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Abstract. This study considers a real-world multi-period, multi-product production 
planning problem involving set-up constraints, with random yield and demand. The 
resulting large-scale multi-stage stochastic mixed-integer model cannot be solved by 
using the mixed-integer solver of a commercial optimization package. The production 
planning model is a mixed-integer programming (MIP) model without any special 
structure. As a consequence, developing efficient decomposition and cutting plane 
algorithms to obtain a good solution in a reasonable amount of time is not straightforward. 
We use two solution strategies to find good solutions with an acceptable gap to the 
optimal solution: (1) The first strategy is based on the progressive hedging algorithm 
(PHA). The solution of this strategy is a local optimum and an upper bound for the optimal 
objective value of the multi-stage stochastic model. (2) The second strategy is a 
successive approximation heuristic which solves the problem by considering only a subset 
of scenarios which is updated at each iteration. We introduce scenario selection rules in 
order to increase the rate of convergence and the quality of solution. Computational 
experiments for a real world large-scale sawmill production planning model verify and 
compare the effectiveness of the two proposed solution strategies in finding quickly good 
approximate solutions. 
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1- Introduction 

Stochastic programming (Birge, 1997) and robust optimization (Mulvey et al., 1995) has been 

applied in several production planning contexts under uncertain environments (see for example, 

Escudero et al. (1993); Bakir and Byrne (1998); Huang K. (2005); Brandimarte (2006); Mula et 

al. (2006); Leung et al. (2007)). These applications and others have demonstrated that 

incorporating uncertainty into production planning models is significant because it has been 

demonstrated that in most of real-world applications, stochastic models propose more robust 

production plans than their deterministic counterparts. However, such stochastic approaches may 

lead to models of non manageable sizes. In particular, when random parameters are characterized 

by a dynamic behavior throughout the time, the decision process should take place in multiple 

stages of time, as the information is revealed. The resulting multi-stage stochastic program 

becomes computationally intractable as the number of scenarios increases. The mentioned 

complexity is even intensified when the production planning problem is formulated as a multi-

stage stochastic mixed-integer (MS-MIP) program. 

In this paper we study a multi-period production planning problem that is motivated by a real life 

case study, and that results in a large-scale MS-MIP. In this problem, alternative processes 

produce multiple products from several classes of raw materials. However, regarding the set-up 

considerations, only one family of processes can be run in each period. In each period in the 

planning horizon, we are looking for the selection of a family of processes, the number of times 

each process should be run, as well as the consumption of each material class. The objective is to 

minimize products inventory/backorder and raw material consumption costs, regarding 

fulfillment of products demands, machine capacities, and material inventory. We study a 

manufacturing environment where the characteristics of raw materials are non-homogeneous and 

random. Thus, the quantities of products that can be produced by each process (process yields) 
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are random variables. Moreover, the demand is also uncertain and non-stationary during the 

planning horizon. This study is motivated by the production planning problem in sawmills. The 

raw materials in sawmills are the logs which have non-homogeneous characteristics. Moreover, 

the lumber demand in the market is also uncertain. 

Kazemi Zanjani et al. (2010a,b,c) developed a set of stochastic and robust optimization models to 

deal with different aspects of production planning in sawmills under uncertainty. In Kazemi 

Zanjani et al. (2010c), a two-stage stochastic programming model is proposed to deal with the 

uncertainty in the quality of raw materials, while a robust optimization approach is used in 

Kazemi Zanjani et al. (2010a) to find a more robust production plan in this problem. In Kazemi 

Zanjani et al. (2010b), a multi-stage stochastic programming model is proposed considering that 

both raw materials and demand are random. Unlike Kazemi zanjani et al. (2010a,b,c), we address 

this problem by taking into account set-up constraints. This is an important extension to widen 

the application of our approach. In fact, regarding the technological constraints for changing 

machine set-ups in some sawmills, only one process family including processes with similar set-

up requirements can be executed in each period. As a consequence, set-up constraints should be 

taken into account in the production planning model. 

We model the problem as a multi-stage mixed-integer stochastic program with full recourse 

based on a hybrid scenario tree for the random yield and demand. While the newly developed 

model is applicable to a larger number of sawmill cases, a challenging problem is faced for 

solving real-life instances in reasonable time. In this paper, we consider a realistic large-scale 

problem as the case study. A mixed-integer solver of a commercial optimization package, namely 

CPLEX MIP solver is not capable to solve the resulting deterministic equivalent model, due to 

memory problem. Thus, other solution strategies should be considered to find good approximate 

solutions. 
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The development of efficient algorithms which are able to solve stochastic mixed-integer 

programs (MIP) with a large number of scenarios is one of the challenges in stochastic 

programming. Løkketangen and Woodruff (1996) proposed a heuristic which combines the 

progressive hedging algorithm (PHA) (proposed in Rockafellar and Wets (1991)) with tabu 

search in order to solve a multi-stage stochastic MIP with binary variables. Haugen et al. (2001) 

casted the PHA in a meta-heuristic framework with the sub-problems generated for each scenario 

solved heuristically. In Lulli and Sen (2004), a branch-and-price algorithm is proposed to solve 

special structured multi-stage MSMIP problems. Lulli and Sen (2006) proposed a heuristic, 

referred as the scenario updating (SU) procedure, to solve large stochastic MIP models with 

complete recourse. For recent surveys on stochastic mixed-integer programs, the reader may refer 

to Klein Haneveld and Van der Vlerk (1999), Schultz (2003) and Sen (2003). 

Most of the existing MIP algorithms, namely, decomposition and cutting plan algorithms (e.g., 

branch and cut, branch and price, etc.) are more efficient for special structured MIP models (e.g., 

lot-sizing and batch sizing problems). However, the problem studied in this paper is a general 

multi-stage stochastic mixed integer model with no special structure. Thus, using these 

sophisticated algorithms for our problem cannot guarantee the convergence to a good solution in  

reasonable time. In this article, two efficient solution strategies are developed and compared for a 

real sawmill example.  

The first solution strategy is a scenario decomposition approach that decomposes the stochastic 

model for the possible scenarios of the random events. Each scenario sub-problem then becomes 

a deterministic problem that can either be solved directly by CPLEX MIP solvers or an efficient 

heuristic algorithm. Following the original decomposition scheme proposed by Rockafellar and 

Wets (1991), we address the issue of using globally the local information yielded by the sub-

problems to guide the overall algorithm toward a unique solution. By the non-anticipativity 
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condition in multi-stage stochastic programming, the solutions of indistinguishable scenarios at 

each node of the scenario tree should be identical. Thus, the non-consensus amongst scenario 

sub-problem solutions in each node of the scenario tree is penalized by adding quadratic terms in 

the objective function of each scenario sub-problem. This corresponds to an augmented 

Lagrangean strategy, which is used in the progressive hedging algorithm (PHA) proposed by 

Rockafellar and Wets (1991) for general multi-stage stochastic programs. As in PHA, our 

solution strategy ensures implementable solutions at all iterations. By adding terms in the 

objective function to penalize lack of implementability, the algorithm may come up with a “well 

hedged” solution that can perform well under all scenarios. It should be mentioned that this 

solution strategy converges to a global optimum in the continuous convex case. In the non-

convex case it converges to a local optimum if all sub-problem are solved for a local optimal. If 

we solve the scenario sub problems for optimality, the converged solution can be considered as 

an upper bound for the optimal solution. 

The second solution strategy is inspired by the Scenario Updating (SU) method proposed by Lulli 

and Sen (2006). It is based on solving instances of the problem, which contain only a subset of 

scenarios in the scenario tree. The subset of scenarios is updated by adding those scenarios, 

which imply either certain degradation or an improvement of the objective function value. We 

improve the SU algorithm in the following directions. The first improvement is motivated by the 

fact that, in our experiments, the scenario selection rules proposed in Lulli and Sen (2006) for 

updating the scenario tree did not converge fast. We propose a new scenario selection rule and we 

combine it with some of the most appropriate rules in SU method in order to increase the 

convergence rate of the algorithm as well as the quality of the approximate solution. Furthermore, 

the proposed lower bound on the objective function value of a stochastic MIP model in Lulli and 

Sen (2006) is more appropriate for a simple recourse multi-stage stochastic MIP. As the problem 
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we are addressing is a multi-stage stochastic MIP with full recourse, we consider only the 

proposed upper bound to evaluate different scenarios to be added into the current scenario tree. 

The approximate solution of the second solution strategy can be considered as a lower bound for 

the optimal solution, if an appropriate subset of scenarios is taken into account. 

Both solution strategies are applied for sawmill production planning under the uncertainty in raw 

material (log) quality and product (lumber) demand. Numerical results for a prototype sawmill 

indicate that the second solution strategy results an approximate solution by considering a small 

number of scenarios in the scenario tree. Moreover, an acceptable gap is observed between the 

approximate solution and the upper bound of the optimal solution computed by the first strategy. 

The contribution of this paper is then threefold. First, we develop a framework based on the PHA 

that takes advantages of efficient methods to solve the deterministic version of the problem under 

study, and it can be implemented on parallel machines. This kind of general framework was 

proposed in Løkketangen and Woodruff (1996) and was successfully applied to the problem of 

stochastic network design in Cranic et al. (2009). To the best of our knowledge, this paper is the 

first to propose such approach for the case of stochastic production planning in sawmills. Second, 

we extend the SU method to increase its convergence rate in the context of full recourse 

stochastic models. Third, we apply the proposed model and algorithms for a real-life industrial 

case. 

The rest of the paper is organized as follows. In section 2, we provide a multi-stage stochastic 

mixed-integer program for MPMP production planning with random yield and demand. Sections 

3 describe the sawmill case study, while sections 4 and 5 present, respectively, the proposed PHA 

and the extended SU method. In section 6, the implementation results of the MS-MIP model and 

the solution methods for a prototype realistic-scale sawmill are presented. Finally, conclusions 

are given in section 7. 
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2- General formulation of the problem  

In this section, we first present a deterministic mathematical formulation for the problem under 

consideration. Then, we provide the multi-stage stochastic formulation to address the problem by 

considering the random yield and demand. 

2-1- A deterministic model  

Consider a production unit with a set of products P, a set of classes of raw materials C, a set of 

production processes A, a set of process families F, a set of machines R, and a planning horizon 

consisting of T periods. To state the deterministic linear programming (LP) model for this 

problem, the following notations are used: 

2-1-1- Notations 

Indices  

p product  

t period 

c raw material class  

a production process 

r machine 

f family of process  

af  family of process a 

Parameters 

pth  inventory holding cost per unit of product p in period t 

ptb  backorder cost per unit of product p in period t 

ctm  raw material cost per unit of class c in period t 

0cI  the inventory of raw material class c at the beginning of planning horizon 
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0pI  the inventory of product p at the beginning of planning horizon 

cts  the quantity of material of class c supplied at the beginning of period t 

ptd  demand of product p by the end of period t 

acφ  the units of class c raw material consumed by process a 

apρ  the units of product p produced by process a (yield of process a) 

arδ  the capacity consumption of machine r by process a 

rtM  the capacity of machine r in period t  

M a large positive number 

Decision variables 

atX  the number of times each process a should be run in period t (production plan) 

1, if the family  of processes is selected in period 
0, otherwiseft

f t
Y ⎧

= ⎨
⎩

 

ctI  inventory size of raw material of class c by the end of period t 

ptI  inventory size of product p by the end of period t 

ptB  backorder size of product p by the end of period t 

2.1.2  The deterministic LP model 

P 1 C 1

Minimize ( ) ,
T T

pt pt pt pt ct ac at
p t c t a A

Z h I b B m Xφ
∈ = ∈ = ∈

= + +∑∑ ∑∑∑      (1) 

Subject to 

 

1 , 1,..., , C,ct ct ct ac at
a A

I I s X t T cφ−
∈

= + − = ∈∑     (2) 
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1 1 0 1 1
A

1 1
A

,

, 2,..., , P,

p p p ap a p
a

pt pt pt pt ap at pt
a

I B I X d

I B I B X d t T p

ρ

ρ

∈

− −
∈

− = + −

− = − + − = ∈

∑

∑
    (3) 

A
, 1,..., , R,ar at rt

a
X M t T rδ

∈

≤ = ∈∑     (4) 

1,..., , A,
aat f tX MY t T a≤ = ∈     (5) 

1 1,..., ,ft
f F

Y t T
∈

= =∑      (6) 

{ }0, 0, 0, 0, 0,1 , 1,..., , P, C, , .at ct pt pt ftX I I B Y t T p c a A f F≥ ≥ ≥ ≥ ∈ = ∈ ∈ ∈ ∈   (7) 

The objective function (1) minimizes the total inventory and backorder costs for all products and 

raw material cost for all classes in the planning horizon. Constraint (2) corresponds to the raw 

material inventory balance. Constraint (3) indicates the products inventory balance. Constraint (4) 

requires that the total production do not exceed the available production capacity. Constraints (5) 

and (6) require that only one family of processes that require the same set-up can be executed in 

each period.  

2-2- Multi-stage stochastic programming extension  

In this section, we first describe a summary of the proposed approach to model the random yield 

and demand. Then we provide the production planning formulation by multi-stage stochastic 

programming. For more details, the reader may refer to Kazemi Zanjnai et al. (2010b), where this 

formulation is used without set-up constraints.  

2-2-1- Modeling the random yield and demand  

It is assumed that the random demand has a non-stationary behavior during the planning horizon. 

Thus we model the random demand as a scenario tree. The nodes at stage t of the tree constitute 

the states (scenarios) of demand. The leaf nodes in the scenario tree are called scenarios. The 
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planning horizon is clustered into N stages, where each stage includes a number of periods. In 

other words, it is supposed that the random demand is stationary during the time periods at each 

stage.  

On the other hand, we assume that raw materials are supplied from the same supply source during 

the planning horizon. Thus, it is supposed that the random yield has a stationary probability 

distribution. A number of scenarios are taken in to account for yields by discritization of the 

original probability distribution.  

In order to have a single stochastic production planning model that considers the random yield 

and demand, yield scenarios are integrated with the demand scenario tree, forming a hybrid 

scenario tree. At each node of the tree, which denotes one demand scenario for the corresponding 

stage, different yield scenarios can take place. However, regarding the stationary behavior of the 

random yield, only one of the yield scenarios might be observed during the planning horizon. 

2-2-2- Multi-stage stochastic program  

We now formulate the problem as a multi-stage stochastic (MSP) model based on the hybrid 

scenario tree for the random yield and demand. It should be noted that we consider a full recourse 

multi-stage stochastic model with respect to demand scenarios. In other words, it is supposed at 

the start of the first period of each stage, enough information is available to the decision maker to 

know which demand scenario is in force for that stage. So the decision maker can adjust the 

production plan atX  for different demand scenarios. A decision atX  is said to be 

“implementable” if it cannot distinguish between different scenarios that at a particular stage of 

time are regarded as indistinguishable from each other on the basis of information so far 

available.  There are two approaches to impose the non-anticipativity condition in the multi-stage 

stochastic programs which lead to split variable formulation and compact formulation. In this 
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section, a compact formulation is used to represent the problem and the decision variables atX  

and ftY  are then defined for each node of the demand scenario tree.  

On the other hand, the model is simple recourse with respect to yield scenarios. In fact, as the 

quality of materials is not is not known before being processed, the yield scenarios can only be 

revealed after implementation of the production plan. Thus, the production plan for each node of 

the demand scenario tree should be fixed for yield scenarios. It is evident that the inventory and 

backorder sizes of products in each period, which are the state variables, depend on the demand 

scenarios as well as yield scenarios, thus they are indexed for yield scenarios as well as demand 

nodes. Regarding the above discussions, the following notations in addition to those provided in 

subsection 2.1.1 are used in the multi-stage stochastic model. The compact formulation of the 

multi-stage stochastic model follows these notations.  

2-2-2-1- Notations 

Indices  

Tree scenario tree. 

S number of scenarios for the random yields. 

i scenario of the random yield. 

n,m node of the scenario tree.  

( )a n   immediate predecessor of node n in the scenario tree. 

nt   set of time periods corresponding to node n in the scenario tree. 

Parameters 

( )ptd n   demand of product p by the end of period t at node n of the scenario tree.  

( )p n  probability of node n of the scenario tree.  

ip  probability of scenario i for the random yield. 
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Decision variables 

( )atX n the number of times each process a should be run in period t at node n of the scenario 

tree. 

1, if the family  of processes is selected at node  in period  
( )

0, otherwiseft

f n t
Y n ⎧

= ⎨
⎩

 

( )ctI n  inventory size of raw material of class c by the end of period t at node n of the scenario 

tree. 

( )i
ptI n  inventory size of product p by the end of period t for scenario i of the random yield at 

node n of the scenario tree. 

( )i
ptB n  backorder size of product p by the end of period t for scenario i of the random yield at 

node n of the scenario tree. 

2-2-2-2- Multi-stage stochastic model (compact formulation) 

C

1 P

Minimize ( )( ( ))

( )( ( ( ( ) ( ))))

n

n

ct ac at
n Tree t t c a A

S
i i i

pt pt pt pt
n Tree i t t p

Z p n m X n

p n p h I n b B n

φ
∈ ∈ ∈ ∈

∈ = ∈ ∈

= +

+

∑ ∑∑∑

∑ ∑ ∑∑     (8)

 

Subject to  

1( ) ( ) ( ), , , C,

( ), 1 ,
, 1 ,

ct ct ct ac at n
a A

n

n

I n I m s X n n Tree t t c

a n t t
m

n t t

φ−
∈

= + − ∈ ∈ ∈

− ∉⎧
= ⎨ − ∈⎩

∑
    (9) 

A
( ) , , , R,ar at rt n

a
X n M n Tree t t rδ

∈

≤ ∈ ∈ ∈∑      (10) 
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1 1

A

( ) ( ) ( ) ( )

( ) ( ),

, , P, 1,..., ,
( ), 1 ,
, 1 ,

i i i i
pt pt pt pt

i
ap at pt

a

n

n

n

I n B n I m B m

X n d n

n Tree t t p i S
a n t t

m
n t t

ρ
− −

∈

− = −

+ −

∈ ∈ ∈ =
− ∈⎧

= ⎨ − ∉⎩

∑

   (11)

 

( ) ( ) , A, ,
aat f t nX n MY n t t a n Tree≤ ∈ ∈ ∈      (12) 

( ) 1 , ,ft n
f F

Y n t t n Tree
∈

= ∈ ∈∑
  

   (13) 

{ }( ) 0, ( ) 0,1 , ( ) 0, ( ) 0, ( ) 0,
, , , , , , 1,..., .

i i
at ft ct pt pt

n

X n Y n I n I n B n
n Tree f F t t c C p P a A i S

≥ ∈ ≥ ≥ ≥
∈ ∈ ∈ ∈ ∈ ∈ =  

(14) 

The objective function (8) minimizes the expected material cost for demand nodes of the scenario 

tree and the expected inventory and backorder costs for demand nodes and yield scenarios. In 

model (8)-(14), the decision variables are indexed for each node, as well as for each time period, 

since the stages do not correspond to time periods. As it was mentioned in 2.2.1, each node at a 

stage includes a set of periods which is denoted by nt . In this model, there are coupling variables 

between different stages and these are the ending inventory and backorder variables at the end of 

each stage. As it can be observed in this model, two different node indices (n and m) are used for 

inventory/backorder variables in the inventory balance constraints ((9) and (11)). More precisely, 

for the first period at each stage, the inventory or backorder is computed by considering the 

inventory or backorder of the last period corresponding to its immediate predecessor node, while 

for the rest of the periods at that stage, the inventory/backorder size of previous period 

corresponding to the same node are taken into account. 
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3- Case study 

We consider the sawmill production planning problem. In sawmills, logs are classified according 

to some attributes namely: diameter class, species, length, taper, etc. Logs are broken down into 

different dimensions of lumbers by means of different cutting patterns. From each log, several 

pieces of sawn lumbers are produced depending on the cutting pattern. The lumber quality 

(grade) as well as its quantity yielded by each cutting pattern depends on the quality and 

characteristics of input logs. Despite the classification of logs in sawmills, variety of 

characteristics (in terms of diameter, number of knots, internal defects, etc.) might be observed in 

different logs of the same class. As it is not possible in many sawmills to scan the logs before 

planning, the exact yields of cutting patterns for different log classes cannot be determined in 

priori. Uncertainty of the lumber demand in the market is another important parameter that 

should be taken into account in sawmill production planning. 

The prototype sawmill considered as the case study is a medium capacity softwood sawmill 

located in Quebec (Canada). It is assumed that the input bucked logs into the sawing unit are 

categorized into 3 classes. 5 different cutting patterns are available. The production processes 

belong to 2 distinct set-up families. The sawing unit produces 27 products. We consider two 

bottleneck machines: Trimmer and Bull. The planning horizon consists of 30 periods (days). The 

hybrid scenario tree for the random demand and yield in this example is generated as follows. 

Demand Scenario tree  

We used the existing historical data as well as the insights of the experts in the lumber market to 

estimate the demand scenario tree. At each stage of the scenario tree, except stage 1, we estimate 

a normal distribution for products demands (per product, per day). The normal distribution is then 

approximated by a 3 point discrete distribution (high, average, and low demand) by using the 

Gaussian quadrature method (Miller and Rice, 1983). We supposed that the demand for the next 
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10 days has a stationary behaviour, which is a realistic assumption in the lumber market. Thus, 

we clustered the 30 periods planning horizon into 3 stages and hence 4-stage scenario tree is 

resulted. The first stage consists of time period zero (present time), the second-stage includes 

periods 1-10, etc. Moreover, based on the experts’ insight, we suppose that the demands for all 

products are perfectly correlated and all products have the same behaviour at each stage of the 

scenario tree, while each product has its own daily demand (normal) distribution. In other words, 

if at stage t, the market condition is good, the demand scenario for all products can be expected to 

be high. The mentioned approximations results a 4-stage scenario tree including 27 demand 

scenarios and 40 nodes, as shown in figure 1.  

Yield Scenarios  

At each node of the demand scenario tree a number of yield scenarios are taken into account. 

Based on the historical data in Quebec sawmills for the processes yields, normal distributions 

were estimated for the random yields. The normal distribution corresponding to the yield of each 

process was then approximated by discrete scenarios. We consider 27 yield scenarios at each 

node of the demand scenario tree. 

The above scenario generation approach for the random demand and yield in this example results 

a hybrid scenario tree with 40 nodes, where each node includes 3 branches as demand scenarios 

and 27 branches as yield scenarios. The compact multi-stage stochastic model (8)-(14) for this 

sawmill example is a mixed-integer program (MIP) with nearly 600,000 decision variables and 

300,000 constraints, which cannot be solved by CPLEX 11 due to the lack of memory. In the 

next section, two efficient heuristics are developed and used in this case study. The first heuristic 

is a scenario decomposition strategy (section 4), while the second one is a scenario updating 

strategy (section 5). 

Insert figure 1 here. 
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4- Applying the scenario decomposition method to sawmill production planning 

4-1- The general algorithm 

The algorithm is based on the principle of scenario decomposition, as initially proposed in the 

progressive hedging algorithm (PHA) of Rockafellar and Wets (1991) for multi-stage stochastic 

linear programs. For each scenario, a deterministic optimization sub-problem is generated and 

solved. We denote by Z(s) the objective function of scenario s sub-problem. However, the 

solution for any particular scenario may not be of any value to us. Since we are not prescient, we 

have to require solutions that do not necessitate foreknowledge and that will be feasible no matter 

which scenario is realized. In other words, the solutions should be implementable for all 

scenarios. The implementability condition indicates that for any pair of scenarios that are 

indistinguishable at stage t (i.e. scenarios which share the same node at stage t in the scenario 

tree), the decision variables corresponding to those scenarios and periods at stage t should be 

identical. The PHA forces implementable solutions at all iterations by adding terms in the 

objective function to penalize lack of implementability. At each iteration, an estimation of the 

implementable solution is calculated as the mean of the solution values of the scenario sub-

problems. The latter are then solved again with adjusted penalties on the difference between the 

local solution and the average (global) estimation. The general form of the PHA can be 

represented by the following steps: 

Step 1 (initialization) 

Set the progressive hedging (PH) iteration counter to 0 ( 0k ← ). Set 0 ( ) 0w s ←  . 

Step 2  

For each scenario s, a deterministic optimization sub-problem is solved. The obtained 

approximate solutions are determined by 0 ( )X s  . 

Two Heuristic Algorithms for a Large-Scale Mixed-Integer Production Planning Model with Random Yield and Demand: 
A Case in Sawmills

15 CIRRELT-2010-23



 
 

Step 3 

Increment the PH iteration counter ( 1k k← + ). 

For each node n in the scenario tree and for its time index nt t= , evaluate the value of an 

implementable solution 1( , )k
nX t n−  as the mean of all the solution values of scenarios, in the 

bundle of scenarios that are indistinguishable from s at node n. For all indistinguishable 

scenarios at node n, set 1 1( ) ( , )k k
nX s X t n− −=  . 

Step 4 

Evaluate 1 1 1( ) ( ) ( ( ) ( ))k k k kw s w s r X s X s− − −← + −  with 0r >  . 

These values correspond to the dual prices associated with the implementability constraints. 

In other words, they can be interpreted as the value of information. 

Step 5 

For each scenario s, approximate solutions are obtained for the problem after adding the 

terms that penalize the lack of implementability in the objective function ( )Z s . The penalty 

term is computed as follows: 

21( ) ( ) ( ) ( ) , 0.
2

k krw s X s X s X s r−+ − ≥

 
The penalty terms correspond to an augmented Lagrangean strategy. 

Step 6 

If the termination criteria are not met, then go to step 3. The termination criteria are based on 

convergence. Nevertheless, we can also terminate based on time, since non-convergence is a 

possibility (Rockafellae and Wets, 1991). Iterations are counted until the counter k reaches a 

predetermined value or the algorithm has converged. 
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4-2- Application to sawmill production planning 

The statement of the above PHA gives rise to two types of optimization sub-problems. The first 

is a linear MIP problem which is only used at iteration 0 (step 2). The second type which is used 

in other iterations (step 5) is the modified form of the first type by adding the quadratic penalty 

terms in the objective function. Before formulating these sub-problems for the sawmill 

production planning problem, we introduce the required additional notations. To enforce 

implementability, we act on two decision variables: atX  and ftY  . We use X
atw  and Y

atw  as the 

corresponding dual variables corresponding to atX  and ftY  , respectively. At each iteration, dual 

variables are evaluated as described in step 4 of the PHA. Furthermore, in each scenario sub-

problem, the decision variables in model (8)-(14) in subsection 2.2 are defined for each demand 

scenario s instead of each node n in the scenario tree. The demand parameter ptd  is also defined 

for each scenario.  

We are now ready to formulate the scenario sub-problem in step 5 of the PHA. Our hybrid 

scenario tree includes 4 stages, 27 demand scenarios and 40 nodes (see figure 1). The planning 

horizon is clustered into 3 stages, where each stage includes 10 periods. In the mentioned 

scenario tree stage 2 includes periods 1-10 and nodes 2-4, stage 3 includes periods 11-20 and 

nodes 5-13, etc. The total number of yield scenarios ate each node of the demand scenario is 

equal to S=27. It is evident that the non-anticipativity constraints should be considered for 

decision variables corresponding to periods in stages 2 and 3 (periods 1 to 20). The scenario sub-

problem in the PHA (except for iteration 0) can be formulated as follows. 

Scenario sub-problem in the PHA (for scenario s) 

1 C A 1 1 P
Minimize ( ) ( ) ( ( ) ( ))

T S T
i i i

ct ac at pt pt pt pt
t c a i t p

Z s m X s p h I s b B s
= ∈ ∈ = = ∈

= + + +∑∑∑ ∑ ∑∑φ  
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20 20

1 1
( ) ( ) ( ) ( )X Y

at at ft ft
a A t f F t

w s X s w s Y s
∈ = ∈ =

+ +∑∑ ∑∑      (15) 

2
20 20

2

1 1
( / 2) ( ) ( / 2) ( )at ft

a A t f F t
r s r sθ γ

∈ = ∈ =

+∑∑ ∑∑  

Subject to  

1( ) ( ) ( ), 1,..., , C,ct ct ct ac at
a A

I s I s s X s t T cφ−
∈

= + − = ∈∑
   (16)

 

A
( ) , 1,..., , R,ar at rt

a
X s M t T rδ

∈

≤ = ∈∑    (17) 

1 1
A

( ) ( ) ( ) ( ) ( ) ( ),

1,..., , P, 1,..., ,

i i i i i
pt pt pt pt ap at pt

a
I s B s I s B s X s d s

t T p i S

ρ− −
∈

− = − + −

∈ ∈ =

∑

  (18)
 

( ) ( ) 1,..., , A, 
aat f tX s MY s t T a≤ = ∈    (19) 

( ) 1 1,..., ,ft
f F

Y s t T
∈

= =∑
    (20) 

( ) ( ) ( ), 1,..., 20, ,at at ats X s X s t a Aθ = − = ∈    (21) 

( ) ( ) ( ), 1,..., 20, ,ft ft fts Y s Y s t f Fγ = − = ∈    (22) 

{ }( ) 0, ( ) 0,1 , ( ) 0, ( ) 0, ( ) 0,
1,..., , , ,

, , 1,..., ,

i i
at ft ct pt ptX s Y s I s I s B s

t T c C p P
a A f F i S

≥ ∈ ≥ ≥ ≥
= ∈ ∈
∈ ∈ =

  (23)
 

where 

,

,

,

,

( ) ( ) / ( ),

( ) ( ) / ( ),
s t

s t

s
at at s t

s B

s
ft ft s t

s B

X s p X s p A

Y s p Y s p A
∈

∈

=

=

∑

∑
              (24) 

  

Two Heuristic Algorithms for a Large-Scale Mixed-Integer Production Planning Model with Random yield and Demand: 
A Case in Sawmills

CIRRELT-2010-23 18



 
 

and 

sp            probability of the demand scenario s in the scenario tree 

,s tB          bundle of scenarios that are indistinguishable from s in period t 

,s tA          the node in the scenario tree corresponding to scenario s in period t  

,( )s tp A    the probability of node ,s tA  

As some examples of bundle of indistinguishable scenarios ,s tB  at stage 2 (periods 1 to 10) in the 

scenario tree of figure 1, we can refer to scenarios 1 to 9 which share node 2, scenarios 10-18 

which share node 3, and scenarios 19-27 which share node 4. 

Finally, we need to specify the termination criteria for step 7 of the PHA. In this paper, the PHA 

is applied for integer variables full convergence. In other words, the convergence criteria is 

achieved when all integer components of kX  are equal to their counterparts in 1kX − . The values 

of continuous variables are then determined by solving the deterministic equivalent model (8)-

(14) when the integer variables are fixed at their converged values. 

In this work, the scenario sub problems are solved by CPLEX. However, this solution strategy 

provides the possibility of using heuristic or meta-heuristic algorithms to solve the scenario sub 

problems. Moreover, this method can also be implemented on parallel machines which reduces 

considerably the execution time. 

5- Applying the revised scenario updating procedure to sawmill production planning 

The scenario updating (SU) procedure proposed by Lulli and Sen (2006) has been motivated by 

the contamination method (Dupačová, 1995) which has been presented as a tool for post-

optimality analysis in scenario-based multi-stage stochastic linear programs (MSLP). The idea 

behind the method consists of estimating lower and upper bounds for the objective function value 

of a multi-stage stochastic program when new scenarios are added to the current scenario tree, 
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i.e., it explores the influence of out-of-sample scenarios on the solution of the stochastic program. 

We describe the SU procedure with the MSLP program given in the following form: 

min ( , ),
x

f x P
∈Χ

           (25) 

with x denoting the vector of first-stage decision variables, f linear in P (probability distribution) 

and nRΧ ⊂ the set of feasible decision variables. Denoting by ( )Pφ  the optimal value of the 

program (25) the contamination method focuses on ( )Pφ  and its perturbations with respect to 

inclusion of additional scenarios. Under appropriate assumptions on the optimal solution set and 

on the value function we can bound the objective function value of the perturbed stochastic 

program. If we consider the perturbation given by a single scenario { }z  with probability mass 

zp  and probability distribution P concentrated at scenarios 1,..., Pξ ξ  with probability mass 

sp s P∀ ∈ , then the perturbed distribution can be presented as (1 )z zP p P p z′ = − + . Figure 2 

illustrates better the perturbation of a current scenario tree Ρ  by a scenario { }z . 

Insert figure 2 here. 

The lower bound on the objective function value of the perturbed stochastic program is as 

follows. 

(1 ) ( ) ( ),z zLB p P p zφ φ= − +          (26) 

where ( )zφ  is the value of the scenario { }z  (deterministic) problem. An upper bound on the 

optimal value of the contaminated program can be computed, if the SMIP has a complete 

recourse property. We have: 

(1 ) ( ) ( ( ), ( )),z zUB p P p f x zφ δ= − + Ρ             (27) 

where ( ( ), ( ))f x P zδ  denotes the objective function value of the current solution ( )x P  under 

the perturbed scenario tree with a probability distribution ( )zδ . The objective function value of 
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current solution in the production planning model (8)-(14) under the perturbed scenario tree is 

computed as follows: 

(1) Formulate model (8)-(14) for the perturbed scenario tree.  

(2) Fix the decision variable values corresponding to nodes in the current (non-perturbed) 

scenario tree, based on the current solution ( )x P . 

(3)  Solve model (8)-(14) with decision variables in the nodes corresponding to the added 

scenario.  

For more details on how these bound are derived, the reader is referred to Lulli and Sen (2006). 

The scenario updating procedure can be summarized as follows. 

Initialization 

We start with a subset of scenarios 0P P⊂ , where P is the set of scenarios (selection phase). 

Different decision rules can be used for the selection phase. 

Step 1 

At iteration k, solve the “reduced” problem, which is composed by the subset of scenarios kP , 

by an appropriate exact/approximate algorithm. 

Step 2 

Compute an upper and lower bound on the change of the objective value induced by adding a 

scenario not in the current scenario tree. Those scenarios, which if added to the current 

scenario tree imply a significant change in the objective function value, are candidates to enter 

in the next sub-tree (updating phase).  

Step 3 

If there are no scenario candidates then stop, otherwise add those scenarios or some of them to 

the current scenario sub-tree, and go to step 1. 
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It would be worth mentioning that unlike a simple recourse multi-stage stochastic model which 

considers a fixed first-stage decision variable (e.g., production plan) at the beginning of the 

planning horizon, a full recourse model updates the decisions as new information is available 

through the time. Thus, the cost of a multi-stage stochastic model with simple recourse is usually 

higher than the cost of a full recourse model (it was shown in Kazemi Zanjani et al. (2010b)). 

Moreover, the cost of the deterministic model for some scenarios can be considerably high, 

comparing to the cost of a multi-stage stochastic model with full recourse. As a consequent, the 

lower bound defined in (26) might not be appropriate for a full recourse MS-MIP model. More 

precisely, this lower bound can be much higher than the objective value of the MS-MIP model 

with full recourse after adding a new scenario in to the current scenario tree. On the other hand, 

both terms in the upper bound defined in (27), ( )Pφ  and ( ( ), ( ))f x zδΡ , as well as 
zδ

φ (optimal 

objective function value of perturbed scenario tree) can be computed for a full recourse MS-MIP 

model. Thus, the proposed upper bound can be considered as a more realistic measure to verify 

the impact of adding a new scenario in the scenario tree.  

Scenario selection rules 

The key issue for an efficient implementation of the scenario updating method is concerned with 

the selection of representative scenarios. The goal is to select those scenarios which provide a 

good approximation of the scenario tree, in terms of quality of the solution. In the following, 

several decision rules to handle this task are discussed. It should be noted that in Lulli and Sen 

(2006) the following scenario selection rules are proposed: 

- The highest probability rule: Select scenarios in the decreasing order of their probability. 
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- The dissimilarity rule: Solve the deterministic problem for each scenario and compare their 

first-stage decisions. Select those scenarios which have the most different here and now 

solutions. 

- The random rule: select scenarios in a random manner. 

- The mixed rule: Use an appropriate mix of the other rules. 

As it was mentioned before, the production planning model in this article is formulated as a full 

recourse stochastic model. In other words, we do not have any first-stage decision variable in this 

model. As a consequent we use the dissimilarity rule based on the objective function value of 

each scenario deterministic model. Moreover, some scenarios with small probabilities might have 

very large or very small objective values. By integrating them into the scenario tree they might 

not have considerable impact on the objective function value of the full recourse stochastic 

model, due to their low probability. Thus, we did not find the dissimilarity rule as an efficient 

rule in a full recourse stochastic model to accelerate the rate of convergence of the algorithm.  

In order to increase the convergence rate of the SU algorithm and also to improve the quality of 

solutions we propose a new scenario selection rule that we refer it as the stage priority rule and is 

described as follows. 

- The stage priority rule: We define the priority of stages in the scenario tree in their increasing 

order as follows: Stage 1 has the highest priority, while the last stage has the lowest one. 

Thus, scenarios should be selected so that the majority of nodes corresponding to high 

priority stages are taken into account. For example, consider a scenario tree similar to 

scenario tree (b) in figure 2, where the current tree includes only scenarios S1 and S2. For the 

next iteration, we can select among scenario S3 and z. By adding scenario S3, a node 

corresponding to stage 2 will be considered while by adding scenario z a node corresponding 

Two Heuristic Algorithms for a Large-Scale Mixed-Integer Production Planning Model with Random Yield and Demand: 
A Case in Sawmills

23 CIRRELT-2010-23



 
 

to stage 3 with a lower priority will be added to the scenario tree. So, based on the stage 

priority rule, S3 should be selected as the candidate scenario. 

In fact, as the decision variables corresponding to initial stages (high priority ones) are fixed for 

the following stages, if we consider the majority of nodes in those stages, as we proceed in the 

algorithm, the impact of adding new scenarios on the objective function value is decreased 

gradually. This can accelerate the convergence of the algorithm into a good solution. As in many 

industries (e.g., in sawmills) the production plan is usually updated based on a rolling horizon, 

the idea is to obtain a production plan for the majority of scenarios (nodes) in the initial stages of 

the scenario tree (the initial periods). Moreover, mixing the stage priority rule with the highest 

probability rule properly, a more balanced approximate scenario tree is resulted, comparing to the 

rules proposed in Lulli and Sen (2006). A more balanced approximate scenario tree can be 

helpful to avoid too optimistic or pessimistic approximate solutions.  

Regarding the large dimensionality of our problem, adding only one scenario increases 

considerably the complexity of the resulting MS-MIP. Thus, in the updating phase, we add one 

scenario with the largest change in the objective function value per iteration of the algorithm. 

Note that the current solution of the problem should be used as a warm start for the next iteration 

of the algorithm. 

6- Computational results 

In this section, we provide the implementation results of the two solution strategies for the 

sawmill production planning example. CPLEX 11 and OPL 6.1 are used to implement the PHA 

and the RSU method. All numerical experiments are conducted on an AMD Athlon(tm) 64×2 

dual core processor 3800+, 2.01 GHz, 1.00 GB of RAM, running Microsoft Windows Server 

2003, standard edition.  
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Solution strategy 1 (the progressive hedging algorithm) 

As it was mentioned in section 4, at iteration 0 of the PHA, the scenario MIP sub-problems are 

solved to find good integer solutions. Each scenario sub-problem at iteration 0 includes 22,500 

constraints and 44,341 decision variables. Good integer solutions which are very close to the 

optimal one are found by considering a 3000 seconds global time limit for the MIP solver in 

CPLEX 11. It should be noted that the MIP solver of CPLEX 11 stops in about 17000 seconds to 

find an optimal integer solution with a very small optimality gap. However, this solution is not 

significantly different with the best integer solution found after 3000 seconds. The implementable 

solutions are computed for the nodes of the demand scenario tree at stages 2 and 3 by averaging 

the solutions for corresponding scenarios. In the following iterations, the penalty terms are added 

into the objective function of each scenario sub-problem to hedge against the non-

anticipatipativity. Each scenario MIQP sub-problem includes 23,180 constraints and 45,021 

decision variables. The MIQP solver of CPLEX 11 is used to find the optimal solution, which 

results the optimum in about 2000 seconds. It was shown in Løkketangen and Woodruff (1996) 

that the PHA is not sensitive to parameter r values. By considering r=0.6, the PHA converges for 

all integer variables after 3 iterations, which is quite fast. Thus, we did not consider larger values 

of r. After fixing the binary variables in the deterministic equivalent model at their converged 

values, this model is solved for continuous decision variables. The optimal solution has an 

objective function value (cost) equal to 2,565,031. As it was mentioned in section 4, the 

converged solution of the PHA in a non-convex case is a local optimal one for the MS-MIP 

model, thus its objective value can be considered as an upper bound for the optimal solution. 

It would be worth mentioning that we also examined a tabu search (TS) algorithm for general 

MIP models with the search on integer variables (see for example, Pedroso, 2005; Huang et al., 

2003) to solve the MIP and MIQP scenario sub-problems in the PHA, instead of solving them by 
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CPLEX. However, the TS did not succeed to converge into a good solution faster than 

CPLEX11, since at each iteration a number of relaxed large-scale LP and QP models should be 

solved to optimality. 

The solution strategy 2 (the revised scenario updating method) 

The algorithm is initiated by considering 3 scenarios (among 27) based on the dissimilarity rule 

(i.e., three scenarios with the highest, average and the lowest objective function values are 

selected). At the following iterations, the candidate scenario is selected based on the stage 

priority and the highest probability rules by putting more emphasis on the stage priority rule. It 

should be mentioned that for each scenario sub-tree in each iteration of the RSU algorithm the 

deterministic equivalent model represented by compact formulation is solved by the MIP solver 

of CPLEX 11. Table 1 summarizes the results of scenario updating method for the sawmill 

example. The third column in table 1 indicates the size of model (8)-(14) for each scenario sub-

tree and column 4 corresponds to its objective function value. Column 5 indicates the estimated 

upper bound on the objective function value by adding the candidate scenario selected based on 

the mentioned rules. The sixth column corresponds to the relative gap between the estimated 

upper bound and the current objective function value. Positive values in this column indicate a 

decline in the objective function value while the negative gaps indicate an improvement, after 

adding the candidate scenario. As it can be observed from table 1, as the algorithm proceeds, the 

gap between the expected cost of the new sub-tree by the current one decreases. Finally, at 

iteration 5, the values of this gap computed for 4 candidate scenarios (with the highest stage 

priority and probability) are negligible. Thus, it can be concluded that adding more scenarios to 

the current scenario tree would not affect the objective function value significantly and the 

current solution can be considered as a good approximate one. It would be worth mentioning that 

at iteration 5, 100%, 78% and 27% of nodes corresponding to stages 2, 3 and 4 in the scenario 
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tree described in section 3 are taken into account. Moreover, at initial iterations, we found an 

approximate solution for the reduced model in step 1 of the algorithm by limiting the global time 

of the MIP solver in CPLEX. Only at the last iteration, the problem is solved for the optimal 

solution.  

It should be mentioned that by using the scenario selection rules in Lulli and Sen (2006) the 

algorithm did not convergence until iteration 6. 

Insert table 1 here. 

The obtained results demonstrate the efficiency of the applied scenario selection rules (stage 

priority and the highest probability) in the RSU method in convergence after a quite small 

number of iterations. The comparison between the approximate solution of the RSU method with 

the local optimal solution of the solution strategy 1 (PHA), indicates a 14% gap between this 

approximate solution and the upper bound of the optimal objective value. Regarding that the 

approximate solution is obtained by considering less than 30% of scenarios and 50% on nodes in 

the original scenario tree, it can be considered as a good solution which can be obtained 

considerably faster than a local optimal solution (by PHA). 

Finally, we believe that the approximate solution of the RSU method in this example can be 

considered as a lower bound for the optimal solution. Using the stage priority and the highest 

probability rules for scenario selection in the RSU method, only 2 nodes are not considered at 

stage 3 (a low demand after an average demand at stage 2 and a high demand after a low demand 

at stage 2). Thus, we can conclude that the obtained solution is quite realistic till stage 3. 

However, since at stage 4 only 25% of scenarios (nodes) are taken into account we can expect 

that the real expected cost (the optimal objective value) be higher than the cost obtained by RSU 

method.  
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7- Conclusion 

In this paper, we used two solution strategies to find good solutions for a large-scale multi-stage 

stochastic mixed-integer production planning problem under uncertainty in products demands 

and processes yields. The deterministic equivalent model by considering all scenarios for random 

yield and demand could not be solved by CPLEX, regarding its large dimension. The first 

algorithm is based on the progressive hedging algorithm (PHA) which is used for the integer 

variable convergence. The scenario sub-problems are solved for optimality by CPLEX 11. The 

obtained solution is an upper bound for the optimal objective value. The second algorithm is a 

scenario updating method (Lulli and Sen, 2006) revised in two directions. First, we verified the 

efficiency of bounds proposed in the algorithm for MS-MIP models with full recourse. We used 

only the proposed upper bound in the algorithm. Moreover, we modified the scenario selection 

rules and we proposed a new rule to improve the rate of convergence and the quality of the 

solution. As the case study, production planning under the uncertainty in raw material (log) 

quality and product (lumber) demand in a realistic scale prototype sawmill was considered. The 

computational results indicated that the revised scenario updating algorithm converges in quite 

small number of iterations. Moreover, the approximate solution which is obtained by considering 

a small portion of scenarios in the original scenario tree has an acceptable gap with the upper 

bound found by the PHA.  

The revised scenario updating method should be applied for more examples of multi-stage 

stochastic MIP models with different scenario trees for a complete validation of the proposed 

modifications. Moreover, heuristic algorithms which are able to find good integer solutions for 

general (without a special structure) MIP and MIQP scenario sub-problems should be developed 

and applied in the PHA to reduce the execution time of this algorithm. Implementing the PHA on 

parallel machines can also reduce significantly the running time. 
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Figure 1. Scenario tree for the random demand 
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Figure 2- Perturbation of a scenario tree by a single scenario z 

 

 

Tables  
Table 1: Results of the revised scenario updating method 

Iteration #scenarios #constraints/#decision 
variables 

Objective 
function 

value 

The upper 
bound 

The 
relative 
gap (%) 

Scenario selection 
rule 

1 3 60,000/118,240 2,383,544 2,269,416 -5 dissimilarity 

2 4 82,500/162,580 2,097,401 2,204,807 4.8 stage priority + 
highest probability 

3 5 97,500/192,140 2,154,496 2,252,988 4.3 stage priority + 
highest probability

4 6 112,500/221,700 2,241,741 2,204,618 -1.7 stage priority + 
highest probability

5 7 127,500/251,260 2,186,905 2,186,087  
( ± 0.14%)* -0.04 stage priority + 

highest probability
*The average and standard deviation for 4 candidate scenarios 
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