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Abstract. The Vehicle Routing Problem with Time Windows (VRPTW) is a well-known 

combinatorial optimization problem of high computational complexity. It can be described 

as the problem of designing least cost routes from a depot to a set of customers of known 

demand. The routes must be designed such that each customer is visited only once by 

exactly one vehicle within a given time interval without violating capacity constraints. The 

goal is to minimize first the total number of vehicles required and second the total travel 

distance incurred. As research move towards more larger and realistic problems, the trend 

is towards the development of computationally intelligent algorithms capable of producing 

high quality solutions with reasonable computational burdens. The purpose of this survey 

is to discuss the state-of-the-art in the field of advanced heuristics proposed for solving 

large-scale problem instances. The effort is not only to provide an overview of solution 

methods, but also to identify the ingredients of success. Computational results, comparing 

the performance of different algorithms, are reported, while an analysis based on essential 

attributes, such as efficiency, effectiveness, simplicity and flexibility, is also provided. 
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 Introduction 
Transportation logistics systems are usually large-scale in nature, while their complexity may arise 

from many different sources, such as customers, vehicles, shipments and physical infrastructure, all 

interacting in various ways. In addition, due to the continuously increasing collaboration among 

transportation companies and other logistics partners, problem instances of interest are becoming 

larger in terms of size and more complex in terms of “new” constraints and objectives. It is common 

for real life vehicle routing applications (e.g. waste collection, courier and dial-a-ride services and 

newspaper delivery) to involve the daily service of tens of hundred or even thousand customers. 

The Vehicle Routing Problem (VRP) is one of the core operations research and combinatorial 

optimization problem classes and it has been the object of numerous studies. Solving VRPs 

optimally or near-optimally for large-scale problem instances is of major interest. With the 

exception of the Traveling Salesman Problem (TSP), where instances with several thousand nodes 

can be solved optimally on a regular basis (Gutin and Punnen, 2002), instances of a VRP with more 

than one hundred customers can be intractably hard to solve optimally and exact methods are 

confined to limited-sized instances. For this reason, the literature is replete with metaheuristic 

algorithms, cooperative search methods and hybrid approaches, which stand between heuristics and 

exact optimization techniques and are capable of producing high quality solutions with 

computational time burdens reasonable for practical applications. Yet, despite the contributions and 

the progress the field has seen in recent years, many challenges still stand and new ones are 

emerging. 

Apart from efficiency, scalability and speed of solution procedures are prerequisite attributes for 

their adaptation within real life decision support systems in which the response times have to be 

short. Recently, great attention has been devoted on computational experimentation considering 

large sized data sets for different VRP variants that mimic to some extent real life conditions. Li et 

al. (2005) and Kytöjoki et al. (2007) reported results for the Capacitated VRP considering data sets 

with up to 1200 and 24000 customers, respectively. For the Heterogeneous Fleet VRP and the Open 

VRP, Li et al. (2006, 2007) conducted experiments with more than 480 customers, while for the 

VRPTW recent algorithmic developments are evaluated on the large-scale problem instances 

provided by Gehring and Homberger (1999) with a cardinality ranging from 200 to 1000 customers. 

The focus of this paper is to provide an overview and discuss the state-of-the-art in the field of 

advanced heuristics proposed to address large-scale VRPTW instances. The VRPTW is certainly 

the most studied variant of VRPs and it can be considered the prototype of the so-called “rich” 

VRPs because time window constraints require sophisticated techniques for constant time 

feasibility checks (Irnich, 2008). It occurs in several transportation logistics systems and it can be 

used to model numerous real life applications (Bodin et al., 1983). Typical large-scale VRPTW 
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applications can be found in waste collection (Sahoo et al., 2005), fast food routing (Russell, 1995), 

school bus routing (Bracca et al., 1994), home delivery and technical-dispatching services (Weigel 

and Cao, 1999). One may also refer to Golden et al. (2002) for a collection of vehicle routing and 

scheduling applications from several industries, including solid waste, beverage, food, dairy and 

newspaper. 

The VRPTW can be formally stated as the problem of designing least cost routes from a depot 

to a set of geographically scattered customers of known demand. The routes must be designed such 

that each customer is visited only once by exactly one vehicle within a given time interval that 

models the earliest and the latest times during the day that service can take place. The vehicle must 

remain at the customer location during the service, and in case the vehicle arrives before the 

customer is ready to begin the service, it waits. Finally, all feasible routes start and end at the depot, 

while the accumulated quantities to deliver/collect up to any customer of a route must not exceed 

the vehicle capacity.  

The VRPTW usually has multiple objectives. The goal is to determine the minimum number of 

vehicle routes and the optimal sequence of customers visited by each vehicle, such that all 

customers are served and all constraints imposed by vehicle capacity, service times and time 

windows are satisfied. Typically, a lexicographic (hierarchical) ordering of objectives is followed. 

That is, the number of routes is first minimized and then, for the same number of vehicle routes, the 

total travel time or the total travel distance incurred by the fleet of vehicles is minimized. An 

additional objective might consider minimization of the total time spent (including vehicle's waiting 

time). In the case of m-VRPTW (fixed fleet size) the first objective is to maximize the total number 

of customers served. Herein, the focus is on solution approaches proposed for hard time windows 

following the hierarchical ordering of objectives described above. 

The VRPTW can be decomposed into two sub-problems. If the time window constraints are 

relaxed, it reduces to a bin-packing problem (or set-partitioning), while if the capacity constraints 

are relaxed, it results in a multiprocessor scheduling problem with some form of sequence-

dependent service times, as well as release times and deadlines to account for time windows. The 

complexity of the VRPTW, which is NP-hard in its general form, stems from the inherent 

complexity of its underlying constituting elements, since both are NP-complete (Garey and 

Johnson, 1979). Even the problem of finding a feasible solution for the m-VRPTW is NP-complete 

(Savelsbergh, 1985). 

Early work on the VRPTW dates back to the 1960’s. For an overview on early developments, 

we refer readers to the surveys of Golden and Assad (1986), Desrochers et al. (1988), Desrosiers et 

al. (1995), and Cordeau et al. (2002). The more recent surveys of Bräysy and Gendreau (2005a,b) 

and Bräysy et al. (2004a) review the algorithmic developments in the field of construction 
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heuristics, iterative improvement heuristics, metaheuristics and evolutionary algorithms. Since the 

late 1980s, most solution approaches have been evaluated upon the medium-sized benchmark data 

sets of Solomon (1987), while recently the focus of most researchers has shifted on large-scale 

problem instances using the data sets of Gehring and Homberger (1999). Although significant 

contributions have been made regarding the Solomon’s (1987) data sets, no method can consistently 

re-produce the best-known solutions and few can find the best-known fleet size for all problem 

instances. On the other hand, the best-known results for the large-scale problem instances have been 

continuously updated for the last 9 years; however, there is still much room for improvement, 

especially in terms of effectiveness. Evidently, many solution approaches fail to provide a good 

compromise between quality and speed, while few score well on other dimensions, such as 

simplicity and flexibility. 

The main contribution of this paper is to discuss the latest research activities in the field of 

advanced heuristics proposed for solving large-scale VRPTW instances. The main effort is not only 

to provide an overview of the literature, but also to identify the ingredients of success both in terms 

of accuracy and speed. Initially, we focus on the design of neighborhoods and we discuss recent 

advances in the field of neighborhood search methods, since both the structure and the evaluation of 

neighborhoods may affect significantly the resulting performance. Afterwards, we divide the 

literature into three categories and we elaborate our analysis for each solution approach based on 

four attributes: efficiency, effectiveness, simplicity and flexibility, as originally proposed by 

Cordeau et al. (2002). Apart from the constituting elements, great attention is given to speed up 

techniques, parallel implementations, integrative and collaborative algorithmic schemes and route 

elimination strategies. To this end, computational results comparing the performance of different 

solution approaches are also reported. Finally, the main findings are summarized and conclusions 

are drawn offering pointers for future research. 

1 Neighborhood: Structure and Evaluation  
Neighborhood structures and neighborhood search methods are key algorithmic components, since 

the majority of solution methods for large-scale VRPTW instances are local search-based or make 

use of local search components. Despite their success, only a small fraction exploits the 

interrelationships between neighborhood definitions and the associated neighborhood search 

algorithms. Clearly, the neighborhood size and the speed of evaluation determine to a large extent 

the resulting efficiency and effectiveness. Ambitious large neighborhoods increase the chances of 

finding high quality solutions, but they are more expensive to explore. This is why methods for 

intelligently pruning neighborhoods are important. Proper structural design and the choice of the 

appropriate search method are ways to achieve this goal. 
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Finding the best solution in a given neighborhood is itself an optimization problem. This 

problem can be solved either exactly or heuristically, using direct enumeration schemes (e.g. 

sequential search and lexicographic search) or indirect optimization algorithms (e.g. branch-and-

bound and network optimization algorithms for shortest paths or cycles). Apart from the solution 

technique, the speed of neighborhood evaluation depends also on the computational effort to 

determine the cost of a neighboring solution and checking its feasibility. Furthermore, if the search 

is enumerative there is always the flexibility to terminate the evaluation process whenever one 

improving neighbor from the set of all improving neighbor solutions has been found. In particular, 

there are three well-known strategies: the first improvement, the best improvement and the d-best 

improvement. From the average viewpoint these strategies might significantly differ in their 

efficiency, while the worst-case performance of all strategies is equivalent (Irnich, 2008).  

Since there is always the trade-off between the size and the effort needed for searching the 

entire neighborhood, effective local search implementations for solving large-scale problem 

instances should essentially utilize neighborhoods of at least manageable size. Below, both classical 

and newly developed neighborhoods are described. We focus on two major building blocks: the size 

and the evaluation of neighborhoods. Attention is given first to edge-exchange neighborhoods, edge 

handling techniques and direct enumerative search methods, while an overview of search methods 

for large neighborhoods in the context of the VRPTW is also provided. 

1.1 Node- and Edge-exchange Neighborhoods 

1.1.1 Neighborhood Definition 

Edge-exchange neighborhoods are generated by a set of operations, such as segmentation, 

inversion, permutation and concatenation, made at the level of edges, and typically their size is a 

polynomial function of the total number of customers (Funke et al., 2005). Apart from the number 

of deleted and added edges, a common way to manage the size of edge-exchange neighborhoods is 

to use a set of restricted operators. Most of these operators are structured in such a way that only 

proper move types are considered during permutation and concatenation, the length of the segments 

(or paths) is restricted during segmentation and some segments might need to be reversed during 

inversion operations. Similarly, there are operators that can be used to extend the size of a 

neighborhood structure. A typical example is the Generalized Insertion operator introduced by 

Gendreau et al. (1992, 1995), in which a local re-optimization is performed simultaneously with an 

insertion. 

Any intra-route edge-exchange neighborhood can be derived from the k-Opt neighborhood (also 

known as k-exchange) that involves the substitution of a set of k edges with a set of k other edges 

from a single route. The total number of possible k-Opt moves (including proper and non-proper 
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moves) for a given k is 2k-1(k-1)!, while verifying k-optimality requires O(nk) operations. Due to the 

rapid increase of the computational requirements w.r.t k, k is limited to 2 or 3 in most cases (2-Opt 

and 3-Opt neighborhoods). The size of the 2-Opt neighborhood is quadratic and there is only one 

proper move type, while the size of 3-Opt is cubic and there are four proper move types. The only 

3-Opt move type that does not reverse any segment is the so-called Or-Opt move (Or, 1976), which 

relocates a segment of consecutive customers of length usually less than or equal to three. The size 

of the Or-Opt neighborhood is quadratic (if the length of the segment is bounded). Finally, an 

extension called inverted Or-Opt (IOpt) was introduced by Bräysy (2003) considering both the 

forward and reserve orientation of the relocated segment.  

The k-Opt* neighborhood generalizes the k-Opt one to account for multiple-routes (Potvin et al., 

1989). The idea behind the application of a 2-Opt* neighborhood is to swap the end segments 

between two routes without reversing the order of customers. The size of the 2-Opt* neighborhood 

is quadratic (Potvin and Rousseau, 1995). Similarly, the Path Insertion (also known as String 

Relocation) generalizes the Or-Opt and IOpt neighborhoods. More specifically, Path Insertion 

relocates a segment of at least two consecutive customers from one route to another considering 

both the forward and reverse orientation. The size of the Path Insertion neighborhood is cubic. 

The λ-interchange neighborhood proposed by Osman (1993) can be considered as the generic 

inter-route node-exchange neighborhood structure. It selects two subsets of customers (with 

cardinality less than or equal to λ) from two different routes and exchanges them considering all 

possible insertion positions for both routes, resulting in a neighborhood size O(n4λ). If it is required 

that the nodes be inserted in the position of the removed nodes, the size reduces to O(n2λ). Since the 

size of λ-interchange neighborhood is relatively large even for small values of λ, in the literature λ 

rarely exceeds 2 and most researchers adopt small and manageable special structured λ-interchange 

sub-neighborhoods. Typical examples are the Relocation, the Exchange and the Swap neighborhood 

of Savelsbergh (1992) and the CROSS-exchange neighborhood structure introduced by Taillard 

et al. (1997).  

The idea behind the Relocation move (also known as Insertion) is the removal of one node from 

its current position and its insertion into a different position of the same or a different route. The 

size of the Relocation neighborhood is quadratic. In an Exchange (or Swap) local move, one node is 

moved from one route to another and a second node is moved from the latter to the former. On the 

other hand, the CROSS-exchange move involves the exchange between two segments of any length 

(or less than a predefined length) from two different routes. The size of the CROSS-exchange 

neighborhood is O(n4). Finally, several structures have been proposed in the literature that extend 

the above described neighborhoods, such as inverted CROSS (Bräysy, 2003), GENI-exchange and 

GENICROSS (Bräysy, 2004b). 
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1.1.2 Direct Enumeration Search Methods & Acceleration Techniques 

Direct enumeration search methods for O(nk) neighborhoods typically work on a search tree with at 

least k levels by adding and/or deleting edges and evaluate the results of these operations directly. 

The latter requires the implicit or explicit construction of neighbors, the computation of cost (or 

gain compared to the current solution) and the test of whether the neighbor is feasible or not. The 

goal is to reduce the search effort (perform less than nk operations) by pruning early in the search, or 

by finding the local best neighbor as quickly as possible without scanning all neighboring solutions 

explicitly (Funke et al, 2005). The critical criteria for the reduction of the search space are cost and 

feasibility, i.e., if some branch of the search tree does not contain any feasible or improving 

neighbor, it can be pruned. In the literature, there are two main approaches, namely the 

lexicographic search (Kindervater and Savelsbergh, 1997) and the sequential search (Irnich, 2008) 

based on feasibility and cost reductions, respectively.  

Lexicographic search is based on the systematic way in which segments are built. In particular, 

during segmentation the k edges for removal are chosen in a lexicographic order (the order in which 

edges currently appear in the routing plan) using k nested loops. Having fixed the first edge, all 

other edges selected for removal are chosen sequentially, such that exactly one edge is added or 

deleted from one segment in every loop. Thus, from one neighbor to the next only the last selected 

edge is shifted on and on. The latter implies that information from the previous segmentation, 

permutation, inversion and concatenation operations can be used to check the feasibility of the 

current move and to prune the search early (Savelsbergh, 1992). In this regard, lexicographic search 

yields the sufficient conditions to prove that if the current solution is infeasible, the entire following 

sequence is infeasible, too. Furthermore, if for every segment all necessary routing and scheduling 

information is efficiently updated and maintained in a set of global variables, then the feasibility 

check of a move can be made in constant time instead of O(n) (Kindervater and Savelsbergh, 1997).  

Sequential search is a gain-oriented search procedure that exploits the cost and cyclic 

independence of neighborhoods. The notion is to decompose a move into partial moves (whose sum 

is the overall gain of the move) and to examine all relevant partial moves of the cyclic independent 

neighborhood recursively. If the sum of a sequence of gains is positive, then there exists a cyclic 

permutation of these gains, such that every partial sum is positive. The latter can be generalized to 

restrict the search considering only those branches where the sum of gains of the first p≤k partial 

moves has to be greater than pG*/k, where G* is a lower bound of the overall gain. Contrary to 

lexicographic search, the elements are selected w.r.t to a set of so-called neighbor lists sorted in the 

order of increasing cost. One disadvantage is that feasibility of a move cannot be checked before all 

elements of the partial moves have been specified (Funke et al., 2005).  
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So far, most local search based solution methods for large-scale VRPTW instances adopt 

lexicographic search based approaches for the evaluation of edge-exchange neighborhoods. To this 

end, a generic implementation of sequential search for the VRPTW has been recently illustrated by 

Irnich (2008). According to his results on the data sets of Gehring and Homberger (1999), there is a 

significant speedup when lexicographic search is replaced by sequential search, especially for the 

long-haul less constrained problem instances. Similar results were observed on a small set of 10 

very large-scale problem instances with up to 10,000 customers.  

One way to further accelerate sequential search-based approaches is to use restricted candidate 

lists instead of complete neighbor lists. These candidate lists can be either time-oriented or distance-

oriented, i.e., candidate lists that contain for each customer i a list of the l nearest customers from i. 

A typical paradigm is the granularity concept introduced by Toth and Vigo (2002). During the 

evaluation process, they assume that the first added edge must belong to a candidate list. The latter 

contains edges whose length is below a certain threshold that varies during the search process in an 

effort to intensify or diversify the search. Effective implementations of time-oriented candidate lists 

for both medium and large-scale VRPTW instances are provided by Ibaraki et al. (2005, 2008) and 

Hashimoto et al. (2008). 

In general terms, time windows are a hard constraint to deal with, since it combines routing with 

scheduling aspects. Checking the feasibility of a route in a straightforward way (looping over all 

nodes) requires at least linear time. A typical way is to reduce the computational complexity is to 

treat segments as nodes (Kindervater and Savelsbergh, 1997). The main idea is to reduce the 

original graph by contracting entire sequences of nodes into objects (called macronodes) with a 

limited number of properties summing up all the information needed to evaluate solutions. The new 

graph is much like the old one, i.e., a time window is associated to each object and a travel time to 

each edge connecting objects. In the VRPTW literature, most implementations follow similar 

approaches for testing feasibility. For a formal description of the macronodes approach we refer to 

Cordone and Wolfler (1996). 

Finally, updating mechanisms can be considered as alternative acceleration techniques. The 

effect of any node- or edge-exchange move is limited to the routes it modifies. Thus, it is actually 

unnecessary to evaluate all neighbors at each step. It is adequate to keep the feasible improving 

exchanges and their gain in a data structure. Once a move is executed, all those involving modified 

routes are removed from the data structure and re-evaluated again, whereas the others need not to be 

updated, since they remain feasible and alter the objective function by the same amount (Cordone 

and Wolfler-Calvo, 2001). As mentioned by Repoussis et al. (2009), such updating mechanisms are 

particularly effective especially for large-scale short-haul problem instances with tight time window 

constraints. 
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1.2 Large Neighborhoods 

Neighborhoods of exponential size and neighborhoods that are too large to search explicitly 

(enumerate and evaluate all neighbors) in practice, are generally considered to be large 

neighborhoods. Such large neighborhood structures allow a more thorough exploration of the 

search space, and the possibility of reaching directly high quality solutions is thus higher. However, 

a large neighborhood does not necessarily produce a more effective local search-based procedure 

unless one can search the neighborhood effectively (Ahuja et al., 2000). As mentioned by Gendreau 

and Potvin (2005), large-size neighborhoods are attractive only if they are coupled with filtering 

techniques aimed at focusing the search on promising regions, given that a complete evaluation of 

the entire neighborhood is costly. Typical examples are the cyclic-exchange neighborhood proposed 

by Thompson and Psaraftis (1993) and the ejection chain concept suggested by Glover (1992). 

The cyclic-exchange neighborhood generalizes in a sense the k-exchange one. The main idea is 

to improve the cost of a set of routes by transferring a small number of demands among routes 

cyclically. Neighboring solutions are obtained by transferring k single elements among subsets (or 

routes) of a solution, where k varies from 1 to K (the maximum number of elements). Let a solution 

containing m routes and ρ denote a cyclic permutation of a subset of {1,..., m}. The simultaneous 

transfer of demands from a route rj to rρ(j) for each j is a cyclic transfer. If the cyclic permutation has 

a fixed cardinality b then the b-cyclic k-transfer neighborhood is obtained.  

Identifying the optimum cost-decreasing cyclic exchange is computationally intractable. A 

possible alternative is to decompose the very large neighborhood into a set of partial moves that 

explicitly map to the decision variables of an auxiliary optimization problem defined on a network. 

The latter is called an improvement graph and can be used to implicitly search the neighborhood via 

appropriate network optimization algorithms. The improvement graph of interest is defined w.r.t. a 

feasible partition of S (the set of routes) and is denoted as G(S). Let S[aj] denote the subset 

containing the elements aj. G(S) is a directed graph with n nodes, where each node i corresponds to 

the element ai∈S. A directed arc (i; j) in G(S) signifies that element ai leaves its current subset and 

moves to the subset containing element aj, that is, the subset S[aj], and simultaneously the element 

aj leaves S[aj]. As such, a cost-decreasing cyclic exchange w.r.t. S corresponds to a negative cost 

subset-disjoint (directed) cycle in G(S). The problem of finding a negative cost subset-disjoint cycle 

is NP-complete, and thus, only heuristic methods are adequate. Thompson and Psaraftis (1993) used 

a polynomial-time approximation to calculate the arc costs and restricted the subsets using small 

negative cost cycles. A more effective technique for identifying negative cycles is proposed by 

Ahuja et al. (2000, 2001). Their method modifies the well-known label-correcting algorithm for the 

shortest-path problem (from one node to all other nodes), where each directed path maintained is a 
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subset-disjoint path. A similar approach considering alternative heuristic search strategies for 

finding shortest cycles was proposed by Gendreau et al. (2006).  

Ejection Chains (EC) are based on the concept of generating compound moves, leading from 

one solution to another, by linked steps in which changes in selected elements cause other elements 

to be “ejected from” their current state, position or value assignment (Glover, 1992, 1996). The idea 

is to move towards intermediate-reference structures before moving to another solution, instead of 

moving directly from one solution to another. The reference structure resembles the solution 

structure, but allows violation of certain types of constraints. Using a set of predefined transition 

rules, moves are generated from feasible solutions to reference structures, from one reference 

structure to another and back from reference structures to solutions. Clearly, a certain amount of 

infeasibility is introduced into the initial solution, which has to be “ejected” to end up with a new 

feasible trial solution. However, the ejection of infeasibility can be delayed by moving to other 

reference structures first to create a chain effect. As such, at each level (depth) trial solutions are 

available, while for a given depth the goal is to find the best trial solution observed along chains. 

Reference structures proposed by Glover (1996) are the Stem and Cycle and its generalization, the 

Doubly Rooted Stem and Cycle, while Sontrop et al. (2005) proposed a Constrained Doubly Rooted 

structure for the VRPTW. 

A more frequently used type of EC is the so-called node-ejection chains. The notion is to 

combine series of node-exchanges into a compound move. The latter refers to the removal of a node 

from one route and the re-insertion of this node into a different route, by first removing another 

node from the latter. The removal and re-insertion operations are repeated, until the last ejected 

node is either inserted into the position left empty by the first removed node or it is inserted freely 

into any position of a route that does not intersect with the chain. Thus, for each root node, a tree is 

formed in which leaves denote nodes that can be freely inserted into other positions of the same or 

of different routes assuming an empty intersection with the tree. The main difference between node-

ejection chains and cyclic exchanges is that only one node is shifted within a partial move of the 

former, while the ordering of the nodes in the new route of the latter might be completely different 

(Funke et al., 2005). 

The search for cost-decreasing node-ejection chains can be made via a depth or a breadth search 

technique, iterating all chains for each root node. Clearly, heuristics can be also employed, using 

topological parameters to restrict the search, such as maximum depth and width of the tree. In a way 

similar to the use of cyclic improvement graph (move-composition approach) described earlier, 

Gendreau et al. (2006) modeled the task of finding the best chain or cycle of ejection/insertion 

partial moves as a constrained shortest path problem. The latter is solved heuristically using an 

adaptation of the all-pairs Floyd-Warshall shortest path algorithm along with a priori fixing 
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ordering strategies. On the other hand, Caseau et al. (1999) adopted a domain-dependent Constraint 

Programming (CP) search approach equipped with the Limited Discrepancy Search (LDS) heuristic 

pruning technique proposed by Harvey and Ginsberg (1995). 

CP is a paradigm for representing and solving a wide variety of problems. Typical examples of 

search techniques that can be used within CP frameworks are depth-first search for constraint 

satisfaction and branch-and-bound for optimization. Depth-first search with constraint propagation 

work as follows. At each node of the search tree, the propagation mechanism removes values from 

the domains of constrained variables that are inconsistent with other variables. If the propagation 

mechanism removes all values from any of the variables, then there cannot be a solution in this sub-

tree and the search backtracks making a different decision at the previous choice point. Similarly, at 

each step of a branch-and-bound, a variable is chosen to instantiate and sub-problems are explored 

in turn with the variable assigned to each of its values. After each assignment constraint propagation 

occurs. This propagation accounts for all constraints, as well as for a bound on the objective 

function. During the search process, if the domain of one or more constrained variables becomes 

empty the search backtracks at the previously made assignment. Readers wishing to learn more 

about the integration of CP frameworks with local search heuristics are referred to Pesant and 

Gendreau (1999). 

Instead of exploring completely the search tree or truncating the search to a limited number of 

backtracks, one could use within the CP framework an LDS technique that prunes heuristically the 

unpromising branches. The idea behind LDS is to explore the search tree in order of increasing 

number of discrepancies, where a discrepancy refers to the assignment to a variable of a value that 

is not the best according to the value ordering heuristic used in the search (which could be 

interpreted as the heuristic making a mistake). Therefore LDS can be viewed as exploring the 

search tree in waves, with each successive wave allowing the heuristic to make more mistakes (Bent 

and Van Hentenryck, 2004). Thus, wave i explores the solutions that can be reached by assuming 

that the heuristic made i mistakes. An alternative usage of LDS is to branch only in a limited 

number of cases to those nodes of the search tree that the heuristic decision is least compelling 

(Caseau et al., 1999). 

Another very popular family of large neighborhood structures is the so-called partially 

destructive/constructive neighborhoods. The rationale is first to remove a set of customers or 

segments from the current routing schedule and then re-insert back the removed components using a 

constructive algorithm. The latter can be either an exact optimization technique (e.g., branch-and-

bound) or a simple insertion-based heuristic algorithm (e.g., cheapest insertion). There are four key 

elements that characterize partially destructive/constructive neighborhood structures: (i) the total 
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number of removed customers, (ii) the corresponding customer selection criteria, (iii) the treatment 

of the remaining parts of the solution and (iv) the way the removed customers are re-inserted. 

Shaw (1998) introduced the concept of Large Neighborhood Search (LNS) within an integrated 

CP framework. LNS can be interpreted as follows: positions of some customer visits within the 

current vehicle routing schedule are relaxed and re-optimized in the best possible manner by solving 

smaller sub-problems. The set of removed customers is selected randomly with a bias towards 

groups of related customers (geographically close with similar demand and starting time for 

service). These customers are then re-inserted back to the solution at optimal cost. The re-insertion 

process is performed using an LDS-based branch-and-bound search technique (branching against 

the best insertion) with the limit on the bound set at the cost of the solution before the relaxation 

took place. Finally, during this local search process, if a number of consecutive non-improving 

attempted moves are observed, the number of customers removed is increased. This gradual 

expansion of the neighborhood shares many similarities with the Variable Neighborhood Search 

metaheuristic solution framework of Mladenović and Hansen (1997). 

Rousseau et al. (2002) introduced three CP-based LNS neighborhoods, namely LNS-GENI, 

Naive Ejection Chains (NEC) and SMAll RouTing (SMART). The basic idea behind LNS-GENI is 

to extend the basic LNS scheme and to account in addition for re-insertion positions between non- 

consecutive customers. The customers to be removed are chosen randomly with a bias towards 

customers generating the longest detours. For the re-insertion of customers, a first fail strategy is 

followed attempting the insertion of the most constrained customers first. On the other hand, NEC 

is used primarily for removing a particular customer from a route rather than reducing the distance 

cost. The customers with the larger detour from the target route are selected first for ejection. This 

choice increased the probability of reducing the travel distance and creates a larger temporal space 

for the re-insertion of a customer. Finally, SMART removes a set of edges instead of customers 

forming an incomplete solution. The removed edges can be either selected in a consecutive fashion 

or randomly with a bias towards long edges. 

Earlier, Russell (1995) proposed a neighborhood structure that removes up to four customers 

and reinserts them using partial enumeration, combined with the parallel insertion heuristic of 

Potvin and Rousseau (1993). Similar neighborhood structures have been put forward by Bräysy 

(2003), namely the intra-route O-Opt and the inter-route Insert Related Parallel (IRP). Overall, the 

above described partially constructive/destructive neighborhoods combined either with insertion-

based heuristics or optimization-based techniques are often employed successfully within advanced 

heuristics for solving both small and large-scale VRPTW instances. 

A natural avenue to speed-up neighborhood search algorithms is to introduce spatial and 

temporal decoupling in an effort to define sub-problems that can be optimized independently and 
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reinserted into an existing solution. Bent and van Hentenryck (2007) proposed a so-called 

randomized adaptive spatial decoupling (RAND) utilizing the LNS of Shaw (1998). RAND 

considers spatial decoupling and produces independent feasible sub-problems that do not share 

customers or vehicles. It views the customer region as a circle and randomly selects a wedge to 

define the sub-problem. Initially, it collects the vehicles serving customers within the wedge and 

also considers all other customers served by these vehicles to define the sub-problem. In an effort to 

produce sub-problems with equal densities of customers two angles are defined for each wedge. 

The RAND-LNS has been successfully applied on large-scale VRPTW instances. The major 

advantage of RAND is that it does not depend on the instance data and it is independent from the 

underlying optimization algorithm. Similarly, spatial decoupling acceleration techniques have been 

also utilized by Mester et al. (2006). 

2 Advanced Heuristics for the VRPTW 
The VRPTW has generated substantial research efforts and it is certainly the most well studied 

vehicle routing and scheduling problem. As research moves toward more realistic sized problems 

and research for large-scale optimization is receiving more and more attention, the focus of most 

researchers has shifted to large-scale problem instances. During the last decade, a plethora of well 

performing solution approaches have appeared in the literature. Overall, the field seems to have 

reached a certain level of maturity and the literature can be roughly divided into three categories: 

metaheuristic algorithms, parallel and cooperative search methods and hybrid optimization 

algorithms. We now examine the methods proposed in each category to solve large-scale VRPTW 

instances. 

2.1 Metaheuristic Algorithms 

As stated by Osman and Laporte (1996) “a metaheuristic is formally defined as an iterative 

generation process which guides and subordinates heuristics by combining intelligently different 

concepts for exploring and exploiting the search space, while learning strategies are used to 

structure information in order to find efficiently near-optimal solutions”. Tabu Search (TS) (Glover, 

1986), Evolutionary Algorithms (EA) (Bäck et al., 1997), Iterated Local Search (ILS) (Lourenço et 

al., 2002) and Variable Neighborhood Search (VNS) (Mladenović and Hansen, 1997) are typical 

examples of metaheuristic algorithms successfully adapted and implemented for the VRPTW.  

Bräysy (2003) was one of the firsts to propose methods aimed at solving large-scale VRPTW 

instances. In this paper, he presents a deterministic multi-phase Variable Neighborhood Descent 

(VND) approach. Initially, a set of solutions is produced using a hybrid construction heuristic 

similar to the one suggested by Russell (1995). Next, a breadth-first node-ejection chain approach is 
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applied for route elimination, coupled with a particularly effective intelligent reordering insertion 

mechanism. To this end, a subset of solutions with minimum fleet size is selected and improved via 

a VND local search scheme. The latter encapsulates four parameterized inter- and intra-route 

neighborhoods, namely I-CROSS, IRP, I-Opt and O-Opt. A novel feature is the use of twin-variable 

structures in which the parameter values used to define the neighborhood structures are modified 

after each successful cycle in addition to the traditional neighborhood change scheme. Finally, a 

modified objective function (total route duration in particular) is considered for diversification 

during the local search process, if the search stagnates for a certain period. 

This was quickly followed by another paper (Bräysy et al., 2004b) in which was presented a 

two-phase multi-start approach combined with a Threshold Acceptance (TA) (Dueck and Scheurer, 

1990) post-optimization algorithm. As in Bräysy (2003), a cheapest insertion heuristic is used in the 

first phase to generate initial solutions using different parameter settings, while a so-called Injection 

Tree (IT) procedure is applied to minimize the fleet size. Compared to the node-ejection chains of 

Bräysy (2003), the proposed IT considers in addition simultaneous insertions and ejections of 

multiple customers. Given a subset of high quality solutions, the second phase applies I-CROSS-

exchanges according to a steepest descent iterative improvement strategy, followed by a TA post-

procedure, which applies the extended I-Opt and GENICROSS neighborhood structures.  

In 2006, Pisinger and Ropke (2006) proposed a very different approach that extended the LNS 

idea to make it adaptive. This Adaptive LNS algorithm utilizes a set of partially 

destructive/constructive neighborhoods that compete to modify the current solution in an iterative 

fashion. Two sets of heuristic operators N- and N+ are chosen to destroy (remove a number of 

customers and place them into a request bank) and re-construct the current solution (insert back 

customers from the request bank into one or more routes). The new provisional solution is accepted 

w.r.t. a Simulated Annealing (SA) (Kirkpatrick et al., 1983) criterion, while an adaptive layer 

stochastically controls the selection of operators on the basis of a roulette wheel selection scheme. 

The more an operator has contributed to the search process (by providing improvements to the 

solution), the higher is the probability that it will be chosen in the future. For diversification, a noise 

function is used within all operators. Finally, in terms of fleet size minimization, an additional stage 

prior the standard Adaptive LNS is suggested. Given an initial solution, a route is removed and all 

its customers are placed into the request bank. Next, Adaptive LNS is applied, and if a feasible 

solution that serves all customers is encountered, the procedure is repeated with a smaller fleet size 

until no feasible solution can be obtained. 

Later, Ibaraki et al. (2008) presented an ILS algorithm capable of dealing with instances with 

piecewise linear convex time penalty functions, assuming soft time windows for the customers, as 

in Ibaraki et al. (2005). Given the visiting sequence of customers served by a vehicle route, a 
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Dynamic Programming (DP) procedure is used to determine the optimal service times, such that the 

penalized objective function is minimized. The proposed DP is used during the evaluation of 

neighboring solutions. The complexity for convex time penalty functions is O(δk log δk) for each 

vehicle k, while the time to evaluate a neighboring solution is O(log δmax). As in Ibaraki et al. 

(2005), the ILS local search applies restricted I-Opt, 2-Opt, 2-Opt*, Path Insertion and I-CROSS-

exchange neighborhood structures within a VND local search framework. Distance and time 

oriented neighbor-lists are also used to accelerate the neighborhood evaluation process. 

A similar ILS implementation was proposed by Hashimoto et al. (2008) for large-scale Time-

Dependent VRPTW instances. Given an initial solution, an iterative improvement local search 

heuristic is applied until no further improvement can be obtained, while the overall ILS framework 

iterates from solutions generated by perturbing the local optimum solutions obtained previously 

during the search. Their local search heuristic uses 2-Opt*, CROSS-Exchange and Or-Opt 

neighborhood structures, which are restricted in terms of size. The complexity of the modified DP 

algorithm is the same as in Ibaraki et al. (2008), despite the fact that is capable of dealing with time-

dependent travel times. An interesting feature of their implementation is the use of information 

from past DP recursions, combined also with a filtering method, in order to reduce the search effort 

during the evaluation of neighborhoods. 

A multi-parametric (1+1)-evolution strategy (ES) was proposed by Mester et al. (2006). At first, 

five solutions are generated via a hybrid parallel savings heuristic algorithm and the best among 

them forms the initial population. During the evolution process, a new solution is produced via a so-

called Remove-Insert multi-parametric mutation operator and the parent is replaced if an 

improvement is observed. As a result, after a number of generations a set of modified solutions is 

obtained. Three operators are used for the removal of customers (purely random removals, removal 

of one customer from each route, and random ejections from rings generated from two circles 

centered on the depot with random radiuses), while a cheapest insertion heuristic is applied for re-

insertion. Each offspring is further improved using Or-Opt, Exchange, 2-Opt local moves within a 

parameterized dynamic environment, called “adaptive variable neighborhood” (AVN). In an effort 

to prune the neighboring space, a strategy for selecting neighboring routes, called “dichotomous 

route combinations” (DRC), is also used to take advantage of the geographical division and 

topology of the vehicle routes. 

Mester and Bräysy (2005) proposed a hybrid metaheuristic algorithm. They combined Guided 

Local Search (GLS) with an ES, similar to the one described above, into a two-phase interactive 

approach. In the first phase, GLS is used to regulate a composite local search. Initially, a set of 

solutions is generated using a hybrid parallel savings heuristic with different parameter settings. 

During the construction process, Relocate and Exchange local moves are applied cyclically in a 
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periodic fashion. The best solution of the set is further improved using the SA route minimization 

procedure of Bent and Van Hentenryck (2004). The GLS step considers long arcs as the feature to 

penalize, on the basis of the Relocate and Exchange neighborhoods. A particular feature is that the 

neighborhoods are restricted to the set of geographically close routes w.r.t. the current penalized 

arc, these are called “penalty variable neighborhoods” (PVN). If no further improvement can be 

obtained via the GLS, an (1+1)-evolution strategy is triggered. After a number of generations, the 

best individual is used as the starting point for the next restart of GLS. The oscillation between GLS 

and ES is repeated until some termination conditions are met. 

Hoshino et al. (2007) developed a local search heuristic controlled by chaotic dynamics 

exploiting principles of neural networks. The chaotic search applies Exchange and Relocate local 

moves. To control these local moves a set of neurons (each neuron corresponds to a customer and a 

local move) is defined. At each neuron, a gain, a refractory and a mutual reflect are assigned. The 

gain effect is related to the distance savings obtained by the neuron, the refractory effect inhibits the 

firing of a neuron that has been just fired (memory effect with an exponential decay), and the 

mutual effect adjusts a firing ratio to all neurons. The overall framework works as follows. Each 

neuron is fired at a particular time and if some necessary conditions are met, the local move that 

corresponds to this neuron is executed. The neurons are updated asynchronously, while a single 

iteration is performed whenever all neurons are updated. Finally, the route elimination heuristic of 

Bräysy (2003) is applied periodically for further improvement. 

An Arc-Guided Evolutionary Algorithm was proposed recently by Repoussis et al. (2009). The 

latter manipulates a population of individuals on the basis of an (μ+λ)-ES, utilizing a discrete arc-

based representation combined with a binary vector of strategy parameters. Following a strictly 

generational course of evolution and a deterministic selection scheme of survivors, offspring are 

produced via mutation out of arcs extracted from parents. The mutation operator is based on the 

ruin-and-recreate principle, while a multi-parent recombination operator enables the self-adaptation 

of the strategy parameters based on the appearance frequency of each arc and the diversity of the 

population. Each resulting offspring is further improved via a route elimination procedure and a 

hybrid Guided Tabu Search algorithm. Both approaches utilize the basic TS local search framework 

to drive the search process. However, the primary objective of the former is to reduce the number of 

vehicles using a hierarchical ordering of objectives similar to Bent and van Hentenryck (2004), 

while the latter explores the solution space on the basis of a GLS algorithm in an effort to reduce 

the total distance. For the evaluation of the neighboring space, a lexicographic search approach is 

followed coupled with neighborhood updating mechanisms for further acceleration. 

Hashimoto and Yagiura (2008) suggested a Path Relinking solution approach. Initially, a 

reference set of randomly generated solutions is build, while an iterative improvement local search 
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using the 2-Opt*, CROSS-exchange and Or-Opt neighborhoods is applied. During relinking, the 

starting and guiding solutions are selected randomly, while a random perturbation is applied with 

some probability to the guiding solution for diversification. Among the solutions generated in the 

relinking sequence, local search is applied to a subset of local optima. In an effort to reduce the size 

and speed up the neighborhood exploration, time-oriented neighbor lists and segment length 

restrictions are also considered. During the local search process, infeasible solutions are allowed, 

while the amount of violation is penalized. Apart from capacity and temporal infeasibilities, 

frequency based penalties are also employed to account for customers that appear often in infeasible 

routes. To this end, an adaptive mechanism is used to control the weights of these penalties. For the 

computation of the penalized objective function in constant time, traveling times for particular paths 

are stored and the neighborhood is searched in a specific order, as in Ibaraki et al. (2005). 

Finally, Nagata et al. (2010) proposed a two-stage Edge-Assembly Memetic Algorithm 

(EAMA). During the vehicle minimization stage, a population of individuals is generated and the 

route elimination heuristic of Nagata and Bräysy (2009a) is applied. The main feature of the 

subsequent distance minimization stage is the so-called edge assembly crossover (EAX) operator 

(Nagata and Bräysy, 2009b). The key idea of the latter is to generate a fixed number of offspring 

solutions by combining directed edges from two parent individuals A and B selected randomly, 

such that the capacity and time window constraints are not considered and the number of routes is 

not changed. A subsequent local search-based repair procedure tries to restore the feasibility of the 

infeasible offspring. It uses a generalized cost function consisting of the distance traveled and two 

penalty components imposed on constraint violations. For evaluating time window violations, a new 

penalty function is proposed: when a late arrival occurs at a given customer of the route, time is 

“pushed backwards” in order to arrive on time (like using a time machine). By doing so, the 

schedule for the subsequent customers of the route is no longer disturbed by the time delay at the 

customer under consideration. Each time the “time machine” is used to arrive earlier at a given 

customer, the associated penalty value (push backward time) is cumulated. Feasible solutions are 

further improved via a local search procedure, which uses the 2-opt*, Or-Exchange, Relocation, and 

Exchange neighborhood structures. For the selection of survivors in each generation, an elitist 

selection scheme is adopted. 

2.2 Parallel and Cooperative Search methods 

Cooperative search is a category of parallel algorithms, in which several algorithms run in parallel 

and share information to solve an optimization problem; it is a parallelization strategy for search 

algorithms, where parallelism is obtained by concurrently executing several search programs 

(Crainic et al., 1997; Crainic and Toulouse, 2002). From a different viewpoint, teamwork 
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hybridization represents cooperative optimization models consisting of many parallel cooperating 

agents, each carrying out a search in the solution space (Talbi, 2002). Three forms of parallelism 

can be applied to metaheuristics as proposed by Crainic and Toulouse (2002): (i) low-level 

(operational) parallelism aims solely to speed-up computations by accelerating steps of an 

algorithm, without any attempt at achieving a better exploration; (ii) search space decomposition 

parallelism, where each algorithm searches for a sub-solution in a sub-space by partitioning the set 

of decision variables into disjoint subsets, and (iii) multi-search threads, in which several algorithms 

perform multiple explorations for a solution in the whole space. In the latter case, each concurrent 

thread may or may not be executed by the same method. These methods may start from the same or 

different solutions and they can communicate during the search. Thus, depending on the operating 

scheme, these approaches can be either purely independent search methods or cooperative multi-

thread search strategies. Finally, communication can be made synchronously or asynchronously and 

it can be event-driven or executed at predetermined time instances. 

Le Bouthillier and Crainic (2005) presented a cooperative search method in which several 

search threads communicate through asynchronous exchanges of information using a pool of 

feasible solutions, called a solution warehouse. Communications are initiated only by individual 

threads that have access to the data sent by other threads. However, no broadcasting takes place. 

The methods involved in the cooperation scheme consist of simple construction and local search 

heuristics, including Genetic Algorithms (GA), TS algorithms (similar to Cordeau et al., 2001, and 

Gendreau et al., 1994) and a post-elimination procedure. The initial population is generated using 

different construction heuristics. Local optimum solutions are sent to the warehouse from the TS 

algorithms, while initial solutions are received either to restart or to diversify the search. On the 

other hand, the two GAs use the solution warehouse as their population. Parents are selected 

randomly and a probabilistic mutation is performed. Two crossover operators are considered, the 

order crossover (OX) and the edge recombination (ER). When required, a repair procedure restores 

feasibility by re-ordering or re-routing customers with infeasible time windows. Each offspring is 

send to the solution warehouse. Finally, the post-optimization procedure consists of a node-ejection 

chain and several local search improvement heuristics. The latter is applied to all solutions 

maintained within the warehouse. 

Later, Le Bouthillier et al. (2005) modified the cooperative search method of Le Bouthillier and 

Crainic (2005). The proposed method is a guided parallel cooperative search method and it is based 

on a central memory structure called data warehouse that contains solutions and pattern 

information. A particular feature is the introduction of a sophisticated knowledge extraction 

mechanism that is used to guide each search method (global search). The suggested mechanism 

extracts knowledge from the information exchanged among search threads in an effort to identify 
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promising or unexplored regions of the solution space (coordination). For this purpose, the 

mechanism incorporates a pattern-identification procedure that is used to fix or prohibit specific 

solution attributes (arcs in particular) for part of the search. The definition of patterns is based on 

the inclusion of arcs within the solutions, while the solution warehouse is divided into subsets 

according to the quality of solutions (i.e., elite, average and worst). An arc with a high frequency in 

a given subset of solutions signals that the search methods participating into the cooperation have 

often produced solutions that use this particular arc. Each pattern contains a subset of arcs. Frequent 

pattern considers arcs with high appearance frequency, while the opposite is assumed for infrequent 

patterns. To this end, patterns can be derived from specific sub-populations, while the rate of 

appearance of a specific in-pattern among them can be also defined indicating whether an in-pattern 

is promising or not. These promising and unpromising patterns are used to constrain for some time 

the search processes, and thus induce global intensification or diversification phases. From the 

implementation viewpoint, initially two phases of diversification are launched to broaden the 

search, followed by two intensification phases that mainly focus on promising regions. 

Gehring and Homberger (1999) developed earlier a parallel two-phase evolutionary algorithm 

combined with TS. In the first phase, the ES proposed by Homberger and Gehring (1999) is 

performed following an (1,λ) evolution scheme to minimize fleet size, while in the second phase TS 

is applied for distance minimization. During the evolution process, the recombination of individuals 

is omitted, while one offspring is generated per parent via mutation. The latter uses Or-Opt, 2-Opt* 

and Exchange local moves, while the mutation code indicates for each individual the times a 

randomly selected local move is applied. For the evaluation of individuals a customized fitness 

function is utilized. It consists of two indices in a lexicographic order: the number of customers 

served by the smallest vehicle and the sum of minimal delays of these customers (relative difficulty 

of relocation).The two-phase solution approach is parallelized assuming cooperative autonomy (i.e., 

autonomous sequential search threads cooperate through the exchange of solutions), while each 

independent search thread is performed with different configuration settings. 

Later, Gehring and Homberger (2001, 2002) modified this solution approach by moving to an 

(μ;λ)-ES and a different fitness function considering also capacity infeasibilities. As in Homberger 

and Gehring (1999), the fitness function is based on four criteria; the total number of vehicles, the 

number of customers of the smallest route, the minimal delay and the total distance traveled in a 

lexicographic order. In addition to the minimal delay, the property of the so-called “caused 

overload” is also introduced. The latter indicates the extent of overload of a particular route, if the 

customer with the smallest demand of the smallest route is relocated to that route. These two fitness 

values are used to configure differently the concurrently executed search threads. However, the 

final selection of individuals is made according to the traditional VRPTW objective function. Other 
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variants considered new termination criteria (i.e., ES is terminated once the minimum number of 

vehicles is reached and TS terminates if no further improvement can be obtained for a number of 

iterations). Finally, a single-thread implementation of this method can be found in Homberger and 

Gehring (2005) with a different move-generation mechanism, termination conditions and fitness 

function. 

2.3 Hybrid Optimization Algorithms 

During the last years, several authors have been started developing hybrid optimization algorithms 

that combine heuristic and exact techniques. A natural avenue for the cooperation between exact 

and heuristic methods is either to design a heuristic method to improve the search strategy of an 

exact approach or to use an exact optimization technique to explore large neighborhoods within 

local search algorithms. Clearly, LNS-based approaches fall into this category of cooperation since 

they rely on exact techniques to build partial solutions that are then used to define the search space 

for the associated local search framework, while the results obtained by the local search may also 

provide feedback to refine bounds or columns and so on. 

Bent and Van Hentenryck (2004) developed a two-phase LNS-based hybrid optimization 

algorithm. The first phase consists of a SA route elimination approach, while the second phase 

mainly employs a modified LNS algorithm. The main feature of the suggested SA is the utilization 

of a specialized hierarchical objective function that contains three components: the first is related to 

the total number of vehicles, the second favors solutions containing routes with many customers 

and routes with few customers over solutions where customers are distributed more evenly among 

the routes, while the third accounts for the minimal delay. From the implementation viewpoint, SA 

is restarted several times from the best encountered solution. In each inner iteration, although 

neighborhoods and customers are randomly selected, the associated sub-neighborhoods are 

exhaustively examined. If the best neighbor improves the best solution found, it is accepted in a 

fashion similar to the TS aspiration criterion. Otherwise, a neighbor is randomly selected and 

accepted if the current solution is improved or if the probabilistic acceptance criterion of SA is met. 

On the other hand, the proposed LNS implementation considers a number of modifications 

compared to Shaw (1997), including among others a restart strategy and tighter lower bounds. 

A hybrid LNS method that utilizes a heuristic branch-and-price technique was proposed by 

Prescott-Gagnon et al. (2009). The LNS-based solution approach is equipped with four partially 

destructive/constructive neighborhoods. The first destruction operator is called Proximity (Shaw, 

1998) and it is based on a measure of the spatio-temporal proximity among customers. The second 

is called SMART (SMAll RouTing) (Rousseau et al., 2002) and ensures that more isolated 

customers are disconnected from their routes. The third operator is called Longest Detour 
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(Rousseau et al., 2002) and selects customers at random with a bias towards those yielding the 

largest detours. The fourth selects all customers that are currently visited within a given time period. 

For the selection of operators, a roulette wheel selection scheme similar to the one proposed by 

Pisinger and Ropke (2006) is utilized. During the solution reconstruction process, the partially fixed 

problem is modeled as a set partitioning problem where each variable corresponds to a vehicle 

route. The associated problem is solved via a heuristic branch-and-price, where the column 

generation subproblem can be interpreted as an elementary shortest path with resource constraints. 

This subproblem is solved by a TS heuristic, which performs a limited number of feasible moves on 

each route associated with a basic variable of the master problem. The procedure terminates when 

the branch-and-price cannot generate any negative reduced cost columns. If the solution is 

fractional, an integer solution is obtained by exploring a search tree using a depth-first strategy, 

without backtracking. Finally, fleet size is minimized at the begin of the algorithm through a special 

stage that puts emphasis on vehicle reduction and sets an upper bound on the number of vehicles 

that can be used. This lower bound is lowered whenever a feasible solution covering all customers 

is found. 

Finally, Lim and Zhang (2007) proposed a two-phase multi-start algorithm. The first phase 

consists of two procedures for generating initial solutions and for minimizing the fleet size, while 

the second phase is devoted to distance minimization. The initial solutions are generated via 

squeaky-wheel optimization (SWO) (Joslin and Clements, 1999) using Solomon’s (1987) I1 

insertion-based heuristic. At each iteration of the latter, the solution generated is analyzed and 

penalties are increased by a particular amount that is proportional to the number of customers 

served per route and inversely proportional to the unutilized capacity. These new penalties are then 

used to guide the next construction. Afterwards, the route elimination procedure is applied. More 

specifically, a data structure called Ejection Pool (EP) is used to hold temporarily unassigned 

customers. At each iteration, a customer from the EP is selected and inserted into the existing set of 

routes. The target route and the insertion position are determined w.r.t. a weighted combination of 

distance and service delay. If the insertion is not feasible, “relevant” customers are kicked out 

sequentially (starting from those with the largest kick saving) and added to the EP until the route 

becomes feasible. Kick saving considers the distance reduction obtained and the cost needed for the 

re-insertion into another route w.r.t. the minimal delay. To this end, an iterative improvement hill-

climbing local search procedure is employed. Initially, two sequential iterative improvement 

heuristics are applied interchangeably until no further improvement can be obtained. The first 

performs an intra-route improvement, using Exchange, Relocate, 2-Opt and Or-opt neighborhoods. 

When a local optimum is reached an enumeration based E-Opt move is applied. E-Opt move selects 

a consecutive segment of customer and determines the optimum ordering using branch-and-bound 
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for a predefined maximum length of segments. The second heuristic operates on pairs of routes 

using 2-Opt* and CROSS-exchanges. If both heuristics fail to improve the current solution, a so-

called Generalized Ejection Chain (GEC) is applied. The search for cost-decreasing chains is 

performed heuristically using the very large neighborhood search algorithm of Ahuja et al. (2000, 

2001), while if GEC fails to find a better solution, the best found solution is perturbed. 

2.4 Research Trends and Common Issues 

In agreement with a general trend observed in the literature for solving hard combinatorial 

optimization problems, most advanced heuristics described above do not purely follow the 

particular principles or concepts from a single solution framework. Indeed, more and more solutions 

approaches aim at exploiting the strengths of different methods and suggest the cooperation 

between several heuristics or metaheuristics and between heuristics and exact optimization 

techniques. Interaction can take place either at low-level, by designing new methods that combine 

various algorithmic principles, or at high-level, by developing multi-agent architectures such as 

cooperative search methods. In the former case, one deals with the functional composition of a 

single method and particular functions of a solution framework are replaced by other methods (e.g., 

neighborhood search within a metaheuristic algorithm being performed using exact optimization 

techniques). In the latter case, the different methods are self-contained and are executed either in a 

sequential (pipeline) or in a parallel (cooperative) fashion. 

The emergence of such hybrid solution approaches offers new opportunities for combining the 

strengths and alleviating the weaknesses of different frameworks into more powerful and flexible 

search methods that perform an extensive and intelligent exploration of the search space. Towards 

the design of advanced heuristics, Gendreau and Potvin (2005) proposed a unified framework based 

on several common algorithmic components that emerged from algorithmic principles and recent 

implementations. Using these common components both the basic implementation schemes and 

other recent developments can be described, showing the unification towards integration of these 

particular components. For a recent review and taxonomy on hybrid solution approaches between 

heuristics and exact optimization techniques, we refer readers to Jourdan et al. (2009). 

The majority of metaheuristic algorithms proposed for solving large-scale VRPTW instances 

are stochastic, except from those of Bräysy (2003) and Hoshino et al. (2007), while in several 

occasions many of them utilize additional randomization features for the better exploration of the 

search space. Although, the accuracy of metaheuristic algorithms is adequately high, they are often 

complex to implement and calibrate requiring finely tuned parameters. However, metaheuristic 

algorithms remain so far the only viable approach for solving efficiently and time effectively large-

scale problem instances. Most implementations utilized either simple edge-exchange neighborhood 

Solving Large-Scale Vehicle Routing Problems with Time Windows: The State-of-the-Art

CIRRELT-2010-04 21



structures or large neighborhoods equipped with heuristic construction operators. To this end, most 

approaches utilize lexicographic search and feasibility based speed up techniques, while some use 

neighbor lists and spatial decomposition mechanisms to accelerate the neighborhood search process. 

Among parallel and cooperative search methods, Gehring and Homberger (1999, 2001), Le 

Bouthillier and Crainic (2005) and Le Bouthillier et al. (2005) adopt parallel explorations strategies, 

where several search threads run concurrently. Carefully designed parallel solution approaches have 

several advantages, such as solving a larger problem in a given time (scale up), generating results in 

a shorter time (speed up), finding higher quality solutions in a given time, improving convergence 

behavior and so on (Crainic et al., 1997). Important issues in such schemes are mostly related to the 

communications among the search threads. In Gehring and Homberger (1999, 2001), the parallel 

search is coupled with adaptive memories. Under this scheme, threads cooperate weakly by 

exchanging only good solutions. On the other hand, Le Bouthillier and Crainic (2005) and Le 

Bouthillier et al. (2005) adopt more integrated communication schemes by sharing both solutions 

and global information to guide the search threads. 

The common ground among all hybrid optimization methods proposed for solving large-scale 

VRPTW instances is the use and exploitation of exact optimization techniques for the exploration 

and evaluation of large neighborhoods. According to the taxonomy of Jourdan et al. (2009), all 

these solution approaches fall into the category of low-level teamwork hybrids. Although, the use of 

large neighborhoods combined with sophisticated optimization techniques seems to be important 

for obtaining high quality solutions, the resulting simplicity and flexibility is reduced. Furthermore, 

in many cases these solution approaches are more context-dependent compared to others, while they 

may also require large amounts of computational time. 

Finally, another common characteristic of most approaches is the use of route elimination 

procedures as independent algorithmic components. Bräysy (2003) and Bräysy et al. (2004b) use 

modified node-ejection chains equipped with specialized reordering mechanisms. Bent and Van 

Hentenryck (2004), Mester and Bräysy (2005), Repoussis et al. (2009) and Gehring and Homberger 

(1999, 2002) utilize customized objective functions combined with local search procedures. 

Pisinger and Ropke (2006) and Lim and Zhang (2007) use holding lists of customers and allow the 

search to enter infeasible regions. Similarly, Ibaraki et al. (2008), Hashimoto and Yagiura (2008) 

and Hashimoto et al. (2008) utilize penalized objective functions and accept infeasible solutions 

during the course of the search. Although, it is advantageous to deal with feasible solutions as 

proposed by Repoussis et al. (2009), it seems that the approaches of Hashimoto and Yagiura (2008) 

and Lim and Zhang (2007) are currently the best among those for route elimination.  

Recently, a very powerful route minimization heuristic that outperforms all existing approaches 

was proposed by Nagata and Bräysy (2009b). They use an ejection pool of customers, 
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diversification mechanisms to guide the ejection operations along with squeeze and perturb 

procedures. Initially, a route from the current solution is randomly selected. Its customers are 

temporarily removed from the solution and are transferred to the so-called ejection pool (EP). Then, 

a repeated attempt is made to insert the customers from the EP into the existing set of routes, 

avoiding capacity and time window constraint violations. In the case where are no feasible insertion 

positions for the customer selected from the EP, other customers are ejected from one of the 

existing routes to create a feasible insertion position for the selected customer and the EP is updated 

accordingly. The above described ejection – insertion mechanism iterates until all customers of the 

EP are served in a feasible manner. 

3 Comparative Analysis 

3.1 Benchmark Data Sets 

Empirical analysis is the most common way for the evaluation of solution approaches. It involves 

testing the solution approach across a wide range of problem instances to get a performance 

indication. For the VRPTW, empirical analysis is typically based on the results obtained w.r.t. 

Solomon’s (1987) 56 benchmark problem instances. These instances contain 100 customers, a 

central depot, vehicle capacity constraints, time windows on the time of delivery and a total route 

duration restriction. For testing scaling issues, the 300 large-scale problem instances of Gehring and 

Homberger (1999) are also considered.  

The data set of Solomon (1987) consists of six different classes, namely R1, C1, RC1, R2, C2 

and RC2. Each class contains between 8 and 12 100-node problems over a service area defined on a 

100x100 grid. The Cartesian coordinates of customers in classes R1 and R2 are randomly generated 

with a uniform distribution, while classes C1 and C2 have clustered customers. Finally, classes RC1 

and RC2 contain semi-clustered customers, i.e., a combination of both clustered and randomly 

(uniformly) distributed customers. All problems of a particular class have the same customer 

locations and the same vehicle capacities, but the percentage of customers with time window 

constraints (i.e., 25%, 50%, 75% and 100% time window density) differs. Classes R1, C1 and RC1 

have tight time windows, short scheduling horizons and a homogeneous vehicle fleet of vehicles of 

capacity equal to 200 units, thus allowing only few customers per route (short-haul). Classes R2, 

C2, RC2 have longer scheduling horizons and vehicle capacities ranging from 100 to 1000 units, 

which allows the service of a larger number of customers per route (long-haul). Finally, travel times 

and distances are given by the Euclidean distance between customer’s locations. The features of 

Gehring and Homberger (1999) benchmark data set are similar. It consists of 300 problem instances 

divided into 5 groups, namely G02, G04, G06, G08 and G10. Each group maintains the 
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characteristics and the structure of Solomon’s (1987) data set described above. However, each 

group has a much larger cardinality w.r.t. the size of the set of customers, i.e., 200, 400, 600, 800, or 

1000 customers. 

The experimental results obtained for the VRPTW are ranked according to a hierarchical 

objective function. The primary objective is to minimize the total number of vehicles, and for a 

given fleet size, the secondary objective is to minimize the total traveled distance. Therefore a 

solution requiring fewer routes is always better than a solution with more routes, regardless of the 

total traveled distance. However, these two objectives can be either conflicting or complementary, 

since the reduction of the total number of vehicles may either increase or reduce respectively the 

total traveling distance. Thus, comparisons among different approaches are valid only if the above 

hierarchy of objectives is followed and the total number of vehicles obtained is the same. 

It is important to note that the solutions provided for problem instances R1_2_1 and C1_2_8 by 

Bräysy (2003) and Mester and Bräysy (2005), for instance R1_4_1 by Bräysy (2003), and for 

instance R1_8_1 by Bent and Van Hentenryck (2004) are infeasible w.r.t. the number of vehicle 

routes (Nagata et al., 2010). 

3.2 Effectiveness and Efficiency Analysis 

The comparison among different algorithmic approaches in terms of effectiveness and efficiency is 

a difficult task, since a number of issues must be first addressed for the competition to be fair and 

objective. In particular, a measure has to be defined for comparing computational CPU running 

times from different machines. Following the suggestions made by other authors, a relative 

(estimated) speed is derived for each machine w.r.t. a Pentium IV 2.8 GHz using the performance 

indicators of Dongarra (2008) and other empirical metrics. Another important issue is that most 

authors report only the best results obtained during multiple executions. Since most solution 

approaches are stochastic, each execution for the same problem instance would provide different 

results. Therefore, only average results based on multiple executions would be a good basis for the 

comparison of non-deterministic methods. Herein, a common basis for all approaches is provided, 

while the reported computational time is multiplied by the number of runs (different experiments) 

and the number of available processors. 

Tables 1, 2, 3, 4, 5 and 6 summarize the results obtained w.r.t. Solomon’s (1987) and Gehring 

and Homberger’s (1999) benchmark data sets. Each table is divided into three parts. The first 

column of the first part refers to the different classes R1, R2, C1, C2, RC1 and RC2 respectively. 

For each class, the mean number of vehicles (MNV) and mean distance traveled (MTD) are 

reported. The second part contains the lines CNV and CTD, which indicate the cumulative number 

of vehicles and the cumulative distance traveled over all problem instances. The last part describes 
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the computer, the number of processors, the number of independent runs and the average CPU time 

in minutes as reported by authors, along with the resulting estimated speed and time. Finally, the 

first line lists the authors using the following abbreviations: HY for Hashimoto and Yagiura (2008), 

GH99 for Gehring and Homberger (1999), GH02 for Gehring and Homberger (2001, 2002), HG 

for Homberger and Gehring (2005), BHD for Bräysy et al. (2004b), MB for Mester and Bräysy 

(2005), MBD for Mester et al. (2006), LC for Le Bouthillier and Crainic (2005), LCK for Le 

Bouthillier et al. (2005), BVH for Bent and Van Hentenryck (2004), I for Ibaraki et al. (2008), LZ 

for Lim and Zhang (2007), PR for Pisinger and Ropke (2006), DPR for Prescott-Gagnon et al. 

(2009), HYI for Hashimoto et al. (2008), RTI for Repoussis et al. (2009), NBD for Nagata et al. 

(2010), HKI for Hoshino et al. (2007) and B for Bräysy (2003). In all tables, boldface entries 

indicate best known results. 

According to Table 1, the solution approaches of Prescott-Gagnon et al. (2009), Le Bouthillier 

et al. (2005), Bent and Van Hentenryck (2004), Lim and Zhang (2007), Pisinger and Ropke (2006), 

Hashimoto and Yagiura (2008), Hashimoto et al. (2008), Repoussis et al. (2009), Nagata et al. 

(2010), and Bräysy (2003) are able to obtain the lowest known CNV. Le Bouthillier et al. (2005) 

and Homberger and Gehring (2005) produce the best results for classes R1 and R2, while Prescott-

Gagnon et al. (2009) and Nagata et al. (2010) report the best results for classes RC1 and RC2 

respectively. For the clustered classes C1 and C2, most approaches perform equally well. As for the 

minimization of distance traveled, Repoussis et al. (2009) and Nagata et al. (2010) currently report 

the best results. However, the differences compared to other methods are relatively small. Finally, 

in terms of computational time consumption the solution approach of Bräysy (2003) seems to be the 

most time efficient for the data sets of Solomon (1987). 

The observations for the large-scale data sets of Gehring and Homberger (1999) differ 

significantly from the previous ones as one moves from 200 to 1000 customers. According to Table 

2, for the 200-customer problem instances the approaches of Nagata et al. (2010) and Prescott-

Gagnon et al. (2009) perform best in terms of CTD among those with the lowest CNV, while the 

most time efficient is the approach of Gehring and Homberger (1999). More specifically, Nagata et 

al. (2010) provide the best results for most classes, while Prescott-Gagnon et al. (2009) report the 

best for class C2. Overall, the differences in terms of CNV are small and several methods are able 

to obtain the lowest known values.  

For the 400-customer problem instances (see Table 3), Nagata et al. (2010) and Repoussis et al. 

(2009) obtain the lowest CNV, while the approach of Nagata et al. (2010) is the most effective and 

yields the best mean results for all classes. Low CNV values are also obtained by Lim and Zhang 

(2007), Prescott-Gagnon et al. (2009), Hashimoto and Yagiura (2008) and Hashimoto et al. (2008).  
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The results for problem instances with 600 customers are similar (see Table 4). The approach of 

Repoussis et al. (2009) performs best producing the lowest known CNV, followed by Nagata et al. 

(2010). High quality solutions are also produced by Lim and Zhang (2007), Hashimoto and Yagiura 

(2008) and Prescott-Gagnon et al. (2009). Overall, Nagata et al. (2010) report the best MNV and 

MTD for all classes, except for class C1.  

According to Table 5, for problem instances with 800 customers the approach of Hashimoto and 

Yagiura (2008) is the most effective, produces the lowest CNV and yields the best results for class 

C2. On the other hand, Nagata et al. (2010) report the best mean values for classes R1, R2, C1 and 

RC2, while Lim and Zhang (2007) obtain the best for class RC1. Finally, for the 1000-customer 

problem instances (see Table 6), the approach of Hashimoto and Yagiura (2008) produces the 

lowest CNV values and obtains the best results for classes C1 and C2. The approach of Lim and 

Zhang (2007) obtains the same MNV, but lower MTD values for class RC1. For all remaining 

classes, Nagata et al. (2010) reports the best mean values. 

On the basis of the above observations, the solution approaches of Nagata et al. (2010), 

Repoussis et al. (2009) and Hashimoto and Yagiura (2008) are the most effective and produce for 

most groups of problems the lowest known CNV values. Among the remaining approaches, low 

CNV values and very good results for some classes are also obtained by Ibaraki et al. (2008), 

Pisinger and Ropke (2006), Gehring and Homberger (1999), Mester and Bräysy (2005), Lim and 

Zhang (2007), Prescott-Gagnon et al. (2009) and Le Bouthillier et al. (2005). In general terms, most 

approaches are able to obtain low MNV values for classes R1, R2 and C2, while the gap between 

the best and the worst performing solution approaches increases as moving towards larger problem 

instances especially for classes RC1, RC2 and C1. 

Cumulative results for all solution approaches are provided in Table 7. This table displays the 

cumulative number of vehicles (CNV), the cumulative distance traveled (CTD) and the cumulative 

computational time (CCT) consumption in minutes for each group of problem instances. The CCT 

has been calculated according to the estimated mean average CPU Time for all problem instances of 

each group. Furthermore, the last column provides the aggregated results over all groups. 
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Table 7: Cumulative results for the benchmark data sets of Gehring and Homberger (1999) 
 

Reference Cumulative 200 400 600 800 1000 Aggregated 
  CNV 694 1383 2068 2737 3420 10302 

HY CTD 169070 392507 800982 1367971 2085125 4815655 
  CCT 2502 5079 7581 10083 12660 37904 
  CNV 694.0 1390 2082 2770 3461 10397 

GH99 CTD 176180 412270 867010 1515120 2276390 5246970 
  CCT 64 128 191 255 319 957 
  CNV 696 1392 2079 2760 3446 10373 

GH02 CTD 179328 428489 890121 1535849 2290367 5324154 
  CCT 86 291 529 951 1234 3092 
  CNV 699 1397 2088 2773 3459 10416 

HG CTD 180602 431089 890293 1516648 2288819 5307451 
  CCT 16 52 106 187 315 676 
  CNV 695 1391 2084 2776 3465 10411 

BHD CTD 172406 399132 820372 1384306 2133376 4909592 
  CCT 92 302 620 1003 1515 3532
  CNV 694 1389 2082 2765 3446 10376

MB CTD 168573 390386 796172 1361586 2078110 4794827 
  CCT 328 697 1640 5945 24601 33212 
  CNV 695 1390 - - - - 

MBD CTD 169968 394818 - - - - 
  CCT 397 1738 - - - - 
  CNV 694 1390 2088 2766 3451 10389 

LC CTD 173061 408281 836261 1475281 2225366 5118250 
  CCT 421 843 1264 1686 2107 6321 
  CNV 694 1389 2086 2761 3442 10372 

LCK CTD 169958 396611 809493 1412363 2133645 4922071 
  CCT 421 843 1264 1686 2107 6321
  CNV 697 1393 2091 2778 3468 10427

BVH CTD 171715 410112 858040 1469790 2266959 5176616 
  CCT - - - - - - 
  CNV 694 1384 2070 2750 3431 10329 
I CTD 170331 401285 827192 1426133 2155374 4980315 
  CCT 1998 3996 6000 7998 10002 29994 
  CNV 694 1382 2068 2742 3429 10315 

LZ CTD 169296 393695 802681 1372427 2071643 4809742 
  CCT 5592 17754 38814 76164 111924 250248 
  CNV 694 1385 2071 2758 3438 10346 

PR CTD 169042 393210 807470 1358291 2110925 4838938 
  CCT 4960 5089 5894 7312 8568 31823 
  CNV 694 1390 - - - -
B CTD 176244 412088 - - - - 
  CCT 29 158 - - - - 
  CNV 709 1412 2111 2794 3493 10519 

HKI CTD 177662 411447 831747 1409540 2169338 4999734 
  CCT 596 1897 3307 5205 6451 17457 
  CNV 694 1385 2071 2745 3432 10327 

DPR CTD 168556 389011 800797 1391344 2096823 4846531 
  CCT 22456 37708 44487 54656 68638 227945 
  CNV 694 1383 2069 2747 3430 10323 

HYI CTD 171018 406109 847470 1442957 2204728 5072282 
  CCT 5994 11988 18000 23994 30006 89982 
 CNV 694 1381 2067 2738 3424 10304 

NBD CTD 168067 388466 789592 1357695 2045720 4749540 
 CCT 1784 7048 11008 12008 15358 47206 
  CNV 694 1381 2066 2739 3428 10308 

RTI CTD 169163 395936 816326 1434321 2144830 4960576 
  CCT 5798 11595 17393 23191 28989 86966 
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Apart from effectiveness, it is important to study the resulting time efficiency of each solution 

approach. The longer a heuristic is running the better is the final output. Therefore, a compromise is 

needed in order for an algorithm to produce high quality solutions consuming reasonable amounts 

of time. As suggested by Bräysy and Gendreau (2005b), the tradeoff between running time and 

solution quality can be viewed in terms of a multi-objective optimization in which the two 

objectives are balanced. Thus, performance measures can be plotted in two dimensions. The first 

corresponds to the running time and the second to the solution quality. In this two-dimensional 

space, points with the better values on both dimensions are said to be Pareto optimal. 
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Figure 1: Efficiency Analysis - Large-scale data sets 

 

 

Figure 1 illustrates the two-dimensional space w.r.t. the CNV and the CCT of each approach 

according to the values of Table 7. CNV is selected since it is the primary objective and it provides 

a direct measure for comparing different approaches. The closer is a point to the lower left corner 

(low CNV using the least CPU time), the better is the associated solution approach. Clearly, the 

most effective and efficient approaches are those of Nagata et al. (2010) and Hashimoto and 

Yagiura (2008). The most time consuming approach is one proposed by Lim and Zhang (2007), 

with a CCT almost 10 times larger compared to the most effective approach. One may argue that 

the approaches of Ibaraki et al. (2008), Pisinger and Ropke (2006), Repoussis et al. (2009) and 

Hashimoto et al. (2008) provide a good compromise between speed and accuracy. Finally, it must 

be mentioned that the estimated average CPU time consumptions provides only an indication and 

cannot be used for direct quantitative comparisons. 
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3.3 Simplicity and Flexibility Analysis 

In order to arrive at some final conclusions that are relevant for real life applications, the criteria of 

simplicity and flexibility must be also considered. Simplicity refers to the ease of implementation. 

Although a minimum of complexity should be expected, simple codes, preferably short and self-

contained, stand a better chance to be adopted (Cordeau et al., 2002). Another issue related to 

simplicity is the number of parameters incorporated. Algorithms that contain too many parameters 

are difficult to understand and to tune. On the other hand, flexibility is related to the ability of an 

algorithm to accommodate various side constraints. A flexible algorithmic approach must be able to 

handle these changes, without requiring much effort. Thus, algorithmic flexibility is in part 

achieved through the simplicity of the design. Furthermore, flexibility is directly related to the 

robustness of an algorithm. A robust algorithm must not overly be sensitive to the differences in 

problem characteristics and should perform consistently over a variety of problem instances. 

 

Table 8: Assessment of advanced heuristics for large-scale VRPTWs 
Reference Effectiveness Efficiency Simplicity Flexibility 

HY Very High High High Very High 
GH99 Medium Very High Medium-High High 
GH02 Medium-High Very High Medium-High High 
HG Medium-Low Very High Medium-High High 

BHD Medium-Low Very High Very High High 
MB Medium-High High High High 

MBD Medium-High Medium High High 
LC Medium Very High Medium High 

LCK Medium-High Very High Medium High 
BVH Medium - Medium High 

I High High Medium High 
LZ High Low Medium-Low High 
RTI Very High Medium Medium-High High 
HYI High Medium Medium High 
PR High High Very High Very High 
B Medium-High High High High 

HKI Very Low Medium High High 
NBD Very High High Medium-High High 
DPR High Low Medium-Low High 

 

Table 8 summarizes the findings of our analysis. Most approaches obtain medium to high 

accuracy with medium to very high speed, while in terms of simplicity and flexibility most score 

above medium. However, implementations that utilize fairly simple structured neighborhoods and 

search techniques gain additional credits. We also paid attention to the number and the settings of 

parameters. Finally, it should be noted that the approach of Pisinger and Ropke (2006) has been 

applied to a wide variety of different VRP variants. In conclusion, among all the approaches 

proposed for solving large-scale VRPTW instances, those of Hashimoto and Yagiura (2008), 
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Nagata et al. (2010), Repoussis et al. (2009), Pisinger and Ropke (2006) and Ibaraki et al. (2008) 

score well on all dimensions. The most flexible approaches are those proposed by Pisinger and 

Ropke (2006) and Hashimoto and Yagiura (2008). Simple structured approaches with relatively few 

parameters are those of Nagata et al. (2010), Hashimoto and Yagiura (2008), Pisinger and Ropke 

(2006) and Bräysy et al. (2004b). 

4 Conclusions 
The VRPTW is a well-known NP-hard combinatorial optimization problem occurring in several 

transportation logistics systems. During the last decade, a large collection of successful and highly 

efficient advanced heuristics has been proposed for the VRPTW. Until recently most research 

efforts were targeting relatively small problem instances. However, as research moves towards 

more realistically sized problems, research on large-scale instances has received much more 

attention. Indeed, recent solution approaches are constantly producing more accurate results, with 

significant contributions to the best known solutions. However, there is still ample room for 

improvement both in terms of effectiveness and efficiency. Furthermore, it is fair to say that many 

approaches fail to provide a good compromise between quality and running time, while few score 

well on other dimensions, such as simplicity and flexibility. 

Evidently, research for the VRPTW must focus on more effective, simpler and faster solution 

methods capable of performing an extensive, but also intelligent, exploration of the search space. 

Real world needs solution methods that are fast, easy to understand, flexible, accurate and robust in 

terms of consistent performance across different problem solving scenarios. To this end, 

metaheuristic algorithms are currently the best available option for solving large-scale VRPTW 

instances. However, hybrid optimization algorithms combining heuristics and exact optimization 

techniques are likely to match the effectiveness of existing metaheuristic algorithms in the future, 

since these solution approaches have not yet been fully exploited. The latter is also true considering 

parallel and cooperative search methods in an effort to get the full performance from the widely 

available multi-core CPUs. 

A promising line of research for metaheuristic implementations is towards the development of 

more effective and efficient neighborhood search methods and speed-up techniques. Several ideas 

have been put forward, such as the granularity principle of Toth and Vigo (2003) and the sequential 

search of Irnich et al. (2005). Furthermore, the adaptation and development of spatial and temporal 

decompositions, as in Bent and van Hentenryck (2007), seem to be very promising. Another 

research direction worth pursing is towards the full utilization of CP frameworks within local search 

heuristics (Pesant and Gendreau, 1999). In CP, every computation is driven by constraints, thus 

giving them an active role. A significant benefit of CP techniques is that side constraints can be 
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incorporated with comparative ease. Finally, it is interesting to further investigate pattern 

identification mechanisms, similar to those suggested by Le Bouthillier et al. (2005), and to invest 

more in analogous guided cooperative search methods. 
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