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Abstract.  This paper describes an incremental neighbourhood tabu search heuristic for 

the generalized vehicle routing problem with time windows. The purpose of this work is to 

offer a general tool that can successfully be applied to a large variety of specific problems. 

The algorithm builds upon a previously developed tabu search heuristic by replacing its 

neighbourhood structure. The new neighbourhood is exponential in size, but the proposed 

evaluation procedure has polynomial complexity. Computational results are presented and 

demonstrate the effectiveness of the proposed approach. 
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Introduction

The purpose of this paper is to describe an incremental tabu search heuristic for the

generalized vehicle routing problem with time windows (GVRPTW) defined as fol-

lows. Let G = (V, A) be a directed graph, where V = {0, 1, ..., n} is the vertex set and

A = {(i, j) : i, j ∈ V, i 6= j} is the arc set. Vertex 0 is the depot at which is based a fleet of

m identical vehicles, and the vertex set V \{0} represents customer sites. The set V \{0}

is the union of p usually disjoint clusters V1, ..., Vp. Cluster Vh represents the sites of cus-

tomer h, and the vertices in Vh are characterised by the following customer attributes:

a non-negative load qh, a non-negative service duration dh, and a time window [eh, lh].

A travel cost matrix cij and a travel time matrix tij are defined on A. The GVRPTW

consists in designing at most m routes on G such that: (i) every route starts and ends at

the depot; (ii) exactly one site per customer is visited; (iii) the total load and duration

of a route r do not exceed Qr and Dr, respectively; (iv) service at customer h begins

within the interval [eh, lh]; (v) every vehicle leaves the depot and returns to the depot

within the interval [e0, l0]; and (vi) the total routing cost is minimised. The GVRPTW

reduces to the classical vehicle routing problem with time windows (VRPTW) when all

clusters are singletons, and to the generalized traveling salesman problem with time

windows (GTSPTW) when m = 1.

This model can be useful for a wide variety of applications, even when the time

windows constraints are not considered: see Baldacci et al. (2010) for applications of

the GVRP, and Laporte et al. (1996) for applications of the GTSP. Observe that a gener-

alized version of a routing problem arises when customer visits can equivalently take

place at more than one site. This gives rise to a location-routing problem because the

sites to visit and the vehicle routes must be determined simultaneously (Laporte, 1988).

To the best of our knowledge, there is no literature on the GVRPTW. The closest

study, by Bektaş et al. (2009), introduces a branch-and-cut algorithm and an adap-

tive large neighbourhood search algorithm for the GVRP. In previous articles, Cordeau

et al. (2001, 2004) and Cordeau and Laporte (2001) have introduced a unified tabu

search (UTS) heuristic which was successfully applied to the VRPTW and several of
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its extensions such as the multi-depot VRPTW (MDVRPTW), the periodic VRPTW

(PVRPTW), and the site-dependent VRPTW (SDVRPTW). The flexibility of UTS has

motivated us to adapt it to generalized vehicle routing problems.

With respect to the existing literature, this paper makes three main contributions.

First, it introduces an effective heuristic algorithm for a new problem. Second, it de-

scribes how a previous heuristic for vehicle routing problems can be efficiently ex-

tended to handle generalized versions of the same problems. A key feature of our

heuristic is the use of an incremental procedure to compute successive neighbour-

hoods. Third, it demonstrates through extensive computational experiments that the

proposed general algorithm is competitive with specialised ones.

The remainder of the paper is organised as follows. The proposed algorithm, called

incremental tabu search (ITS), is presented in the next section and assessed through

extensive computational experiments. Finally, we report some conclusions.

The incremental tabu search algorithm

The ITS heuristic applies the same tabu search mechanisms as UTS but uses a new

neighbourhood structure, which can be regarded as a generalisation of the one used

in UTS. In the following, we first synthesise the UTS heuristic and its neighbourhood

structure, and we then describe the new neighbourhood used in ITS. We will use for

the VRPTW the notation defined in the introduction, and we note that p = n for the

VRPTW.

The unified tabu search heuristic and its neighbourhood structure

The UTS heuristic moves at each iteration from a solution x to another solution in its

neighbourhood N(x). In the following we denote as a solution a set of m routes start-

ing and ending at the depot, and such that each customer is visited by one and only

one vehicle. Hence, UTS considers a solution space where time window, duration,

and capacity constraints may be violated. These constraints are handled in the objec-
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tive function by means of penalty terms equal to the infeasibility value multiplied by

a self-adjusting coefficient. If a solution is feasible with respect to any of these con-

straints, then the corresponding penalty is zero. The penalty coefficients are dynami-

cally adjusted to produce a mix of feasible and infeasible solutions. Thus this relaxation

mechanism facilitates the exploration of the search space and is particularly useful for

tightly constrained instances. When customer i is removed from route r, its reinsertion

in that route is forbidden for the next θ iterations, where θ is a parameter expressing

the length of the tabu tenure. However, through an aspiration criterion, a forbidden

reinsertion can be performed if this would allow reaching a solution of smaller cost

than that of the best known solution containing customer i in route r. A continuous

diversification mechanism is also implemented in UTS. The UTS algorithm performs a

preset number of iterations η, and returns the best known feasible solution.

In the following we analyse the computational complexity of the UTS neighbour-

hood structure. The neighbourhood N(x) consists of the solutions that can be obtained

by moving each customer from its current route in x to another route. When evaluat-

ing the insertion of a customer in a different route all the positions in the new route

are considered. Thus a full evaluation of the neighbourhood N(x) computes p cus-

tomer removals and p(m − 1) insertions. If we index a route by r ∈ {1, ...,m}, and

we express as Cr(x) the set of customers belonging to route r in solution x, then the

insertion of a customer in route r requires the assessment of |Cr(x)| + 1 new customer

sequences. Therefore, the p(m − 1) customer route insertions result in the evaluation

of
∑m

r=1(|Cr(x)| + 1) · (p − |Cr(x)|) customer sequences. Denoting by λ the number of

customer sequences to be evaluated because of removal and insertions of customers,

we obtain λ = p +
∑m

r=1(|Cr(x)| + 1) · (p − |Cr(x)|). This leads to the following charac-

terisation of the complexity of fully evaluating N(x).

Proposition 1 In the worst case, the full evaluation of the neighbourhood N(x) has a com-

putational cost of O(n2), and this occurs whenever the number of customers per route in the

solution x is constant among the routes, hence equal to p/m.

Proof — We can rewrite λ as p +
∑m

r=1(p|Cr(x)| − |Cr(x)|2 + p − |Cr(x)|), and since
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∑m
r=1 |Cr(x)| = p, we have λ = p2 + pm−

∑m
r=1 |Cr(x)|2. By applying optimality condi-

tions in the last expression, the term−
∑m

r=1 |Cr(x)|2, under the constraint
∑m

r=1 |Cr(x)| =

p, takes its maximal value −p2/m whenever |Cr(x)| = p/m, ∀r ∈ {1, ...,m}. Recalling

that p = n in a standard vehicle routing problem proves the proposition. �

The full evaluation of the neighbourhood N(x) is necessary only at the first iteration

when the algorithm starts from an initial solution x0. In fact, when evaluating N(xt),

where xt is the solution at the iteration t ≥ 1, we can take advantage of the evaluation

of the previous neighbourhood N(xt−1). As described above, a solution xt is obtained

by moving a customer from its route in xt−1 to a new route in xt. The impact of re-

moving or inserting customers in the unchanged routes is the same in N(xt−1) as it

is in N(xt). Therefore, the evaluation of N(xt) requires assessing the impact of cus-

tomer removals and insertions only in the two modified routes. We define this as an

incremental neighbourhood evaluation. It can be easily verified that the incremental

neighbourhood evaluation does not modify the order of magnitude of the worst case

computational effort. For this reason, in the following we will refer to the full neigh-

bourhood evaluation of N(x) when discussing the worst case complexity of evaluating

the new neighbourhood structure in ITS.

The incremental tabu search neighbourhood structure

In the ITS heuristic the solution space is defined similarly to that of UTS, i.e. we allow

violations of time window, duration, and capacity constraints. The new neighbour-

hood N
′
(x) consists of all the solutions that can be obtained by moving each customer

from its current route to another route, while considering all the possible site choices for the

customers in the modified routes. We observe that, because of this added feature, N
′
(x)

has an exponential size. Nevertheless, we have devised a neighbourhood evaluation

procedure having a polynomial complexity. The idea stems from a well-known result

related to the GTSP: given the sequence of clusters in a route, the optimal vertex choice

can be determined by shortest path computation in a layered graph; see Renaud and

Boctor (1998), and Bontoux et al. (2009) for an application of this result to a memetic
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algorithm for the GTSP. Similarly, in the GVRP we can use a layered graph to optimally

solve the site selection problem when the customer sequence is fixed in a route. Figure

1 illustrates how this layered graph is generated. We represent the customer sequence

in a route by an ordered set π = {h, k, ..., z}, and we introduce a vertex 0
′ correspond-

ing to the departure from the depot, and a vertex 0
′′ which denotes the arrival at the

depot. The vertex set of the layered graph Gπ consists of the vertices 0
′ , 0

′′ , and of the

vertices in ∪j∈πVj . Vertex 0
′ is linked by arcs only to the vertices corresponding to the

sites of the first visited customer, which in our example are the vertices belonging to

the set Vh. The cost of each of these arcs is equal to the cost between the depot and the

corresponding customer sites, i.e. c0′ i = c0i,∀i ∈ Vh. In turn, the vertices belonging

to the set Vh are linked to vertices belonging to the set Vk, etc. These corresponding

arcs have costs equal to those of the graph G. Finally, the vertices corresponding to the

sites of the last visited customer, i.e. the vertices in Vz, are linked to the arrival vertex

0
′′ by arcs with costs cj0′′ = cj0,∀j ∈ Vz. The optimal site choice for a given customer

0
′

0
′′

cj0

Vz

j

VkVh

i

c0i

Figure 1: The layered graph Gπ for the customer sequence π = (h, k, ..., z)

sequence π can readily be determined by computing a shortest path from 0
′ to 0

′′ in

Gπ. The cost of this shortest path is the optimal cost of the route visiting the customer
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sequence π.

It is well known, see e.g. Ahuja et al. (1993), that a shortest path in an acyclic graph

can be computed by the so-called reaching algorithm. This algorithm computes labels

from the origin to the destination vertex following their topological order (which in

a layered graph does not need to be computed because it can be trivially established).

This algorithm has a complexity equal to the number of arcs of the graph. Observe that,

analogously to the case described for N(x), the full evaluation of the neighbourhood

N
′
(x) would require the assessment of O(p2) removals and insertions of customers.

Therefore, the reaching algorithm should compute O(p2) shortest paths. We have to

establish worst case conditions for the computation of these shortest paths. Using

arguments similar to those of Proposition 1, it can be determined that these worst case

conditions occur whenever each route contains p/m customers, and there is a constant

number n/p of vertices per cluster. These conditions result in a computational cost

per shortest path by the reaching algorithm equal to O(n2/(mp)), which leads to the

following result.

Proposition 2 In the worst case the full evaluation of the neighbourhood N
′
(x) has a compu-

tational cost of O(p2 × n2/(mp)) = O(n2p/m) when using the reaching algorithm.

This result indicates that the evaluation of N
′
(x) should be p/m times more compu-

tationally expensive than that of N(x). However, we can significantly speed up com-

putations by taking advantage of the shortest paths computed at previous steps of

our algorithm. Indeed, in the exploration of the neighbourhood N
′
(x), the solutions

encountered differ only marginally from the current solution x. The assessment of a

solution y ∈ N
′
(x) can be regarded as an incremental optimisation problem in the sense of

Şeref et al. (2009). In the following we show how to considerably reduce the compu-

tational effort of this problem. To this end we will employ bi-directional label setting

and label recycling as in the work of Hu and Raidl (2008) for the GTSP 2-opt neigh-

bourhood structure.

We define forward labels φ as those generated by the reaching algorithm. A la-

bel φi expresses the cost of a shortest path from 0
′ to i in the layered graph. We can
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equivalently compute a shortest path from 0
′ to 0

′′ by applying the reaching algorithm

in reverse mode, i.e. new labels are expanded from 0
′′ to 0

′ following their reverse

topological order. We define these new labels as backward labels β. Thus, a label βi

indicates the cost of a shortest path from i to 0
′′ in the layered graph. By computing

both types of labels we obtain the following property:

Property 1 The cost of the shortest path c∗ can be computed for each cluster V as the minimum

of the sum of forward and backward labels at each vertex of the cluster, c∗ = mini∈V {φi + βi}.

Valid backward labelsValid forward labels

j

0
′′

Vk

Vl

Vh

(φj, βj)(φi, βi)

i

0
′

Figure 2: Valid labels when inserting a cluster in a route

As described above, we have to evaluate the insertion of a customer in each posi-

tion of an existing route. Let µ = {..., h, k, ...} be a customer sequence in a given route.

When evaluating the insertion of a customer l after customer h we need the cost of

a shortest path from 0
′ to 0

′′ in Gµ
′ , where µ

′ is defined as {..., h, l, k, ...}, but it is not
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necessary to compute a shortest path afresh for each potential insertion. First observe

that the forward labels generated by the shortest path computation for the customer

sequence µ are still valid for the vertices of the layered graph from vertex 0
′ to the

vertices in the set Vh in Gµ′ . More formally, a label φi obtained by the shortest path

computation in Gµ is valid for the shortest path to be computed in Gµ′ if the value of

the new forward label for the vertex i in Gµ′ is equal to φi. The label is said to be in-

valid otherwise. Therefore, the valid labels need not be recomputed, and the reaching

algorithm only computes the labels from the vertices in the set Vl to vertex 0
′′ . Similarly

to the previous case, we can recycle the valid backward labels, and when computing

the shortest path backward we only compute the backward labels from the vertices in

the set Vl to vertex 0
′ (see Figure 2). However, we observe that in order to evaluate

the impact of a customer insertion in a given position of a route, we do not have to

fully re-evaluate invalid forward and backward labels. Recalling Property 1, we only

require one cluster in the layered graph with the valid status for both types of labels. In

fact, extending the forward labels from the vertices of the set Vh to the vertices of the

set Vl and extending the backward labels from the vertices of the set Vk to the vertices

of the set Vl suffices to produce a set of valid φ and β labels for cluster Vl in Gµ′ . Hence,

the procedure just outlined exactly evaluates the impact of the insertion of customer

l between consecutive customers in a route. Its computational burden is proportional

to the number of arcs in the layered graph between the vertices of the sets Vh and Vl,

and between the vertices of the sets Vl and Vk, i.e. it is equal to O(|Vh| · |Vl| + |Vl| · |Vk|).

Under worst case conditions introduced above (customers equally distributed along

the routes, and a constant number of vertices per cluster), the insertion procedure with

bi-directional label setting and label recycling has a computational cost of O(2n2/p2).

The procedure needed to evaluate the effect of a customer deletion has a similar com-

putational cost. This result can be derived in way similar to the insertion case, and

hence its proof is omitted. We then have the following result:

Proposition 3 The incremental procedures just introduced bring the worst case computational

cost of evaluating N
′
(x) down to O(n2).
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Because the complexity of evaluating N(x) in UTS for the standard VRPTW is O(n2),

this result for the GVRPTW indicates that the performance of ITS depends on the num-

ber of sites only.

Once a shortest path is computed, we have a choice of vertices for the given cus-

tomer sequence. The evaluation of the full route is done as in the UTS heuristic, using

the forward time slack concept described in Cordeau et al. (2004). We observe that

label recycling applies to the shortest path computations only. In fact, a forward label

indicates the cost of a shortest path from the origin to the vertex, and is not necessarily

equal to the arrival time at the vertex (it can be if cij = tij , and if the time windows

are not binding). The new neighbourhood structure for the GVRPTW can easily be ex-

tended to handle periodic, multi-depot, and site-dependent generalized vehicle rout-

ing problems, similarly to what is done for the VRPTW in Cordeau et al. (2001), and

Cordeau and Laporte (2001).

Computational Results

We now present extensive computational experiments to assess the effectiveness of

the ITS algorithm. We have first evaluated ITS on some GVRP instances presented in

Bektaş et al. (2009). These instances offer a considerable advantage because tight lower

bounds were obtained for them by the branch-and-cut algorithm of Bektaş et al. (2009).

Furthermore, in the same article, these instances were solved by an adaptive large

neighbourhood search (ALNS) algorithm which is a state-of-the-art metaheuristic. We

first provide a comparison of ITS and ALNS on these GVRP instances.

In order to asses the ITS heuristic on instances with time related constraints we have

used some MDVRPTW instances. As shown by Baldacci et al. (2010), the MDVRP can

be modelled as a GVRP. The solution values obtained by ITS on these MDVRPTW

instances were evaluated against results provided by the UTS algorithm. This com-

parison also provides clues regarding the advantage of a general algorithm versus a

specialised one for a given class of problems.
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Computational experiments on GVRP instances

The ITS algorithm was coded in ANSI C, and the computational experiments were

performed on a desktop computer with an Intel Core Duo 1.83 GHz processor. Our

implementation of ITS uses the following procedure to obtain a starting solution x0:

the m routes are initialised by inserting seed customers as distant as possible from

each other and from the depot; then, the remaining customers are inserted into routes

in a greedy fashion. This procedure was developed to initialise the ITS heuristic in a

way similar to that followed in the ALNS algorithm of Bektaş et al. (2009). To evaluate

performance of ITS we have used the GVRP instances of Bektaş et al. (2009). In these

instances the average number of vertices per cluster is equal to two or three. We refer

to Bektaş et al. (2009) for additional details regarding these instances. The ITS heuris-

tic optimally chooses the customer sites given the customer sequence, whereas ALNS

does not possess such a feature. We therefore conjecture that ITS should perform better

on instances with higher values of n/p, the average number of vertices per cluster in

our notation. As we show in the following, the computational experiments reported in

Tables 1, 2, 3, and 4, support this conjecture.

These tables are organised as follows. We report in the first column the instance

codes as in Bektaş et al. (2009). The second column lists the lower bounds obtained

by the branch-and-cut algorithm of these authors. Columns 3 to 5 report the results

of their ALNS algorithm, and the last three columns are for the ITS results. We report

a solution quality index computed by scaling the heuristic solution value (UB) to the

lower bound (LB), where a value of 100.00 corresponds to the lower bound. Thus, an

index value of 100.00 indicates an optimal solution. Average solution quality indexes

for ALNS and ITS are reported in the last row of the tables.

Computational experiments on small to medium instances with n/p = 2 are pre-

sented in Table 1. The ALNS algorithm obtains a slightly better average solution qual-

ity on these instances. However, the ITS algorithm is slightly better on small to medium

instances with n/p = 3, see Table 2. As can be seen, ITS consistently reaches optimal

or near-optimal solutions. These trends are similar for larger instances, see Tables 3
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and 4. On these more difficult instances, the average deviation from the lower bound

is just above 5%. We observe that the computational times of the two algorithms are

not directly comparable because of different computer processors (Bektaş et al. (2009)

used a faster machine). Now, the running time of ITS is proportional to its number η

of iterations. Since η = 105 seems necessary to sufficiently explore the solution space,

this heuristic seems to be slower than ALNS, even when accounting for the differences

in machine speeds.

The comparison presented above was intended to be the toughest possible for ITS,

because it is equivalent to testing the UTS algorithm on VRP instances, which is not

what UTS was designed for. In fact, GVRP instances do not allow the use of ITS at its

full strength because ITS, derived from UTS, works best on routing problems with time

windows, and maximal route duration. Still, ITS produces high quality solutions on

GVRP instances, and the results obtained on instances with a larger n/p value indicate

that this algorithm, although slower than ALNS, is competitive in terms of solution

quality with a state-of-the-art metaheuristic expressly designed for the GVRP.

Computational experiments on MDVRPTW instances

As observed by Baldacci et al. (2010), the MDVRP can be modelled as a GVRP on an ex-

panded graph where each customer is represented by a cluster of vertices, one for each

depot. This graph contains customer-depot vertices indicated by pairs (h, d), where h

is the index of a customer, and d is the index of a depot. An arc connecting two ver-

tices (h, d) and (k, d) related to the same depot d has a cost equal to the cost of the arc

between the customers h and k in the original graph. Arcs between vertices related

to different depots have a cost equal to a sufficiently large value. The customer-depot

vertices are connected to an artificial depot vertex. The cost of an arc connecting the

artificial depot to a customer-depot vertex (h, d) is equal to the cost of the arc con-

necting depot d to customer h in the original graph. This reformulation can also be

used to transform a MDVRPTW in a GVRPTW by assigning the time window of each

customer h to the corresponding customer-depot vertices (h, d). We observe that this

An Incremental Tabu Search Heuristic for the Generalized Vehicle Routing Problem with Time Windows

11 CIRRELT-2010-12



reformulation exactly transforms a MDVRPTW into a GVRPTW if there are no depot-

specific constraints in the MDVRPTW. For example, if there are constraints such as

upper bounds on the number of vehicles available at the depots, these constraints do

not translate to the standard GVRPTW where an upper bound upon the number of

available vehicles can be set for all routes. For similar reasons, in the MDVRPTW all

depots must have the same time window.

The problem reformulation just described has the drawback of considerably in-

creasing the size of the GVRPTW graph with respect to the size of the original MD-

VRPTW graph. Observe that the majority of the arcs in the expanded graph, those

with an artificial large cost, will never be part of an optimal solution. Thus, testing

the ITS algorithm on MDVRPTW instances modelled as GVRPTW poses a remarkable

challenge. Still, this reformulation allow us to compare the ITS results with those of

UTS. The UTS algorithm is in fact well known for providing high quality solutions on

MDVRPTW instances.

Both the ITS and the UTS algorithms were tested on the computer platform used

for the previous tests. In this implementation of the ITS algorithm we have used a

sweep algorithm to generate an initial solution, which is the default starting procedure

of UTS. The instances were derived from those of Cordeau et al. (2001). These new

instances differ from those of Cordeau et al. (2001) by having a very large value for the

maximum number of routes per depot. This modification was necessary in order to

have equivalent instances for both the MDVRPTW and the GVRPTW reformulation.

The computational results of UTS and ITS on these MDVRPTW instances are reported

in Table 5. Here, we compute the solution quality index by comparing the ITS solution

value to the best known solution value. The average solution quality provided by

ITS is similar to the one provided by UTS. The computational times of ITS are larger

than the ones of UTS, but they remain in the same order of magnitude, in spite of the

significant increase in size of the underlying graph. Observe that in these instances the

number of depots varies between four and six (third column of Table 5).

These results indicate that a general tool as ITS can be successfully applied to the
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solution of specific problems. On the test instances, it consistently yields optimal or

near-optimal solutions. Because of the large variety of different location-routing prob-

lems that can be modelled as GVRPTW, this is, in our opinion, a noteworthy advantage.

Conclusions

We have presented a new incremental tabu search heuristic, called ITS, for the gen-

eralized vehicle routing problems with time windows. The algorithm builds upon

a previously developed one by replacing its neighbourhood structure. Although the

new neighbourhood is exponential in size, we have presented an evaluation procedure

which is polynomial. Computational experiments were performed to assess the effec-

tiveness of the proposed approach. The algorithm provides optimal or near-optimal

solutions on instances for which lower bounds are available. In this respect, ITS com-

pares favourably to state-of-the-art metaheuristics.
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ALNS ITS
Instance LB UB 100 × UB/LB Time (sec.) UB 100 × UB/LB Time (sec.)
A-n32-k5-C16-V2 519.0 519 100.00 0.3 519 100.00 9.5
A-n33-k5-C17-V3 451.0 451 100.00 0.3 451 100.00 8.8
A-n33-k6-C17-V3 465.0 465 100.00 0.3 465 100.00 9.0
A-n34-k5-C17-V3 489.0 489 100.00 0.3 489 100.00 9.2
A-n36-k5-C18-V2 505.0 505 100.00 0.3 505 100.00 12.0
A-n37-k5-C19-V3 432.0 432 100.00 0.4 432 100.00 11.1
A-n37-k6-C19-V3 584.0 584 100.00 0.3 584 100.00 11.1
A-n38-k5-C19-V3 476.0 476 100.00 0.3 476 100.00 11.0
A-n39-k5-C20-V3 557.0 557 100.00 0.4 557 100.00 12.5
A-n39-k6-C20-V3 544.0 544 100.00 0.4 544 100.00 12.6
A-n44-k6-C22-V3 608.0 608 100.00 0.4 608 100.00 15.1
A-n45-k6-C23-V4 613.0 613 100.00 0.4 613 100.00 13.7
A-n45-k7-C23-V4 674.0 674 100.00 0.4 674 100.00 13.7
A-n46-k7-C23-V4 593.0 593 100.00 0.4 593 100.00 13.5
A-n48-k7-C24-V4 667.0 667 100.00 0.4 667 100.00 15.4
A-n53-k7-C27-V4 603.0 603 100.00 0.5 603 100.00 19.4
A-n54-k7-C27-V4 690.0 690 100.00 0.5 690 100.00 18.7
A-n55-k9-C28-V5 699.0 699 100.00 0.5 699 100.00 16.7
A-n60-k9-C30-V5 769.0 769 100.00 0.6 769 100.00 19.3
A-n61-k9-C31-V5 638.0 638 100.00 0.6 638 100.00 20.7
A-n62-k8-C31-V4 740.0 740 100.00 0.6 740 100.00 26.0
A-n63-k10-C32-V5 801.0 801 100.00 0.6 801 100.00 22.7
A-n63-k9-C32-V5 900.3 912 101.30 0.6 912 101.30 21.9
A-n64-k9-C32-V5 763.0 763 100.00 0.6 763 100.00 23.0
A-n65-k9-C33-V5 682.0 682 100.00 0.7 682 100.00 23.3
A-n69-k9-C35-V5 680.0 680 100.00 0.8 680 100.00 26.6
A-n80-k10-C40-V5 957.4 997 104.14 1.0 997 104.14 35.5
B-n31-k5-C16-V3 441.0 441 100.00 0.3 441 100.00 8.2
B-n34-k5-C17-V3 472.0 472 100.00 0.3 472 100.00 9.3
B-n35-k5-C18-V3 626.0 626 100.00 0.3 626 100.00 9.8
B-n38-k6-C19-V3 451.0 451 100.00 0.3 451 100.00 10.7
B-n39-k5-C20-V3 357.0 357 100.00 0.4 357 100.00 11.1
B-n41-k6-C21-V3 481.0 481 100.00 0.4 481 100.00 13.5
B-n43-k6-C22-V3 483.0 483 100.00 0.4 483 100.00 14.8
B-n44-k7-C22-V4 540.0 540 100.00 0.4 540 100.00 12.9
B-n45-k5-C23-V3 497.0 497 100.00 0.5 497 100.00 16.0
B-n45-k6-C23-V4 478.0 478 100.00 0.4 478 100.00 13.8
B-n50-k7-C25-V4 449.0 449 100.00 0.5 449 100.00 16.4
B-n50-k8-C25-V5 916.0 916 100.00 0.5 916 100.00 13.9
B-n51-k7-C26-V4 651.0 651 100.00 0.5 651 100.00 15.1
B-n52-k7-C26-V4 450.0 450 100.00 0.5 450 100.00 16.3
B-n56-k7-C28-V4 486.0 486 100.00 0.6 492 101.23 16.4
B-n57-k7-C29-V4 751.0 751 100.00 0.5 751 100.00 21.5
B-n57-k9-C29-V5 942.0 942 100.00 0.5 942 100.00 18.5
B-n63-k10-C32-V5 816.0 816 100.00 0.6 816 100.00 23.3
B-n64-k9-C32-V5 509.0 509 100.00 0.7 509 100.00 21.8
B-n66-k9-C33-V5 808.0 808 100.00 0.7 808 100.00 24.6
B-n67-k10-C34-V5 673.0 673 100.00 0.7 673 100.00 24.8
B-n68-k9-C34-V5 704.0 704 100.00 0.7 704 100.00 25.7
B-n78-k10-C39-V5 803.0 803 100.00 0.8 804 100.12 34.1
P-n16-k8-C8-V5 239.0 239 100.00 0.2 239 100.00 2.2
P-n19-k2-C10-V2 147.0 147 100.00 0.2 147 100.00 1.7
P-n20-k2-C10-V2 154.0 154 100.00 0.2 154 100.00 1.7
P-n21-k2-C11-V2 160.0 160 100.00 0.2 162 101.25 1.9
P-n22-k2-C11-V2 162.0 162 100.00 0.2 163 100.62 1.9
P-n22-k8-C11-V5 314.0 314 100.00 0.2 314 100.00 3.2
P-n23-k8-C12-V5 312.0 312 100.00 0.2 312 100.00 3.7
P-n40-k5-C20-V3 294.0 294 100.00 0.4 294 100.00 12.6
P-n45-k5-C23-V3 337.0 337 100.00 0.5 337 100.00 15.9
P-n50-k10-C25-V5 410.0 410 100.00 0.5 410 100.00 14.3
P-n50-k7-C25-V4 353.0 353 100.00 0.5 353 100.00 16.1
P-n50-k8-C25-V4 378.4 392 103.60 0.5 421 111.26 16.7
P-n51-k10-C26-V6 427.0 427 100.00 0.5 427 100.00 12.4
P-n55-k10-C28-V5 415.0 415 100.00 0.5 415 100.00 17.3
P-n55-k15-C28-V8 545.3 555 101.78 0.5 565 103.61 13.3
P-n55-k7-C28-V4 361.0 361 100.00 0.6 361 100.00 20.0
P-n55-k8-C28-V4 361.0 361 100.00 0.6 361 100.00 20.0
P-n60-k10-C30-V5 433.0 443 102.30 0.6 443 102.30 20.0
P-n60-k15-C30-V8 553.9 565 102.01 0.6 565 102.01 13.7
P-n65-k10-C33-V5 487.0 487 100.00 0.7 487 100.00 24.1
P-n70-k10-C35-V5 485.0 485 100.00 0.8 485 100.00 27.3
P-n76-k4-C38-V2 383.0 383 100.00 1.0 383 100.00 58.1
P-n76-k5-C38-V3 405.0 405 100.00 0.9 405 100.00 45.7
P-n101-k4-C51-V2 455.0 455 100.00 1.9 455 100.00 119.1
Average 100.20 100.38

Table 1: Computational results on GVRP small to medium instances with n/p = 2.
Bold entries correspond to the best solution quality index for each row.
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ALNS ITS
Instance LB UB 100 × UB/LB Time (sec.) UB 100 × UB/LB Time (sec.)
A-n32-k5-C11-V2 386.0 386 100.00 0.2 386 100.00 4.3
A-n33-k5-C11-V2 315.0 318 100.95 0.2 315 100.00 4.6
A-n33-k6-C11-V2 370.0 370 100.00 0.2 370 100.00 5.7
A-n34-k5-C12-V2 419.0 419 100.00 0.2 419 100.00 6.0
A-n36-k5-C12-V2 396.0 396 100.00 0.2 396 100.00 5.0
A-n37-k5-C13-V2 347.0 347 100.00 0.2 347 100.00 6.1
A-n37-k6-C13-V2 431.0 431 100.00 0.2 431 100.00 7.5
A-n38-k5-C13-V2 367.0 367 100.00 0.2 367 100.00 7.0
A-n39-k5-C13-V2 364.0 364 100.00 0.2 364 100.00 6.8
A-n39-k6-C13-V2 403.0 403 100.00 0.2 403 100.00 7.6
A-n44-k6-C15-V2 503.0 503 100.00 0.3 503 100.00 10.1
A-n45-k6-C15-V3 474.0 474 100.00 0.3 474 100.00 8.5
A-n45-k7-C15-V3 475.0 475 100.00 0.3 475 100.00 8.8
A-n46-k7-C16-V3 462.0 462 100.00 0.3 462 100.00 9.6
A-n48-k7-C16-V3 451.0 451 100.00 0.3 451 100.00 9.8
A-n53-k7-C18-V3 440.0 440 100.00 0.4 440 100.00 12.1
A-n54-k7-C18-V3 482.0 482 100.00 0.4 482 100.00 12.2
A-n55-k9-C19-V3 473.0 473 100.00 0.4 473 100.00 13.7
A-n60-k9-C20-V3 595.0 595 100.00 0.4 595 100.00 16.1
A-n61-k9-C21-V4 473.0 473 100.00 0.4 473 100.00 14.2
A-n62-k8-C21-V3 596.0 596 100.00 0.4 596 100.00 16.9
A-n63-k10-C21-V4 593.0 593 100.00 0.4 593 100.00 14.6
A-n63-k9-C21-V3 625.6 642 102.62 0.4 643 102.78 17.5
A-n64-k9-C22-V3 536.0 536 100.00 0.4 536 100.00 17.2
A-n65-k9-C22-V3 500.0 500 100.00 0.4 500 100.00 18.8
A-n69-k9-C23-V3 520.0 520 100.00 0.4 520 100.00 20.7
A-n80-k10-C27-V4 679.4 710 104.50 0.6 710 104.50 24.9
B-n31-k5-C11-V2 356.0 356 100.00 0.2 356 100.00 4.3
B-n34-k5-C12-V2 369.0 369 100.00 0.2 369 100.00 5.1
B-n35-k5-C12-V2 501.0 501 100.00 0.2 501 100.00 5.7
B-n38-k6-C13-V2 370.0 370 100.00 0.2 370 100.00 7.7
B-n39-k5-C13-V2 280.0 280 100.00 0.2 280 100.00 6.0
B-n41-k6-C14-V2 407.0 407 100.00 0.2 407 100.00 8.5
B-n43-k6-C15-V2 343.0 343 100.00 0.3 343 100.00 9.5
B-n44-k7-C15-V3 395.0 395 100.00 0.3 395 100.00 8.3
B-n45-k5-C15-V2 410.0 422 102.93 0.3 410 100.00 8.4
B-n45-k6-C15-V2 336.0 336 100.00 0.3 336 100.00 10.3
B-n50-k7-C17-V3 393.0 393 100.00 0.3 393 100.00 11.0
B-n50-k8-C17-V3 598.0 598 100.00 0.3 598 100.00 11.0
B-n51-k7-C17-V3 511.0 511 100.00 0.3 511 100.00 10.6
B-n52-k7-C18-V3 359.0 359 100.00 0.3 359 100.00 11.1
B-n56-k7-C19-V3 356.0 356 100.00 0.4 356 100.00 12.6
B-n57-k7-C19-V3 558.0 558 100.00 0.4 558 100.00 13.0
B-n57-k9-C19-V3 681.0 681 100.00 0.4 681 100.00 13.8
B-n63-k10-C21-V3 599.0 599 100.00 0.4 599 100.00 17.2
B-n64-k9-C22-V4 452.0 452 100.00 0.5 452 100.00 15.4
B-n66-k9-C22-V3 609.0 609 100.00 0.4 609 100.00 18.1
B-n67-k10-C23-V4 558.0 558 100.00 0.5 558 100.00 17.0
B-n68-k9-C23-V3 523.0 523 100.00 0.4 523 100.00 20.1
B-n78-k10-C26-V4 606.0 606 100.00 0.5 606 100.00 21.1
P-n16-k8-C6-V4 170.0 170 100.00 0.1 170 100.00 1.5
P-n19-k2-C7-V1 111.0 111 100.00 0.1 111 100.00 0.1
P-n20-k2-C7-V1 117.0 117 100.00 0.1 117 100.00 0.1
P-n21-k2-C7-V1 117.0 117 100.00 0.1 117 100.00 0.1
P-n22-k2-C8-V1 111.0 111 100.00 0.2 111 100.00 0.1
P-n22-k8-C8-V4 249.0 249 100.00 0.2 249 100.00 2.4
P-n23-k8-C8-V3 174.0 174 100.00 0.2 174 100.00 2.9
P-n40-k5-C14-V2 213.0 213 100.00 0.3 213 100.00 7.5
P-n45-k5-C15-V2 238.0 238 100.00 0.3 238 100.00 9.2
P-n50-k10-C17-V4 292.0 292 100.00 0.3 292 100.00 9.2
P-n50-k7-C17-V3 261.0 261 100.00 0.3 261 100.00 10.7
P-n50-k8-C17-V3 262.0 262 100.00 0.3 262 100.00 11.2
P-n51-k10-C17-V4 309.0 309 100.00 0.3 309 100.00 9.6
P-n55-k10-C19-V4 301.0 301 100.00 0.4 301 100.00 11.8
P-n55-k15-C19-V6 378.0 378 100.00 0.4 378 100.00 9.6
P-n55-k7-C19-V3 271.0 271 100.00 0.4 271 100.00 13.3
P-n55-k8-C19-V3 274.0 274 100.00 0.4 274 100.00 13.5
P-n60-k10-C20-V4 325.0 325 100.00 0.4 325 100.00 13.0
P-n60-k15-C20-V5 379.3 382 100.73 0.4 382 100.73 11.6
P-n65-k10-C22-V4 372.0 372 100.00 0.4 372 100.00 15.5
P-n70-k10-C24-V4 385.0 385 100.00 0.5 385 100.00 18.3
P-n76-k4-C26-V2 309.0 320 103.56 0.6 309 100.00 20.3
P-n76-k5-C26-V2 309.0 309 100.00 0.6 309 100.00 27.4
P-n101-k4-C34-V2 370.0 374 101.08 1.0 370 100.00 31.8
Average 100.22 100.11

Table 2: Computational results on GVRP small to medium instances with n/p = 3.
Bold entries correspond to the best solution quality index for each row.
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ALNS ITS
Instance LB UB 100 × UB/LB Time (sec.) UB 100 × UB/LB Time (sec.)
M-n101-k10-C51-V5 542.0 542 100.00 1.5 542 100.00 57.8
M-n121-k7-C61-V4 707.7 719 101.60 2.2 720 101.74 98.3
M-n151-k12-C76-V6 629.9 659 104.62 3.2 659 104.62 113.1
M-n200-k16-C100-V8 744.9 791 106.19 5.3 805 108.07 158.7
G-n262-k25-C131-V12 2863.5 3249 113.46 6.2 3319 115.91 193.6
Average 105.18 106.07

Table 3: Computational results on GVRP large instances with n/p = 2. Bold entries
correspond to the best solution quality index for each row.

ALNS ITS
Instance LB UB 100 × UB/LB Time (sec.) UB 100 × UB/LB Time (sec.)
M-n101-k10-C34-V4 458.0 458 100.00 0.9 458 100.00 36.8
M-n121-k7-C41-V3 527.0 527 100.00 1.2 527 100.00 63.3
M-n151-k12-C51-V4 465.6 483 103.74 1.9 483 103.74 85.5
M-n200-k16-C67-V6 563.1 605 107.44 3.0 605 107.44 108.4
G-n262-k25-C88-V9 2102.4 2476 117.77 4.9 2463 117.15 134.3
Average 105.79 105.67

Table 4: Computational results on GVRP large instances with n/p = 3. Bold entries
correspond to the best solution quality index for each row.

Number of Number of UTS ITS
Instance customers depots UB 100 × UB/Best Time (sec.) UB 100 × UB/Best Time (sec.)
pr01 48 4 1074.1 100.00 43 1077.7 100.33 54
pr02 96 4 1738.1 100.07 156 1737.0 100.00 245
pr03 144 4 2418.9 100.29 294 2411.9 100.00 499
pr04 192 4 2863.0 100.57 432 2846.8 100.00 761
pr05 240 4 3047.1 100.64 588 3027.6 100.00 917
pr06 288 4 3640.1 100.00 767 3698.8 101.61 1328
pr07 72 6 1413.6 100.00 93 1414.8 100.08 161
pr08 144 6 2088.7 100.00 307 2105.7 100.81 521
pr09 216 6 2727.2 100.00 530 2763.8 101.34 1085
pr10 288 6 3515.2 100.00 790 3520.4 100.15 1776
pr11 48 4 926.6 100.00 62 926.6 100.00 77
pr12 96 4 1457.7 101.46 220 1436.8 100.00 326
pr13 144 4 2060.7 101.58 375 2028.6 100.00 666
pr14 192 4 2251.6 100.00 580 2262.3 100.48 905
pr15 240 4 2498.0 100.00 674 2503.5 100.22 1186
pr16 288 4 2868.8 100.00 993 2936.9 102.38 1580
pr17 72 6 1171.2 100.00 127 1171.9 100.06 213
pr18 144 6 1826.6 100.00 356 1845.6 101.04 709
pr19 216 6 2294.0 100.08 720 2292.1 100.00 1593
pr20 288 6 3112.4 104.29 871 2984.3 100.00 1910
Average 100.45 100.43

Table 5: Computational results on MDVRPTW instances. Bold entries correspond to
the best solution quality index for each row.
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