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Abstract.  This paper introduces a robust inventory routing problem where a supplier 
distributes a single product to multiple customers facing dynamic uncertain demands over 
a finite discrete time horizon. The probability distribution of the uncertain demand at each 
customer is not fully specified. The only available information is that these demands are 
independent and symmetric random variables which can take some value from their 
support interval. The supplier is responsible for the inventory management of its 
customers, has sufficient inventory to replenish the customers, and distributes the product 
using a capacitated vehicle. Backlogging of the demand at customers is allowed. The 
problem is to determine the delivery quantities as well as the times and routes to the 
customers while ensuring feasibility regardless of the realized demands and minimizing 
the total cost composed of transportation, inventory holding and shortage costs. Using a 
robust optimization approach, we propose two robust mixed integer programming (MIP) 
formulations for the problem. We also propose a new MIP formulation for the deterministic 
(nominal) case of the problem. We implement these formulations within a branch-and-cut 
algorithm and report results on a set of instances adapted from the literature. 
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1. Introduction

The inventory routing problem (IRP) can be defined as the problem of determining the delivery

times, delivery quantities and delivery routes to a set of geographically dispersed customers served

by a supplier. The IRP is an important problem arising in vendor-managed inventory (VMI) sys-

tems where the supplier (vendor) is responsible for the management of inventories at the customers.

For a description of benefits and industrial applications of VMI systems, one can refer to Çetinkaya

and Lee (2000) and Campbell et al. (2002).

There exist several variants of the IRP depending mainly on the nature of the demand at customers

(deterministic vs. stochastic) and on the length of the planning horizon (finite vs. infinite). For

example, some studies consider single period IRPs with stochastic demand (e.g. Federgruen and

Zipkin 1984), with deterministic demand (e.g. Chien et al. 1989), multi-period finite horizon IRPs

with constant demand (e.g. Dror and Ball 1987, Campbell and Savelsbergh 2004) and with dynamic

deterministic demand (e.g. Bertazzi et al. 2002, Abdelmaguid and Dessouky 2006, Archetti et al.

2007, Yugang et al. 2008, Abdelmaguid et al. 2009), infinite horizon IRPs with constant determin-

istic demand (e.g. Anily and Federgruen 1990, Viswanathan and Mathur 1997, Chan et al. 1998),

and infinite horizon IRPs with stochastic demand (e.g. Kleywegt et al. 2002, 2004, Adelman 2004,

Hvattum and Løkketangen 2009, Hvattum et al. 2009). For recent reviews on the IRP, one can

refer to Moin and Salhi (2007) and Andersson et al. (2010).

Demand is widely accepted to be dynamic and stochastic in real life inventory routing problems

(Campbell et al. 1998). Many studies consider the IRP with dynamic deterministic demand, which

leads to more tractable yet less realistic models compared to those with stochastic demand. On

the other hand, stochastic IRP (SIRP) models are intractable in that only very small instances

can be solved to optimality (Hvattum and Løkketangen 2009) and therefore several heuristics have

been proposed for their resolution. Studies on SIRPs also assume full knowledge of the probability

distribution of demand, which may be unavailable or difficult to obtain. There is clearly a need to

consider the IRP with dynamic stochastic demand in a tractable way, where no information for

the probability distribution of demand is required.

In this paper, we introduce a single product multi-period finite horizon IRP with dynamic stochastic

demands at customers, where a polyhedral (interval) demand uncertainty structure with no specific

probability distribution is considered. The supplier holds an unlimited amount of the product

to replenish the customers, and backlogging (i.e. not meeting demand on time) of demand at

customers is allowed. Although most distribution management problems involve multiple vehicles,

for simplicity and because this study is the first to address such a complex problem, we consider

1
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a single vehicle for the distribution of the product. The vehicle can visit all customers in a period,

provided that the total amount shipped to the visited customers does not exceed its capacity. We

make use of recently developed robust optimization approaches in addressing demand uncertainty

in a tractable way. The problem, referred to as the robust inventory routing problem (RIRP), is

to decide on the delivery times and quantities to customers as well as delivery routes such that

whatever value the demands take within their supports, the solution remains feasible and the total

cost is minimized. The RIRP is obviously NP-hard since it includes the classical traveling salesman

problem (TSP) as a special case.

To the best of our knowledge, the paper by Aghezzaf (2008) is the only study that incorporates

robustness into an IRP. In contrast to the dynamic demands with an ambiguous probability distri-

bution considered in this paper, Aghezzaf (2008) assumes normally distributed stationary demands

at the customers, and travel times with constant averages and bounded standard deviations. He

only considers a cyclic distribution strategy, which is theoretically not optimal but claimed to be a

good approximation, and he develops a nonlinear mixed integer programming (MIP) formulation

to find a minimum cost solution that is feasible for all possible realizations of demands and travel

times within their supports.

Robust optimization has emerged as a powerful methodology for problems involving uncertain

parameters with no information on their probability distributions. This is achieved by finding the

best solution (often called minimax solution) which ensures feasibility regardless of the realized

values of uncertain parameters. The first study in robust optimization is that of Soyster (1973)

which considers linear programming (LP) problems with uncertain parameters and sets the uncer-

tain parameters to their worst-case values in the uncertainty set. This approach, however, usually

results in overconservative solutions. To cope with the overconservativeness, El-Ghaoui and Lebret

(1997), El-Ghaoui et al. (1998) and Ben-Tal and Nemirovski (1998, 1999, 2000) consider uncertain

convex optimization problems under ellipsoidal uncertainty sets. However, this approach increases

the complexity of the nominal problem (i.e. problem without uncertainty) and cannot easily be

extended to discrete optimization problems. For instance, if the nominal problem is an LP prob-

lem (a second order cone program), its robust counterpart becomes a second order cone program

(a semidefinite program). Bertsimas and Sim (2003, 2004) develop a robustness approach, called

the “budget of uncertainty” approach, which controls the level of conservativeness by allowing

only some of the uncertain parameters to deviate from their nominal values simultaneously. An

important feature of this approach is that the robust counterpart preserves the complexity of its

nominal problem (e.g. if the nominal problem is an LP problem, the robust counterpart is also

Robust Inventory Routing under Demand Uncertainty

CIRRELT-2010-17        2



an LP problem), and thus can easily be extended to discrete optimization problems. All studies

on robust optimization mentioned until now were designed to obtain robust counterparts of static

decision making problems in that all the decision variables are determined a priori (“here and now”

decisions). Ben-Tal et al. (2004) introduce the adjustable robust counterpart of the multistage

uncertain LP problems in which some of the decisions can be made after some of the uncertain

parameters become known (“wait and see” decisions), thus enabling these decisions to adjust them-

selves according to the realized data. The adjustable robust counterpart provides a better optimal

objective value than the robust counterpart if uncertainty affecting a constraint has an effect on the

other constraints (Ben-Tal et al. 2004). However, the adjustable robust counterpart is intractable.

Therefore, Ben-Tal et al. (2004) propose an affinely adjustable robust counterpart as a tractable

approximation in which “wait and see” decision variables are rewritten as affine functions of the

uncertain data.

Because the RIRP involves inventory management decisions, studies on robust inventory manage-

ment under demand uncertainty are of interest. Ben-Tal et al. (2004, 2005) consider two different

inventory management problems formulated as uncertain LP programs and show the value of the

affinely adjustable robust counterpart over the robust counterpart. Bertsimas and Thiele (2006)

apply the “budget of uncertainty” robustness approach described in Bertsimas and Sim (2003,

2004) to single echelon and multi-echelon (with distribution network structure) inventory manage-

ment problems. They formulate the robust counterpart of the nominal LP (MIP) problem in the

absence (presence) of fixed ordering costs, which is an LP (MIP) problem. Bienstock and Ozbay

(2008) propose a Benders decomposition algorithm to find the robust basestock policy for a single

echelon inventory management problem. Ben-Tal et al. (2009) apply an extension of the affinely

adjustable robust counterpart, called globalized robust counterpart, to a multi-echelon inventory

management problem with a serial structure. See and Sim (2009) consider a single echelon inven-

tory management problem with nonzero lead times where uncertain demand is characterized by the

mean, support, covariance and directional deviations. They formulate the problem as a stochastic

optimization model, and approximate it using robust optimization which leads to a second order

cone program. Except Bertsimas and Thiele (2006), none of the mentioned studies considers fixed

ordering costs (i.e. all decision variables are continuous).

The RIRP is also closely related to the IRP studied by Abdelmaguid and Dessouky (2006), and

Abdelmaguid et al. (2009), where deterministic demands, storage capacity limits at the customers

and multiple vehicles are considered unlike what is done in the RIRP. Abdelmaguid and Dessouky

(2006) propose a genetic algorithm, while Abdelmaguid et al. (2009) develop construction and
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improvement heuristics for the problem. Both studies present an MIP formulation of the problem,

which is a combination of standard inventory balance equations for the inventory replenishment

decisions of the customers and a multi-commodity flow based formulation for the routing decisions.

The upper and lower bounds obtained by solving the MIP formulation within a given time limit are

used as benchmarks to measure the quality of the heuristics. The MIP formulation proposed could

only solve very small instances to optimality using an off-the-shelf optimization solver. The first

exact IRP algorithm, a branch-and-cut algorithm, is proposed by Archetti et al. (2007) for a related

IRP in which deterministic demands, order-up-to level policy and no backlogging at the customers,

and a single vehicle are considered. Solyalı and Süral (2008) improve the results of Archetti et al.

(2007) by proposing a strong MIP formulation within a branch-and-cut algorithm. These authors

also develop an effective MIP based heuristic for the problem. Both Archetti et al. (2007) and

Solyalı and Süral (2008) use a computationally attractive two-index vehicle flow formulation for

the routing decisions. They differ in the formulation used for the inventory replenishment decisions

of the customers: the former uses the standard inventory balance equations whereas the latter uses

a strong shortest path formulation.

In this paper, we first propose a new MIP formulation for the nominal case of the RIRP. This for-

mulation combines a tight formulation for the inventory replenishment decisions of each customer

and a two-index vehicle flow formulation for the routing decisions. We develop a branch-and-cut

algorithm using the proposed formulation. Computational results on instances generated by Abdel-

maguid et al. (2009) for the nominal case show the superiority of our formulation and of our

branch-and-cut algorithm over the MIP formulation of Abdelmaguid and Dessouky (2006) and

Abdelmaguid et al. (2009). Then, using the “budget of uncertainty” robustness approach of Bert-

simas and Sim (2003, 2004), we formulate the RIRP as a tractable MIP formulation with slightly

more constraints and variables than the formulation for the nominal case. This formulation of the

RIRP makes decisions a priori (i.e. at time 0). Modifying the MIP formulation for the nominal

case, we obtain a variation of that formulation which we use in developing another robust MIP

formulation for the RIRP. We show that the new robust formulation is equivalent to its adjustable

robust counterpart, and is indeed a nominal formulation with modified demands. Computational

results on instances from the literature reveal that the “budget of uncertainty” based robust formu-

lation generally yields slightly better objective values than the robust formulation with modified

demands, whereas the latter is faster than the former.

The contributions of this study can be summarized as follows:
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• We propose the first exact algorithm for a deterministic inventory routing problem with back-

logging for which only heuristics are known to exist. Our MIP formulation, implemented through

branch-and-cut, is far superior to the only other MIP formulation existing in the literature.

• This study is the first to consider a robust IRP under ambiguous demand distribution. We

propose two different tractable robust MIP formulations for the problem. One of the robust formu-

lations has slightly more variables and constraints than its nominal formulation, whereas the other

robust formulation is basically the same as its nominal formulation, but with modified demand

values. Both formulations are implemented within a branch-and-cut algorithm and yield robust

solutions protecting against uncertainty in demand.

The remainder of this paper is organized as follows. In Section 2, we present a brief review on the

robust optimization approach that we use. We give the formal description of the RIRP, present the

proposed nominal and robust formulations, and describe the proposed branch-and-cut algorithm in

Section 3. In Section 4, we present the computational results on an extensive set of test instances.

Finally, we conclude the paper in Section 5.

2. The Robustness Approach

This section provides a brief review of relevant results by Bertsimas and Sim (2003, 2004). Let n

be the number of decision variables indexed by j, and let m be the number of constraints indexed

by i. An interval (or polyhedral) uncertainty structure is considered. Each objective coefficient cj

is an independent random variable which can take a value from the interval [c̄j, c̄j + ĉj], where c̄j

is the nominal value and ĉj is the maximum deviation from the nominal value. Each coefficient aij

in the constraints of the formulation (i.e. the coefficient of the jth variable in the ith constraint) is

an independent, symmetric and bounded random variable which can take a value from the interval

[āij − âij, āij + âij], where āij is the nominal value and âij is the maximum deviation from the

nominal value. The probability distribution of the random variables is not known. Unlike Soyster

(1973), who optimizes a problem in which each uncertain parameter is equal to its worst-case value

in a set, Bertsimas and Sim (2003, 2004) optimize against the worst-case by allowing a degree

of control that avoids overconservative solutions. This control is achieved by imposing a so-called

“budget of uncertainty”, Γi (i = 0 for the objective function, and i ∈ [1,m] for the constraints),

which ensures that only some uncertain parameters can simultaneously deviate from their nominal

value. Thus, one can adjust the level of robustness by assigning a value to Γi (i∈ [0,m]) from the

interval [0, |Ji|], where J0 = {j|ĉj > 0} and Ji = {j|âij > 0} for i ∈ [1,m], with Γi = 0 meaning no

protection against uncertainty (i.e. the nominal problem is considered), and Γi = |Ji| meaning the
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most conservative protection against the uncertainty (i.e. the approach of Soyster 1973). Next we

show how this approach translates into a mathematical program. Let the scaled deviation of cj

be denoted by z0j = (cj − c̄j)/ĉj and the scaled deviation of aij be denoted by zij = (aij − āij)/âij.

Define bi as the right-hand side constant for constraint i, and lj and uj as the lower and upper

bounds on decision variable xj, respectively. Then, given the nominal problem

min
n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≤ bi 1≤ i≤m

lj ≤ xj ≤ uj 1≤ j ≤ n,

(1)

where cj = c̄j and aij = āij, its robust counterpart is as follows:

min
n∑
j=1

c̄jxj + max{
∑
j∈J0

ĉj|xj|z0j :
∑
j∈J0

z0j ≤ Γ0,0≤ z0j ≤ 1, j ∈ J0}

s.t.
n∑
j=1

āijxj + max{
∑
j∈Ji

âij|xj|zij :
∑
j∈Ji

zij ≤ Γi,0≤ zij ≤ 1, j ∈ Ji} ≤ bi 1≤ i≤m

lj ≤ xj ≤ uj 1≤ j ≤ n,

(2)

where each cj and each aij in (1) is replaced by c̄j + ĉjz0j and āij + âijzij, respectively, and the

related expressions are maximized to optimize against the worst-case. Using the strong duality

theorem, Bertsimas and Sim (2003, 2004) formulate the above nonlinear robust model equivalently

as the following linear model:

min
n∑
j=1

c̄jxj + θ0Γ0 +
∑
j∈J0

α0j

s.t.
n∑
j=1

āijxj + θiΓi +
∑
j∈Ji

αij ≤ bi 1≤ i≤m

θ0 +α0j ≥ ĉjyj j ∈ J0
θi +αij ≥ âijyj 1≤ i≤m,j ∈ Ji
θi ≥ 0 0≤ i≤m
αij ≥ 0 0≤ i≤m,j ∈ Ji
yj ≥ 0 1≤ j ≤ n
−yj ≤ xj ≤ yj 1≤ j ≤ n
lj ≤ xj ≤ uj 1≤ j ≤ n,

(3)

where θi and αij are the corresponding dual variables used to linearize the model. Note that

Bertsimas and Sim (2003, 2004) present generic robust models involving integer and continuous

variables. Since we consider nonnegative continuous (and integer) variables in this paper, we have

modified the above robust models accordingly.

The “budget of uncertainty” approach of Bertsimas and Sim (2003, 2004) ensures that the optimal

solution, say x∗, is deterministically feasible if at most bΓic coefficients aij change in each constraint
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i; otherwise x∗ is feasible for constraint i with a high probability depending on the chosen Γi. The

probability of x∗ being infeasible for constraint i can be calculated as follows:

Pr(
n∑
j=1

aijx
∗ > bi)≤ B(n,Γi) =

1

2n

{
(1−µ)

n∑
l=bvc

(
n

l

)
+µ

n∑
l=bvc+1

(
n

l

)}
, (4)

where n= |Ji|, v = (Γi + n)/2, µ= v− bvc. The bound in (4) may be difficult to compute due to

the combinations, but the following expression yields an easy to compute bound and a very good

approximation of (4) (Bertsimas and Sim 2004):

B(n,Γi)≤ (1−µ)C(n, bvc) +
n∑

l=bvc+1

C(n, l), (5)

where

C(n, l) =

{
1
2n

if l= 0 or l= n
1√
2π

√
n

(n−l)lexp
(
nlog

(
n

2(n−l)

)
+ llog

(
n−l
l

))
otherwise.

A good feature of the above probability bounds is that they are independent of x∗ and a relatively

small Γi (compared to |Ji|) gives a high probability for the feasibility of contraint i.

3. Problem Description and Formulations

We consider an inventory routing problem where a supplier 0 distributes a single product to N

customers over a finite discrete time horizon T , using a single vehicle of capacity C. The supplier is

responsible for the inventory management of the customers and has sufficient inventory to replenish

the customers. Each customer i∈M= {1,2, ...,N} faces a dynamic uncertain demand dit in period

t∈ T = {1,2, ..., T}. The probability distribution of the random variable dit is unknown. The only

information available on the demands is that they are independent, symmetric and can take a value

from the interval [d̄it− d̂it, d̄it + d̂it], where d̄it is the point estimate (nominal value) and d̂it is the

maximum deviation for the demand of i in period t. Customer i is first replenished in a period, and

then its demand is deducted from the total amount available, which is the sum of inventory level

of the previous period and the amount replenished. If the total amount available is not sufficient to

satisfy the demand at customer i, unmet demand is backlogged to be either satisfied in the future

or not satisfied at all, otherwise excess inventories are carried over at customer i to satisfy future

demands. Each unit held in inventory at the end of period t incurs a unit holding cost of hit at

customer i, whereas each unit backlogged at the end of period t incurs a unit backlogging cost of

git, where git >hit. We assume the vehicle can make at most one trip in each period but can visit

any subset of the customers provided that the total replenishment quantity to the customers does

not exceed the vehicle capacity. Using the vehicle in period t incurs a fixed vehicle dispatching
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cost ft. The vehicle visiting customer j ∈M′ = {0} ∪M directly after customer i ∈M′ incurs a

transportation cost cij. We consider symmetric transportation costs, i.e. cij = cji ∀i, j ∈M′. We

assume initial inventory level at the customers is zero and all the parameters are nonnegative. The

RIRP is to determine delivery times, delivery quantities and routes to customers such that the total

cost composed of inventory holding, backlogging, fixed vehicle dispatching and transportation costs

is minimized. We call this problem a RIRP since we incorporate robustness to the classical inventory

routing problem by ensuring that the capacity of the vehicle will not be exceeded regardless of the

value the demands can take from their support and by minimizing the total cost against the worst

possible case. To control the degree of robustness and conservativeness of the solution, we define

the “budget of uncertainty” Γt (0≤ t≤ T ) as described in Section 2 which allows only some of the

demand figures to concurrently deviate from their nominal value.

Let alone the fact that there does not yet exist any good formulation, even for the nominal case of

the RIRP, the incorporation of robustness into the MIP formulations yields weaker formulations,

as observed in Bertsimas and Sim (2003). Thus, it is crucial to develop a strong formulation

for the exact solution of the RIRP. To this end, considering the RIRP as a combination of the

inventory replenishment problem of the customers and the routing problem of the vehicle, we

use effective mathematical programming representations for both. All existing studies in the IRP

literature, except Solyalı and Süral (2008), consider standard inventory balance equations to model

the corresponding inventory replenishment problem (see e.g. Abdelmaguid and Dessouky 2006,

Abdelmaguid et al. 2009) which provide a weak link between the replenishment and the routing

problems, and thus a weak lower bound. The inventory replenishment problem of each customer

can be seen as the uncertain version of the deterministic demand uncapacitated lot sizing problem

with backlogging (ULSB), for which tight reformulations are known (Pochet and Wolsey 1988).

We use the facility location reformulation which defines the convex hull of feasible solutions of the

inventory replenishment problem of each customer in the case of deterministic demand. Note that

our representation is also different from the one used (i.e. a form of standard inventory balance

equations) in the studies on robust inventory management. For the routing problem of the vehicle,

we use a two-index vehicle flow formulation which is one of the most computationally attractive

formulations for the vehicle routing problem (Laporte 2007) and has been successfully applied to

a deterministic IRP with order-up-to level policy (Archetti et al. 2007, Solyalı and Süral 2008).

3.1. The Nominal Formulation

We now present the formulation we propose for the RIRP. Define qitk as the total inventory cost

of replenishing customer i in period t ∈ T to satisfy its demand in period k ∈ T , and qi,T+1,k as
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the total inventory cost of not meeting the demand of customer i in period k ∈ T . Let witk be the

fraction of the demand of customer i in period k ∈ T that is delivered in period t ∈ T , and let

wi,T+1,k be the fraction of the demand of customer i in period k ∈ T that is left unmet. Since all

the demand has to be met in the ULSB given in Pochet and Wolsey (1988), we additionally define

qi,T+1,k and wi,T+1,k to account for the unmet demand case. Let yit be 1 if customer i is replenished

in period t ∈ T and 0 otherwise, and y0t be 1 if the vehicle is used in period t ∈ T to replenish

some subset of customers and 0 otherwise. Let xijt (i > j) be the number of times the edge between

nodes i and j is traversed by the vehicle in period t ∈ T ; xijt is a binary variable when j ∈M,

while it is an integer variable which can be at most 2, corresponding to a single customer trip when

j = 0. Then, the RIRP can be formulated as follows:

UF : min
∑
t∈T

fty0t +
∑
i∈M′

∑
j∈M′,j<i

∑
t∈T

cijxijt +
∑
i∈M

T+1∑
t=1

T∑
k=1

dikqitkwitk (6)

s.t.
T+1∑
t=1

witk = 1 i∈M, k ∈ T (7)

witk ≤ yit i∈M, t∈ T , k ∈ T , dik > 0 (8)∑
i∈M

T∑
k=1

dikwitk ≤Cy0t t∈ T (9)∑
j∈M′,j<i

xijt +
∑

j∈M′,j>i

xjit = 2yit i∈M′, t∈ T (10)∑
i∈S

∑
j∈S,j<i

xijt ≤
∑
i∈S

yit− ykt S ⊆M, t∈ T , k ∈ S (11)

yit ≤ y0t i∈M, t∈ T (12)

xijt ∈ {0,1} i∈M, j ∈M, j < i, t∈ T (13)

xi0t ∈ {0,1,2} i∈M, t∈ T (14)

yit ∈ {0,1} i∈M′, t∈ T (15)

witk ≥ 0 i∈M, k ∈ T ,1≤ t≤ T + 1, (16)

where qitk =
∑k−1

l=t hil if t≤ k and qitk =
∑t−1

l=k gil if t > k.

The objective function (6) is the total of fixed vehicle dispatching, transportation, inventory holding

and shortage costs. Constraints (7) stipulate that either the demand of customer i in period k is met

from period 1 through T or is left unmet. Constraints (8) ensure that the vehicle visits customer

i in period t if any replenishment to customer i occurs in period t. Constraints (9) guarantee that

the capacity of the vehicle is not exceeded. Constraints (10) are the degree constraints ensuring

two edges are incident to node i (customer or supplier) if i is visited in period t. Constraints (11)

are generalized subtour elimination constraints. Constraints (12), which are used to strengthen

the routing part of the model, force the vehicle to depart from the supplier if any customer i is

Robust Inventory Routing under Demand Uncertainty

       9 CIRRELT-2010-17



visited. Constraints (13)–(15) are integrality constraints, and constraints (16) are nonnegativity

constraints.

The nominal formulation, referred to as the formulation NF , is obtained when dit = d̄it for i ∈

M, t∈ T in the UF .

3.2. The Robust Formulation

Since the uncertain parameter dik appears both in the objective function and in constraints of UF ,

we apply the robust optimization methodology described in Section 2 to both (6) and (9), and

obtain the following nonlinear robust formulation for the RIRP:

min
∑
t∈T

fty0t +
∑
i∈M′

∑
j∈M′,j<i

∑
t∈T

cijxijt +
∑
i∈M

T+1∑
t=1

T∑
k=1

d̄ikqitkwitk +

max{
∑
i∈M

T+1∑
t=1

T∑
k=1

d̂ikz
0
ikqitkwitk :

∑
i∈M

T∑
k=1

z0ik ≤ Γ0,0≤ z0ik ≤ 1, i∈M, k ∈ T } (17)

s.t. (7), (8), (10)− (16),∑
i∈M

T∑
k=1

d̄ikwitk + max{
∑
i∈M

T∑
k=1

d̂ikz
t
ikwitk :

∑
i∈M

T∑
k=1

ztik ≤ Γt,

0≤ ztik ≤ 1, i∈M, k ∈ T }≤Cy0t t∈ T . (18)

The objective function (17) is the total of fixed vehicle dispatching costs, transportation costs,

nominal inventory holding and shortage costs, as well as the worst possible inventory holding and

shortage costs depending on the replenishments to the customers. Constraints (18) guarantee that

regardless of the realization of demand (within the specified support intervals) the capacity of the

vehicle is not exceeded.

Using the strong duality theorem as in Section 2, we obtain the following linear robust formulation.

RF1 : min
∑
t∈T

fty0t +
∑
i∈M′

∑
j∈M′,j<i

∑
t∈T

cijxijt +
∑
i∈M

T+1∑
t=1

T∑
k=1

d̄ikqitkwitk + Γ0θ0 +
∑
i∈M

∑
k∈T

α0
ik (19)

s.t. (7), (8), (10)− (16),∑
i∈M

T∑
k=1

d̄ikwitk + Γtθt +
∑
i∈M

T∑
k=1

αtik ≤Cy0t t∈ T (20)

θ0 +α0
ik ≥ d̂ik

T+1∑
t=1

qitkwitk i∈M, k ∈ T (21)

θt +αtik ≥ d̂ikwitk i∈M, t∈ T , k ∈ T (22)

θj ≥ 0 0≤ j ≤ T (23)

αjik ≥ 0 0≤ j ≤ T, i∈M, k ∈ T . (24)

The objective function (19) and constraints (20) are the linearized versions of constraints (17)

and (18), respectively. Constraints (21) and (22) originate from the implementation of the strong
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duality theorem. That is, they are the constraints of the duals of the maximization problems in

(17) and (18).

3.3. The Adjustable Robust Formulation

Because each uncertain parameter dik appears more than once in UF , an affinely adjustable robust

formulation may provide a better optimal objective value than its pure robust formulation (Ben-Tal

et al. 2004). All decisions associated with x, y, and w variables are “wait and see” decisions (i.e.

these variables are adjustable). However, UF is not a fixed recourse model due to the uncertain

coefficients of adjustable w variables in (6) and (9), which means that an affinely adjustable robust

counterpart of UF is intractable (Ben-Tal et al. 2004). Therefore, we consider a variation of UF

in which we set w′itk = dikwitk:

UF ′ : min
∑
t∈T

fty0t +
∑
i∈M′

∑
j∈M′,j<i

∑
t∈T

cijxijt +
∑
i∈M

T+1∑
t=1

T∑
k=1

qitkw
′
itk (25)

s.t. (10)− (15)
T+1∑
t=1

w′itk ≥ dik i∈M, k ∈ T (26)

w′itk ≤ dikyit i∈M, t∈ T , k ∈ T (27)∑
i∈M

T∑
k=1

w′itk ≤Cy0t t∈ T (28)

w′itk ≥ 0 i∈M, k ∈ T ,1≤ t≤ T + 1. (29)

The nominal counterpart of UF ′, equivalent to NF , is obtained by replacing each dik with d̄ik

for i ∈M, k ∈ T . Applying the “budget of uncertainty” robustness approach of Bertsimas and

Sim (2003, 2004) does not make sense for UF ′ because there is a single uncertain parameter in

each constraint. A pure robust formulation ensuring feasibility for any dik ∈ [d̄ik − d̂ik, d̄ik + d̂ik] is

obtained as follows:

RF2 : min
∑
t∈T

fty0t +
∑
i∈M′

∑
j∈M′,j<i

∑
t∈T

cijxijt +
∑
i∈M

T+1∑
t=1

T∑
k=1

qitkw
′
itk

s.t. (10)− (15), (28), (29),
T+1∑
t=1

w′itk ≥ d̄ik + d̂ik i∈M, k ∈ T (30)

w′itk ≤ (d̄ik + d̂ik)yit i∈M, t∈ T , k ∈ T . (31)

Instead of (31), one should normally write (27) as w′itk ≤ (d̄ik − d̂ik)yit for i ∈M, t ∈ T , k ∈ T in

deriving a robust counterpart if dik in (27) was treated as an uncertain parameter. Here, however,

dik in (27) should not be seen as an uncertain parameter, but is rather used as a big-M value to

force the yit variable to be 1 if w′itk variable takes a nonzero value. This is because the realized
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value of dik in (27) should not be a limit on the value of w′itk. Next, an interesting result regarding

the adjustable robust counterpart of the the UF ′ is given.

Theorem 1. The adjustable robust counterpart of UF ′ is equivalent to RF2.

Proof. Since each uncertain parameter dik appears only once in UF ′ as discussed above, the

thesis follows from Theorem 2.1 in Ben-Tal et al. (2004). �

A direct implication of Theorem 1 is that there is no need to consider an affinely adjustable robust

counterpart of UF ′ since this would only be an approximation of the adjustable one, whereas RF2

is equivalent to the latter.

3.4. Branch-and-Cut Algorithm

Since all the proposed formulations (i.e. NF , RF1, RF2) involve subtour elimination constraints

(11) which are exponential in number, it is not practical to solve those formulations to optimality

by adding (11) a priori to the formulations. Therefore, we implement these formulations within a

branch-and-cut framework in which constraints (11) are added dynamically as they are found to

be violated. Let BC(.) denote the branch-and-cut algorithm using the (.) formulation. The generic

BC(.) we use is as follows:

Step1. Set the best upper bound (UB*) to infinity and add the formulation (.) without integrality

constraints and (11) to the node list.

Step2. If the node list is nonempty, select a node from it using the best-bound first strategy.

Otherwise, stop since the optimality has been proved.

Step3. Solve the current formulation associated with the selected node and set the current lower

bound (LB) to the objective value. If UB∗ <LB, fathom the current node and go to Step 2.

Step4. If the current solution violates any of the constraints (11), add the violated constraints

(11) to the current formulation and go to Step 3.

Step5. If the current solution satisfies all the integrality constraints, fathom the current node and

update the best upper bound. Otherwise, select a fractional variable for branching, which adds

new nodes to the node list. Go to Step 2.

For branching, we give a higher priority to y variables than to x variables. To check whether

any of the constraints (11) are violated or not, we use the exact separation algorithm of Padberg

and Rinaldi (1991) proposed for the TSP. However, we add only violated constraints (11) for

k = arg maxi∈S yit instead of adding them for all k ∈ S. The structure of BC(.) is similar to those

in Archetti et al. (2007) and Solyalı and Süral (2008), the only difference being the formulations

used and the absence of an initial upper bound in BC(.).
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4. Computational Results

We have performed computational experiments on the test instances of Abdelmaguid et al. (2009)

and on newly generated instances in order to assess the effectiveness of the formulation given in

Abdelmaguid and Dessouky (2006), and Abdelmaguid et al. (2009), referred to as ADO, and of

our branch-and-cut algorithms, BC(NF ), BC(RF1) and BC(RF2). We have also analyzed the

price of robustness with regard to its effect on CPU times and objective values. We present the

computational results in two sections. In Section 4.1, we give the results for the nominal case of

the RIRP, and we present our results for the RIRP in Section 4.2. All formulations and algorithms

have been coded in C++ using the Concert Technology of CPLEX 10.11 and solved by CPLEX

10.11. All computational experiments were performed on a workstation with lx24-amd computer

architecture and 2 GB memory running under Linux. A time limit of two hours was imposed for

the solution of any instance.

4.1. Results for the Nominal Case

We have conducted extensive computational experiments on the instances generated by Abdel-

maguid et al. (2009) which include the instances generated by Abdelmaguid and Dessouky (2006).

Abdelmaguid et al. (2009) consider three scenarios. The first and second scenarios involve instances

with five, 10 and 15 customers, five and seven periods, and one and two vehicles. The second

scenario instances have transportation costs twice as large as in the first scenario, and a tighter

average daily demand over vehicle capacity ratio than in the first scenario instances. The aim is

to make backlogging decisions economical. Third scenario instances involve 20, 25 and 30 cus-

tomers, seven periods, and two vehicles, and have a medium average daily demand over vehicle

capacity ratio which is in the middle of the first two scenarios. For each parameter combination,

five instances were generated. For detailed information on the instances, see Abdelmaguid et al.

(2009). We follow the naming convention used in Abdelmaguid et al. (2009), i.e. S#-NTV-R, where

S# is the scenario number, N is the number of customers, T is the length of planning horizon,

V is the number of vehicles and R is the instance number. Because a single vehicle is considered

in this paper, we use only the single vehicle instances in the first two scenarios, and adapt the

instances of the third scenario to the single vehicle case. Thus, we have 75 instances in total. Since

Abdelmaguid and Dessouky (2006) and Abdelmaguid et al. (2009) consider a storage capacity Si

at each customer i, we add constraints
∑t

k=1(
∑T

l=1 d̄ilwikl − d̄ik) ≤ Si for i ∈M, t ∈ T to NF so

as to compare ADO and BC(NF ) under the same conditions. Note that left-hand side of these

constraints denote the inventory level of customer i at the end of period t.
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Computational results for scenarios 1, 2 and 3 are presented in Tables 1–3, respectively. In Tables

1 and 2, column 1 indicates the name of the instance, column 2 the best upper bound (i.e. UB)

obtained by ADO, column 3 the best lower bound (i.e. LB) obtained by ADO, and column 4 the

percentage gap between UB and LB (i.e. %Gap = 100(UB–LB)/LB). Note that UB = LB means

that optimality has been proved. Columns 5 and 7 show the CPU time in seconds needed to solve

the instances to optimality by ADO and BC(NF ) respectively unless the imposed two-hour time

limit has been reached. Columns 6 and 8 give the number of nodes explored by ADO and BC(NF ),

respectively. Finally, columns 9–12 show the optimal objective value, the total transportation cost

including the fixed vehicle dispatching costs, the total inventory holding cost and the total inventory

shortage cost incurred in the optimal solution, respectively.

Results presented in Tables 1 and 2 reveal that our branch-and-cut algorithm BC(NF ) is far

superior to ADO. While ADO cannot solve instances with more than five customers to optimality

in two-hour time limit, BC(NF ) solves all of the first scenario instances within a second and all

of the second scenario instances within six minutes. Since it is clear from Tables 1 and 2 that

ADO cannot solve instances involving more than five customers, we did not try to solve the third

scenario instances by ADO.

Table 3 gives the results for the third scenario instances solved by BC(NF ). All column descriptions

are the same as in Tables 1 and 2, except that the last three columns in Table 3 indicate the cost

components of the best upper bound if optimality cannot be proved. Results show that BC(NF )

is able to solve all but one of the third scenario instances to optimality within the time limit.

Although a single instance could not be solved to optimality, the remaining percentage gap between

the UB and LB for that instance is 0.36%, which is quite small.

4.2. Results for the RIRP

We adapt the instances described in Section 4.1 for the RIRP by defining three different levels

for the maximum deviation of demand from its nominal value. Specifically, we first generate new

instances by halving the vehicle capacity (C) in the first scenario instances and by doubling it in

the second and third scenario instances, and then for each instance described in Section 4.1 we

generate three instances with d̂it set to 1%, 2.5% and 5% of d̄it, respectively. Our aim in generating

new instances by changing the capacity level is to have a wide range for the ratio of average daily

demand over vehicle capacity. Thus, we have 450 RIRP instances besides the 150 instances for

the nominal case. In RF1, we set the “budget of uncertainty” parameter Γt equal to Γ for each

t ∈ {0} ∪ T since the same expression is constrained by Γt in the maximization problems of (17)
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Table 1 Results for the First Scenario Instances

ADO BC(NF )

Problem UB LB %Gap Seconds Nodes Seconds Nodes Total Transp Hold Short

1-0551-1 205.84 205.84 0.00 24.0 14191 0.1 24 205.84 134 71.84 0.00
1-0551-2 150.74 150.74 0.00 5.6 5109 0.0 0 150.74 105 45.74 0.00
1-0551-3 186.60 186.60 0.00 7.4 3215 0.0 0 186.60 138 48.60 0.00
1-0551-4 200.80 200.80 0.00 9.8 2969 0.1 34 200.80 120 80.80 0.00
1-0551-5 184.80 184.80 0.00 51.1 30057 0.1 17 184.80 136 48.80 0.00
1-0571-1 278.96 278.96 0.00 3540.8 1274380 0.2 40 278.96 186 92.96 0.00
1-0571-2 268.68 268.68 0.00 1442.3 237897 0.2 18 268.68 162 106.68 0.00
1-0571-3 273.07 273.07 0.00 1253.1 290063 0.1 1 273.07 198 75.07 0.00
1-0571-4 312.25 312.25 0.00 109.2 10119 0.2 11 312.25 201 111.25 0.00
1-0571-5 310.98 310.98 0.00 2004.0 168960 0.2 42 310.98 228 82.98 0.00
1-1051-1 323.65 304.77 6.20 7209.3 584901 0.0 0 323.65 223 100.65 0.00
1-1051-2 276.62 261.81 5.66 7211.8 938601 0.1 0 275.17 191 84.17 0.00
1-1051-3 300.69 291.26 3.24 7211.7 1196501 0.1 0 300.69 210 90.69 0.00
1-1051-4 282.09 247.88 13.80 7212.4 874201 0.1 0 280.13 192 88.13 0.00
1-1051-5 249.63 227.63 9.67 7214.2 1174301 0.2 4 249.63 180 69.63 0.00
1-1071-1 448.80 411.44 9.08 7230.4 251772 0.4 0 448.80 322 126.80 0.00
1-1071-2 417.07 382.32 9.09 7232.6 274001 0.4 1 416.27 288 128.27 0.00
1-1071-3 458.07 409.99 11.73 7241.1 278801 0.5 6 457.61 303 154.61 0.00
1-1071-4 461.40 424.38 8.72 7224.6 309001 0.1 0 461.40 319 142.40 0.00
1-1071-5 396.07 354.12 11.85 7212.8 385001 0.2 0 395.96 265 130.96 0.00
1-1551-1 392.11 337.37 16.23 7253.2 434701 0.3 0 392.11 245 147.11 0.00
1-1551-2 348.76 298.88 16.69 7243.9 568701 0.2 0 348.76 217 131.76 0.00
1-1551-3 384.30 332.91 15.44 7243.0 365998 0.5 3 384.30 229 155.30 0.00
1-1551-4 369.80 309.70 19.41 7225.5 470930 0.6 0 366.80 251 115.80 0.00
1-1551-5 368.16 320.21 14.97 7239.8 404701 0.5 1 366.16 236 130.16 0.00
1-1571-1 523.57 446.67 17.22 7246.9 262606 0.6 0 523.57 343 180.57 0.00
1-1571-2 529.01 447.84 18.12 7224.1 206101 0.9 0 525.15 346 179.15 0.00
1-1571-3 485.02 399.29 21.47 7229.1 536654 0.9 0 479.02 300 179.02 0.00
1-1571-4 542.65 464.30 16.87 7220.1 168231 1.0 0 529.95 346 183.95 0.00
1-1571-5 512.48 431.16 18.86 7234.1 144401 0.6 0 512.48 336 176.48 0.00

Average 348.09 315.89 8.81 5100.2 395568.8 0.3 6.7 347.01 231.7 115.34 0.00

and (18). We find the Γ value for each instance using (4) such that constraints (9) may be violated

with probability of at most 1%.

Computational results for the RIRP instances are presented in Tables 4 and 5. In Table 4, columns

1–5 indicate the vehicle capacity level (L for low, H for high), the scenario number (S#), the

number of customers (N), the length of the planning horizon (T ), and the percentage of average

daily demand over vehicle capacity (Ratio) for the nominal case. Note that one can obtain the

‘Ratio’ for any maximum demand deviation percentage by multiplying one plus the corresponding

percentage with the ‘Ratio’ for the nominal case. Columns ‘1%’, ‘2.5%’ and ‘5%’ indicate the CPU

time in seconds in the columns ‘Seconds’ or the percentage increase in total cost with respect to the

nominal case in the columns ‘Price of Robustness’ for the corresponding branch-and-cut (BC(RF1)

or BC(RF2)) when the maximum deviation percentage for each demand is 1%, 2.5% and 5%,

respectively. In addition to the columns ‘Seconds’ and algorithms ‘BC(RF1)’ and ‘BC(RF2)’, Table
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Table 2 Results for the Second Scenario Instances

ADO BC(NF )

Problem UB LB %Gap Seconds Nodes Seconds Nodes Total Transp Hold Short

2-0551-1 649.80 649.80 0.00 54.2 63490 0.1 81 649.80 478 6.27 165.53
2-0551-2 468.00 468.00 0.00 1.1 1103 0.1 1 468.00 459 9.00 0.00
2-0551-3 400.00 400.00 0.00 12.9 11110 0.1 26 400.00 339 17.91 43.09
2-0551-4 475.29 475.29 0.00 3.3 3538 0.1 22 475.29 445 5.11 25.18
2-0551-5 426.01 426.01 0.00 20.1 11903 0.1 49 426.01 374 18.35 33.66
2-0571-1 522.97 522.97 0.00 756.8 76649 1.0 330 522.97 463 59.97 0.00
2-0571-2 557.89 557.89 0.00 9.6 5359 0.2 11 557.89 406 22.57 129.32
2-0571-3 434.86 434.86 0.00 57.4 22299 0.3 56 434.86 368 29.80 37.06
2-0571-4 536.42 536.42 0.00 279.5 70951 0.4 97 536.42 481 50.38 5.04
2-0571-5 498.08 498.08 0.00 696.8 155111 0.5 115 498.08 439 39.64 19.44
2-1051-1 523.66 506.81 3.33 7211.7 617501 0.7 65 523.66 480 32.11 11.55
2-1051-2 485.84 433.15 12.16 7217.4 494701 2.2 232 480.70 418 54.34 8.36
2-1051-3 698.48 667.21 4.69 7221.8 2542901 0.3 16 698.48 541 3.60 153.88
2-1051-4 456.00 447.55 1.89 7212.0 1814801 1.7 222 456.00 431 25.00 0.00
2-1051-5 578.03 569.56 1.49 7205.2 746516 1.3 172 578.03 517 33.21 27.82
2-1071-1 771.52 729.90 5.70 7211.2 496601 13.3 979 771.52 707 31.22 33.30
2-1071-2 805.57 720.22 11.85 7212.4 915401 8.8 694 805.24 726 41.56 37.68
2-1071-3 719.42 667.01 7.86 7234.0 176062 9.5 591 717.84 635 82.84 0.00
2-1071-4 864.20 802.87 7.64 7215.9 274399 12.9 948 864.20 777 66.69 20.51
2-1071-5 752.69 713.32 5.52 7207.8 664920 5.3 345 752.69 683 43.61 26.08
2-1551-1 782.49 750.80 4.22 7250.8 510201 7.1 285 782.49 698 20.63 63.86
2-1551-2 757.69 724.76 4.54 7220.9 657301 3.2 89 757.69 742 15.69 0.00
2-1551-3 722.82 677.48 6.69 7224.3 914201 3.0 92 722.82 625 20.64 77.18
2-1551-4 681.32 604.95 12.63 7248.8 312080 16.1 712 680.22 626 42.88 11.34
2-1551-5 989.73 960.22 3.07 7224.5 880773 1.2 27 989.73 815 4.61 170.12
2-1571-1 861.73 754.60 14.20 7231.3 129401 43.0 963 848.18 719 129.18 0.00
2-1571-2 761.60 649.36 17.28 7231.4 84101 62.1 1035 749.66 606 143.66 0.00
2-1571-3 956.22 807.50 18.42 7242.7 99401 267.6 6680 924.91 820 104.91 0.00
2-1571-4 926.28 782.36 18.40 7234.3 130201 330.8 9240 922.56 833 89.56 0.00
2-1571-5 1206.18 1131.96 6.56 7247.2 298901 39.6 754 1206.18 937 41.25 227.93

Average 675.69 635.70 5.60 4879.9 439395.9 27.8 831.0 673.40 586.3 42.87 44.26

5 contains columns for ‘BC(NF )’, for ‘%Gap’ and for ‘R’ which indicates the instance number.

Note that Table 4 presents results averaged over five instances for each parameter combination,

whereas Table 5 gives the detailed results for each difficult RIRP instance, in particular those that

could not be solved to optimality within the two-hour time limit.

Results about CPU time show that BC(RF1) is slower than both BC(NF ) and BC(RF2), which

is expected since the incorportation of robustness using the “budget of uncertainty” approach

weakens the strength of the nominal formulation, as discussed in Section 3, besides having a

larger number of variables and constraints in RF1. BC(RF2), on the other hand, is not nega-

tively affected as much as BC(RF1) by the incorporation of robustness since RF2 is actually a

nominal formulation with modified demands. Even so, some instances that could not be solved

to optimality by BC(RF1) could be solved by BC(RF2). In general, as the maximum deviation

percentage increases, it becomes more difficult to solve the corresponding instances with BC(RF1)
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Table 3 Results for the Third Scenario Instances with BC(NF )

Problem Seconds Nodes UB LB Transp Hold Short

3-2071-1 304.7 2530 481.81 481.81 384 97.81 0.00

3-2071-2 121.2 1142 450.37 450.37 342 108.37 0.00

3-2071-3 278.3 2317 481.04 481.04 377 104.04 0.00

3-2071-4 78.3 461 463.19 463.19 354 109.19 0.00

3-2071-5 996.1 9374 607.72 607.72 588 16.77 2.95

3-2571-1 1313.4 6159 557.81 557.81 490 67.81 0.00

3-2571-2 1357.7 5416 592.96 592.96 508 81.18 3.78

3-2571-3 781.9 3522 622.38 622.38 542 80.38 0.00

3-2571-4 639.4 1980 554.41 554.41 461 90.26 3.15

3-2571-5 1730.9 6892 566.54 566.54 479 87.54 0.00

3-3071-1 1377.0 2641 610.57 610.57 525 74.37 11.20

3-3071-2 1948.8 4373 590.37 590.37 513 71.19 6.18

3-3071-3 1708.3 4210 668.09 668.09 606 59.01 3.08

3-3071-4 5163.9 12828 664.30 664.30 606 55.15 3.15

3-3071-5 7206.8 14305 667.60 665.18 631 36.60 0.00

Average 1667.1 5210.0 571.94 571.78 493.7 75.98 2.23

and BC(RF2). This is mainly due to having a more capacity constrained problem when the max-

imum deviation percentage increases. Although some instances could not be solved to optimality,

the remaining percentage gap figures depicted by %Gap columns in Table 5 for those instances are

quite small.

Results about the price of robustness reveal that both RF1 and RF2 yields uncertainty-immunized

solutions at the expense of a small percent increase in total cost with respect to the nominal case

when the percent average daily demand over vehicle capacity (Ratio) is not tight. The price one has

to pay for robustness is higher, in particular, when the tranportation cost is higher (second scenario)

and when the Ratio is tight (C =H). The explanation for this result is that ensuring feasibility

with tight capacity constraints leads to higher cost routes amplified by a higher transportation

cost and costly unavoidable backlogging of some of the demand. RF1 in general provides better

results than RF2 in terms of the total cost except some instances that could not be solved to

optimality by RF1. Note that the percentage increase in total cost with respect to the nominal

case for the robust formulations is computed as 100(UBBC(.)–LBBC(NF ))/LBBC(NF ), where UBBC(.)

denotes the best upper bound found by BC(RF1) or BC(RF2), and LBBC(NF ) denotes the best

lower bound obtained by BC(NF ). As expected, the price of robustness also increases when the

maximum deviation percentage becomes larger.
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Table 4 Results for the RIRP Instances

C S# N T Ratio BC(RF1) BC(RF2)

Seconds Price of Robustness Seconds Price of Robustness

1% 2.5% 5% 1% 2.5% 5% 1% 2.5% 5% 1% 2.5% 5%

1 1 5 5 37.1 0.1 0.1 0.1 0.31 0.82 1.61 0.1 0.0 0.0 0.32 0.85 1.66

7 38.0 0.3 0.3 0.4 0.45 1.09 1.97 0.2 0.2 0.2 0.51 1.25 2.20

10 5 37.7 0.1 0.1 0.1 0.27 0.67 1.34 0.1 0.1 0.1 0.30 0.76 1.51

7 38.5 0.5 0.6 0.7 0.23 0.57 1.14 0.2 0.2 0.2 0.31 0.78 1.57

15 5 37.5 0.6 0.8 0.9 0.27 0.67 1.34 0.4 0.5 0.4 0.36 0.89 1.77

7 37.3 1.2 1.6 1.9 0.23 0.58 1.15 0.8 0.7 0.7 0.35 0.88 1.75

2 5 5 47.7 0.2 0.3 0.2 1.16 2.47 3.49 0.1 0.1 0.1 1.17 2.48 3.52

7 40.3 0.6 0.7 0.9 0.67 2.39 4.32 0.3 0.4 0.4 0.71 2.50 4.48

10 5 44.7 1.5 1.1 1.5 0.21 0.56 1.63 0.8 0.8 0.7 0.25 0.79 1.87

7 45.2 7.1 6.2 6.0 0.21 0.68 1.36 3.1 2.8 2.6 0.26 0.82 1.66

15 5 46.3 5.0 4.9 7.1 0.34 0.75 1.76 3.0 3.7 3.7 0.42 0.93 2.28

7 45.6 12.8 10.8 11.4 0.35 0.65 1.25 6.6 5.7 6.6 0.45 0.89 1.85

3 20 7 41.7 30.6 48.4 52.5 0.23 0.80 1.43 17.0 33.5 27.5 0.35 1.11 2.02

25 7 44.3 142.3 161.2 134.5 0.18 0.49 0.98 80.0 90.4 97.7 0.29 0.78 1.61

30 7 46.1 411.2 422.9 502.4 0.28 0.63 1.31 218.1 252.2 280.2 0.42 0.97 2.22

2 1 5 5 74.2 0.2 0.2 0.3 1.11 2.57 4.51 0.1 0.1 0.1 1.11 2.57 4.51

7 76.0 0.7 0.7 0.6 0.45 1.05 2.94 0.4 0.3 0.2 0.46 1.07 2.97

10 5 75.4 1.7 2.0 2.0 0.41 1.06 2.22 0.9 1.2 1.0 0.44 1.12 2.30

7 77.0 8.0 9.5 12.3 0.49 1.18 2.64 4.1 4.9 7.1 0.55 1.31 2.91

15 5 74.9 5.4 7.4 6.9 0.23 0.62 1.23 3.3 3.1 3.3 0.25 0.67 1.31

7 74.6 51.0 49.3 89.2 0.27 0.66 1.33 29.3 24.0 25.1 0.33 0.79 1.52

2 5 5 95.3 0.2 0.1 0.1 1.69 6.17 15.53 0.1 0.1 0.1 1.69 6.17 15.59

7 80.7 0.9 0.9 1.0 2.16 6.64 14.15 0.5 0.5 0.4 2.16 6.65 14.18

10 5 89.4 1.9 1.8 2.4 2.37 7.67 19.89 1.3 1.3 1.2 2.37 7.68 19.92

7 90.4 14.9 15.2 9.9 2.16 6.38 13.95 7.3 9.6 4.1 2.16 6.38 13.96

15 5 92.7 8.4 6.6 5.7 4.98 13.00 30.69 5.5 3.8 2.7 4.98 13.00 30.69

7 91.2 166.8 224.9 348.9 1.47 4.58 12.48 94.0 148.1 187.0 1.48 4.61 12.53

3 20 7 83.4 355.7 397.6 550.5 0.84 4.81 15.26 171.1 183.4 267.1 0.88 4.93 15.50

25 7 88.6 1875.7 3043.5 3385.5 1.13 2.92 6.18 1085.8 1591.3 1952.8 1.16 2.98 6.30

30 7 92.2 5879.4 6514.8 6560.6 2.75 7.53 23.95 4031.1 4252.2 4930.0 2.72 7.48 24.06

Average 299.5 364.5 389.9 0.93 2.69 6.43 192.2 220.5 260.1 0.97 2.80 6.67

Until now, we have set Γ such that probability of constraint violation is at most 1%. To observe

the impact of the chosen Γ, thus the probability of constraint violation, on the price of robustness,

we present computational results for the instances with d̂it set to 2.5% of d̄it in Table 6, obtained
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Table 5 Detailed Results for the difficult RIRP Instances∗

N R Seconds %Gap

BC(NF ) BC(RF1) BC(RF2) BC(NF ) BC(RF1) BC(RF2)

1% 2.5% 5% 1% 2.5% 5% 1% 2.5% 5% 1% 2.5% 5%

25 1 1308.4 1430.7 2128.4 2958.5 1258.6 1233.3 1723.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 1370.7 2494.5 2416.5 7213.6 1720.0 715.1 5180.3 0.00 0.00 0.00 0.25 0.00 0.00 0.00

3 787.7 3724.3 7020.6 3008.9 1412.3 4069.8 1056.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 643.4 952.3 2432.9 2821.1 415.1 1373.8 1199.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 1731.9 776.9 1219.3 925.7 622.8 564.2 604.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 1 1365.8 4008.4 7209.2 4632.3 2077.8 3858.8 2144.9 0.00 0.00 0.27 0.00 0.00 0.00 0.00

2 1939.3 3766.7 7210.2 7143.6 1668.0 2732.3 7204.9 0.00 0.00 0.32 0.00 0.00 0.00 0.23

3 1706.3 7208.2 3740.0 7206.4 4093.6 1102.8 7204.8 0.00 0.02 0.00 0.52 0.00 0.00 0.38

4 5205.6 7207.2 7208.1 7205.8 5646.3 7208.4 7204.4 0.00 0.58 1.56 0.85 0.00 0.81 0.16

5 7209.5 7206.4 7206.6 6615.0 6669.9 6358.7 891.0 0.29 0.49 0.61 0.00 0.00 0.00 0.00

Average 2326.8 3877.6 4779.2 4973.1 2558.4 2921.7 3441.4 0.03 0.11 0.27 0.16 0.00 0.08 0.08

∗ Instances in the last two rows of Table 4.

using BC(RF1). In Table 6, columns 1–5 are the same as in Table 4, and columns 6–10 indicate

the percentage increase in total cost with respect to the nominal case for 0%, 1%, 5%, 10% and

>50% chance of constraint violation, respectively. Note that setting the Γ to NxT (i.e. worst case)

and zero (i.e. nominal case) give 0% and >50% chance of constraint violation, respectively.

Results presented in Table 6 show that the price of robustness slightly decreases as the probability

of constraint violation increases from 0% to 10%. The results also reveal that the price of robustness

is less than 3% on average for the range of 0%–10% chance of constraint violation, which is quite

satistactory considering that the solutions obtained under the nominal case are highly likely to be

infeasible (i.e. more than 50%), whereas the solutions obtained by means of BC(RF1) are feasible

with a high probability at the expense of having a slightly greater total cost.

5. Conclusions

We have considered, for the first time, a robust inventory routing problem under polyhedral demand

uncertainty and proposed two robust MIP formulations which were implemented within a branch-

and-cut algorithm. Computational results on instances adapted from the literature have revealed

that our robust formulations can solve to optimality instances with up to 30 customers and seven

periods within reasonable times. The robust solutions thus obtained provide immunization against

uncertainty with a slight increase in total cost compared to the nominal case, especially when the

average daily demand over vehicle capacity ratio is low, whereas the price of robustness is larger

when the average daily demand over vehicle capacity ratio is high. Moreover, we have proposed a
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Table 6 Trade-off between Price of Robustness and

Probability of Constraint Violation on Instances

with 2.5% maximum demand deviation∗

C S# N T Ratio Price of Robustness

0% 1% 5% 10% >50%

1 1 5 5 37.1 0.85 0.82 0.67 0.58 0.00

7 38.0 1.25 1.09 0.91 0.79 0.00

10 5 37.7 0.76 0.67 0.54 0.45 0.00

7 38.5 0.78 0.57 0.45 0.37 0.00

15 5 37.5 0.89 0.67 0.53 0.44 0.00

7 37.3 0.88 0.58 0.45 0.37 0.00

2 5 5 47.7 2.48 2.47 2.40 2.35 0.00

7 40.3 2.50 2.39 2.27 2.12 0.00

10 5 44.7 0.79 0.56 0.45 0.39 0.00

7 45.2 0.82 0.68 0.56 0.50 0.00

15 5 46.3 0.93 0.75 0.64 0.55 0.00

7 45.6 0.89 0.65 0.55 0.49 0.00

3 20 7 41.7 1.11 0.80 0.59 0.39 0.00

25 7 44.3 0.78 0.49 0.38 0.30 0.00

30 7 46.1 0.97 0.63 0.50 0.43 0.00

2 1 5 5 74.2 2.57 2.57 2.50 2.44 0.00

7 76.0 1.07 1.05 0.97 0.91 0.00

10 5 75.4 1.12 1.06 0.92 0.78 0.00

7 77.0 1.31 1.18 1.06 0.98 0.00

15 5 74.9 0.67 0.62 0.55 0.48 0.00

7 74.6 0.79 0.66 0.55 0.47 0.00

2 5 5 95.3 6.17 6.17 6.15 6.08 0.00

7 80.7 6.65 6.64 6.62 6.60 0.00

10 5 89.4 7.68 7.67 7.57 7.34 0.00

7 90.4 6.38 6.38 6.36 6.27 0.00

15 5 92.7 13.00 13.00 12.82 11.66 0.00

7 91.2 4.61 4.58 4.53 4.41 0.00

3 20 7 83.4 4.93 4.81 4.66 4.07 0.00

25 7 88.6 2.98 2.92 2.751 2.53 0.00

30 7 92.2 7.462 7.474 6.991 6.222 0.001

Average 2.80 2.69 2.56 2.39 0.00

∗Superscript numbers in some of the entries indicate the

number of instances that could not be solved to optimality

within the two-hour time limit.
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new strong formulation within the branch-and-cut algorithm for the nominal case of the problem

(i.e. a deterministic IRP with backlogging), which is able to optimally solve instances six times

larger than the only previously available MIP formulation (Abdelmaguid and Dessouky 2006,

Abdelmaguid et al. 2009).
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