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Abstract.  We consider the Variable Size Bin Packing Problem with Fixed Costs, a 

generalization of the well-known bin packing problem where a set of items must be 

packed within a set of heterogeneous bins characterized by possibly different volumes 

and fixed costs. The objective of the problem is to select the bins to pack all items while 

minimizing the total cost incurred for the selected bins. We present new heuristic solution 

methods for the problem that integrate lower and upper bound techniques. Extensive 

numerical tests conducted on instances with up to 1000 items show the effectiveness of 

these methods in terms of computational effort and solution quality. 
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1 Introduction

Bin packing problems aim to load a series of items into a number of bins, such that the
packing of each bin is feasible with respect to a number of restrictions, e.g., capacity lim-
its or balancing constraints, while optimizing a given objective function, e.g., minimizing
the total number of used bins [5, 3, 11]. Yet, despite their interest as combinatorial opti-
mization problems and their importance to a wide gamut of applications, e.g., planning of
telecommunication, transportation, production, and logistics/supply-chain systems, not
all packing problem classes have received adequate attention.

We aim to contribute to address this issue by focusing on the one dimensional Vari-
able Size Bin Packing Problem with Fixed Cost (VSBPPFC). In this setting, a finite
set of items must be packed within a finite set of heterogeneous bins, characterized by
possibly different volumes (capacity) and fixed costs. The objective is to select the bins
to pack all items while minimizing the total cost incurred for the selected bins. Most
solution methods in the literature rely either on decomposition techniques [6, 8, 1] or
on reformulations solved using commercial MIP software [2] and require significant com-
putation times when applied to large instances. This computational effort makes them
difficult to use in actual planning applications, where efficient, i.e., fast and accurate,
solution methods are crucial to address the VSBPPFC subproblems that must be solved
repeatedly.

We propose new heuristic solution methods for the VSBPPFC that successfully tackle
the challenge of efficiency by using lower and upper bound techniques to select bins and
pack items. We test these heuristics on a large set of instances, and compare our results
to those of the best methods in the literature [2, 6]. This numerical analysis indicates that
the proposed heuristics find very good solutions extremely fast, even when addressing
instances with up to 1000 items.

The paper is organized as follows. Section 2 presents the VSBPPFC model and
briefly reviews the methods proposed in the literature to address it. Lower bounds and
the corresponding heuristics are introduced in Sections 3 and 4, respectively. Section 5
is dedicated to the presentation and analysis of the computational results. We conclude
in Section 6.

2 The VSBPPFC Model and Related Work

Let I (|I| <∞) be the set of items to be loaded. Each item i ∈ I has a volume vi. Let
J (|J | <∞) be the set of available bins and let Vj and cj be the volume and cost of bin
j ∈ J , respectively. Without any loss of generality, let us assume that the volumes and
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costs associated with the bins and items are integers.

Define the bin-selection variables y = (y1, y2, . . . , y|J |), where yj = 1, if bin j is selected
and yj = 0, otherwise, and the item-to-bin assignment variables xij, ∀i ∈ I, ∀j ∈ J ,
where xij = 1, if item i is loaded into bin j and xij = 0, otherwise. Let z(y) =

∑
j∈J cjyj.

Then, the VSBPPFC model can be formulated as:

min z(y) (1)

s.t.
∑

j∈J xij = 1, ∀i ∈ I, (2)∑
i∈I vixij ≤ Vjyj, ∀j ∈ J , (3)

xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , (4)

yj ∈ {0, 1}, ∀j ∈ J . (5)

The objective function (1) minimizes the total fixed cost of the selected bins. Con-
straints (2) ensure that each item i ∈ I is packed within exactly one bin, while constraints
(3) make sure that the total volume of the items packed into bin j ∈ J does not exceed
its volume Vj. Relations (4) and (5) enforce the integrality requirements for all decision
variables.

A somewhat small number of studies have addressed the VSBPPFC. In his Ph.D.
thesis dedicated to packing and scheduling problems, Monaci presents lower bounds and
heuristic and exact solution methods for the VSBPPFC with bin fixed costs equal to the
volumes of the bins [6] (neither the results, nor the instance set have been published).
Seiden et al. [9] consider the on-line version of the problem and propose upper and
lower bounds. Kang and Park [4] develop two greedy algorithms for the special case
of the VSBPPFC, where the cost of a unit of bin volume does not increase as the bin
volume increases, and analyze their performance on instances with divisibility constraints
(on both item and bin sizes, on only the bin sizes, and in the general case where no
divisibility constraints are present). An integer-linear formulation for the two-dimensional
VSBPPFC is proposed by Pisinger and Sigurd [8], together with lower bounds based
on Dantzig-Wolfe decomposition and an exact branch-and-price algorithm. Alves and
Valério de Carvalho [1] propose a series of strategies aimed at accelerating the column
generation approach for the same problem. Finally, Correia et al. [2] discretize the
VSBPPFC formulation, and propose valid inequalities to improve the quality of the
lower bounds obtained from the linear relaxation of the resulting model. The authors
analyze the quality of the lower bounds on a large set of instances with up to 1000 items.

2
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3 Lower bounds for the VSBPPFC

We present a series of lower bounds for the VSBPPFC that provide the means to measure
the solution quality of the various procedures and are also used as building blocks for the
heuristics proposed in Section 4.

Let y? = (y?1, y
?
2, . . . , y

?
|J |) stand for an optimal selection of bins yielded by the formu-

lation (1)-(5), with z? the associated optimal value of the objective function. Consider
the following problem, originally proposed in [6] for the special case of the VSBPPFC
with bin fixed costs equal to be volumes of the bins:

min z(ŷ) (6)

s.t.
∑

j∈J Vj ŷj ≥
∑

i∈I vi, (7)

ŷj ∈ {0, 1}, ∀j ∈ J. (8)

Let ŷ? = (ŷ?1, ŷ
?
2, . . . , ŷ

?
|J |) represent an optimal solution to problem (6)-(7). The bin

selection ŷ? minimizes the total fixed cost and ensures that the total volume of the
selected bins is at least as large as the total volume of the items. The single item-to-bin
requirement (2) is relaxed, however, and thus ŷ? may not be feasible for the original
problem. Obviously, z(ŷ?) ≤ z?.

Performing the substitution
ŷj = 1− uj, (9)

within problem (6)-(8), one obtains

max z(u) (10)

s.t.
∑

j∈J Vjuj ≤
∑

j∈J Vj −
∑

i∈I vi, (11)

uj ∈ {0, 1},∀j ∈ J . (12)

Formulation (10)-(12) corresponds to a 0/1 knapsack problem. Therefore, by applying
(9), one can derive an optimal solution to (6)-(8) by solving the knapsack problem (10)-
(12) using any available exact method [5]. Furthermore, any lower bound LB(z(u))
obtained for problem (10)-(12) can also be used to produce a valid lower bound LB(z(ŷ))
for problem (6)-(8): LB(z(ŷ)) =

∑
j∈J cj − LB(z(u)). We denote LB1 the lower bound

obtained from the original model (6)-(8).

The lower bound provided by (6)-(8) can be improved by considering that bins may
be grouped according to the distinct values of their volumes [6]. Let K define the set
of distinct bin types relative to the bin volumes, i.e., ∀k1, k2 ∈ K, Vk1 6= Vk2 . Let
Mk, k ∈ K be the maximum (“best”) filling ratio for the bin type k given the set of

3
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items I, obtained by solving the knapsack problem Mk = max
{∑

i∈I vixi |
∑

i∈I vixi ≤

Vk, xi ∈ {0, 1},∀i ∈ I
}

. Clearly, Mk ≤ Vk, ∀k ∈ K. Therefore, by replacing the bin

volumes by their associated maximum filling ratios in (10)-(12), one obtains an improved
lower bound on (1)-(5) by solving

min z(ỹ) (13)

s.t.
∑

j∈J Mj ỹj ≥
∑

i∈I vi, (14)

ỹj ∈ {0, 1},∀j ∈ J. (15)

Once again, substitution (9) transforms the formulation (13)-(15) into a knapsack prob-
lem, which may be used to compute lower bounds. We denote LB2 the lower bound
obtained from the formulation (13)-(15).

LB1 can be further improved by considering that each item must be compulsory

loaded. Let us define, for each item i and each bin type k, Mik = max
{∑

j∈I\i vixi |∑
i∈I vixi ≤ Vk−vi, xi ∈ {0, 1},∀i ∈ I \ i

}
. Each Mik gives the maximum filling of a bin

of type k when the item i is loaded into it. Thus, ti = mink∈K{Vk −Mik}− vi represents
the loss of volume due to the compulsory loading of item i and a new lower bound can be
computed by applying LB1 to the instance where the item volumes are set to ṽi = vi + ti.

The task of computing the Mik indexes can be computationally heavy, however, re-
quiring solving a knapsack for each item and bin type. We therefore use an approximation

M(p)ik =

{
Mik if vi +

∑p
j=1 vj > Vk and vi +

∑p−1
j=1 vj ≤ Vk,

Vk − vi otherwise,
(16)

where items are ordered by the non-decreasing values of their volumes vi. The idea is
that,in the best case, one cannot load more than p items including a large item i into a
bin of type k when 1) loading the smallest p items together with item i overloads the bin,
but 2) loading only the p − 1 smallest items together with item i does not. Computing
Mik in this case is then easy, since one has only to evaluate all the p− tuples containing
the item i, which is O(np−1). Otherwise, we assume item i to be “small” and set the
associate loss of space to null (ti = 0).

The use of M(p)ik is profitable when the value of p is small, e.g., p = 2 for the
problems we tested (see Section 5). We refer to LB3, the lower bound obtained by
applying LB1 to the instances where the item volumes are set to ṽi = vi + ti and ti is
defined according to M(2)ik (notice that for any solution method, these indexes need to
be computed only once, during initialization, which makes LB3 suitable even for Branch
& Bound algorithms).

4
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4 Heuristics for the VSBPPFC

In this section, we present new heuristics for the VSBPPFC. The heuristics combine
information yielded by the lower bound computations and extensions of a number of
fundamental concepts in the bin packing and knapsack methodology.

We thus adapt the well-known Best First Decreasing (BDF) loading heuristic, which
offers good performance for the classical bin packing problem, and loads each item into
the “best” bin, i.e., the bin with the maximum free space (defined as the bin volume
minus the sum of the volumes of the items loaded into it) once the item is loaded [5].
The BFD we propose for the VSBPPFC, denoted the Adapted BFD (A−BFD) heuristic,
first sorts the items according to the non-increasing order of their volumes and, then,
sequentially loads them (Algorithm 1 displays the pseudocode). For each item, one first
attempts to load it into the “best” already-selected bin, that is, the bin maximizing the
merit function computing the free bin space as defined above. If the item cannot be
loaded into an already-selected bin, a new bin is selected and the item is loaded into it.

An issue particular to the VSBPPFC, but irrelevant for the classical bin packing
problem where bins are homogeneous, is how to choose a new bin, when required. Inspired
by the item-selection rule for knapsack problems, we select bins according to the non-
increasing order of their unit cost / volume ratios, cj/Vj, and in the non-decreasing order
of their volumes when the unit costs are equal.

Considering the bins according to this order generally yields good solutions, but may
falter when the last items are considered. Indeed, when a new bin needs to be selected
for an item toward the end of the list, the selected bin might have a volume much larger
than that of the item, even though its cost/volume ratio is good. Moreover, few items
might be left to take advantage of this volume. A bin with a worst ratio but an absolute
smaller cost, might be appropriate in this case, and we implement a post-processing
procedure that attempts to improve the solution by evaluating such possible bin swaps.
The procedure iteratively examines each selected bin j ∈ J with its cost cj and loaded
volume Uj defined as the sum of the volumes of the items assigned to it. Then, if it exists
an unused bin k ∈ J , k 6= j such that Vk ≥ Uj and ck < cj, it transfers the items from
bin j to bin k and discards the former.

Notice that any of the three lower bounds presented in Section 3 yields a set of bins
with total cost equal to the lower bound. We may use this information to initialize the
set of bins used in the heuristic and thus obtain a variant of A− BFD. More precisely,
the LB-Based BFD (LB −BFD) heuristic works as follows:

• Consider the set of the bins given by the selected lower bound, generically denoted
LB;

5
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Algorithm 1 A−BFD

Input I : Items to be accommodated into the bins
Input K : Bin groups (types) available to load the items

S : Set of selected bins (empty at the beginning)

Sort the items in I according to non-increasing order of their volume
Sort the bins in K according to non-increasing order of the ratio cj/Vj, and non-
decreasing order of Vj when the unit costs cj are equal)
S = {∅}
for all i ∈ I do
if i can be accommodated into a bin in S then

Accommodate i into the best bin b ∈ S
else
S = S ∪ {b′}, where b′ is the first bin in the ordered list K
Accommodate i into b′

end if
end for
for all j ∈ S do
for all k ∈ K \ S do
Uj =

∑
i loaded in j vi

if Vk ≥ Uj and ck < cj then
Move all the items from j to k
S = S \ {j} ∪ {k}

end if
end for

end for

return S

6
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• Initialize the solution with a percentage p ∈ (0, 1] of these bins (bins are added
empty);

• Order the remaining bins as described above and apply A−BFD to build a feasible
solution.

A second variant of A − BFD also starts from the optimal solution associated to a
lower bond LB in order to choose the bins in the solution, but recomputes the bound when
items cannot be loaded into already-selected bins. The heuristic, denoted ITER−BFD,
iteratively adds a subset of the bins given by LB. Then, the new bins are loaded by
considering the items according to their non-increasing order of volumes. When an item
cannot be loaded, a partial instance is built out of the items not yet loaded and the bins
still unused, and a new bound LB is computed. The procedure stops when the item list
is empty or, if after a maximum number of iterations k some items are still unloaded, by
applying the A−BFD heuristic.

7
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5 Computational results

In this section we present and analyze the results of the computational experiments.
The first objective is to asses the relative performance of the proposed lower and upper
bounds. The second is to evaluate the efficiency of our procedures by comparing our best
results to the best methods proposed in the literature.

The new lower and upper bounds are implemented in C++. Experiments were per-
formed on a Pentium IV 3GhZ workstation. The knapsack instances generated by the
LB1 and LB2 bounds were solved to optimality by means of the algorithm presented in
[7].

The following sets of problem instances were used in the experiments:

Set1. Instances from [2]. Five instances were randomly generated for each combination
of the following parameters:

• Number of items in the set {100, 200, 500, 1000}.
• Item volumes randomly generated according to a (discrete) uniform distribu-

tion in the set {1, 2, ..., 20}.
• Five bin capacity cases: 1) all bins with the same capacity of 150; 2) three

different capacities, 100, 200, and 300; 3) six different capacities, 50 to 300 by
increment of 50; 4) twelve different capacities, from 25 to 300 by increment of
25; 5) all bins with different capacity from 60 to 330 by increment of 5.

• Bin fixed cost set to 100
√
Vj for each bin j.

• For the number of bins for each type, the minimum number D required to
load all the items is computed and, then, instances with D and D+ 1 bins are
built.

Set2. Instances proposed in [6] and regenerated for [2], derived from classical bin pack-
ing instances for the item-volume distribution and relations to the bin volume [10].
Ten instances were randomly generated for each combination of the following pa-
rameters:

• Item volume: three types with volumes uniformly distributed in [1; 100], [20;
100], and [50; 100], respectively.

• Number of bin types: 3 (capacities equal to 100, 120 and 150, respectively)
and 5 (capacities equal to 60, 80, 100, 120 and 150, respectively).

• Number of items: 25, 50, 100, 200, and 500.

We first examine the relative performance of the different versions of the lower and
upper bound procedures. With respect to the latter, we report results for the LB−BFD

8
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and ITER−BFD variants using LB1 only, because there was no difference in our final
results when one of the two other lower bounds was used. Moreover, we report the com-
parison results on instances of Set 2 only, because both LB1 and the A−BFD heuristic
solved to optimality all the instances of Set 1. We further discuss this observation in the
second part of the section.

Type/p 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
1 1.2 1.17 1.3 1.42 1.45 1.39 1.5 1.63 1.81 1.85
2 2.5 2.57 2.61 2.61 2.61 2.68 2.83 3.04 3.33 3.94
3 1 0.97 1.07 1.24 1.43 1.55 1.64 2.03 2.66 3.12

Mean 1.6 1.57 1.66 1.76 1.83 1.87 1.99 2.23 2.6 2.97

Type/p 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 Best
1 2.1 2.39 2.52 2.52 2.73 2.76 2.56 2.8 2.7 0.64
2 4.2 4.44 4.39 4.53 4.51 4.54 4.61 4.93 5.03 1.65
3 3.7 4.17 4.5 4.93 5.44 5.88 6.27 6.66 6.91 0.21

Mean 3.3 3.67 3.81 3.99 4.23 4.4 4.48 4.8 4.88 0.83

Table 1: Set 2: Mean optimality gaps (%) for the LB −BFD heuristic

Table 1 reports the optimality-gap performance of the LB − BFD heuristic while
varying p, the percentage of bins from the optimal solution of LB1 used to initialize
the heuristic solution, from 10% to 100%. The first column displays the item volume
type, while Columns 2 to 19 report the mean percentage deviation of LB − BFD from
the optimal solutions for the various values of p. The best mean values appear to be
obtained for 10% ≤ p ≤ 40%, but no setting of this parameter seems to dominate the
others. Computing A− BFD (or LB − BFD) requires less than 0.01 seconds CPU for
the largest instances, however. In fact, computing LB1 together with all the solution
obtained by LB − BFD for varying p requires less that 10−2 in the worst case (most of
it required to compute LB1). We therefore computed a composite solution as the best
solution among those with 10% ≤ p ≤ 40% and we report this value in the last column.
This composite implementation of the heuristic yields solutions that are less than 1%
from the optimal solution.

Type/k 2 3 4 5 6 7 8 9 10 Best
1 2.28 1.75 1.80 1.85 1.89 1.81 1.68 1.78 1.64 0.92
2 3.70 3.22 3.20 3.17 3.16 3.06 2.90 2.89 2.87 2.17
3 5.57 5.19 4.60 4.09 3.65 3.48 3.50 3.41 3.26 2.68

Mean 3.85 3.38 3.20 3.04 2.90 2.78 2.69 2.69 2.59 1.93

Table 2: Set 2: Mean optimality gaps (%) for the ITER−BFD heuristic

9
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Table 2 reports the mean optimality gaps obtained by the ITER − BFD heuristic
while varying the maximum number of iterations k (Columns 2 to 10), as well as the
composite solution (Column 12) built on the same idea as previously. The results indicate
that ITER − BFD has a worst behavior than LB − BFD, with an average optimality
gap of about 2%. The computational time, although small (less than 0.1 seconds for the
largest instances) is also larger than for LB − BFD, due to the necessity to compute a
knapsack problem at the end of each iteration.

Table 3 sums up the performance results of the lower and upper bound procedures
introduced in this paper, together with those of CompBFD, a composite heuristic se-
lecting the best solution among those of the three upper bound procedures. Columns 1
and 2 present the volume type and the number of items, respectively, while the following
columns display the mean optimality gaps for the seven procedures. The best settings,
as reported in Tables 1 and 2, were used for LB−BFD and ITER−BFD, respectively.

The lower bound procedures are performing very well for instances of type 1 and 2,
while the gap increases slightly for instances of type 3. The latter are characterized by a
peculiar item-to-bin volume relation, however. Indeed, the minimum item volume is 50
and, thus, at most three items can be loaded into each bin type. The loading patterns
for each bin type are therefore polynomially limited, facilitating column generation-based
methods.

With respect to the upper bounds, the best mean results were obtained by the A −
BFD and LB − BFD heuristics. The most critical instances from the upper bound
point of view are those of type 2, characterized by the presence of medium-sized items
(volumes generated in the interval 20 − 100). But, as often in numerical experiments,
the means do not tell the whole story. Thus, just considering the mean, ITER − BFD
is outperformed by the other two heuristics. An instance-by-instance verification of the
results shows, however, that ITER − BFD performs better on the instances for which
A− BFD and LB − BFD yield their worst results. The upper bound procedures thus
appear “complementary” and, because their respective computational times are small,
we propose to compute the three values and select the best. The CompBFD computes
this best result, and yields a mean optimality gap of 0.78% with a computation effort of
less than 0.1 seconds in the worst case.

In the second part of this analysis, we present a comparison between our bounds
and best results from the literature [6, 2]. The optimal solutions and the lower bound
values obtained by Correia et al. are taken from the literature [2], while the column
generation of Monaci [6] has been reimplemented in order to have a better insight about
computational times and results (the detailed results are not available).

The comparisons on the instances from Set 1 are not reported, because LB1 = A −
BFD for all instances, i.e., all instances are solved to the optimum by using the proposed

10
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Type n LB1 LB2 LB3 A−BFD LB −BFD ITER−BFD CompBFD

25 0.21 0.21 0.21 1.41 1.41 1.88 1.28
50 0.02 0.02 0.02 0.95 0.95 1.50 0.93

1 100 0.00 0.00 0.00 0.49 0.49 0.60 0.45
200 0.00 0.00 0.00 0.32 0.27 0.39 0.25
500 0.00 0.00 0.00 0.10 0.10 0.25 0.09

Mean 0.05 0.05 0.05 0.66 0.64 0.92 0.60

25 1.14 1.08 1.08 2.13 1.92 2.66 1.64
50 0.29 0.29 0.29 1.93 1.81 2.45 1.76

2 100 0.05 0.05 0.05 1.84 1.78 1.79 1.59
200 0.00 0.00 0.00 1.51 1.51 1.94 1.43
500 0.00 0.00 0.00 1.47 1.26 2.03 1.24

Mean 0.30 0.28 0.28 1.78 1.65 2.17 1.53

25 3.08 1.81 1.65 0.14 0.14 1.10 0.14
50 1.86 1.43 1.39 0.28 0.28 1.54 0.27

3 100 1.57 1.44 1.44 0.20 0.20 3.05 0.20
200 0.87 0.86 0.86 0.33 0.33 3.72 0.33
500 0.85 0.85 0.85 0.09 0.09 3.99 0.09

Mean 1.64 1.28 1.23 0.21 0.21 2.68 0.2

Overall mean 0.66 0.54 0.52 0.88 0.83 1.93 0.78

Table 3: Set 2: Average optimality gaps (%) for the upper and lower bound procedures

11
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heuristic. We report in Table 4, however, the results of the instances of Set 1 not solved
to optimality in [2]. For each instance, we give in Columns 1-4, the instance name, the
number of bin types, the number of bins per type, and the number of items, respectively.
The best-known feasible solution reported in the literature is displayed in Column 5, while
the values of LB1 and A−BFD are reported in the last two columns. The results show
that we obtained or improved (instance pbin 1000 2 ) all the best-known solutions, which
are now proved to be optimal. Notice that the column generation by Monaci yielded a
mean optimality gap of 0.23% on the instances of this set [6]. The proposed lower and
upper bound procedures are thus performing very well on the instances introduced in [2],
a conclusion even more impressive when one considers that this performance is obtained
in less than 0.01 CPU seconds in the worst case.

Instance m D n Best Known LB1 A−BFD
pbin 500 4 6 3 500 35313 35313 35313
pbin 500 4 6 3 500 35313 35313 35313
pbin 500 5 6 3 500 34089 34089 34089
pbin 1000 1 6 12 1000 68740 68740 68740
pbin 1000 2 6 7 1000 69345 68828 68828
pbin 1000 3 6 12 1000 69964 69964 69964
pbin 1000 4 6 7 1000 69121 69121 69121
pbin 1000 1 12 6 1000 72001 72001 72001
pbin 1000 2 12 6 1000 72160 72160 72160
pbin 1000 3 12 6 1000 73160 73160 73160

Table 4: Set 1: New optimal solutions

Table 5 summarizes the gaps (in %) of the lower bounds from the optimal solutions
of instances in Set 2. The first and the second column report the volume-generation type
and the number of items, respectively. The following columns report the mean gaps over
ten instances obtained by the lower bound LBM by Monaci [6], LBC by Correia et al.
[2], and the lower bounds we propose, LB1, LB2, and LB3. The last row of the a type
reports the mean deviations from the optimal values for all the instances of the set.

The best performance is offered by LBC , but the application of this procedure is
limited by the size of the MIP models involved. Thus, for example, it could not address
instances with 500 items. With respect to the other bounds, one observes that LB1, LB2,
and LB3 performed better than LM on instances of type 1, characterized by item volumes
in a broad interval ([1; 100]), and on the larger instances of type 2. As discussed earlier
on, the particular item-to-bin volume relation characterizing the other instances, favors
column generation-based procedures and heavily penalizes the proposed lower bounds.

Turning to computational times, LBC requires 300 CPU seconds on average and up
to 3000 CPU seconds for their largest instances (200 items; instances with 500 items
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were not considered by the authors) using a 2.4 GhZ Pentium IV workstation. Moreover,
the computational effort of LBC seems to increase when the packing component of the
problem becomes the main part as opposed to the bin-selection part. On the other
hand, the column generation method of [6] is quite effective. Thus, an average of 2
CPU seconds were required for instances with 500 items, for which an average of 45
columns were generated and, thus, 45 knapsack problems (plus the corresponding LPs)
were solved. Our lower bound procedures are even more effective, however, requiring to
solve only one knapsack instance for LB1 and at most 6 instances for LB2, with a worst
case of 0.01 seconds.

Consequently, LB1 achieves a performance of over 99%, compared to the other proce-
dures, in a negligible computational time. This identifies it as a good candidate to rapidly
obtain very good solutions and for use in more complex problem-solving settings, e.g.,
simulations and optimization frameworks where the VSBPPFC appears as a subproblem
in meta-heuristics or Branch & Bound schemes.

Type n LBc LBm LB1 LB2 LB3

25 0,00 0,38 0,21 0,21 0,21
50 0,00 0,19 0,02 0,02 0,02

1 100 0,00 0,08 0,00 0,00 0,00
200 0,00 0,05 0,00 0,00 0,00
500 N/A 0,02 0,00 0,00 0,00

Average 0,00 0,14 0,05 0,05 0,05

25 0,00 0,22 1,14 1,08 1,08
50 0,00 0,14 0,29 0,29 0,29

2 100 0,00 0,07 0,05 0,05 0,05
200 0,00 0,03 0,00 0,00 0,00
500 N/A 0,02 0,00 0,00 0,00

Average 0,00 0,09 0,30 0,28 0,28

25 0,00 0,09 3,08 1,81 1,65
50 0,00 0,10 1,86 1,43 1,39

3 100 0,00 0,05 1,57 1,44 1,44
200 0,00 0,03 0,87 0,86 0,86
500 N/A 5,02 0,85 0,85 0,85

Average 0,00 1,06 1,64 1,28 1,23

Table 5: Set 2: Lower bound optimality gap (%) comparison
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6 Conclusion

We introduced very efficient upper and lower bounds for the VSBPPFC, a problem
combining bin packing and knapsack characteristics, with applications in many important
areas. The bounds present an accuracy of more than 99% with a computational effort
several order of magnitude lower compared to state-of-the-art methods.
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