 and 5 to obtain once again Theorems 6 and 7.
In fact, once again (16) is a restriction of (14) while (17) is a relaxation of (14). Thus, we can easily
implement a “Phase 0” of the SDW algorithm which finds a proper B set for starting the standard
SDW approach. The only standing assumption is that we must be able to easily find a set B such
that (16) has a feasible solution, that is, the set ΓBθB ≤ γB is nonempty; due to Assumption 2, this
is most likely to be immediate (it is in the original DW approach). As we shall see soon, stabilized
versions of both the DW and the SDW algorithms are build upon this idea, hence they do not need
a Phase 0.

Instability. The above discussion may have mislead the reader in believing that generating a
good approximation of the dual optimal solution π∗ is enough to solve the problem; unfortunately,
this is far from being true. Quite surprisingly, even generating the initial B by solving a subproblem
at a very good approximation of π∗ may have little effect on the convergence of the DW algorithm.
The issue here (see for instance [5, 17]) is that there is no control over the “oracle” which computes
f(π): even if it is called at the very optimal point π∗, it would not in general report the whole
set B∗ of points that are necessary to prove its optimality. Thus, one would expect a “smart”
algorithm, provided with knowledge about π∗, to sample the dual space “near” the dual optimal
solution in order to force the subproblem to generate other points that are also optimal for π∗.
However, there is nothing in the DW algorithm that may generate this behavior: the next π̃
is simply chosen as the maximizer of fB. The sequence of dual solutions {π̃} has therefore no
“locality” properties: even if a good approximation of π∗ is obtained at some iteration, the dual
solution at the subsequent iteration may be arbitrarily far from optimal. In other words, the DW
approach is almost completely incapable of exploiting the fact that it has already reached a good
dual solution in order to speed up the subsequent computations. This is known as the instability
of the approach, which is the main cause of its slow convergence rate on many practical problems,
and clearly applies to the SDW approach as well.

All this suggests to introduce some mean to “stabilize” the sequence of dual iterations. If
π∗ were actually known, one may simply restrict the dual iterates in a small region surrounding
it, forcing the subproblem to generate points that are “almost optimal” in π∗ and, consequently,
efficiently accumulate B∗. This would actually be very efficient [5], but in general π∗ is not known.
A possible solution is to use an estimate instead, taking into account the case where the estimate
of the dual optimal solution is not exact.
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3.2 A Stabilized SDW Approach

To stabilize the SDW approach, we exploit some ideas originally developed in the field of nondiffer-
entiable optimization. In order to avoid large fluctuations of the dual multipliers, a “stabilization
device” is introduced in the dual problem; this is done by choosing a current center π̄, a family of
proper convex stabilizing functions Dt : Rm → R ∪ {+∞} dependent on a real parameter t > 0,
and by solving the stabilized dual master problem

maxπ
{
fB(π)−Dt(π − π̄)

}
(18)

instead of (6) at each iteration. Constraints π ∈ πB in (18) (see (9)) can be taken into account at
the cost of some notational complication, which is avoided here in order to keep the presentation
simpler. The optimal solution π̃ of (18) is then used to compute f(π̃) as in the standard scheme.
The stabilizing function Dt is meant to penalize points “too far” from π̄; at a first reading a
norm-like function can be imagined there, with more details due soon. It should be noted that
other, more or less closely related, ways for stabilizing DW/CG algorithms have been proposed; a
thorough discussion of the relationships among them can be found in [22, 25].

Solving (18) is equivalent to solving a generalized augmented Lagrangian of (PB), using as aug-
menting function the Fenchel conjugate of Dt. For any convex function f(π), its Fenchel conjugate

f∗(z) = supπ { zπ − f(π) }

characterizes the set of all vectors z that are support hyperplanes to the epigraph of f at some
point. f∗ is a closed convex function and features several properties [16, 21]; here we just remind
that from the definition f∗(0) = − infπ { f(π) }. In our case, we can reproduce the well-known
result that the Fenchel conjugate of a Lagrangian function is the value function of the original
problem. In fact,

(−fB)∗(z) = supπ { zπ + fB(π) } = supπ
{

minx{ cx+ π(z + b−Ax) : x ∈ XB }
}

which can be described by saying that (−fB)∗(z) is the optimal value of the Lagrangian Dual of

minx
{
cx : z = Ax− b , x ∈ XB

}
with respect to the “perturbed” z = Ax− b constraints. The optimal value of the above problem,
as a function of z, is known as the value function of the master problem (5); standard results in
Lagrangian Duality [21] guarantee that the above problem is equivalent to its Lagrangian Dual,
i.e., that

(−fB)∗(z) = minx
{
cx : z = Ax− b , x ∈ XB

}
. (19)

We can then compute the Fenchel dual [21] of (18), which is obtained by simply evaluating the
Fenchel conjugate of the objective function at zero; after some algebra, this can be shown to result
in

minz
{

(−fB)∗(z)− π̄z +D∗t (−z)
}

which plugging in the definition of f∗B gives

minz,x
{
cx− π̄z +D∗t (−z) : z = Ax− b , x ∈ XB

}
. (20)

The stabilized primal master problem (20) is equivalent to (18); indeed, we can assume that
whichever of the two is solved, both an optimal primal solution (x̃, z̃) and an optimal dual so-
lution π̃ are simultaneously computed. For practical purposes, one would more likely implement
(20) rather than (18); however, the following proposition shows how to recover all the necessary
dual information once it is solved.
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Theorem 9 Let (x̃, z̃) be an optimal primal solution to (20) and π̃ be optimal Lagrangian (dual)
multipliers associated to constraints z = Ax − b; then, π̃ is an optimal solution to (18), and
fB(π̃) = cx̃+ π̃(b−Ax̃).

Proof. Because π̃ are optimal dual multipliers, (x̃, z̃) is an optimal solution to

minz,x
{
cx− π̄z +D∗t (−z) + π̃(z −Ax+ b) : x ∈ XB

}
.

That is,
z̃ ∈ argminz

{
(π̃ − π̄)z +D∗t (−z)

}
which is equivalent to 0 ∈ ∂[(π̃ − π̄) · +D∗t (−·)](z̃), which translates to 0 ∈ {ỹ − ȳ} − ∂D∗t (−z̃),
which finally yields π̃ − π̄ ∈ ∂D∗t (−z̃). Furthermore, by

x̃ ∈ argminx
{
cx+ π̃(b−Ax) : x ∈ XB

}
one first has fB(π̃) = cx̃ + π̃(b − Ax̃) as desired. Then, because x̃ is a minimizer, b − Ax̃ is
a supergradient of the concave function fB; changing sign, −(b − Ax̃) = z̃ ∈ ∂(−fB)(π̃). The
desired results now follow from [16, Lemma 2.2, conditions (2.2) and (2.3)] after minor notational
adjustments (−fB in place of fB, π̃ − π̄ in place of d∗).

Using Dt = 1
2t‖·‖

2
2, which gives D∗t = 1

2 t‖·‖
2
2, one immediately recognizes in (20) the augmented

Lagrangian of (4), with a “first-order” Lagrangian term corresponding to the current point π̄ and
a “second-order” term corresponding to the stabilizing function Dt. Using a different stabilizing
term Dt in the dual corresponds to a nonquadratic augmented Lagrangian. Note that the “null”
stabilizing term Dt = 0 corresponds to D∗t = I{0}; that is, with no stabilization at all, (20) collapses
back to (5)/(12). This is the extreme case of a general property, that can be easily checked for
varying t in the quadratic case; as f ≤ g ⇒ f∗ ≥ g∗, a “flatter” Dt in the dual corresponds to a
“steeper” D∗t in the primal, and vice-versa. Also, note that the above formulae work for XB = X
as well, i.e., for the original problems (1)/(2) rather than for their approximations.

The stabilized master problems provide means for defining a general Stabilized Structured
Dantzig-Wolfe algorithm (S2DW), such as that of Figure 3.

〈 Initialize π̄ and t 〉
〈 solve Pπ̄, initialize B with the resulting x̄ 〉
repeat
〈 solve (20) for x̃; let π̃ be optimal dual multipliers of z = Ax− b 〉;
if( cx̃ = f(π̄) && Ax̃ = b )

then STOP; /* x̄ optimal */
else
x̄ ∈ argminx { (c− π̃A)x : x ∈ X }; f(π̃) = cx̄+ ỹ(b−Ax̄); /* (Pπ̃) */
〈 update B as in Assumption 3 〉;
if( f(π̃) is “substantially better” than f(π̄) )
then π̄ = π̃ /*Serious Step*/
〈 possibly update t 〉

until ∼ STOP

Figure 3: The Stabilized Structured Dantzig-Wolfe algorithm

The algorithm generates at each iteration a tentative point π̃ for the dual and a (possibly unfeasible)
primal solution x̃ by solving (20). If x̃ is feasible and has a cost equal to the lower bound f(π̄),
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then it is clearly an optimal solution for (1), and π̄ is an optimal solution for (2). More in general,
one can stop the algorithm when cx̃ + π̄(b − Ax̃) − f(π̄) ≥ 0 and ||Ax̃ − b|| (with any norm) are
both “small” numbers. Otherwise, new elements of B are generated using the tentative point π̃.

If f(π̃) is “substantially better” than f(π̄), then it is worth to update the current center: this
is called a Serious Step (SS). Otherwise, the current center is not changed, and we rely on the fact
that B is improved for producing, at the next iteration, a better tentative point π̃: this is called
a Null Step (NS). In either case, the stabilizing term can be changed, usually in different ways
according to the outcome of the iteration. If a SS is performed, i.e., the current approximation
fB of f was able to identify a point π̃ with better function value than π̄, then it may be worth
to “trust” the model more and lessen the penalty for moving far from π̄; this corresponds to a
“steeper” penalty term in the primal. Conversely, a “bad” NS might be due to an excessive trust
in the model, i.e., an insufficient stabilization, thereby suggesting to “steepen” Dt (⇒ “flatten”
D∗t ).

When fB is the standard cutting-plane model (7), the above approach is exactly what is usually
referred to as a (generalized) bundle method [16]; thus, S2DW is a bundle method where the
model fB is “nonstandard”. It is worth remarking that the ordinary bundle method, just like the
DW/CG approach of which it is a variant, exists in the disaggregated variant for the decomposable
case X = Xk∈K Xk ⇒ f(π) = πb +

∑
k∈K f

k(π) (see Section 2.1.2); in that case, too, fB is
not (exactly) the “standard” cutting-plane model (but rather the sum of standard cutting-plane
models). And in that case, too, the extra cost for the |K| times larger master problems is often
largely compensated by a much faster convergence which leads to better overall performances [2, 7].
Thus, S2DW can be seen as only carrying this idea to its natural extension by using an “even more
disaggregated” (specialized) model in place of the standard cutting-plane one.

3.3 Convergence Conditions

The algorithm in Figure 3 can be shown to finitely converge to a pair (π∗, x∗) of optimal solutions
to (2) and (1), respectively, under a number of different hypotheses. Within our environment, the
following conditions can be imposed:

i) Dt is a convex nonnegative function such that Dt(0) = 0, its level sets Sδ(Dt) are compact and
full-dimensional for all δ > 0; remarkably, these requirements are symmetric in the primal,
i.e., they hold for D∗t if and only if they hold for Dt [16].

ii) Dt is differentiable in 0 and strongly coercive, i.e., lim‖π‖→∞Dt(π)/‖π‖ = +∞; equivalently,
D∗t is strictly convex in 0 and finite everywhere.

iii) A necessary condition to declare f(π̃) “substantially higher” than f(π̄) is

f(π̃)− f(π̄) ≥ m(fB(π̃)− f(π̄)) (21)

for some fixed m ∈ (0, 1]. A SS may not be performed even if (21) holds, but this can
happen only finitely many times: during a sequence of consecutive NSs, at length (21) is also
sufficient.

iv) During a sequence of consecutive NSs, f(π̃) is computed and at least one of the corresponding
items is inserted into B at all iterations but possibly finitely many ones.

v) During a sequence of consecutive NSs, t can change only finitely many times.
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vi) Dt is nonincreasing as a function of t, and limt→∞Dt(π) = 0 for all π, i.e., it converges
pointwise to the constant zero function. Dually, D∗t is nondecreasing as a function of t and
converges pointwise to I{0}.

Under the above assumptions, global convergence of S2DW can be proven using the results of [16].
This is easier with the further assumption

vii) Dt is strictly convex ; equivalently, D∗t is differentiable,

that is satisfied e.g. by the classic Dt = 1
2t‖·‖

2
2 (but not by other useful stabilizing terms, see Section

3.5). The only delicate point is the treatment of B along the iterations. In fact, the theory in [16]
does not mandate any specific choice for the model, thereby allowing the use of (11), provided that:

• fB is a model of f in the sense that fB ≥ f , which is precisely what Assumption 2 dictates
(the requirement is fB ≤ f in [16] since it is written for minimization of convex functions);

• The bundle B is dealt with with minimal care. The handling of B is termed “β-strategy” in
[16], and the basic requirement is that it is monotone [16, Definition 4.6]: this means that at
length, during a sequence of consecutive NSs, one must have

(−fBi+1)∗(z̃i) ≤ (−fBi)
∗(z̃i) (22)

where Bi is the bundle at the i-th iteration of the sequence, and z̃i is the optimal solution (in
the space of “constraints violation”) of the stabilized primal master problem (20).

From (19), it is clear that a monotone β-strategy can be obtained with some sort of monotonicity
in B; for instance, if nothing is ever removed from it, then monotonicity is ensured. One can do
better, allowing removal of items from B as long as “the important ones” are left in.

Lemma 10 Assume that for any sequence of NSs, at length the bundle Bi has the following prop-
erty: the optimal solution x̃i at step i is still a feasible solution to (20) at step i + 1, i.e., with
bundle Bi+1. Then, (22) holds.

Proof. Obvious, since z̃i = b−Ax̃i is uniquely identified by x̃i.

By the above Lemma, it is basically only necessary to look, at each iterations, to the optimal
value θ∗B of the “auxiliary” variables in the current definition of XB (this is clearly available after
having solved (20)); all the variables with zero value can be discarded. As we will see, a monotone
β-strategy suffices under assumption vii); however, we may want to do without. This requires a
slightly “stronger grip” on B; one possibility is an asymptotically blocked β-strategy such that, for
any sequence of NSs, at length removals from the bundle B are inhibited. Clearly, an asymptotically
blocked β-strategy is monotone, and the notion is weaker than that of strictly monotone strategy
[16, Definition 4.8].

An interesting point to discuss is that of aggregation. In general, monotonicity only requires
that the optimal solution to the stabilized dual master problem z̃ remains feasible at the subsequent
iteration. When using the standard cutting-plane model (7), there is a particularly simple way of
attaining it: it suffices to add x̃ to B, possibly removing every other point. Indeed, the linear
function

fx̃(π) = cx̃+ π(b−Ax̃)

is a model of f , since x̃ ∈ XB ⊆ X, and therefore z̃ = b−Ax̃ is feasible to (20). Thus, even resorting
to the “poorman cutting-plane model” fx̃ is sufficient to attain a convergent approach under some
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conditions (cf. Lemma 11). This basically makes the algorithm a subgradient-type approach with
deflection [3, 11], and may result in much slower convergence [8, 20].

While such a harsh approximation of the objective function is contrary in spirit to the S2DW
approach, where one precisely wants to obtain a more accurate model, it may be interesting to note
that, under mild conditions, performing aggregation is possible even with a different model than
the cutting-plane one. The idea is to take the alternative model (11) and consider

f̄B = min{ fB , fx̃ }.

This clearly is again a model: f ≤ fx̃ and f ≤ fB imply f ≤ f̄B, and the model is “at least as
accurate” as fB. One then wants to compute (−f̄B)∗, i.e., the conjugate of max{ −fB , −fx̃ }; a
little conjugacy calculus (the results of [21] being more than sufficient) gives

epi (−f̄B)∗ = cl conv
(
epi (−fB)∗ , epi (−fx̃)∗

)
,

where it is easy to verify that

(−fx̃)∗(z) =
{
cx̃ if z = Ax̃− b
+∞ otherwise.

.

Thus, the epigraph of (−f̄B)∗ can be constructed by taking all points (in the epigraphical space)
(z′, (−fB)∗(z′)) and computing their convex hull with the single point (Ax̃− b, cx̃), as z′′ = Ax̃− b
is the only point at which (−fx̃)∗ is not +∞; the function value is then the inf over all these
possibilities for a fixed z (the closure operation is clearly irrelevant here). In a formula,

(−f̄B)∗(z) = minz′,ρ
{
ρ(−fB)∗(z′) + (1− ρ)cx̃ : z = ρz′ + (1− ρ)(Ax̃− b) , ρ ∈ [0, 1]

}
.

Therefore, the stabilized primal master problem (20) using model f̄B is

minz,z′,x′,θ′B,ρ


ρcx′ + (1− ρ)cx̃− π̄z +D∗t (−z)
z′ = Ax′ − b , x′ = CBθ

′
B , ΓBθ′B ≤ γB

z = ρz′ + (1− ρ)(Ax̃− b) , ρ ∈ [0, 1]
.

We can apply simple algebra to eliminate z′, but this still leaves ungainly bilinear terms ρx′ in
the problem (note that the terms (1 − ρ)cx̃ and (1 − ρ)(Ax̃ − b) pose no problem instead, as x̃
is a constant). However, provided that { θB : ΓBθB ≤ γB } is compact, these can be effectively
eliminated by the variable changes x = ρx′ and θB = ρθ′B, which leads to

minz,x,θB,ρ


cx+ (1− ρ)cx̃− π̄z +D∗t (−z)
x = CBθB , ΓBθB ≤ ργB
z = Ax+ (1− ρ)Ax̃− b , ρ ∈ [0, 1]

. (23)

The problems are clearly equivalent: from the compactness assumption, { θB : ΓBθB ≤ 0 } = { 0 },
and therefore ρ = 0⇒ θB = 0⇒ x = 0 as expected. When ρ > 0 instead, one simply has x′ = x/ρ
and θ′B = θB/ρ, and the equivalence follows algebraically. The problem therefore needs very little
and intuitive modification: the new variable ρ is a “knob” that allows to either pick the fixed
solution x̃ (ρ = 0), or any solution in XB (ρ = 1), or “anything in between”.

For the purpose of finite termination, performing aggregations is dangerous: if x̃ is allowed to
change at each iteration, the set of all possible models f̄B is not finite. Thus, one has (at least in
theory) to resort to something like a safe β-strategy [16, Definition 4.9], which is simply one where
the total number of aggregations is finite (however this be obtained).
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3.4 Convergence Results

We now turn to the convergence results for the method. The standing assumptions here are i)—vi).
A basic quantity in the analysis is

∆f = fB(π̃)− f(π̃) ≥ 0,

i.e., the “approximation error” of the model fB with respect to the true function f in the tentative
point π̃. It can be shown that if ∆f = 0, then π̃ and (x̃, z̃) are the optimal solutions to the “exact”
stabilized problems

maxπ
{
f(π)−Dt(π − π̄)

}
minz,x

{
cx− π̄z +D∗t (−z) : z = Ax− b , x ∈ X

} (24)

(with fB = f , XB = X), respectively [16, Lemma 2.2]. This means that π̃ is the best possible
tentative point, in terms of improvement of the function value, that we can ever obtain unless we
change either t or π̄; in fact, it is immediate to realize that if ∆f = 0, then the “sufficient ascent”
condition (21) surely holds. The “inherent finiteness” of our Lagrangian function f allows us to
prove that this has to happen, eventually.

Lemma 11 Assume that vii) holds and a monotone β-strategy is employed, or an asymptotically
blocked β-strategy is employed; then, after finitely many NSs, either a SS is performed, or the
algorithm stops.

Proof. By contradiction, assume that there exists a sequence of infinitely many consecutive NSs
(i.e., the algorithm never stops and no SS is done). By v), during sequences of consecutive NSs, t
is bounded away from 0; by [16, Lemma 5.6], the sequence {z̃i} is bounded. Clearly, a monotone
β-strategy implies that the optimal value v(20) of the stabilized primal master problem is nonin-
creasing; however, if vii) holds, then [16, Theorem 5.7] ensures that it is actually strictly decreasing.
Since π̄ and (at length) t are fixed, this means that no two iterations can have the same B, but the
total number of possible different bundles B is finite. Analogously, if an asymptotically blocked β-
strategy is employed, during an infinite sequence of consecutive NSs, one has that (21) is (at length,
see iii)) never satisfied, and this clearly implies f(π̃) < fB(π̃). But, at length, removals from B are
inhibited, and by iv) at length, at least one item has to be added to B at every iteration; thus, B
grows infinitely large, contradicting finiteness in Assumption 1.

Theorem 12 Under the assumptions of Lemma 11, the sequence {f(π̄i)} converges to the optimal
value of (2) (possibly +∞). If (2) is bounded above, then a subsequence of {x̃i} converges to an
optimal solution of (1). If, furthermore, m = 1 and a safe β-strategy is used, then the S2DW
algorithm finitely terminates.

Proof. The standing assumption of [16, §6], i.e., that either the algorithm finitely stops with an
optimal solution or infinitely many SSs are performed, is guaranteed by Lemma 11. Then, the first
point is [16, Theorem 6.4] (being a polyhedral function, f is ∗-compact). The second point comes
from [16, Theorem 6.2], which proves that the sequence {z̃i} converges to 0; then, compactness of
X implies that a convergent subsequence exists. The third point is [16, Theorem 6.6]. Note that
the latter uses [16, Theorem 6.5], which apparently requires that fB be the cutting-plane model.
However, this is not actually the case: the required property is that fB be a polyhedral function,
and that there exists a “large enough” B such that fB = f , which clearly happens here.
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Note that setting m = 1 as required by Theorem 12 to attain finite convergence may come at a cost
in practice. In fact, this turns the S2DW method into a “pure proximal point” approach, where
the “abstract” stabilized problems (24) have to be solved to optimality before π̄ can be updated
(it is easy to check that with m = 1 a SS can only be performed when ∆f = 0). This is most often
not the best choice, computationally [5], and for good reasons. The issue is mostly theoretical; in
practice, finite convergence is very likely even for m < 1. Furthermore, as observed in the comments
to [16, Theorem 6.6], the requirement can be significantly weakened; what is really necessary is to
ensure that only finitely many consecutive SSs are performed with ∆f > 0. Thus, it is possible
to use any m < 1, provided that some mechanism (such as setting m = 1 after a while) ensures
that sooner or later a SS with ∆f = 0 is performed; once this happens (being m = 1 or not), the
mechanism can be reset and m can be set back to a value smaller than 1.

The extension to the case where X is not compact is straightforward, as in the non-stabilized
case, provided of course that Assumption 8 holds. The theoretical analysis hardly changes; in
particular, [16, Lemma 5.6] is unaffected, and [16, Theorem 5.7] is easily extended. One may
loose the second point of Theorem 12 (asymptotic convergence of {x̃i}), but this is of no concern
here; finite convergence basically only relies on the fact that the total number of possible different
bundles B is finite, so we basically only need to ensure that the same triplet (B, π̄, t) is never
repeated. The fact that conv(X) (⇒ some variables θ in its definition) may not be bounded has no
impact, provided that the “set of pieces out of which the formulation of conv(X) is constructed”
is finite.

Convergence can also be obtained under weaker conditions. For instance:

• Strong coercivity in ii) can be relaxed provided that, like in the non-stabilized case, B is
“sufficiently large” to ensure that (20) has at least one feasible solution. This actually provides
a possible use for the aggregated model f̄B of Section 3.3 in case one knows (from outside of
the solution process) some x̃ ∈ conv(X) such that Ax̃ = b; this guarantees that ρ = 1, θB = 0,
x = z = 0 is feasible to (23). Dually, (18) is always bounded above since f̄B ≤ fx̃ = cx̃.

• Using stabilizing that are not smooth at zero (the other part of ii)) is possible provided that
Dt → 0 (pointwise) as the algorithm proceeds; basically, this turns S2DW into a penalty
approach to (1), as D∗t → I{0}. In this case, it is also possible to limit changes of the center
π̄, up to never changing it.

• Constraints on the handling of t can be significantly relaxed, up to allowing it to converge to
zero, provided that Dt is “regular enough” as a function of t; for instance, Dt = (1/t)D for
some D satisfying i) and ii).

• The descent test (21) can be weakened by using v(20) in place of fB(π̃) − f(π̄), making it
easier to declare a SS.

The reader interested in these details is referred to [16]. Yet, although not the most general, the
above scheme is already flexible enough to accommodate many algorithmic details that have proven
to be useful in some application:

• Condition iii) allows to refrain from moving π̄ even if a “sizable” ascent could be obtained
(only provided that this does not happen infinitely many times); this allows for alternative
actions to be taken in response to a “good” step, e.g. increasing t⇒ “flattening” Dt.

• Condition iv) allows to solve the separation subproblem at different points than π̃, and/or not
to add the resulting items to B, at some iterations; this is useful for instance to accomodate
a further search on the dual space “around” π̃, such as a linear or curved search.
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• Condition v) allows a great deal of flexibility in changing the parameter t which controls the
stabilizing term; the only requirement is that changes must be inhibited at some point during
very long sequences of NSs. Thus, as soon as a SS is performed, t can be set to whatever value
without hindering the convergence of the algorithm. This allows for many different actual
strategies for updating t (see for instance [15]), which are known to be instrumental for the
practical efficiency of stabilized approaches.

3.5 Stabilizing Functions

The S2DW algorithm is largely independent on the choice of the stabilizing term Dt, provided that
the above weak conditions are satisfied. Indeed, by looking at (20), one notices that the choice of Dt
only impacts on the D∗t (−z) term in the objective function, allowing for many different stabilizing
functions to be tested at relatively low cost in the same environment.

A number of alternatives have been proposed in the literature for the stabilizing function Dt or,
equivalently, for the primal penalty term D∗t . In all cases, Dt is separable on the dual, and therefore
D∗t is such on the primal, that is,

Dt(π) =
∑m

i=1 Ψt(πi) D∗t (z) =
∑m

i=1 Ψ∗t (zi)

where Ψt : R→ R ∪ {+∞} is a family of functions. Notable examples are:

• Trust Region/BoxStep: This uses Ψt = I[−t,t], that is, it establishes a trust region of “radius
t” around the current point. From the dual viewpoint, this corresponds to Ψ∗t = t| · |, i.e., to
a linear stabilization.

• Proximal stabilization: This uses Ψt = 1
2t(·)

2, Ψ∗t = 1
2 t(·)

2. Therefore, both the primal
and dual master problems are convex quadratic problems with separable quadratic objective
function.

• Linear-quadratic penalty function: This uses

Ψ∗t,ε(z) = t

{
z2/ε if − ε ≤ s ≤ ε

|z| otherwise
Ψt,ε(y) =

{ ε
4ty

2 if − t ≤ y ≤ t

+∞ otherwise

i.e., a modification of the boxstep method where nonsmoothness at zero of D∗t is avoided.

Actually, the treatment can be extended to the case when the stabilizing term depends on multiple
parameters instead of just one. One example is the 5-piecewise linear penalty function

Ψt(π) =


+∞ if π ≤ −(Γ− + ∆−)

−ε−(π −∆−) if −(Γ− + ∆−) ≤ π ≤ −∆−

0 if −∆− ≤ π ≤ ∆+

+ε+(π −∆+) if ∆+ ≤ π ≤ (∆+ + Γ+)
+∞ if (∆+ + Γ+) ≤ π

, (25)

whose corresponding 4-piecewise primal penalty is

Ψ∗t (z) =


−(Γ− + ∆−)z − Γ−ε− if −(ζ− + ε−) ≤ z ≤ −ε−

−∆−z if −ε− ≤ z ≤ 0
+∆+z if 0 ≤ z ≤ ε+

+(Γ+ + ∆+)z + Γ+ε+ if ε+ ≤ z ≤ (ζ+ + ε+)

. (26)
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In this case, t = [ζ±, ε±,Γ±,∆±] is a vector of parameters (see Figure 4). These and similar
piecewise-linear stabilizing functions have been tested (for instance, in [5]), showing that appropri-
ately setting their parameters may lead to faster convergence of stabilized algorithms (in that case,
applied to column generation).

λΓ+Δ+Γ-

ε+ε-

Ψ

Δ- z

Γ+

Δ+

Γ-

ε+ε-

Δ-

Ψ*

Figure 4: 5-piecewise (dual) and 4-piecewise (primal) stabilizing functions.

All these cases can be easily implemented within the same framework. Even the “complicated”
5-piecewise linear penalty case just corresponds to defining z = z−2 + z−1 − z

+
1 − z

+
2 , with

ζ+ ≥ z+
2 ≥ 0 ε+ ≥ z+

1 ≥ 0 ε− ≥ z−1 ≥ 0 ζ− ≥ z−2 ≥ 0

in the primal master problem, with objective function

(ȳ −∆− − Γ−)z−2 + (ȳ −∆−)z−1 − (ȳ + ∆+)z+
1 − (ȳ + ∆+ + Γ+)z+

2 .

Hence, the primal master problem is still a linear program with the same number of constraints
and 4m new variables. The other cases are even simpler.

4 Application to Multicommodity Capacitated Network Design

The Multicommodity Capacitated Network Design problem (MCND) we consider can be described
as follows. Given a directed network G = (N,A), where N is the set of nodes and A is the set of arcs,
we must satisfy the communication demands between several origin-destination pairs, represented
by the set of commodities K. Each commodity k is characterized by a positive communication
demand dk that must flow between the origin sk and the destination tk or, equivalently, by the
deficit vector bk = [bki ]i∈N with bki = −1 if i = sk, bki = 1 if i = tk, and bki = 0 otherwise. While
flowing along an arc (i, j), a communication consumes some of the arc capacity, which is originated
by installing on the arc any number of facilities. Installing one facility on arc (i, j) ∈ A provides a
positive capacity uij at a (nonnegative) cost fij ; a nonnegative routing cost ckij also has to be paid
for each unit of commodity k moving through (i, j). The problem consists in minimizing the sum
of all costs, while satisfying demand requirements and capacity constraints.

We define nonnegative flow variables xkij , which represent the fraction of the flow of commodity
k on arc (i, j) ∈ A, i.e., dkxkij is the flow of commodity k on arc (i, j). We also introduce general
integer design variables yij , which define the number of facilities to install on arc (i, j). The problem
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can then be formulated as follows:

min
∑
k∈K

∑
(i,j)∈A

dkckijx
k
ij +

∑
(i,j)∈A

fijyij (27)

∑
(j,i)∈A

xkji −
∑

(i,j)∈A

xkij = bki i ∈ N , k ∈ K (28)

∑
k∈K

dkxkij ≤ uijyij (i, j) ∈ A (29)

0 ≤ xkij ≤ 1 (i, j) ∈ A , k ∈ K (30)

yij ≥ 0 and integer (i, j) ∈ A (31)

We will denote this model as I. Its continuous relaxation Ī provides rather weak bounds, which
translate into scarcely efficient enumerative approaches. It is therefore necessary to improve the
bound if efficient approaches to the MCND are to be developed.

4.1 Dantzig-Wolfe Decomposition

Model I is amenable to solution through the DW approach in several different ways. We will
consider the “complicating” constraints to be the flow conservation equations (28), and relax each of
them with a Lagrangian multiplier πki for each k ∈ K and i ∈ N (there are other possibilities, see for
instance [8] for a related but different problem), resulting in a Lagrangian cost c̄kij = dkckij−πki +πkj
plus a fixed cost

∑
i∈N

∑
k∈K π

k
i b
k
i . This decomposes the problem into |A| subproblems, one for

each arc; therefore, to simplify the notation we will consider the arc index (i, j) ∈ A fixed, and
drop it. Each subproblem has the form

min
∑

k∈K c̄
kxk + fy (32)∑

k∈K d
kxk ≤ uy (33)

0 ≤ xk ≤ 1 k ∈ K (34)
y ≥ 0 and integer (35)

which is easy to solve. Indeed, for any fixed value of ȳ it reduces to the LP relaxation of a
0-1 knapsack problem, which can be solved efficiently (for instance, in O(|K| log |K|) through a
sorting algorithm). Furthermore, if we relax the integrality constraint (35) and fix y to any given
(continuous) value, the optimal value of the corresponding subproblem

z(y) = fy + minx
{ ∑

k∈K c̄
kxk : (33)− (34)

}
defines a convex function of y (the partial minimization of a convex function is convex). Now, the
global minimum y∗ ∈ R of z can be easily found (see [1, 18] for details), and this allows to solve the
problem. In fact, one just needs to consider y+ = dy∗e and y− = by∗c, compute z(y+) and z(y−),
and pick whichever of the two is the best; it is easy to prove that this yields the optimal solution.
Therefore, one can easily apply the standard DW approach, and in particular a disaggregated
one; we will denote by DW the corresponding formulation (10) of the problem. Since (32)–(35),
despite being easy to solve, does not have the integrality property, the bound computed by the DW
approach is stronger than that of the standard continuous relaxation of I, i.e., v(DW ) ≥ v(Ī) and
a strict inequality usually holds (see Section 4.5).
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4.2 Residual Capacity Inequalities

A different approach to improve the lower bound of a mixed-integer programming (MIP) formu-
lation is to devise valid inequalities which cut out some of the fractional solutions of the ordinary
continuous relaxation. For the MCND, the residual capacity inequalities [1, 26] have been developed
which consider separately any single arc (i, j) ∈ A (thus, once again we can drop the arc index).
Then, for any subset P ⊆ K of the commodities, one can define dP =

∑
k∈P d

k, aP = dP /u,
qP = daP e, and rP = aP −baP c: the corresponding residual capacity inequalities can be written as∑

k∈P
ak(1− xk) ≥ rP (qP − y) . (36)

These inequalities are both valid and easy to separate for any given (x̄, ȳ) where y is fractional.
One simply defines P = { k ∈ K : x̄k > ȳ − bȳc } and checks if

bȳc < aP < dȳe∑
k∈P a

k(1− x̄k − dȳe+ ȳ) + bȳc(dȳe − ȳ) < 0
.

If these conditions are satisfied, then the residual capacity inequality corresponding to P is violated,
otherwise there are no violated residual capacity inequalities. An interesting result is that residual
capacity inequalities are “equivalent” to the DW approach; that is, denoting by I+ the formulation
comprising all possible residual capacity inequalities and by Ī+ its continuous relaxation, we have
v(Ī+) = v(DW ) (see [18] for details).

4.3 0-1 Reformulation

Yet another way to improve the quality of the lower bound is to devise an alternative 0-1 for-
mulation of the MCND by means of a multiple choice model [9, 10]. Since fij ≥ 0, we have
yij ≤ d

∑
k∈K d

k/uije = Tij for each arc (i, j). Define Sij = {1, . . . , Tij}, and introduce two sets of
auxiliary variables

ysij =
{

1 if yij = s
0 otherwise

s ∈ Sij , (i, j) ∈ A (37)

xksij =
{
xkij if yij = s

0 otherwise
s ∈ Sij , (i, j) ∈ A, k ∈ K . (38)

A 0-1 model of the problem can be obtained by first introducing the additional constraints

yij =
∑
s∈Sij

sysij (i, j) ∈ A (39)

xkij =
∑
s∈Sij

xksij (i, j) ∈ A , k ∈ K (40)

(s− 1)uijysij ≤ xsij ≤ suijysij (i, j) ∈ A , s ∈ Sij (41)∑
s∈Sij

ysij ≤ 1 (i, j) ∈ A

ysij ∈ {0, 1} (i, j) ∈ A , s ∈ Sij

and then removing constraints (29) and (31) (which are implied by (39) and (41)) and projecting
out variables yij and xkij via (39) and (40), respectively. The corresponding model, which we will
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denote as B, still provides the same (weak) bound as I. However, the extended model B+ obtained
by adding the extended linking constraints

xksij ≤ ysij s ∈ Sij , (i, j) ∈ A , k ∈ K

is stronger; indeed, for its continuous relaxation B̄+ one has v(B̄+) = v(DW ) = v(Ī+) [18].

4.4 Summary of Algorithmic Approaches

The previous analysis shows that various algorithmic approaches exist for computing the same
lower bound:

1. The DW approach applied to the original model I, either in the aggregated (4) or in the dis-
aggregated (10) form; this is an LP with exponentially many variables and “few” constraints,
solved by a variable generation technique.

2. The Stabilized DW (also known as bundle method) approach applied to the original model
I, again in the two possible aggregated or disaggregated forms; this is a family of penalized
problems, depending on the current point π̄ and stabilizing parameter t. Each problem is
usually either an LP or a QP with exponentially many variables and “few” constraints, which
is approximately solved by a variable generation technique until π̄ and/or t are changed.

3. The Structured DW approach applied to model B+, which is an LP with a pseudo-polynomial
number of both variables and constraints, solved by simultaneous variable and constraint
generation.

4. The Stabilized Structured DW approach applied to model B+; this is again a family of LPs
or QPs depending on π̄ and t, but each one now has a pseudo-polynomial number of variables
and constraints, and it is approximately solved by variable and constraint generation until π̄
and/or t are changed.

5. A completely different cutting-plane algorithm in the primal space, using residual arc capacity
inequalities, applied to solve Ī+: an LP with exponentially many constraints and “few”
variables.

Clearly, apart from eventually providing the same bound and being all based on “very large”
reformulations of the standard I model, these approaches bear little in common. The underlying
reformulations have either very many columns and a few rows, or very many rows and relatively
few columns, or an “intermediate” (albeit still very large) number of both rows and columns. The
problems to be solved at each iteration may be either LPs or QPs, and be either very specially
structured (so as to allow specialized approaches [14]) or rather unstructured. Implementing them
may require little more than access to a general-purpose LP solver, such as in the case of 5 (where
the dynamic generation of rows can be taken care of by the standard callback routines that all
current LP solvers provide for the purpose), or access to somewhat more complex but still quite
general codes for Lagrangian relaxation, such as in the case of 2, or, finally, development of entirely
ad-hoc approaches such as for 3 and 4.

The algorithms may either be basically “fire and forget,” or require nontrivial setting of algorith-
mic parameters. In particular, for stabilized approaches, the initial choice of π̄ and the management
of t can have a significant impact on performances. Regarding the first, in the absence of better
options π̄ = 0 is the standard choice at the first iteration; however, for the MCND, better options
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class small medium large huge
|N | 20 30 20 30
|K| 40 100 200 400

Table 1: Description of instances

exist. For instance, one may solve the |K| separate shortest path problems corresponding to con-
straints (28) and (30), with dkckij + fij/uij as flow costs; this corresponds to solving the continuous
relaxation of Ī (hence computing the weak bound), and produces node potentials π̄k which can be
used as starting point. Alternatively, or in addition, a few iterations of a subgradient-like approach
can be performed to quickly get a better dual estimate.

Although all approaches compute the same relaxation bound, they should not be expected to
be computationally equivalent. This indeed proves to be the case, as reported in the next section.

4.5 Computational Results

All experiments were performed on a computer with 16 Intel Xeon X7350 CPUs running at 2.93GHz
and 64 Gb of RAM, running Linux Suse 11.1. All the LPs have been solved with CPLEX 11.1;
in particular, the cutting-plane approach (5, above) has been implemented with the standard
cutcallback of CPLEX. The stabilized DW approach to I (2, above) has been solved with a
general-purpose bundle code developed by the first author and already used with success in several
other applications [8, 19, 20]. The structure of the code allows to solve the Lagrangian dual with
different approaches, such as the pure DW method (1, above) or “quick and dirty” subgradient-
like methods [11], which have been shown to be competitive in some occasions [8, 20] for rapidly
attaining rough estimates of the bound. The two other approaches (3 and 4, above) have required
an ad-hoc implementation.

The experiments have been performed on 120 randomly generated problem instances, already
used in [18]; the interested reader is referred there for more details. The instances are divided into
four classes, whose characteristics are described in Table 1. For each class, 8 “basic” instances were
generated and tested with 4 different values of the parameter

C = |A|
∑

k∈K dk∑
(i,j)∈A uij

,

for a total of 32 instances; when C = 1 the average arc capacity equals the total demand and
the network is lightly capacitated, while it becomes more tightly capacitated as C increases. All
instances in a class share the same number of nodes and commodities, while the number of arcs
may vary.

For non-stabilized approaches, the choice of the initial point is known [5] to have little impact
on the performances. This is at large true also for the stabilized DW solved by the standard bundle
code, which offers several sophisticated approaches for the critical on-line tuning of t [15, I.5];
whenever π̄ is “far” form the optimum the strategies keep t “large,” thereby allowing “long steps”
and fast convergence, while when the optimum is approached t is reduced to enhance the locality
properties. However, these strategies are not straightforward to adapt to the S2DW setting, hence
for that we kept t fixed for all the execution. As a consequence, the choice of the initial π̄ had a
significant impact on performances, and the (fixed) value of t had to be hand-tuned together with
the choice of the initial point. Hence, apart from the shortest path warm-start (which can be used
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by default since it is very inexpensive), we tested a two-level warm start where the shortest-path-
produced π̄ is further enhanced by a few iterations of a subgradient method. Some tuning of t and,
for the latter, of the parameters of the subgradient, were necessary to select reasonable values; the
parameters were chosen among a few choices, and kept fixed for all instances of the same class. In
particular, the “optimal” t was shown to depend on the starting point, i.e., smaller (as expected)
for the two-level warm start than for the standard shortest path warm-start, although only for two
classes over four.

All the approaches only compute the same lower bound to the optimal value of the MCND,
but of course this is only relevant as a step towards finding the optimal—or at least a provably
good–solution to the problem. It is therefore interesting to gauge what is “the quality” of the
partial formulation generated by each approach at termination. To do that, one way is to pick
the final formulation produced by each approach and run CPLEX on it for one hour with the
polishing option, in order to find a (hopefully, good) approximation of the best integer solution
which is feasible for the partial formulation. This is easy with formulations I+ and B+, much less
so (although in principle possible [27, 28]) with formulation DW . It is interesting to note that any
restriction of I+ contains the optimal solution, while this is not true for B+.

We first ran an initial set of tests on a subset of the instances to get a first assessment of the
effectiveness of each approach and to tune the algorithmic parameters where necessary; from these
tests, we could conclude that:

• As expected, due to its instability, the standard (non stabilized) aggregated DW method
could not reach the relative precision of 1e-6 in reasonable time, dramatically tailing off and
effectively stopping to converge while still far from the expected value. Unlike in other appli-
cations [23], turning to the disaggregated model did not substantially change the situation.

• Not even the stabilized aggregated DW approach could reach convergence in reasonable time;
while the method was indeed converging, the speed was exceedingly slow. This could be
expected in view of the results on a similar problem [8], where a bundle method was found
to be able to attain a not-too accurate estimate of the bound in reasonable time only by
imposing strict bounds on the maximum size of B. However, unlike in the non-stabilized
case, the disaggregated variant improved things very substantially, resulting in a workable
solution.

• The SDW method was always workable, although rather slow for very large instances. The
S2DW worked well, but there were significant differences in running time depending on the
chosen stabilizing term; thus, we had to experiment both with the standard quadratic sta-
bilization (Ψt = 1/(2t)(·)2) and with linear stabilization, namely, the three-pieces setting a
trust region in the infinity norm of radius t around π̄ (Ψt = I[−t,t]).

We then ran a complete set of tests on the remaining approaches, i.e., the primal cutting-plane
approach using residual capacity inequalities on the integer model I (denoted by “I+”), the (dis-
aggregated) Stabilized Dantzig-Wolfe method on the integer model I (denoted by “StabDW”), the
non-stabilized Structured Dantzig-Wolfe method on the binary modelB+ (denoted by “StructDW”),
and three versions of the Stabilized Structured Dantzig-Wolfe method on the binary model B+:
with quadratic stabilization (denoted by “S2DW2”), with linear stabilization (denoted by “S2DW∞”),
and with linear stabilization and two-level warm-start using subgradient (denoted by “S2DW∞–
ws2”). The results are shown in Tables 2 to 5. For each instance, we report the improvement
(column “imp”), in percentage, between the “weak” lower bound v(Ī) and the “strong” lower
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bound v(Ī+) = v(DW ) = v(B̄+) computed by all methods. To compare the approaches, we report
CPU times (column “cpu”) and—with the exception of StabDW—the gap in percentage between
the upper bound obtained as described above and the lower bound (column “gap”). For all ap-
proaches, we report the total number of iterations (column “it”); for S2DW, we also report the
number of Serious Steps (column “ss”).

For small instances (Table 2), the six approaches are roughly equivalent. StabDW is typically
slightly faster than all the others, but very close to I+. StructDW attains slightly worse perfor-
mances in time, and very similar ones in gap for the cases (almost always C = 16) where it is
non-null. Among the Stabilized SDW approaches, S2DW2 has the smallest number of iterations,
slightly smaller than the non-stabilized approach, but it requires a longer running time due to the
quadratic (vs. linear) master problem. The linear stabilization often worsens the iteration count
significantly compared to both the quadratic and the non-stablized version, although the “sophis-
ticated” warm-start definitely helps in clawing back some performances; however, while S2DW∞ is
by far the worst performer in terms of running time, it is also invariably the best (sometimes by a
wide margin) in terms of gap. Yet, for instances taking (much) less than 3 seconds to execute, the
differences, although significant in relative terms, are almost negligible in absolute value.

The picture is significantly different already for medium instances (Table 3). First, due to a
very large number of iterations, the StabDW approach is the fastest only for two (easy) instances,
it is somewhat competitive in two other ones (except for C = 16), but loses badly on the most
difficult ones. The Structured DW approach suffers a significant degradation of performances (up
to five-fold) as C grows from 1 to 16, making it not competitive for the largest values of C, although
it is one of the best approaches for small C. The quadratic S2DW is no longer invariably better
than the non-stabilized SDW in terms of iterations, except for C = 16; however, the cost of the
quadratic master problem explodes, especially for some instances, making it very unattractive.
We remark here that both the active-set (“simplex”) and interior-point (“barrier”) algorithms of
CPLEX have been tested, with the former proving (as expected) more efficient due to its better
reoptimization capabilities; yet, this was not sufficient to achieve good performances. The linear
S2DW is again worse than the quadratic one in iteration count, but much better in running time;
furthermore, it is much more stable than the non-stabilzed SDW as C grows, so that while the
latter is usually faster for C ≤ 4, the reverse happens for C ≥ 8. The effect of the two-stage
warm-start is somewhat erratic in these instances, seldom being of any use in terms of CPU time;
however, the gaps (where nonzero) are most often substantially reduced. The primal cutting-plane
I+ is generally comparable to S2DW∞ in performances, often (but not always) being better; yet,
in terms of gap S2DW∞ clearly dominates, especially in the most “difficult” instances where the
final gaps are larger.

The trends seen for the medium instances are confirmed and amplified in the large ones (Table 4).
The (disaggregated) Stabilized DW requires more than 100000 iterations on average, and therefore
is typically very slow. The non-stabilized Structured DW suffers the same sharp degradation of
performances as C increases, with almost an order of magnitude difference in one case. A completely
opposite trend, barely discernible already in the “hard” medium instances, reveals itself for I+:
the approach is much more efficient for large C than for small C, with the ratio between C = 1 and
C = 16 reaching almost 25 in one case. Thus, while StructDW is much better than I+ for C = 1,
typically by more than an order of magnitude, I+ wins in a few cases for C = 16, although at most
by 50%. The trend is repeated almost identical for gaps: StructDW is better (often considerably
so) for C ≤ 8, while in a few cases I+ attains a better gap for C = 16. The quadratic S2DW
again outperforms all other approaches in terms of iteration count; however, the cost of the master
problem explodes to intolerable levels. Furthermore, the gaps are not quite as good as those of
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Problem StabDW StructDW S2DW∞ S2DW∞–ws2

|A| C imp cpu it cpu gap it cpu gap it ss cpu gap it ss
519 1 100.83 87695 248746 9839 9.96 157 2473 2.23 76 55 1857 2.31 53 38

4 92.54 88031 247864 9087 11.25 140 2140 2.33 68 54 2487 2.36 66 44
8 82.16 88918 258266 11613 8.47 143 2338 2.45 66 45 1813 2.30 52 30

16 65.53 85384 238945 38617 10.26 242 3403 2.66 77 39 2570 2.26 58 23
519 1 140.14 95890 267645 21405 18.41 115 8741 3.14 107 94 7576 3.39 80 67

4 121.46 103067 266754 25651 18.35 121 11101 3.17 118 94 7722 3.07 75 59
8 101.19 95873 273728 47618 20.57 160 10020 3.00 103 74 8904 3.03 75 49

16 73.67 92737 240947 60050 20.04 89 8245 3.00 72 52 8004 3.29 63 24
519 1 88.94 61543 187836 5153 5.75 128 1482 2.19 63 52 1139 1.91 49 32

4 82.77 60911 188733 8207 6.25 205 1320 1.87 60 41 1341 1.77 53 32
8 74.84 62377 187785 8490 4.87 163 1649 1.90 71 40 1262 1.84 47 30

16 61.42 75193 220169 17422 6.35 202 1636 1.99 59 33 1522 2.11 55 19
519 1 125.07 93065 258054 22246 14.90 165 4811 3.31 87 76 4668 3.06 66 55

4 111.02 90573 250854 17976 18.22 131 4324 2.57 77 64 4373 3.19 66 45
8 94.82 93418 256884 30460 18.18 159 5224 3.14 85 60 4209 2.86 57 36

16 71.31 93567 265663 74447 16.50 176 5532 3.14 67 46 5191 3.02 64 23
668 1 126.02 98789 246702 23771 11.89 149 9215 2.96 97 78 6815 3.01 69 56

4 115.29 99014 247620 28567 10.97 176 6766 2.99 79 63 6506 3.07 69 45
8 102.03 104481 258636 27871 12.07 130 7560 2.67 87 56 5765 2.78 61 37

16 80.96 103011 278905 58363 13.95 156 8626 3.14 83 45 3764 2.95 41 18
668 1 111.16 92855 243448 13119 8.69 120 4316 2.53 77 63 4301 2.52 71 44

4 103.21 94363 243804 12586 8.27 114 4117 2.36 79 51 2695 2.55 46 34
8 93.15 88587 250759 20560 9.20 164 6314 2.31 102 64 3203 2.54 59 21

16 76.10 101200 270216 38503 8.75 184 6360 2.30 95 44 3441 2.50 55 19
avg. 95.65 89606 246055 26317 12.17 154 5321 2.64 81 58 4214 2.65 60 37

Table 5: Results for huge instances

the linearly stabilized versions; in particular, in four cases (marked with “****” in the Table), no
feasible solution at all was found. Here, the linear S2DW really outperforms the competition: it
is outperformed only by the non-stabilized SDW for small C, but it is much less affected by the
growth of C (actually, most often than not it behaves better for large C than for small ones),
being a factor of two faster on average. Furthermore, the gap is very substantially smaller than
both StructDW and I+, irrespective of C. Again, the two-level warm-start has an erratic effect on
running times, resulting in a very close average, but halves the gap when compared to the already
surprisingly good result of the standard warm-start; this results in an average gap of 1.4%, which
is a full order of magnitude less than the 14% gap obtained by I+.

For huge instances (Table 5), we did not compute results for I+ and S2DW2, as it is clear from
the previous data that they have no hope to be competitive (for I+, this had already been shown in
[18] when comparing it to StructDW alone). The Stabilized DW requires around 250000 iterations
to converge, ending up the slowest in all cases. The non-stabilized Structured DW suffers from the
same dramatic performance decline as C grows, making even the Stabilized DW on the original
cutting-plane model competitive for C = 16. However, S2DW is much more efficient in time, up
to over one order of magnitude, and still delivers much smaller gaps. The two-level warm-start
does not have the same uniform effect on gaps than for the medium and large instances, ending up
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with very close results; however, in this case, the effect on running times is more noticeable, with
a reduction between 20% and 50% being the most common outcome.

These results confirm that using the “more sophisticated” model of the Structured DW is
typically very beneficial. The standard cutting-plane model, even the disaggregated one, may
require a huge number of iterations to converge, thereby finally being less efficient despite the
much lower cost of the master problem. This is analogous to what has been reported several times
[2, 7, 23] to happen with the aggregated vs. disaggregated cutting-plane model: the much faster
rate of convergence due to a more complex model can more than make up for the higher master
problem cost. For “easy” (loosely capacitated) medium-to-large-scale instances, not stabilizing
may be the best choice; this has been reported before for column generation [5]. However, for
more tightly capacitated instances, especially as the size grows, stabilization becomes instrumental,
provided that care is exercised in choosing the right stabilizing term. The effect on the gap is also
noteworthy, since stabilization ends up not only being faster, but also collecting a smaller subset
of the model, within which it is apparently much easier to find integer solutions of good quality.
In other words, stabilization seems capable of helping the Structured Dantzig-Wolfe approach to
select “just the right parts” of the huge model, not only in terms of the solution of the continuous
relaxation, but also in terms of the integer solution. Exactly why this capability does not appear
to be shared by the quadratically-stabilized version, that is otherwise clearly superior in terms
of convergence speed, is not clear to us at this point in time, although one may speculate that
the linear stabilization “changes less” the original linear objective function of the master problem.
Thus, stabilization not only improves bound computation times, but it also appears—at least in
this application—useful for constructing actual solutions of the original combinatorial program.
Since the non-stabilized Structured Dantzig-Wolfe approach is a special case of the Stabilized one
with an “infinitely weak” stabilization term, it is arguably convenient to approach any potential
new application with a “stabilize first, ask questions later” strategy.

5 Conclusions and Future Research

We have proposed, analyzed and implemented a new extension of the Dantzig-Wolfe decomposi-
tion method. Our Structured Dantzig-Wolfe decomposition method improves on the original DW
algorithm by allowing to exploit available information about the structure of the “easy” polyhe-
dron under the form of a reformulation of the pricing problem amenable to a variable generation
procedure. If the required assumptions are satisfied, the SDW approach has similar convergence
properties than the original DW approach; furthermore, the subproblem that has to be solved
in the two algorithms is the same—only the master problem changes—and therefore only limited
modifications to existing DW approaches are required to implement SDW methods. Furthermore,
the SDW method can be stabilized exactly like the original DW approach, leading to the Stabilized
Structured Dantzig-Wolfe method (S2DW); the convergence theory of [16] can be extended to the
new approach, providing a reasonably complete picture about what stabilizing terms can be used,
how the proximal parameter t and the “bundle” B can be handled, and so on. We have tested the
S2DW approach on an important combinatorial problem, the Multicommodity Capacitated Net-
work Design problem, obtaining quite encouraging results against a large set of possible alternative
approaches providing the same (strong) lower bound.

As far as future developments go, it will be interesting to collect more applications where the
S2DW approach can be applied. The S2DW approach does not have the same wide applicability as
the original DW approach, since it requires the existence of a reformulation of the “easy” problem
with specific properties. However, we are confident that many more applications of the approach
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can be constructed, with some (see for instance [6]) being already clearly identified as potential
candidates; it will be interesting to verify in how many cases the new approach is competitive
with existing solution methods. The implementation we tested is also rather naive in terms of the
handling of t (fixed) and of B (no removals, no aggregation); finding appropriate rules for these
important aspects has the potential to further substantially improve the computational behavior
of the approach.
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[28] D. Villeneuve, J. Desrosiers, M.E. Lübbecke, and F. Soumis. On Compact Formulations for
Integer Programs Solved by Column Generation. Annals of Operations Research, 139:375–388,
2005.

A Stabilized Structured Dantzig-Wolfe Decomposition Method

CIRRELT-2010-02 32


	CIRRELT-2010-02pp
	CIRRELT-2010-02-abstract
	CIRRELT-2010-02



