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Mustapha Nourelfath* 

Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation  (CIRRELT) 
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Canada  G1K 7P4 

Abstract In this paper, we consider a multi-period, multi-product production planning 

problem where the production rate and the customer service level are random variables 

due to machine breakdowns. In order to determine robust production plans, constraints 

are introduced in the stochastic capacitated lot-sizing problem to ensure that a pre-

specified customer service level is met with high probability. The probability of meeting a 

service level is evaluated by using the first passage time theory of a Wiener process to a 

boundary. A two-step optimization approach is proposed to solve the developed model. In 

the first step, the mean-value deterministic model is solved. Then, a method is proposed 

in the second step to improve the probability of meeting service level. The resulting 

approach has the advantage of not being a scenario-based one. It is shown that 

substantial improvements in service level robustness are often possible with minimal 

increases in expected cost.  

Keywords. Robust production planning, random failures, service level, first passage time, 

Brownian motion.  
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1. Introduction  
 
We are concerned with the problem of ensuring robust customer service levels when addressing a 
multi-period, multi-product (MPMP) production planning problem in a manufacturing system subject 
to random failures and repairs. The service level is measured by the fraction of demand satisfied on 
time, and due to random failures, it is a stochastic process. In this context, it is important to evaluate the 
probability of meeting such a service level. Higher probability corresponds to more robust service 
level. In fact, if a production manager promises to a customer the satisfaction of his demand with a 
given service level, it is important to honour her/his promise. Otherwise, not only some of the required 
demand will not be delivered, but even the promised (reduced) quantities will not be delivered on time. 
Measuring a service level and its robustness are directly motivated from manufacturing and distribution 
practices and represent decisive topics to investigate (Hausman et al., 1998). Even if there is a 
substantial literature on the mathematical analysis of manufacturing systems, few papers are concerned 
with the service level robustness. A literature survey on performance evaluation of manufacturing 
systems can be found for example in (Dallery and Gershwin, 1992). The goal of a large number of the 
existing work is to predict the production rate and average inventory levels. In (Chew and Johnson, 
1996), the authors develop an approximate method for predicting the service level of a multi-echelon 
inventory system. There have been also some studies in the literature on explicit evaluation of the 
output variability. In (Tan, 1999), a discrete flow model is used to estimate the variance of the 
production output as a function of time. In (Ciprut et al., 1999) and (Nourelfath and Hongler, 2004), 
this variance is evaluated by using a fluid modelling approach. The later consists in using continuous 
variables to characterize the flow of parts, and obviously involves continuous stochastic processes. In 
this paper, we adopt also a fluid modelling approach to derive a closed form expression of the 
probability of meeting a service level. More precisely, we consider the problem of determining 
quantities of items (lot sizes) to be produced during each period of the planning horizon. The objective 
in lot-sizing models is to minimize the total cost in the planning horizon, regarding fulfilment of 
products demand, machines capacities, etc. Solution methodologies vary from traditional linear mixed 
integer programming, and associated branch and bound exact methods to heuristic methods: see for 
example (Wolsey, 2002) for a survey. The setting of lot sizes is usually considered as a decision related 
to tactical planning, which is a medium-term activity. In aggregate planning, the lot sizing models are 
extended by including labor resource decisions (Shapiro, 1993; Sipper, 1997; Wolsey, 2002; Wienstein 
and Chung, 1999). Tactical planning bridges the transition from the strategic planning level (long-term) 
to the operational planning level (short-term). At all production planning levels, it is very important to 
take into account both system uncertainties (machine failures) and environmental uncertainties such as 
products demands and processes yields. In spite of this, traditional mathematical programming models 
for production planning tend to be deterministic (Shapiro, 1993; Sipper, 1997), leading to 
unsatisfactory production plans in the presence of such uncertainties.  

A review of some of the existing literature on production planning under uncertainty is provided in 
(Mula et al., 2006). There are two bodies of literature that are related to the present paper: production 
planning models with service level constraints using stochastic and robust optimization tools; and 
reliability models. We briefly review some important papers in each category.   

Silver (1978) proposed a heuristic procedure to solve the stochastic dynamic single-item 
uncapacitated lot-sizing problem considering different service level measures. This heuristic is based 
on a simple, but effective, procedure for the deterministic case. Askin (1981) proposed a heuristic that 
solves the same problem but which includes the cost effects of the demand randomness. This heuristic 
uses an order-up-to policy combined with a least period cost approach. Tarim and Kingsman (2004) 
addressed the multi-period single-item inventory lot-sizing problem with stochastic demands under the 
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‘‘static–dynamic uncertainty’’ strategy in (Bookbinder and Tan, 1988). In this strategy, the 
replenishment periods are fixed at the beginning of the planning horizon, but the actual orders are 
determined only at those replenishment periods and depend upon the demand that is realised. In a 
follow-up paper, Tarim and Kingsman (2006) considered backorder costs instead of service level. In 
(Tempelmeier, 2007), the author considered the uncapacitated single-item dynamic lot-sizing problem 
with stochastic period demands and backordering. He presented a model formulation that minimizes 
the setup and holding costs with respect to service level constraints. In (Vargas, 1999), it was shown 
that for a model formulation with backorder costs and stationary unit production costs the exact 
solution can be found by using a shortest-path algorithm. For the same model but with non-stationary 
unit production costs, Sox (1997) formulated a nonlinear mixed-integer program and developed a 
dynamic programming algorithm. Within this context, stochastic programming (Dantzig, 1955; Kall 
and Wallace, 1994; Birge and Louveaux, 1997; Kall and Mayer, 2005) and robust optimisation 
(Mulvey et al., 1995) have seen several successful applications in production planning. In (Escudero et 
al., 1993) a multi-stage stochastic programming approach was used for addressing an MPMP 
production planning model with random demand. Alfieri and Brandimarte (2005) reviewed the multi-
stage stochastic models applied in multi-period production and capacity planning in the manufacturing 
systems. Leung and Wu (2004) proposed a robust optimisation model for stochastic aggregate 
production planning. Wu (2006) applied the robust optimisation approach to uncertain production 
loading problems with import quota limits under the global supply chain management environment. In 
(Leung et al., 2007) a robust optimisation model was developed to address a multi-site aggregate 
production planning problem in an uncertain environment. Kazemi Zanjani et al. (2009) proposed a 
multi-stage stochastic programming approach for multi-product capacitated lot-sizing with uncertain 
demand and random processes yields. Kazemi Zanjani et al. (2010) proposed two robust optimisation 
models with different recourse cost variability measures to address MPMP production planning with 
uncertain yield.  

In reliability, there exist also many papers dealing with production planning under machine failures 
(Cho and Parlar, 1991; Dekker, 1996; Marseguerra et al., 2005). Generally, the objective of these 
planning models is either to maximize the availability, or to minimize the maintenance cost. These 
models are generally solved by coupling optimization methods with analytical tools or simulation. In 
(Panda et al., 2008), the authors have considered an economic production lot-size model for imperfect 
products in which production rate is a fixed quantity and the demand rate is probabilistic. Lee (2008) 
has developed a maintenance model in multi-level multi-stage system. This model gives the optimal 
amount of investment in preventive maintenance that reduces the variance from the target value of the 
quality characteristics. In (Sana, 2010), the author has investigated an economic production lot-size 
model in an imperfect production system. The total costs in this investment model include 
manufacturing cost, setup cost, holding cost and reworking cost of imperfect quality products. The 
author shows that the production cost per unit item is convex function of production rate.     

In the above-mentioned papers, machine breakdowns are either ignored, or studied from a reliability 
optimization perspective. While it is vital for production managers to take into account machine 
failures, such a problem is regretfully complex when viewed with a production planning optimization 
perspective. It is indeed possible to use stochastic and robust optimization approaches to model random 
failures and repairs. However, these approaches are scenarios-based and they may lead to models of 
non manageable sizes. In fact, their main drawback is the complexity of the resulting optimization 
models that become computationally intractable as the number of scenarios increases. In a recent 
contribution applying robust optimization approaches in sawmill production planning (Kazemi Zanjani 
et al., 2010), we have shown that there is a trade-off between the service level robustness and the 
expected cost. In a very service sensitive company that wants to establish a reputation for always 
meeting customer service level, the robust optimization formulation in (Kazemi Zanjani et al., 2010) 
allows a decision maker to see explicitly what possible trade-offs between service level variability and 
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the expected cost exists, and to choose a solution that is consistent with his/her willingness to accept 
risk. In this paper, we adopt a conceptually different point of view to represent the trade-off between 
the service level robustness and the expected cost increase, when considering random machine failures 
and repairs. The importance of our contribution lies in the fact that, unlike classical stochastic 
optimization and robust optimization methods, the proposed approach is not a scenario-based one. It 
incorporates, with a mean value deterministic model, an improvement method of the service level 
robustness using the first passage time theory of a Wiener process to a boundary.  

The remainder of the paper is organized as follows. Section 2-4 presents, respectively, the proposed 
model, the solution method and an illustrative example. Concluding remarks are in Section 5.   

 
2. The model  
 
2.1. Failure-prone manufacturing system   
 
Consider a manufacturing system producing a set of products P during a given planning horizon H 
including T periods. Each period t (t = 1, 2, …, T) has a fixed length Tt. For each product p ∈  P, a 
customer demand dpt is to be satisfied at the end of period t. The system is subjected to random 
machine breakdowns, and it can perform its task with two levels of performance: states 0 and 1. State 1 
is a perfect functioning state where the system has a production rate g. State 0 is a complete failure 
state where the system is not producing. The probability distribution of the time between failures is 
denoted as F(t) and the probability distribution of the time needed to repair as H(t). We assume that 
these probability measures have respectively the densities f(t) and h(t) and that their moments are finite. 
The failure and the repair rates are denoted by λ and μ, respectively. We assume that the parameters of 
the system (production, failure and repair rates) do not depend on the kind of product. The mean time 
between failures (MTBF) is:  
 

0 0

1 ( ) ( )t dF t t f t dt∞ ∞
 = =

λ ∫ ∫ .                                                                                                                (1) 

 
The variance and the squared coefficient of variations are, respectively, defined by:  

 
2

2 2
0

1( )t f t dt∞
λ

⎛ ⎞σ  = −⎜ ⎟λ⎝ ⎠∫ ,  2 2 2CVλ λ= σ  λ .                                                                                           (2) 

 
Similarly, the mean time to repair (MTTR) is:  

 

0 0

1 ( ) ( )t dH t t h t dt∞ ∞
 = =

μ ∫ ∫ ,                                                                                                       (3) 

 
and the variance and the squared coefficient of variations are:  
 

2
2 2

0

1( )t g t dt∞
μ

⎛ ⎞
σ  = − ⎜ ⎟μ⎝ ⎠

∫ ,  2 2 2CVμ μ= σ  μ .                                                                                          (4) 

 
We assume that there exists a steady-state distribution of state probabilities. The steady-state 

probability of a given state k (k = 0, 1) is denoted by pk.  Because the system is failure-prone, the 
production rate is a stochastic process, for which the average and the variance are (Ciprut et al., 1999):   
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1G g p g μ
= =

λ + μ
 , 2

Gσ =  ( )
( )

2 2 2
3g CV CVλ μ

⎧ ⎫λμ⎪ ⎪+ ⎨ ⎬
λ +μ⎪ ⎪⎩ ⎭

.                             (5) 

 
The squared coefficient of variation of the production rate is then:  
 

( )
( )

2 2 2
2 G

G

CV CV
CV

G
λ μλ +⎛ ⎞σ

= =⎜ ⎟⎜ ⎟ μ λ +μ⎝ ⎠
.                                                                (6) 

 
2.2. General description of the problem  
 
The production planning problem considered in this paper is a stochastic multi-product capacitated lot-
sizing problem. The decisions involve determination of quantities of items (lot sizes) to be produced in 
each period. Lot-sizing is one of the most important problems in tactical production planning. Almost 
all manufacturing situations involving a product-line contain capacitated lot-sizing problems, especially 
in the context of batch production systems. The objective function is to minimize the sum of production 
costs, while satisfying the demand for all products over the entire horizon. The constraints are related to 
the capacity, the set-up and the dynamics of the inventory and the backorder. The main particularity of 
the proposed model is that it introduces constraints to ensure that pre-specified target customer service 
levels are met with high probabilities. This variation of the capacitated lot-sizing problem is modelled 
to determine the production plans with robust customer service level. Before introducing the 
mathematical model, let us introduce some definitions related to service level.            
  
2.3. Definitions  
 
The backorder size of product p by the end of period t, denoted by Bpt, is governed by a stochastic 
process. We assume that the demand dpt is deterministic. The service level ptSL  is a stochastic process 
that can be defined, for a period t and a product p, by the fraction of demand satisfied on time:       
 

pt pt
pt

pt

d B
SL

d
−

= .                                                                                  (7) 

 
Let denote by P  the number of products. We can also define average service levels as follows:  
 

pt
t

p P

SL
SL

P∈

= ∑  ,                                                                                                         (8) 

 

1

T
pt

p
t

SL
SL

T=

= ∑ ,                                              (9)  

 
 

1

T
pt

p P t

SL
SL

T P∈ =

= ∑ ∑ .                                                 (10) 
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For a period t and a product p, the probability βpt  of meeting a service level *

ptSL  is defined as:   
  
βpt = Prob ( )*pt ptSL SL≥ .                                                     (11)                    
  

Similarly, the following probabilities are defined:  
 

 βp = Prob ( )*p pSL SL≥ ,                (12) 
 
βt = Prob ( )*t tSL SL≥ ,                 (13) 
 
β = Prob ( )*SL SL≥ .                           (14)                   
 
2.4. Mathematical model  
 

Minimize  ( )
1

T

pt pt pt pt pt pt pt pt
p P t

h I b B x s y
∈ =

+ + π +∑ ∑ ,                                        (15) 

 
Subject to  ( ) ( )1 1 , , 1, 2,pt pt pt ptp t p tx I I B B d p P t   ..., T− −− + + − = ∈ = ,                    (16) 

 

  , , 1, 2,pt pq pt
q t

x d y p P t   ..., T
≥

⎛ ⎞
≤ ∈ =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ,                   (17) 

 

  
, 1, 2,pt t

p P
x G T t   ..., T

∈

≤ =∑ ,                                                  (18) 

 

  *pt ptSL SL≥ , , 1, 2,p P t   ..., T∈ = ,                               (19) 
 

  *pt ptβ ≥ β , , 1, 2,p P t   ..., T∈ = ,                                (20) 
 
  xpt, Ipt, Bpt∈Ν; ypt { }0, 1∈  .                                               (21) 
 

The objective function (15) consists of:     

- a total holding cost of the inventory 
1

,
T

pt pt
p P t

h I
∈ =
∑∑ with hpt is the inventory holding cost per unit of 

product p by the end of period t, and Ipt is the inventory level of product p at the end of period t;  

- a backorder cost (backlogs are allowed) 
1

T

pt pt
p P t

b B
∈ =
∑ ∑ , with bpt is the backorder cost (lost 

opportunity and goodwill) per unit of product p by the end of period t, and Ipt is the inventory level 

of product p at the end of period t;    
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- a total production cost 
1

T

pt pt
p P t

x
∈ =

π∑ ∑ , with πp is the variable cost of producing one unit of product p 

in period t, and xp is the quantity of product p to be produced in period t; and 

- a total setup cost 
1

T

pt pt
p P t

s y
∈ =
∑ ∑ , with spt is the fixed set-up cost of producing product p in period t, 

and ypt is a binary decision variable. Each time that production of item p begins in a period t, a setup 
must take place and ypt is equal to 1; otherwise, ypt is equal to 0.       

 
The first constraint (16) relates inventory or backorder at the start and end of period t to the 

production and demand in that period. There is no optimal solution where Ipt > 0 and Bpt > 0 
simultaneously, since the objective function can be improved by decreasing both Ipt and Bpt until one 
becomes zero.  Equation (16) ensures simply that the sum of inventory (or backorder) of product p at 
the end of period t is equal to its inventory (or backorder) in the previous period plus the total 
production of that product in that period, minus the product demand for that period. For t = 0, we 
assume that 0 0 0p pB I= =  and 0 0 0p px d= = . The second constraint (17) forces xpt = 0 if ypt = 0 and 

frees xpt ≥  0 if ypt = 1. In equation (17), the quantity 
≥

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑ pq
q t

d  is an upper bound of xpt. Equation (18) 

corresponds to the available production capacity constraint.  
Equation (19) ensures that each service level SLpt is higher than a pre-specified target value *

ptSL . 

Equation (20) ensures that each probability βpt of meeting the service level *
ptSL  is higher than a pre-

specified target value βpt*.  
The model (15)-(21) represents a stochastic optimization problem. As an approximation, the mean-

value deterministic model can be formulated by considering the expected values of the random 
variables. Solving this mean-value equivalent model relies on the evaluation of the probability βpt used 
in the chance constraints (20). The difficulty of solving the mean-value model with constraints (20) will 
be discussed after presenting the method used to evaluate the probability βpt.  
 
3. The solution method  
 
3.1. Evaluation of the probability to meet a service level  
 
3.1.1. Basic idea  
 
The instantaneous cumulative production x(t) represents the number of parts produced during a time 
interval [0, t]. The instantaneous production rate G(t) is linked to x(t) via the differential equation:  
 

0( ) ( ); (0) (0)d x t G t x x and G g
dt

 = = = .                                                                                          (22) 

 
Due to machine breakdowns, x(t) is a stochastic process and Equation (22) is a stochastic differential 
equation in which the noise source is G(t). For asymptotically large times, we assume that x(t) reaches 
a stationary regime. This assumption holds since we are concerned with tactical production planning. In 
fact, even if the time horizon for tactical production planning may vary depending on the industry, a 
typical value is one month (or more) that is sufficient for the system to reach a stationary regime. Due 
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to the central limit theorem, the cumulative production can be characterized by a Gaussian law. The 
asymptotic dynamics of x(t) can be described by a drifted Brownian motion (Ciprut et al., 1999). It is 
well known that the first passage time of such a Wiener process to a boundary has an inverse Gaussian 
(IG) distribution: see for example (Seshadri, 1993). The probability βpt of meeting a service level is 
evaluated as a function of this IG distribution. The distribution function of the first passage time of 
Brownian motion with positive drift was derived by Schrödinger (1915) and Smoluchowski (1915). In 
two important works, Tweedie (1957a,b) profiled the statistical properties of IG distributions. In (Chen 
et al., 2004), the authors propose a simulation algorithm to estimate means, variances, and covariances 
for a set of order statistics from IG distributions. While the works of Schrödinger and Smoluchowski 
seem to be the earliest references to this law, many answers to questions relating to the physical 
phenomenon of Brownian motion had already been announced in an ingeniously heuristic way in 
(Bachelier, 1900). At the basis of such relatively "old" contributions, we evaluate the probability βpt of 
meeting a target service level.   
 
3.1.2. A closed form approximation   
 
Under the assumption of a deterministic demand, using Equations (7) and (11), we have:  
 
βpt = Prob ( )*pt ptB B≤ ,                                                      (23)                    
 
where the backorder Bpt is a random variable (since the produced quantity xpt is random), and Bpt* is a 
target backorder given by the quantity * *

pt pt pt ptB d SL d= − .    
From Equation (16), we have ( ) ( )1 1pt pt pt p t p tB d x B I− −= − + − . It follows that:  

 
βpt = Prob ( ) ( )( )1 1*pt pt pt p t p tx d B B I− −≥ − + − .                                                            (24)                    

 
The operation time needed to produce the quantity xpt is denoted by OTpt. It is also a random 

variable for which the average is given by: 
 

( )pt pt
pt

x x
OT

G g
= = λ + μ

μ
,                                                                                              (25)                    

 
with ptx  

is the average of xpt.  
 

Note that since the quantity xpt is a decision variable, the manufacturing facility may produce during 
a time that is shorter than the length period Tt (in particular, if it is decided not to produce a product p 
during a given period t, the operation time OTpt is 0). Because of this, in all the mathematical 
developments of this paper, the cumulative production characterized during the time interval [0, OTpt] 
with 0 pt tOT T≤ ≤ .     
 
Proposition 1. For every period t and every product p, the probability βpt of meeting a service level 

*
ptSL  can be approximated by:  
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( ) 1 11 1
2 2

pt
pt

G

OTzz Erfc
CV z

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
β ,                                                                                          (26) 

where the variable ptz OT≥  is the effective operation time, and ( )22( ) exp
x

Erfc x t dt
∞

= −
π ∫ .  

 
Proof. The detailed proof is given in Appendix. It is composed of the following three steps:  
 
Step 1 – The cumulative production x(t) is characterized as a Wiener process, for which the transition 
probability density is evaluated by a Gaussian law:  
 

( ) ( )2

0 22

10
22 GG

x G t
P x,t | x , exp

tt

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

σπσ
.  

 
Step 2 – The first passage time of x(t) to a boundary is shown to have an inverse Gaussian distribution 
with the density:  
 

( ) ( )2

22 3 22

ptpt
pt

GG

x G sx
R x ,s exp

ss

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

σπσ
, 0s .≥  

 

Step 3 – The probability βpt(z) is evaluated as Prob{ } ( )pt pt
z

OT z R x ,s ds
∞

≤ = ∫ , and the closed form 

approximation given in Proposition 1 is derived.   
 
                                                                                                                                                                   ■ 
 

As the random operation time corresponds to a first passage time, it has been characterized by an 
inverse Gaussian distribution. The later is asymmetric and it is mostly skewed to the right, which 
corresponds to the qualitative representation existing in the literature: see for example (Vandaele and 
De Boeck, 2003). This means that if something happens in the system, the impact is dominantly 
negative: longer lead times will be observed more often than shorter ones (the average is larger than the 
mode). Since we are interested in the higher robust service levels, automatically this skewness is under 
the consideration of the management, and it will exploited to improve the probability of βpt.  
 
Proposition 2. Let denote by S the set of feasible solutions for the capacitated lot-sizing model defined 
by Equations (15)-(21). The following hold:  

1. For every solution s ∈S, the probability βpt of meeting a target service level *
ptSL  is equal to 1

2
.  

2. If pt *β >
1
2

, the set S is empty.         
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Proof. For every feasible solution ( s ∈S), the operation times are the expected values of random 

variables OTpt ( ), 1, 2,p P t   ..., T∈ = : pt
pt

x
OT

G
= . This means that the system produces during a 

time ptOT  to complete the lot size ptx . To evaluate the corresponding probability βpt, the variable z 

is replaced by ptOT  in Equation (26) of Proposition 1. This gives βpt = 1
2

, since (0) 1Erfc = . 

Consequently, if pt *β >
1
2

, there is no feasible solution and S is empty.                

 
                                                                                                                                                                   ■ 
 
When the variance of the production rate is neglected, the probabilities βpt are equal to 100%. But, in 
our robust optimization context, this variance is of a central interest. On the one hand, it is indeed very 
unsatisfactory to use a production plan with a probability of meting a pre-specified service level that is 
equal to 50% (as shown by Proposition 2). On the other hand, increasing the operation time with only a 
few percents is sufficient to guarantee success with a high probability. This is due to the 
complementary error function Erfc(x) present in Equation (26) of proposition 1: see Figure 1. To 

illustrate this, let us consider a system with 
2

2
pt

G
OT

pt

CV
x G

σ
= = 0.05 and impose 0.95pt =β . To 

obtain this value in Equation (26), we need to have 
pt

G z
x

  0.7. Therefore, it is needed to produce 

during the time 1 43
0 7

pt ptx x
z .

. G G
 to guarantee a quality criterion of  0.95pt =β . Note that to 

have 0.9pt =β , we obtain by following the same procedure, 1 04 ptx
z .

G
. This means that increasing 

the operation time with only 4% is sufficient to guarantee meeting service level with a probability of 
0.9pt =β .  

Examples of the probability ptβ  as a function of 
pt

z
OT

 are shown in Figure 2. It is clear from this 

figure that, for diffusive regimes, the ratio 
pt

z
OT

 needs to be slightly larger than unity to guarantee 

that the promised service level will be satisfied with a high probability. Furthermore, for smaller lot 
sizes ptx  the influence of the fluctuations is more important and the probability ptβ  is lower.  
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Figure 1. The complementary error function.   
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3.2. Improvement of the probability to meet a service level  
 
Two cases are distinguished: (1) when pt *β  is less than 100%, an incremental procedure is proposed to 
improve gradually the probability ptβ ; (2) when it is required to have a fully reliable service level, i.e., 

1ptβ , another procedure is used. Both procedures result from Proposition 1 as described below.  
 
3.2.1. Incremental improvement    
 

It is usually required to have pt *β >
1
2

. However, if we solve the equivalent mean-value deterministic 

model of the problem formulated by (15)-(21), the set of feasible solutions will be empty. Motivated by 
the results of the previous subsections, we propose here an improvement procedure of the probability to 
meet a service level that acts on the optimal solution of the mean-value deterministic model solved 
without the chance constraints (20). This procedure allows us to ensure these constraints at the basis of 
Proposition 1.  

From Equation (26) and Figure 1, we remark that it is possible to increase the probability ptβ , for a 
system characterised by its given G  and Gσ , by increasing the effective operation time z. By doing 

so, the ratio 
pt

z
OT

 is increased and ptβ  can be significantly improved, as previously shown by Figure 

2. In our production planning problem, this will happen when G  > pt

p P pt

x

OT∈
∑ . In this case, the service 

levels are of 100% and the objective of increasing slightly a ratio 
pt

z
OT

 is to ensure a full service 

level with a higher probability.  More precisely, the operation time ptOT
 
is increased by k tΔ . The 

parameter k varies from 0 to a maximum value fixed by the difference between period length Tt and the 
operation time ptOT . This means simply that we produce a bit more ( )pt ptx x G t= + Δ  to increase 

the probability ptβ . The value of tΔ  corresponds to the time needed to produce one part 1t
G

⎛ ⎞
Δ =⎜ ⎟⎜ ⎟

⎝ ⎠
. 

The final cost is evaluated for the updated solution after running the same procedure for all products 
and periods.  

If pt

p P pt

x
G

OT∈
≤ ∑ , the system functions during all the period, and another way to increase ptβ  

consists in decreasing the promised service level. That is, the new average operation time needed to 
produce the reduced promised lot size is smaller than ptOT . Therefore, producing during ptOT

 
 (to 

accumulate such a reduced quantity) may result in a considerable improvement of ptβ . That is, for each 
product and each period, if the mean-value deterministic model has a service level ptSL  that is higher 

than the proposed target *ptSL , the lot size ptx  
is decreased by the quantity *pt pt ptB B BΔ = − , 

without violating the constraints *pt ptSL SL≥ , and the new improved ptβ  is re-evaluated.  
It is possible to have some pairs { },p t

 
for which the constraints *pt ptβ ≥ β  cannot be achieved. 

This happens when no remaining operation time is available and the service level is equal to the target 
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value. In this case, to get feasible and robust solutions, it is necessary to improve the system 
characteristics to have a smaller variation coefficient of the production rate, to relax the service level 
constraints, or to increase lead times.  

It is important to note that Proposition 1 has shown that only slight modifications are sufficient to 
reach robust solutions. As a result, substantial improvements in service level robustness are often 
possible with minimal increases in expected cost.  
 
3.2.2. Full improvement procedure    
 
The following propositions give necessary conditions to reach fully reliable service levels.  
 
Proposition 3. For every period t and every product p, if the effective operation time z

 
used to produce 

the lot size ptx  is increased by 
2

24 4 2 4G G G
ptOT

G G G

⎛ ⎞σ σ σ⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

, then βpt 1.         

 
Proof. Since (2) 0Erfc (see Figure 1), by using equation (26) in Proposition 1, we have:  

if 1 2
2

pt

G

xG z
G z

⎛ ⎞
⎜ ⎟− =
⎜ ⎟
⎝ ⎠σ

, then βpt 1.  

The only unknown in the above equation is the variable z, which is obtained by solving the following 
second order equation obtained after some simple manipulations:  

2 22
22 8 0G

pt ptz z OT OT
G

⎛ ⎞
⎜ ⎟+ + + =
⎜ ⎟
⎝ ⎠

σ .  

Knowing that z is positive, we obtain: 
2

24 4 2 4G G G
pt ptz OT OT

G G G

⎛ ⎞
⎜ ⎟= + + +
⎜ ⎟
⎝ ⎠

σ σ σ .   

                                                                                                                                                                   ■ 
 
Proposition 4. For every period t and every product p, if the effective operation time

 
is equal to ptOT  

and the promised service level is decreased by a value corresponding to a reduced lot size of 
2 2pt G ptx OT− σ , then βpt 1.            

 
 
Proof. If the effective operation time

 
is equal to ptOT  and the promised service level is decreased by 

a value τ such as 1 2
2

pt pt

pt

OT OTG
OT

⎛ ⎞−
⎜ ⎟− =
⎜ ⎟
⎝ ⎠

τ

σ
, then βpt 1. The only unknown τ is obtained by 

solving this equation as τ = 2 2 ptOT
G
σ .    
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                                                                                                                                       ■ 
 
4. Numerical example  
 
Let us consider a system having an average global production rate corresponding to 950 items/period, 
with 20Gσ =  items2/period. The planning horizon H is 5 periods. The system has to produce two kinds 
of products in lots so that the demands are satisfied. For each product, the periodic demands are 
presented in Table 1. Table 2 gives the holding, backorder, set-up and production costs for each 
product. These costs are the same for all periods.  
 
Table 1: Demands of products  
 

Period  Demand of product 1 d1t (items) Demand of product 2 d2t (items) 
1 500 500 
2 480 490 
3 480 500 
4 470 470 
5 480 480 

 
 
Table 2: Cost data of products 
 

Product  Holding cost ($) Backorder cost ($) Set-up cost ($) Production cost ($) 
1 40 120 500 70 
2 40 120 500 70  

 
 
We consider that it is required to have 0.89ptSL ≥  and 0.99ptβ ≥ . By solving the mean-value 

deterministic model without the constraints 0.99ptβ ≥ , we obtain the optimal production plan and its 
corresponding service levels as given in Table 3. The total cost for this plan is 386700 $.   

 
Table 3: Optimal production plan  
 
Product 1  
Period Production Setup Inventory Backorder    Service level     
1 450 1 0 50 0.9 
2 478 1 0 52 0.89 
3 487 1 0 45 0.9 
4 464 1 0 51 0.89 
5 479 1 0 52 0.89 

 
Product 2  
Period Production Setup Inventory Backorder Service level     
1 500 1 0 0 1 
2 472 1 0 18 0.96 
3 463 1 0 55 0.89 
4 486 1 0 39 0.92 
5 471 1 0 48 0.9 
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However, from Proposition 2, each probability βpt is equal to 50%. In order to satisfy the constraints 

0.99ptβ ≥ , an improvement procedure is then applied. Since pt

p P pt

x
G

OT∈
≤ ∑ , the system functions 

during all the period and the effective operation time cannot be increased. As it is required to have 
1ptβ , Proposition 4 is used. Let consider that the manager wants to keep the service levels in Table 

3. That is, for every period t and every product p, the effective operation time
 
is kept equal to ptOT  

and the promised service level is decreased by a value corresponding to a reduced lot size of 

2 2pt G ptx OT− σ  denoted by ptx  in Table 4, where the promised (reduced) service level is also 

denoted by ptSL . Table 4 confirms that slight modifications are sufficient to reach solutions with 
robust service levels.  
 
Table 4: Robust service level solution   
 
Product 1  
Period 

Production ptx  ptSL  
1 450 411 0.82 
2 478 437 0.91 
3 487 446 0.93 
4 464 426 0.91 
5 479 438 0.91 

 
Product 2 
Period 

Production ptx  ptSL  
1 500 458 0.92 
2 472 432 0.88 
3 463 423 0.85 
4 486 445 0.95 
5 471 431 0.9 

 
 
5. Conclusion   
 

In this paper, we studied a multi-period, multi-product production planning problem where 
machines are subjected to random failures and repairs. As a result, the production rate and the customer 
service level are random variables. In the proposed model, constraints were introduced to ensure that a 
pre-specified customer service level is met with high probability. A two-step optimization approach 
was proposed to solve this model. It incorporates, with a mean value deterministic model, an 
improvement method of the service level robustness. The obtained results are in accordance with the 
existing literature. It is shown that substantial improvements in service level robustness are often 
possible with minimal increases in expected cost. The importance of our contribution lies in the fact 
that, unlike classical stochastic optimization and robust optimization approaches, the proposed method 
is not a scenario-based one. Instead of using a number of generated scenarios, the proposed 
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optimization approach is based on the first passage time theory of a Wiener process to a boundary to 
take into account machine breakdowns. The resulting approach has then the advantage of being 
computationally tractable. The reason of making this possible is, of course, that the underlying process 
governing the behaviour of the machines has been characterized, in a way that has allowed the use of 
the first passage time theory in the context of drifted Brownian motion and inverse Gaussian 
distribution.  

The application of the method to a real-life case study remains a perspective to investigate in a 
future work. For example, the results of the paper could be applied for sawmill production planning as 
in (Kazemi Zanjani et al., 2009, 2010). This necessitates data to characterize the random process of the 
sawing units. Future work will consider also the generalization of the proposed approach to deal with 
others sources of randomness such as yield, demand and prices. Furthermore, we are currently working 
on the integration of preventive maintenance planning into the production planning model developed in 
this paper.      
 
 
 
Appendix – Detailed proof of Proposition 1 
 
Step 1 – For asymptotically large times, invoking the central limit theorem, the cumulative production 

( ) ( ){ }00 0x t , t x x≥ =  can be considered as a temporally homogeneous diffusion process following a 

stochastic differential equation of the form:  
 

 ( ) ( ) ; ( 0) 0 and (0)pt G
d x t G t x t G g
dt

= + σ ξ = = = ,                                            

 
where )(tξ is a stochastic process in the form of a white Gaussian Noise (WGN) of zero mean and unit 

variance. The fluctuations of G(t) can be characterized by a normal (Gaussian) law N ( )2, GG σ . The 

above equation is a Langevin equation, a type of stochastic differential equations well known in the 
literature of mathematic physics (Gardiner, 1983).  

The time evolution of x(t) constitutes a (Markovian) diffusion process on , and the transition 
probability density Prob{ }x x( t ) x dx dx≤ ≤ + = ( )0, | ,0P x t x dx  obeys to an associated forward 
Fokker-Planck (FP) equation (Gardiner, 1983), also known as Chapman-Kolmogorov:  
 

( ) ( ) ( )
2 2

0 0 02, | ,0 , | ,0 , | ,0 .
2
GP x t x G P x t x P x t x

t x x
∂ ∂ ∂

= − +
∂ ∂ ∂

σ    

 
Due to the linearity of this equation, one immediately has: 
 

( ) ( )2

0 22

10
22 GG

x G t
P x,t | x , exp

tt

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

σπσ
.                                                 

 
Having ( ) ( )0, | ,0 , | 0,0P x t x P x t= , we adopt the notation ( ) ( ) ( )0 0, | ,0 , ,P x t x P x x t P x t= − = .  
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Step 2 – The calculation of βpt relies on the determination of the first passage time of the stochastic 
process xpt(t) = x(t) to the boundary ptx , knowing the initial position (at t = 0) is x0. The random time 

OTpt needed to complete a batch of size ptx  is:  
 

( ){ }
>0

pt pt
t

OT inf t : x t x= ≥ , with ( ) 00x x= < ptx .               

 
The associated probability density is written as:   
 

( )0 0ptR x ,s | x , ds = Prob{ }pts OT s ds≤ ≤ + .   

 
We have ( ) ( )0 00 0 0pt ptR x ,s | x , R x x ,s | , ,= −  or simply ( ) ( )0 0pt ptR x ,s | , R x ,s .=  

The probability density ( )ptR x ,s
 
can be given by solving the following equation (Siegert, 1951; 

Darling and Siegert, 1953):  
 

( ) ( ) ( )0

t

pt ptP x,t R x ,s P x x ,t s ds= − −∫ .    

 
The above equation expresses the fact that the probability to transit form position 0 to position x at time 
t can be expressed by the probability to reach ptx  at time s first (with s t≤  and ptx x≥ ) and then 

from ptx  
to reach x in the remaining allotted time (t-s). This equation being a convolution, it can be 

solved by Laplace transformation which leads to an inverse Gaussian distribution with the density 
(Seshadri, 1993):  
 

( ) ( )2

22 3 22

ptpt
pt

GG

x G sx
R x ,s exp

ss

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

σπσ
, 0s .≥  

 
Step 3 – The probability βpt(z) is evaluated as Prob{ } ( )pt ptz

OT z R x ,s ds
∞

≤ = ∫ . Before 

approximating this integral, let us calculate the average and the variance of the operation time OTpt, i.e., 
the time to complete a lot of size ptx . They are given by:  
 

( )0
,pt ptOT t R x t dt

∞
= ∫ , 

22 2
0

( , )
ptOT pt ptt R x t dt OT

∞
σ = −∫ .  

 
We can straightforwardly obtain the following equations: 
 

pt
pt

x
OT

G
= , 

2
2

3pt
G

OT ptx
G
σ

σ = .  
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The squared coefficient of variation for the time OTpt is:  
 

2 2
2

2
pt

pt

OT G
OT

ptpt

CV
x GOT

σ σ
= = .  

 
Finally, we can write:  
 

( )
( )2

22 3 22

ptpt
pt z

GG

x G sx
z exp ds

ss

∞
⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∫β
σπσ

.  

Let us introduce the following notations: ( )
2

1 pt
pt

pt

OTza z , z OT
zOT

⎛ ⎞
⎜ ⎟= − ≥
⎜ ⎟
⎝ ⎠

Γ  with 1

ptOTCV
=Γ .  

Using Shuster’s derivation (Shuster, 1968), the above equation can be rewritten, for ptz OT≥ , in the 
form:  
 

21 ( ) 1 ( )( ) 1 2
2 2 2 2pt

a z a zz Erfc e ErfcΓ⎛ ⎞ ⎛ ⎞
= − + ⋅ + Γ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
β  with 22( ) exp( )

x
Erfc x t dt

∞
= −

π ∫ .    

 
Considering the case where the magnitude of the fluctuations is such that the coefficient of variation 

ptOTCV is relatively small (i.e., Γ2 >> 1), and knowing from (Abramowitz and Stegun, 1964) that for 

x>0, ( )Erfc x
 

 is bounded such as 
2 2

2
2

2 2( )
42

x xe eErfc x
x x x xπ π

π

− −⎛ ⎞ ⎛ ⎞< ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+ + + +

, the above 

equation of ( )pt zβ can be approximated by neglecting the last term, in the form of:  
 

( ) 1 11 1
2 2

pt

pt
pt

OT pt

OTzz Erfc
CV zOT

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
β ,  

 
which is equivalent to equation (26) in Proposition 1.    
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