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Abstract. This paper describes an exact algorithm capable of solving large-scale 

instances of an important hub location problem called the Uncapacitated Hub Location 

Problem with Multiple Assignments. The algorithm applies Benders decomposition to a 

strong path-based formulation of the problem. The standard decomposition algorithm is 

enhanced through the inclusion of several features such as the use of a multicut 

reformulation, the generation of strong optimality cuts, the integration of reduction tests, 

and the execution of a heuristic procedure. Extensive computational experiments were 

performed to evaluate the efficiency and robustness of the algorithm. Computational 

results obtained on classical benchmark instances (with up to 200 nodes and 40,000 

commodities) and on a new and more difficult set of instances (with up to 500 nodes and 

250,000 commodities) confirm the efficiency of the algorithm. 
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1 Introduction

Transportation, telecommunications and computer networks frequently employ hub-and-
spoke architectures to efficiently route demand between many origins and destinations. Their
key feature lies in the use of consolidation, switching, or transshipment points, called hub
facilities, to connect a large number of origin/destination (O/D) pairs by using a small
number of links. This helps reduce setup costs, centralize commodity handling and sorting
operations, and achieve economies of scale on routing costs through the consolidation of
flows.

Hub Location Problems (HLPs) constitute a challenging class of NP-hard combinatorial
optimization problems combining location and network design decisions. Their main diffi-
culty stems from the inherent interrelation between two levels of the decision process. The
first level considers the selection of a set of nodes to locate hub facilities, whereas the second
level deals with the design of the hub network, usually determined by the allocation pattern
of nodes to hub facilities.

The field of hub location is rooted in the work of O’Kelly (1986) and has since evolved into
a rich research area. We refer the reader to some of the main survey articles on this topic. The
early reviews dealing with HLPs, by O’Kelly and Miller (1994) and Campbell (1994), contain
classification schemes for the existing models and for the topological structures applicable
to hub networks. Klincewicz (1998) later presented a survey on the design of hub networks
in the context of telecommunication networks, and Bryan and O’Kelly (1999) concentrated
on air transportation networks. Campbell et al. (2002) wrote a comprehensive survey on
network hub location problems in which the location of hubs is the key decision. A more
recent paper, by Alumur and Kara (2008), provides an updated and extensive review of the
growing literature on network hub location models.

Despite the considerable efforts already made by many researchers, the optimal solution of
HLPs remains challenging, particularly when considering more realistic, large-scale instances.
To give an idea of the inherent difficulty of HLPs, instances with more than 50 nodes cannot
be solved optimally for the vast majority of the variants considered in the literature, and it
is only very recently that for some limited classes of HLPs, instances with up to 200 nodes
have been solved optimally (see Camargo et al., 2008; Contreras et al., 2010).

In this paper we present an exact algorithm capable of solving large-scale instances for one
of the most classical and general problems in the hub location literature, the Uncapacitated
Hub Location Problem with Multiple Assignments (UHLPMA). In this problem, the capacity
on the incoming and outgoing flows at the hub facilities and the amount of flow routed
through each link of the hub network are unbounded. The number of hubs to locate is
not known a priori, but a fixed set-up cost for each hub is considered. The objective is to
minimize the sum of hub fixed costs and of demand transportation costs over the network. We
consider the most general version of hub location in which multiple allocations are allowed,
i.e., each O/D point may send and receive demand through several hubs. Note that a multiple
assignment pattern is crucial when minimizing the total transportation cost, and includes
the single assignment as a particular case (see e.g., Campbell, 1996).

There exist several papers on the UHLPMA. The first mathematical programming model
was introduced by Campbell (1994) but was not computationally tested. Since then, several
efforts have been made to produce better and tighter mixed integer programming (MIP)
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formulations. Boland et al. (2004) have developed a multicommodity flow-based formulation
capable of producing optimal solutions for instances with up to 50 nodes by using a general
purpose solver. Later, Hamacher et al. (2004) and Maŕın et al. (2005) presented path-based
formulations yielding much tighter LP bounds. However, due to their size, these formulations
were only able to optimally solve instances with up to 25 nodes using general purpose solvers.
The first exact algorithms, put forward by Klincewicz (1996) and by Mayer and Wagner
(2002), were branch-and-bound (BB) methods based on dual ascent and dual adjustments
techniques. In particular, the HubLocator algorithm (Mayer and Wagner, 2002) was able
to obtain optimal solutions for instances with up to 40 nodes. Maŕın (2005) proposed a
relax-and-cut algorithm that could solve to optimality instances with up to 50 nodes. Later,
Cánovas et al. (2007) introduced a new BB method, also based on a dual ascent strategy.
This method was able to solve to optimality instances with up to 120 nodes. Recently,
Camargo et al. (2008) presented an exact Benders decomposition algorithm that was applied
to instances involving up to 200 nodes. To the best of our knowledge, these instances are
the largest ones ever solved exactly for any type of uncapacitated hub location problem.

The main contribution of this paper is to propose an exact algorithm applicable to large-
scale instances of the UHLPMA involving up to 500 nodes and 250,000 commodities. It is
a Benders decomposition algorithm based on the path-based formulation of Hamacher et al.
(2004). The basic implementation of the algorithm is enhanced through several algorithmic
features that make it more robust and efficient. These include: i) the use of a stronger
multicut Benders reformulation, ii) the generation of stronger, almost undominated cuts,
iii) the inclusion of reduction tests during the inner iterations of the Benders decomposition
algorithm and, iv) the use of a heuristic for the a priori generation of optimality cuts. In order
to evaluate and assess the robustness, efficiency and limitations of our proposed algorithm,
extensive computational experiments were performed on the classical Australian Post data
set and on a new challenging set of instances.

The remainder of the paper is organized as follows. Section 2 formally defines the prob-
lem, and presents an MIP formulation as well as properties of optimal solutions. The basic
Benders reformulation, the Benders decomposition algorithm and some aspects of the dual
problem are then presented in Section 3. Section 4 introduces several features that improve
the convergence and efficiency of the algorithm. Section 5 presents the results of extensive
computational experiments performed on a wide variety of instances. Conclusions follow in
Section 6.

2 Problem Definition

Let G = (N,A) be a complete digraph, where N is the set of nodes and A is the set of
arcs. Let also H ⊆ N represent the set of potential hub locations, and K represent the
set of commodities whose origin and destination points belong to N . For each commodity
k ∈ K, define Wk as the amount of commodity k to be routed from the origin o(k) ∈ N to
the destination d(k) ∈ N . For each node i ∈ H, fi is the fixed set-up cost for locating a
hub. The distance, or transportation cost dij between nodes i and j is assumed to satisfy
the triangle inequality. The UHLPMA consists in locating a set of hubs and in determining
the routing of commodity flows through the network, with the objective of minimizing the
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total set-up and transportation cost.
Given that hub nodes are fully interconnected and distances satisfy the triangle inequality,

every path between an origin and a destination node will contain at least one and at most
two hubs. For this reason, paths between two nodes are of the form (o(k), i, j, d(k)), where
(i, j) ∈ H ×H is the ordered pair of hubs to which o(k) and d(k) are allocated, respectively.
Therefore, the transportation cost of routing commodity k along the path (o(k), i, j, d(k))

is given by F̂ijk = Wk

(
χdo(k)i + τdij + δdjd(k)

)
, where χ, τ , and δ represent the collection,

transfer and distribution costs along the path. To reflect economies of scale between hub
nodes, we assume that τ < χ and τ < δ. We define binary location variables zi, i ∈ H, equal
to 1 if and only if a hub is located at node i. We also introduce binary routing variables
xijk, k ∈ K and (i, j) ∈ H ×H, equal to 1 if and only if commodity k transits via hub arc
(i, j). Following Hamacher et al. (2004), the UHLPMA can be stated as follows:

minimize
∑
i∈H

fizi +
∑
i∈H

∑
j∈H

∑
k∈K

F̂ijkxijk

subject to
∑
i∈H

∑
j∈H

xijk = 1 ∀ k ∈ K (1)∑
j∈H

xijk +
∑

j∈H\{i}

xjik ≤ zi ∀ i ∈ H,∀ k ∈ K (2)

xijk ≥ 0 ∀ i, j ∈ H,∀ k ∈ K (3)

zi ∈ {0, 1} ∀ i ∈ H. (4)

The first term of the objective function represents the total set-up cost of the hub facilities
and the second term is the total transportation cost. Constraints (1) guarantee that there is
a single path connecting the origin and destination nodes of every commodity. Constraints
(2) prohibit commodities from being routed via a non-hub node. Finally, constraints (3) and
(4) are the standard non-negativity and integrality constraints.

2.1 Properties of Optimal Solutions and Preprocessing

Several properties and characteristics of optimal UHLPMA solutions are known and can be
used to perform preprocessing. In this section, we unify and summarize the most relevant
results and present them in the context of the path-based formulation. Unless otherwise
stated, the following properties are a consequence of the assumption of unlimited capacity
at the hub nodes.

In any optimal UHLPMA solution, every path uses at most one direction of a hub edge
e = (e1, e2) ∈ H ×H, the one with lowest transportation cost (Hamacher et al., 2004). We
can therefore eliminate approximately half of the xijk variables associated to non-optimal
directions by simply using an undirected transportation cost for every hub edge. Let E =
{L ⊆ H : 1 ≤ |L| ≤ 2} be the set of subsets of H containing one or two hubs. The undirected

transportation cost Fek for each e ∈ E and k ∈ K is defined as Fek = min{F̂ijk, F̂jik}.
Moreover, it can be shown that in any optimal UHLPMA solution, no commodity k will

be routed through a hub edge e containing two different hubs whenever it is cheaper to route
it through only one of them (Boland et al., 2004; Maŕın et al., 2005).
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Property 1 For every k ∈ K and e ∈ E, e1 6= e2, such that Fek > min
{
F(e1,e1)k, F(e2,e2)k

}
,

xek = 0 in any optimal UHLPMA solution.

We now consider the particular case of commodities k having the same origin and des-
tination points, that is o(k) = d(k). One can observe that such commodities will never be
routed through two hubs. Indeed, they will always be collected and distributed by their
closest open hub facility (Boland et al., 2004).

Property 2 For every e ∈ E, such that e1 6= e2 and k ∈ K such that o(k) = d(k), xek = 0
in any optimal UHLPMA solution.

The above properties lead to a more compact formulation with fewer variables, but with
the same number of constraints. We define a set of candidate hub edges for each commodity
k ∈ K as

Ek =

{
{(i, i)|i ∈ H}

⋃{
e : e ∈ E, (e1 6= e2) and

(
Fek < min

{
F(e1,e1)k, F(e2,e2)k

})}
, if o(k) 6= d(k),

{(i, i)|i ∈ H} , otherwise.

The UHLPMA can thus be restated as

minimize
∑
i∈H

fizi +
∑
k∈K

∑
e∈Ek

Fekxek (5)

subject to
∑
e∈Ek

xek = 1 ∀ k ∈ K (6)∑
e∈Ek:i∈e

xek ≤ zi ∀ i ∈ H,∀ k ∈ K (7)

xek ≥ 0 ∀ k ∈ K, ∀ e ∈ Ek (8)

zi ∈ {0, 1} ∀ i ∈ H. (9)

Finally, we consider the special case of symmetric transportation costs. Transportation
costs are symmetric when the cost of path (i, k,m, j) is equal to the cost of path (j,m, k, i).
That is, Fek1 = Fek2 for each e ∈ E and each pair of commodities (k1, k2) such that o(k1) =
d(k2) and d(k1) = o(k2). The only condition for having symmetric transportation costs is
that collection and distribution costs should be equal.

Property 3 If χ = δ, then transportation costs Fek are symmetric for each k ∈ K and each
e ∈ E.

Whenever transportation costs are symmetric, we can further reduce the number of xek
variables and constraints by considering as one commodity the sum of the two commodities
having the exact same opposite O/D pairs.

3 Benders Decomposition

Benders decomposition is a well-known partitioning method applicable to mixed integer
programs (Benders, 1962). It separates the original problem into two simpler ones: an
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integer master problem and a linear subproblem. In this section, we introduce a Benders
reformulation of the UHLPMA based on the compact formulation (5)–(8). We then describe
a basic Benders decomposition algorithm to solve the reformulation. Because of degeneracy
in the primal subproblem, there may exist multiple solutions in the dual. We thus present an
efficient procedure to select, among the set of optimal dual solutions, an appropriate solution
capable of generating a strong cut for the master problem.

3.1 Benders Reformulation

Let Z = B|H| denote the set of binary vectors associated with the zi variables. For any fixed
vector ẑ ∈ Z, the primal subproblem (PS) in the space of the xek variables is

v(ẑ) = minimize
∑
e∈E

∑
k∈K

Fekxek

subject to (6), (8)∑
e∈E:i∈e

xek ≤ ẑi ∀ i ∈ H,∀ k ∈ K. (10)

Let αk and uik be the dual variables associated with constraints (6) and (10), respectively.
The dual subproblem (DS), which is the dual of PS, can be stated as follows:

maximize
∑
k∈K

αk −
∑
i∈H

∑
k∈K

ẑiuik (11)

subject to αk − ue1k − ue2k ≤ Fek ∀k ∈ K, ∀e ∈ E, |e| = 2 (12)

αk − ue1k ≤ Fek ∀k ∈ K, ∀e ∈ E, |e| = 1 (13)

uik ≥ 0 ∀ i ∈ H,∀ k ∈ K. (14)

Let D denote the set of feasible solutions of DS and let PD denote the set of extreme
points of D. Observe that D is not modified when changing ẑ and, because Fek ≥ 0 for each
e ∈ Ek and k ∈ K, the null vector 0 is always a solution to DS. Hence, because of strong
duality, either the primal subproblem is feasible and bounded, or it is infeasible. We are
thus interested in ẑ vectors that give rise to primal subproblems of the former case. The
following result establishes under which condition such vectors exist.

Proposition 1 For any vector z ∈ Z such that
∑

i∈H zi ≥ 1, the primal and dual subprob-
lems are feasible and bounded.

Proof For any vector z such that
∑

i∈H zi ≥ 1, there exists at least one possible path
xek for every commodity k ∈ K and thus, the primal problem is feasible. Moreover, since
the transportation costs Fek are finite and because of constraints (6) and (10), any feasible
solution of PS must be bounded. By strong duality, the dual subproblem is also feasible and
bounded. �

It follows that the dual objective function value is equal to

max
(α,u)∈PD

∑
k∈K

αk −
∑
i∈H

∑
k∈K

ẑiuik. (15)
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Introducing an extra variable η for the overall transportation cost, we can formulate the
Benders master problem (MP) as follows:

minimize
∑
i∈H

fizi + η

subject to η ≥
∑
k∈K

αk −
∑
i∈H

∑
k∈K

uikzi ∀(α, u) ∈ PD (16)∑
i∈H

zi ≥ 1 (17)

zi ∈ {0, 1} ∀ i ∈ H. (18)

Observe that Benders feasibility cuts associated with the extreme rays of D are not nec-
essary in the Benders reformulation because the feasibility of PS is ensured by constraints
(17). We have thus transformed problem (5)–(8) into an equivalent MIP problem with |H|
binary variables and one continuous variable. Nevertheless, the above Benders reformulation
contains an exponential number of constraints and must be tackled by an adequate cutting
plane approach. Thus, we iteratively solve relaxed master problems containing a small subset
of the constraints (16) associated with the extreme points of PD, and we keep adding these
as needed by solving dual subproblems until an optimal solution to the original problem is
obtained.

3.2 Basic Benders Decomposition Algorithm

Let ub denote an upper bound on the optimal solution value and let t represent the current
iteration number. Let P t

D denote the restricted set of extreme points of D at iteration t,
MP(P t

D) the relaxed master problem obtained by replacing PD by P t
D in MP, and v(MP (P t

D))
its optimal solution value. Also, let zt be an optimal solution vector of MP(P t

D), DS(zt) the
dual subproblem for zt, and v(DS(zt)) its optimal solution value. A pseudo-code of the basic
Benders decomposition algorithm is provided in Algorithm 1.

Benders Decomposition for Large-Scale Uncapacitated Hub Location
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Algorithm 1: Benders decomposition
ub←∞, t← 0
P t
D ← 0
terminate← false
while (terminate = false) do

Solve MP(P t
D) to obtain zt

if (v(MP (P t
D)) = ub) then

terminate← true
else

Solve DS(zt) to obtain (α, u) ∈ PD
P t+1
D ← P t

D ∪ {(α, u)}
if (v(DS(zt)) +

∑
i∈H fiẑi < ub) then

ub← v(DS(zt)) +
∑

i∈H fiẑi
end if

end if
t← t+ 1

end while

Whenever the problem defined by (5)–(9) is feasible, Algorithm 1 will yield an optimal
solution. The computational efficiency of the above Benders decomposition algorithm de-
pends mainly on: i) the computational effort needed to solve MP(P t

D), ii) the computational
effort needed to solve DS(zt), and iii) the number of iterations required to obtain an optimal
solution. Next, we present a methodology for efficiently solving DS(zt) by exploiting the
structure of the primal subproblem. In Section 4, we will present some techniques focusing
on ii) and iii).

3.3 Solving the Subproblem

At any iteration t of Algorithm 1, we obtain an optimal solution vector zt of MP(P t
D). Let

H t
1 = {i : zti = 1} be the set of open hubs and H t

0 = {i : zti = 0} be the set of closed hubs.
Given that zt ∈ Z, we can exploit the structure of the primal subproblem to obtain a vector
of optimal dual variables (αt, ut) more efficiently than by using an LP solver for the explicit
solution of DS. In particular, observe that PS can be reduced to the equivalent problem:

minimize
∑
e∈E

∑
k∈K

Fekxek

subject to
∑

e∈Ek∩(Ht
1×Ht

1)

xek = 1 ∀ k ∈ K, (19)

xek ≥ 0 ∀ e ∈ E,∀ k ∈ K. (20)

This problem can be separated into |K| independent subproblems PStk, one for each commod-
ity k ∈ K. Each PStk is a semi-assignment problem which can be easily solved by choosing
the minimum transportation cost route among those that use open hubs. For a given k, a
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primal optimal solution of PStk, denoted by xt, can be expressed as

xte(k)k = 1, for e(k) = arg min
{
Fek : e ∈ Ek ∩

(
H t

1 ×H t
1

)}
(21)

xtek = 0, for e ∈ Ek \ {e(k)} . (22)

The optimal solution value of PS at zt, denoted as v(zt), can thus be expressed as

v(zt) =
∑
k∈K

Fe(k)k =
∑
k∈K

min
e∈E

{
Fek : e ∈ Ek ∩

(
H t

1 ×H t
1

)}
. (23)

In order to obtain an associated optimality cut, we still need to produce an optimal dual
solution (αt, ut). We can use duality theory to recover a dual solution (αt, ut) from the primal
optimal solution xt. In particular, the complementary slackness conditions are

utik

( ∑
e∈Ek:i∈e

xtek − zti

)
= 0, ∀i ∈ H, k ∈ K, (24)

xtek
(
αtk − ute1k − u

t
e2k
− Fek

)
= 0, ∀k ∈ K, e ∈ Ek, |e| = 2, (25)

xtek
(
αtk − utek − Fek

)
= 0, ∀k ∈ K, e ∈ Ek, |e| = 1. (26)

First, conditions (24) imply that

utik = 0, ∀i ∈ H t
1 \ {e1(k), e2(k)} ,∀k ∈ K. (27)

Next, conditions (25) and (26) imply that dual slack variables, associated to optimal primal
variables xtek set to one, must be equal to zero. For each k ∈ K, this condition is

αtk − ute1(k)k − ute2(k)k = Fe(k)k, if |e(k)| = 2, (28)

αtk − ute1(k)k = Fe(k)k, if |e(k)| = 1. (29)

This implies that every feasible solution (α, u) ∈ D satisfying (27)–(29) is indeed an optimal
solution of DS. We thus have characterized the set of optimal solutions of the dual subproblem
associated to the optimal primal solution xt.

Proposition 2 Let xt be an optimal solution of PStk. The set of optimal dual solutions of
DSt associated to xt can be characterized as

DOt = {(α, u) ∈ D : (27)–(29) hold} .

The above result implies that we can construct optimal dual solutions (αt, ut) from the
optimal primal solution xt in two steps. First, we fix each αtk, u

t
e1(k)k and ute2(k)k, for each

k ∈ K, to a particular feasible value, with respect to constraints (12)–(13) and conditions
(28)–(29), and we fix each utik, such that i ∈ H t

1 \ {e1(k), e2(k)}, to zero. Second, we solve a
reduced system of inequalities by fixing the variables from the first step in constraints (12)
and (13), to obtain an optimal value of the remaining uik such that i ∈ H t

0, for each k ∈ K.
In the remainder of this section, we focus on computing an optimal solution (αt, ut) from

a subset of DOt associated to solutions in which αtk = Fe(k)k, u
t
e1(k)k = 0 and ute2(k)k = 0, for
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each k ∈ K. By doing so, we avoid checking the feasibility of these variables with respect to
constraints (12)–(13). In Section 4 we present some theoretical insights that help us select
particular values of the αtk, u

t
e1(k)k and ute2(k)k variables associated with optimal dual solutions

that could produce stronger optimality cuts.
Observe that some constraints (12) can now be dropped from the model once αtk, u

t
e1(k)k

and ute2(k)k are set to a particular value for each k ∈ K. Because of constraints (14),

we know that constraints (12) having a non-positive right-hand side λek = αtk − Fek are
always satisfied. Hence, we only need to consider constraints (12) such that λek > 0. Let
E+
k = {e : λek > 0, e ∈ Ek ∩ (H t

0 ×H t
0)} denote this subset of constraints. Moreover, because

utik = 0 for each i ∈ H t
1, constraints (12) associated with edges incident to a node i ∈ H t

1 can
be implicitly considered as lower bounds for the remaining uik variables. In particular, for
each node i ∈ H t

0, let µie1 = max {λek : e ∈ Ek ∩ (H t
0 ×H t

1) , e1 = i} denote the maximum λek
value of constraints (12) associated with edges having i as first node and any second node
e2 ∈ H t

1. Similarly, for each node i ∈ H t
0, let µie2 = max {λek : e ∈ Ek ∩ (H t

1 ×H t
0) , e2 = i}

denote the maximum λek value of constraints (12) having i as second node and any first
node e1 ∈ H t

1. Using µie1 , µ
i
e2

and constraints (13), we set the lower bound of uik variable
as lik = max

{
0, λ(i,i)k, µ

i
e1
, µie2

}
for each node i ∈ H t

0. From these results, we obtain the
reduced system

ue1k + ue2k ≥ λek ∀e ∈ E+
k (30)

uik ≥ lik ∀ i ∈ H t
0. (31)

Nevertheless, not all feasible solutions of (30)–(31) are candidates to generate useful op-
timality cuts. Given the non-positive coefficients of the zi variables in (15), optimal dual
vectors (αt, ut) having large elements in ut are likely to produce weak optimality cuts. We
are therefore interested in (αt, ut) vectors for which ut is as small as possible in order to
obtain the largest possible lower bound on MP(P t+1

D ).
Algorithm 2 describes a simple procedure for the computation of an optimal solution

(αt, ut) having small ut elements. It constructs a solution by directly ensuring feasibility of
the system (30)–(31) row by row, while keeping the value of each uik variable as small as
possible. Let ψ and γ be two non-negative parameters such that ψ + γ = 1.
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Algorithm 2: Computing (αt, ut)
forall (k ∈ K) do
αtk ← min {Fek : e ∈ Ek ∩ (H t

1 ×H t
1)}

forall (i ∈ H t
1) do

uik ← 0
end do
forall (i ∈ H t

0) do
uik ← lik

end do
forall (e ∈ E+

k ) do
∆← ue1k + ue2k − λek
if (∆ < 0) then
ue1k ← ue1k − ψ∆
ue2k ← ue2k − γ∆

end if
end do

end do

The above algorithm has an O(
∑

k∈K |E
+
k |) time complexity. Note that this procedure

does not necessarily produce an extreme point of (30)–(31) as in the case of the simplex
method. We could instead obtain a point lying on a face of the polyhedron defined by
(12)–(14). However, this does not cause any problem because we are still producing a valid
Benders cut which will separate the optimal solution of the current master problem MPt,
thus ensuring convergence.

4 Algorithmic Refinements

We now analyze several ways of improving the convergence and stability of the Benders
decomposition algorithm presented in the previous section. We first present a multicut
version of the Benders reformulation, which exploits the decomposability of the subproblem.
Theoretical aspects concerning stronger, non-dominated optimality cuts are then introduced
and used to develop an algorithm capable of efficiently generating stronger cuts that those
presented in Section 3. Later, we show how to incorporate some reduction tests into the
Benders decomposition algorithm in order to reduce the size of both the master problem and
the subproblem, and thus accelerate its convergence. Finally, we present a simple heuristic
procedure that can be used to generate an initial set of optimality cuts for the master problem
to accelerate the convergence of the algorithm and to improve the efficiency of the reduction
tests.

4.1 Multicut Benders Reformulation

It is known that the number of cuts required to obtain an optimal solution of the Benders
reformulation will be, in the worst case, equal to the number of extreme points inD. However,
this number can be reduced given that the subproblem is decomposable into |K| independent
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subproblems (see, e.g. Birge and Louveaux, 1988). We could in principle generate optimality
cuts associated to extreme points of each dual polyhedron of the |K| subproblems, but
Camargo et al. (2008) show that when adding |K| cuts per iteration, the reduction in the
number of iterations is not justified by the increased computational effort required for the
solution of the relaxed master problems, even for small size instances.

Instead of adding in a disaggregated way all |K| cuts at each iteration, we can aggregate
the information obtained to generate a set of optimality cuts associated with subsets of
commodities. In particular, for each node j ∈ H, let Kj ⊂ K be the subset of commodities
whose origin node is j. We can separate the subproblem into |H| independent subproblems,
one for each node. Hence, we consider the dual polyhedra of these |H| subproblems and
generate cuts from them. Let PD be the set of extreme points of the dual polyhedron PDj
associated with subproblem i. We thus obtain the following Benders reformulation:

minimize
∑
i∈H

fizi +
∑
i∈H

ηi

subject to (17), (18)

ηj ≥
∑
k∈Kj

αtk −
∑
i∈H

∑
k∈Kj

utikzi ∀j ∈ H, ∀(α, u) ∈ PDj . (32)

Using this reformulation, only |H| potential optimality cuts will be generated when solv-
ing the subproblem, instead of |K| cuts as is the case when considering the complete sepa-
rability into |K| dual subproblems.

4.2 Pareto-optimal Cuts

One way to improve the convergence of the Benders algorithm is to construct stronger,
undominated cuts, known as Pareto-optimal cuts (Magnanti and Wong, 1981). We say that
the cut generated from the dual solution (αa, ua) dominates the cut generated from the dual
solution (αb, ub) if and only if∑

k∈K

αak −
∑
i∈H

∑
k∈K

uaikzi ≥
∑
k∈K

αbk −
∑
i∈H

∑
k∈K

ubikzi

for all z ∈ Z with strict inequality for at least one point. A cut is Pareto-optimal if no other
cut dominates it. Let Q be the polyhedron defined by (17) and 0 ≤ zi ≤ 1 for all i ∈ H, and
let ri(Q) denote the relative interior of Q. To identify a Pareto-optimal cut at iteration t,
we must solve the following Pareto-optimal subproblem (POt):

maximize
∑
k∈K

αk −
∑
i∈H

∑
k∈K

z0
i uik (33)

subject to (12)− (13),

αk −
∑
i∈H

ztiuik = Fe(k)k ∀k ∈ K, (34)

where z0 ∈ ri(Q) and, as before, Fe(k)k is the optimal solution value of subproblem k.
Constraints (34) ensure that the optimal solution of POt is chosen from the set of optimal
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solutions of DSt. Note that POt can also be separated into |K| independent subproblems
(POt

k), one for each k ∈ K. We thus obtain

maximize αk −
∑
i∈H

z0
i uik (35)

subject to αk −
∑
i∈H

ztiuik = Fe(k)k (36)

αk − ue1k − ue2k ≤ Fek ∀e ∈ Ek, |e| = 2 (37)

αk − ue1k ≤ Fek ∀e ∈ Ek, |e| = 1 (38)

uik ≥ 0 ∀ i ∈ H. (39)

Because of constraint (36) and of the fractional coefficients z0
i , the primal structure of

(35)–(39) cannot be exploited to efficiently obtain an optimal dual solution, as is the case
for the DS. This means that we need to solve |K| linear programs, one for each k ∈ K,
to obtain a Pareto-optimal cut. Computational experiments indicate that the generation
of Pareto-optimal cuts considerably reduces the number of required iterations to converge.
However, the time needed to solve the |K| linear programs is not compensated by the im-
proved convergence of the Benders algorithm, even on small-size instances. Given that our
goal is to solve large-scale instances, we have developed an efficient procedure capable of pro-
ducing good approximations of the optimal solution of POt

k, and thus of generating stronger
optimality cuts, without requiring the explicit solution of (35)–(39).

Here we present an approximate procedure capable of efficiently producing stronger opti-
mality cuts, which are not necessarily Pareto-optimal, by exploiting the fact that POt

k can be
expressed as the maximization of a piecewise linear and concave function of αk. In particu-
lar, if we fix the value of the αk variable in (35)–(39), we can write the resulting subproblem
as the following implicit function:

L(αk) = maximize −
∑
i∈H

z0
i uik

subject to
∑
i∈H

ztiuik = αk − Fe(k)k (40)

ue1k + ue2k ≥ αk − Fek ∀e ∈ Ek, |e| = 2 (41)

ue1k ≥ αk − Fek ∀e ∈ Ek, |e| = 1 (42)

uik ≥ 0 ∀ i ∈ H. (43)

We now can state POt
k as

max
αk

G(αk), (44)

where G(αk) = αk − L(αk).

Proposition 3 G(αk) is a piecewise linear and concave function of αk.

Proof Rewriting the right-hand side vector of constraints (40)–(43) as b + αkb̂, where
b = (−Fe(k)k,−F1k, . . . ,−F|Ek|k) and b̂ = (1, 1, . . . , 1), the problem can be viewed as a lin-
ear program in which the right-hand side vector is perturbed along the identity vector.
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From linear programming theory, we know that parametric analysis on the right-hand side
vector in a maximization problem always produces a piecewise linear and concave function
(Bazaraa et al., 1990). Therefore, L(αk) is a piecewise linear and concave function of αk. �

By applying parametric analysis over L(αk), we can determine the ranges of the linear
segments and, thus, the break points at which changes of optimal bases (with respect to αk)
take place in G(αk). Moreover, the slope of each linear segment can be computed using the
information of its associated optimal basis. We can therefore obtain an optimal solution of
POt

k as follows. First, set αk to some initial feasible value and evaluate L(αk) to obtain an
optimal basis associated to a linear segment. Then perform as many dual simplex iterations
as break points exist before reaching a point at which the slope of G(αk) is equal to zero.
Even though this procedure is more efficient than solving POt

k directly by an LP solver,
it still requires the solution of an LP problem to generate an initial optimal basis and its
update at each break point.

Instead of optimally solving POt
k to produce a Pareto-optimal cut, we solve POt

k only
approximately and still produce strong, but not necessarily undominated optimality cuts.
Our procedure is based on the estimation of the function G(αk) by using an adaptation of
Algorithm 2 presented in Section 3. Using this estimation, we successively evaluate G(αk)
within a given interval Lk ≤ αk ≤ Uk and increase αk until the estimation of G(αk) stops
increasing, or until αk = Uk. In what follows, we present the details on how to efficiently
evaluate G(αk) and how to construct an interval in which the optimal value of αk is contained.
Then, we summarize the overall procedure.

4.2.1 Evaluating G(αk).

Optimal solutions of PStk affect the structure of POt
k and we must therefore distinguish

between two possible cases when evaluating G(αk): either the optimal edge e(k) has a single
hub node (|e(k)| = 1) or it has two different hub nodes (|e(k)| = 2). Thus, we need to define
two functions G1(αk) and G2(αk) and two intervals L1

k ≤ αk ≤ U1
k and L2

k ≤ αk ≤ U2
k ,

respectively. Using constraint (36), the objective function (35) can be expressed as

maximize Fe(k)k +
∑
i∈H

(zti − z0
i )uik. (45)

For any i ∈ H t
1, we have zti = 1 and the coefficient δi = zti − z0

i is strictly positive. If i ∈ H0,
we have zti = 0 and the coefficient δi is strictly negative. Therefore, we would like to increase
as much as possible the value of the uik variables such that i ∈ H t

1, and keep as low as
possible the value of the uik variables such that i ∈ H t

0.
For a given αk, the value of uik variables such that i ∈ H t

1 can be already determined using
constraints (36)–(39). If |e(k)| = 2, given that constraint (36) can be read as αk − Fe(k)k =∑

i∈Ht
1
uik, and since ue1(k)k + ue2(k)k ≥ αk − Fe(k)k and uik ≥ 0 for each i ∈ H t

1, we have

ue1(k)k + ue2(k)k = αk − Fe(k)k, (46)

uik = 0, ∀i ∈ H t
1 \ {e1(k), e2(k)} . (47)
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If |e(k)| = 1, by using similar arguments we obtain

ue1(k)k = αk − Fe(k)k, (48)

uik = 0, ∀i ∈ H t
1 \ {e1(k)} . (49)

Hence, for a fixed αk, the optimal solution for the remaining uik variables can be determined
by solving a reduced subproblem. As in the case of the dual subproblem DS, once αk is
fixed some constraints (37) can be eliminated from the model. In particular, we only need to
consider constraints (37) whose right-hand side λek(αk) = αk − Fek is strictly positive. Let
E+
k (αk) = {e : λek(αk) > 0, e ∈ Ek ∩ (H t

0 ×H t
0)} denote this set of constraints. Furthermore,

because of constraints (47) and (49), constraints associated with edges incident to a node
i ∈ H t

1 \{e1(k), e2(k)} can be seen as lower bounds for the remaining uik variables. For every
i ∈ H t

0, let

µie1(αk) = max
{
λek(αk) : e ∈ Ek ∩

(
H t

0 ×H t
1

)
, e1 = i, e2 6= e1(k) and e2 6= e2(k)

}
denote the maximum λek(αk) value associated to hub edges having i as first node and any
second node e2 ∈ H t

1 \ {e1(k), e2(k)}. Similarly, for every i ∈ H t
0, let

µie2(αk) = max
{
λek(αk) : e ∈ Ek ∩

(
H t

1 ×H t
0

)
, e2 = i, e1 6= e1(k) and e1 6= e2(k)

}
denote the maximum λek(αk) value associated to hub edges having i as second node and any
first node e2 ∈ H t

1 \ {e1(k), e2(k)}. Using µie1(αk), µ
i
e2

(αk) and constraint (38), we set the
lower bound of uik variable, for i ∈ H t

0, as

lik(αk) = max
{

0, λ(i,i)k(αk), µ
i
e1

(αk), µ
i
e2

(αk)
}
.

If |e(k)| = 2, the exact value of ue1(k)k and ue2(k)k must also be determined by the reduced
problem. This also implies that we have to include some additional constraints in the prob-
lem. In particular, let

EX+
k (αk) =

{
e : λek(αk) > 0, e ∈ Ek ∩

(
H t

1 ×H t
0

)
, e1 = e1(k) and e1 = e2(k)

}
denote the subset of constraints (38) associated with hub edges containing either e1(k) or
e2(k) as first node and any second node e2 ∈ H t

0. Similarly, let

EY +
k (αk) =

{
e : λek(αk) > 0, e ∈ Ek ∩

(
H t

0 ×H t
1

)
, e2 = e2(k) and e2 = e1(k)

}
denote the subset of constraints (38) associated to hub edges containing any first node
e1 ∈ H t

0 and either e1(k) or e2(k) as second node. Combining the previous results, we can
state G(αk) as

G1(αk) = Fe(k)k + δe1(k)

(
αk − Fe(k)k

)
+ f 1

k (αk), (50)

where

f 1
k (αk) = maximize

∑
i∈H0

δiuik (51)

subject to ue1k + ue2k ≥ λek(αk) ∀e ∈ E+
k (αk) (52)

uik ≥ lik(αk) ∀ i ∈ H t
0, (53)

Benders Decomposition for Large-Scale Uncapacitated Hub Location

CIRRELT-2010-26 14



if |e(k)| = 1 and as

G2(αk) = Fe(k)k + f 2
k (αk), (54)

where

f 2
k (αk) = maximize

∑
i∈Ht

0

δiuik + δe1(k)ue1(k)k + δe2(k)ue2(k)k (55)

subject to (46), (52), (53)

ue1k + ue2k ≥ λek(αk) ∀e ∈ EX+
k (αk) ∪ EY +

k (αk), (56)

if |e(k)| = 2.
Given that constraints (52)–(53) and (56) are very similar to the reduced system (30)–(31)

of DStk, we can adapt Algorithm 2 to produce feasible solutions to both f 1
k (αk) and f 2

k (αk).
Using these solutions, we are able to efficiently provide a good estimation of the value of
G(αk) for any feasible αk value. The main difference with respect to Algorithm 2 is that we
now have to consider that ue1(k)k and ue2(k)k may take a strictly positive value. If |e(k)| = 1,
the value of ue1(k)k for a given αk is uniquely given by (48). If |e(k)| = 2, variables ue1(k)k and
ue2(k)k can take an infinite number of possible values with respect to (46). However, we have
to consider constraints (37)–(38) to ensure the feasibility of the solution vector. Therefore,
we need to construct upper bounds on the maximum feasible value that variables ue1(k)k

and ue2(k)k may take. In particular, constraints (37) having edges e such that e1(k) /∈ e and
e2(k) ∈ e, provide an upper bound for ue1(k)k. Substituting ue2(k)k = αk − Fe(k)k − ue1(k)k in
these constraints we obtain

ue1(k)k ≤ Fek − Fe(k)k, e ∈ EU1, (57)

where

EU1 =
{
e : e ∈ Ek ∩

(
H t

1 ×H t
1

)
, (e2 = e2(k) and e1 6= e1(k)) or (e2 = e1(k) and e1 6= e2(k))

}
.

From constraints (57) we can set an upper bound for ue1(k)k as he1k = min
{
Fek − Fe(k)k : e ∈ EU1

}
.

In a similar way, constraints (37) having edges e such that e1(k) ∈ e and e2(k) /∈ e, provide
an upper bound for ue2(k)k. Substituting ue1(k)k = αk − Fe(k)k − ue2(k)k in these constraints
we obtain,

ue2(k)k ≤ Fek − Fe(k)k, e ∈ EU2 (58)

where,

EU2 =
{
e : e ∈ Ek ∩

(
H t

1 ×H t
1

)
, (e1 = e1(k) and e2 6= e2(k)) or (e1 = e2(k) and e2 6= e1(k))

}
.

From constraints (58) we can set an upper bound for ue2(k)k as he2k = min
{
Fek − Fe(k)k : e ∈ EU2

}
.

Observe that the feasibility of variables ue1(k)k and ue2(k)k can be ensured by fixing them to

ue1(k)k =
he1k × (αk − Fe(k)k)

he1k + he2k
, (59)

and

ue2(k)k =
he2k × (αk − Fe(k)k)

he1k + he2k
, (60)
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respectively. Finally, Algorithm 3 summarizes the proposed procedure to obtain an estima-
tion of the value G(αk) at point αk.

Algorithm 3: Approximate evaluation of G(αk)
if (|e(k)| = 1) then
ue1(k)k ← αk − Fe(k)k
E ← E+

k (αk)
else
ue1(k)k ← he1k × (αk − Fe(k)k)/(he1k + he2k )
ue2(k)k ← he2k × (αk − Fe(k)k)/(he1k + he2k )
E ← E+

k (αk) ∪ EX+
k (αk) ∪ EY +

k (αk)
end if
forall (i ∈ H t

1 \ {e1(k), e2(k)}) do
uik ← 0

end do
forall (i ∈ H t

0) do
uik ← lik(αk)

end do
forall (e ∈ E) do

∆← ue1k + ue2k − λek
if (∆ < 0) then
ue1k ← ue1k − ψ∆
ue2k ← ue2k − γ∆

end if
end do
if (|e(k)| = 1) then
G(αk)← Fe(k)k + δe1(k)

(
αk − Fe(k)k

)
+
∑
i∈H0

δiuik

else
G(αk)← Fe(k)k + δe1(k)ue1(k)k + δe2(k)ue2(k)k +

∑
i∈H0

δiuik

end if

4.2.2 Constructing an Interval Lk ≤ αk ≤ Uk.

Similar toG(αk), we need to define two intervals, one for |e(k)| = 1 and another for |e(k)| = 2.
Let L1

k ≤ αk ≤ U1
k and L2

k ≤ αk ≤ U2
k , denote these intervals. We can compute the lower

bound for both intervals by observing that, regardless of the structure of e(k), constraints
(36) can be stated as αk = Fe(k)k+

∑
i∈Ht

1
uik and, given that uik ≥ 0 for each i ∈ H t

1, we know

that αk ≥ Fe(k)k. We thus can set the lower bounds L1
k and L2

k equal to L1
k = L2

k = Fe(k)k.
However, the upper bounds U1

k and U2
k can be different. For |e(k)| = 1, given that uik = 0

for each i ∈ H t
1 \ {e1(k)}, the minimum coefficient Fek associated to constraints (37) having

hub edges containing only open nodes different from e1(k) is a upper bound of αk. Therefore,
we can set upper bound U1

k = min {Fek : e ∈ Ek ∩ (H t
1 ×H t

1) , e1 6= e1(k) and e2 6= e1(k)} .
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Using similar arguments, we can derive an upper bound when |e(k)| = 2. In particular,
since uik = 0 for each i ∈ H t

1 \ {e1(k), e2(k)}, the minimum coefficient Fek associated with
constraints (37) having edges that contain only open nodes different from e1(k) and e2(k)
defines an upper bound of αk. Let

h1
k = min

{
Fek : e ∈ Ek ∩

(
H t

1 ×H t
1

)
, (e1 6= e1(k) and e2 6= e2(k)) or (e1 6= e2(k) and e2 6= e1(k))

}
denote such an upper bound. Also, we obtain a second upper bound of αk from the upper
bounds he1k and he2k for the ue1(k)k and ue2(k)k variables, respectively. We thus can set upper
bound U2

k to U2
k = min {h1

k, h
e1
k + he2k } .

4.2.3 Approximate Solution of POt.

Instead of computing an optimal solution to POt when generating a Pareto-optimal cut,
which can be computationally prohibitive, we focus on efficiently generating good solutions
that could lead to stronger optimality cuts than those obtained with Algorithm 2, even
though they may not necessarily be Pareto-optimal.

We construct promising solutions of POt by discretizing the G(αk) function over the
previously constructed interval Lk ≤ αk ≤ Uk. In particular, we divide the interval into κ
equal size smaller intervals and focus the search on the extreme points of these intervals.
At each point αk, the value of G(αk) is estimated by using Algorithm 3. The proposed
procedure to approximately solve POt is given in Algorithm 4.

Algorithm 4: Approximate solution of POt

forall (k ∈ K) do
Lk ← min {Fek : e ∈ Ek ∩ (H t

1 ×H t
1)}

if (|e(k)| = 1) then
Uk ← min {Fek : e ∈ Ek ∩ (H t

1 ×H t
1) , e1 6= e1(k) and e2 6= e1(k)}

else
Uk ← min {h1

k, h
e1
k + he2k }

end if
∆← (Uk − Lk)/κ
Gmax ← 0
αk ← Lk
terminate← false
while (terminate = false) do

estimate G(αk)
if (G(αk) < Gmax and αk = Uk) then
terminate← true

else
Gmax ← G(αk)
αk ← αk + ∆

end if
end while

end do
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4.3 Elimination Tests

The efficiency of the Benders decomposition algorithm can be improved by reducing the size
of the original model. By doing so, both the master problem and the subproblem can be
solved more efficiently. Moreover, the convergence of the algorithm can also benefit from the
solution space reduction. In Section 2 we have presented several optimal UHLPMA proper-
ties that can help reduce the size of the model prior to the solution process. Nevertheless,
the number of variables and constraints remains very large in large-scale instances.

The size of the model can be further reduced by exploiting the information obtained
during the inner iterations of the Benders algorithm. In this section, we develop two different
reduction tests capable of eliminating variables which are known not to appear in an optimal
solution. Reduction tests have been successfully applied for other HLPs in the context of
Lagrangean relaxation (Contreras et al., 2009; Contreras et al., 2010). To the best of our
knowledge, the idea of using reduction tests within a Benders decomposition algorithm is
new.

The first reduction test uses lower and upper bounds on the optimal solution value to
check whether a node may appear in an optimal solution. It exploits the primal information
generated during the inner iterations of the Benders algorithm to obtain an estimation of the
location and transportation costs associated with feasible solutions containing a hub located
at a given node. Using this estimation, we can sometimes determine that the node will not
be chosen as a hub. Let MPt

LP denote the linear relaxation of MPt, v(MP t
LP ) its optimal

solution value, and rci the reduced cost associated with variable zi. The following result
provides a reduction test for closing a hub node.

Proposition 4 Let UB be an upper bound on the optimal solution value of MP. If zi is a
nonbasic variable in the optimal solution to MPt

LP and v(MP t
LP ) + rci > UB, then zi = 0

in any optimal solution.

Proof The results follows from the fact that v(MP t
LP )+rci is a lower bound on the objective

function value if a hub is located at node i. Therefore, if v(MP t
LP ) + rci > UB, then zi = 0

in any optimal solution. �

After applying this test, H is updated by removing the eliminated nodes from it. The
corresponding node and edge variables are also eliminated from the model.

The second reduction test uses a stronger lower bound that allows checking whether
any node in a set of candidate hub nodes Q ⊂ H may appear in an optimal solution. By
solving a slightly modified MPt, we can obtain an estimation of the total cost associated to
feasible solutions containing at least one hub located at a node contained in Q. Using this
estimation, we can determine whether zi = 0 for all i ∈ Q in every optimal solution. We
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define the following modified master problem MPt(Q):

minimize
∑
i∈H

fizi +
∑
i∈H

ηi

subject to ηi ≥
∑
k∈Ki

αtk −
∑
i∈H

∑
k∈Ki

utikzi ∀i ∈ H, (α, u) ∈ P t
Di (61)∑

i∈Q

zi ≥ 1 (62)

zi ∈ {0, 1} ∀ i ∈ H. (63)

The following result provides the reduction test for closing a set of hub nodes.

Proposition 5 Let UB be an upper bound on the optimal solution value of MP. If v(MP t(Q)) >
UB, then zi = 0 for each i ∈ Q in any optimal solution.

Proof The result follows from the fact that v(MP t(Q)) is a lower bound on the objective
function value if a hub is located at some node i ∈ Q. Therefore, if v(MP t(Q)) > UB, then
zi = 0 for each i ∈ Q in any optimal solution. �

For a particular set Q ⊂ H, the previous test requires the solution of an integer linear
program. Therefore, we must carefully choose a candidate set Q containing the largest
possible number of nodes, while yielding a lower bound strong enough to close the hub
nodes. In particular, we want to exclude nodes associated with good feasible solutions of
MPt(Q) having an objective function value inferior to the upper bound. If we generate a set
Q failing the test, we must remove elements from Q so that the resulting set improves the
lower bound and passes the test.

The efficiency of the previous test also relies on the quality of the approximation of MPt.
Thus, we should apply the test once we have constructed a sufficiently good approximation
of MP. At the beginning of the Benders algorithm we set Q = H. Then, at iteration t of
the algorithm we discard from Q the set of open hub nodes from the optimal solution of
MPt (i.e., Q is updated to Q \ {i ∈ Q : zti = 1}) as well as the nodes that may have been
eliminated through the first test.

When we perform the second elimination test with MPt(Q) and it fails, we eliminate
from Q the set of open hub nodes form an optimal solution, denoted by zt(Q), i.e., Q is
updated to Q \ {i : zti(Q) = 1}. We also eliminate from Q the nodes having small reduced
costs ĉi associated to the LP relaxation, denoted by MPt

LP (Q), of MPt(Q). In particular,
we eliminate from Q nodes such that ĉi < ν × cmax, where cmax is the maximum reduced
cost associated to nonbasic variables and ν is a control parameter such that 0 < ν < 1.
These previous nodes are eliminated from Q only when the gap between the upper bound
and the optimal solution value of MPt

LP (Q) exceeds a theshold ζ. The proposed procedure
is summarized in Algorithm 5.
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Algorithm 5 Elimination test for Q
terminate← false
Q← H \ {i : zri = 1, r = 1, . . . , t}
while (terminate = false) do

Solve MPt
LP (Q) to obtain ĉi

if ((UB − v(MP t
LP (Q))/UB > ζ) then

cmax ← max{ĉi : i ∈ Q}
Q← Q \ {i : ĉi < ν × cmax}

end if
Solve MPt(Q) to obtain zt(Q)
if (v(MP t(Q)) > UB) then
terminate← true

else
Q← Q \ {i : zti(Q) = 1}

end if
end while
H ← H \Q

4.4 A Heuristic Procedure for the UHLPMA

In our Benders reformulation, we know that any vector z ∈ Z such that
∑

i∈H zi ≥ 1 is a
feasible solution for the MP and, thus, has at least one optimality cut associated to it. We
can apply a heuristic to produce a diverse set of feasible solutions, yielding optimality cuts
that are incorporated at the beginning of the algorithm. In fact, it is known that the use of
an initial approximation of the Benders reformulation polyhedron has a major impact on the
required number of iterations (see, e.g., Geoffrion and Graves, 1974; Cordeau et al., 2000).
The heuristic procedure can also yield good upper bounds that improve the effectiveness of
the reduction tests.

Here we present a simple, yet effective heuristic procedure capable of generating high
quality solutions and diverse solutions which may provide useful optimality cuts. The pro-
posed heuristic is composed of two phases: an estimation phase and an intensification phase.
The estimation phase is an iterative procedure that constructs a set of initial feasible solu-
tions which are used to construct an interval on the estimated number of open hub facilities
in an optimal solution. The intensification phase is an iterative procedure that generates
feasible solutions containing sets of open hubs whose cardinality lies in the interval obtained
in the previous phase. Within each phase, we use a common constructive procedure that ran-
domly constructs a feasible solution with a given number of open hub facilities, and improves
it by means of a local search procedure. In what follows, we first explain the constructive
procedure and we then present the overall heuristic.

4.4.1 Constructing Solutions.

Solutions are represented by pairs of the form s = (H1, H0) where, as before, H1 denotes
the set of open hubs and H0 denotes the set of closed hubs. During the inner iterations of
both phases of the heuristic, a feasible solution sr = (Hr

1 , H
r
0) is constructed by randomly

Benders Decomposition for Large-Scale Uncapacitated Hub Location

CIRRELT-2010-26 20



selecting a component zr ∈ Z such that |Hr
1 | = p, where p is a fixed parameter. Once the

set of open hubs is known, the associated flow routing subproblem is solved by using (23),
and the objective value associated to sr can be evaluated. Each generated solution is then
improved by means of a local search procedure which considers three different neighborhoods.
The first one considers a subset of feasible solutions that are obtained from the current one
by opening a new hub facility. Then, Nopen(s) = {s′ = (H ′1, H

′
0) : H ′1 = H1 ∪ {k} , k ∈

H0}. To explore Nopen(s), all nodes k ∈ H0 are considered. The second one considers a
subset of feasible solutions obtained from the current one by closing a hub facility. Then,
Nclose(s) = {s′ = (H ′1, H

′
0) : H ′1 = H1 \ {k} , k ∈ H1}. To explore Nclose(s), all hub nodes

k ∈ H1 are considered. The last neighborhood examines a subset of feasible solutions
obtained from the current one by opening a new facility and closing an open one. Thus,
Ninter(s) = {s′ = (H ′1, H

′
0) : H ′1 = H1 ∪ {k1} \ {k2} , k1 ∈ H0, k2 ∈ H1}. To explore Ninter(s),

all possible combinations of nodes k1 ∈ H0 and k2 ∈ H1 are considered. The local search
procedure is described in Algorithm 6.

Algorithm 6 Local search procedure
terminate← false
while (terminate = false) do

Explore Nclose

if (solution has not been updated in Nclose) then
Explore Nopen

end if
if (solution has not been updated in Nclose and Nopen) then

Explore Ninter

end if
if (solution has not been updated) then
terminate← true

end if
end while

4.4.2 Heuristic for the UHLPMA.

During the estimation phase of the heuristic, we construct a total of rmax feasible solutions,
each one obtained by setting p = 2 and randomly generating a zr vector such that zr ∈
{z : z ∈ Z, |Hr

1 | = p}. After the local search has been applied, the resulting best solution
provides an idea of the number of hub facilities that are open in optimal solutions. Using
these solutions, we construct a good interval on the required number of open hubs so that the
intensification phase then focuses on generating solutions such that |Hr

1 | ∈ [pmin, pmax], where
pmin = min{|Hr

1 | : r = 1, . . . , rmax} and pmax = max{|Hr
1 | : r = 1, . . . , rmax}. In particular,

for each p ∈ [pmin, pmax] the intensification phase constructs rmax feasible solutions. The
overall heuristic procedure is depicted in Algorithm 7.
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Algorithm 7 Heuristic for the UHLPMA
r ← 1, p← 2
while (r < rmax) do

Randomly select zr ∈ {z : z ∈ Z, |Hr
1 | = p}

Apply local search
r ← r + 1

end while
pmin ← min{|Hr

1 | : r = 1, . . . , rmax}
pmax ← max{|Hr

1 | : r = 1, . . . , rmax}
p← pmin
while (p < pmax) do
r ← 1
while (r < rmax) do

Randomly select zr ∈ {z : z ∈ Z, |Hr
1 | = p}

Apply local search
r ← r + 1

end while
p← p+ 1
end while

5 Computational Experiments

We now present the results of extensive computational experiments performed to assess the
performance our algorithm. In the first part of the computational experiments, we focus on
a comparison of different versions of the Benders decomposition algorithm to evaluate the
impact of each of the proposed algorithmic features. The second part of the experiments
is mainly devoted to a comparison between our exact method and several exact algorithms
reported in the literature. In the third part of the experiments, we test the robustness and
limitations of our method on large scale instances involving up to 500 nodes. All algorithms
were coded in C and run on a Dell Studio PC with an Intel Core 2 Quad processor Q8200
running at 2.33 GHz and 8 GB of RAM under a Linux environment. The master problems
of all versions of the algorithm were solved using the callable library CPLEX 10.1.

We have used the well-known Australian Post (AP) set of instances to perform the first
two parts of the computational experiments. This data set is the most commonly used in
the hub location literature (mscmga.ms.ic.ac.uk/jeb/orlib/phubinfo.html). It consists of the
Euclidean distances cij between 200 cities in Australia, of a computer code to reduce the size
of the set by grouping cities, and of the values of Wk representing postal flows between pairs
of cities. Each instance has a strictly positive flow between every pair of nodes. Therefore,
the number of considered commodities is given by |K| = |H|2. From this set of instances,
we have selected those with |H| = 25, 50, 75, 100, 125, 150, 175 and 200 and with set-
up costs of the type loose (L) (see Contreras et al., 2010, for details). We have varied
the required number of open hub nodes in an optimal solution by increasing the distances
of a particular instance as dij = TC × cij for each pair (i, j) ∈ H × H, where TC is a
scaling parameter for the transportation costs. For each instance size we have generated
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nine different instances corresponding to different combinations of values for the inter-hub
discount factor τ ∈ {0.2, 0.5, 0.8} and the transportation cost scaling factor TC ∈ {2, 5, 10}.
In all these instances, we have considered χ = 1 and δ = 1.

In preliminary experiments, we have used the AP instances to set the values of the
parameters of the algorithm. The following values were used in all our tests: ψ = 0.5,
γ = 0.5, κ = 10, ν = 0.25, ζ = 0.002, rmax = 10, and z0

i = 0.1 for each i ∈ H. In the
first two parts of the experiments, the Benders decomposition algorithm terminated when
one of the following criteria was met: i) the optimality gap between the upper and lower
bounds was below a threshold value ε, i.e. |ub − lb|/ub < ε, ii) the maximum number of
iterations Itermax was reached or, iii) the maximum time limit Timemax was reached. We
set the parameter values as ε = 10−6, Itermax = 1000 and Timemax = 7, 200 seconds.

5.1 Analysis of Algorithmic Refinements

The aim of the first part of the computational experiments is to analyze the effectiveness
of each of the algorithmic refinements proposed in Section 4. For presentation purposes, we
only include summarized results of all experiments. The interested reader is referred to the
Online Supplement for the detailed results.

We first focus on analyzing the benefits of using the multicut Benders reformulation
over the standard Benders reformulation. We have implemented two different versions of
Algorithm 1. The first one, called 1-cut, uses the reformulation (16)–(18) in which only
one optimality cut is added per iteration. The second one, called |H|-cut, uses the stronger
reformulation (17), (18), (32) in which |H| optimality cuts are added per iteration. Both
algorithms use Algorithm 2 to generate the optimality cuts at each iteration. The results
of the comparison are summarized in Table 1. The first column gives the number of nodes
associated to each group of instances. The next two columns under the heading Optimal
Found give the number of optimal solutions found for 1-cut and |H|-cut, respectively. The
next two columns under the heading Average Time (sec) give the average CPU time in
seconds needed to obtain an optimal solution of the problem by using 1-cut and |H|-cut,
respectively. The last two columns under the heading Average Iterations provide the required
number of iterations for each of the algorithms to converge.

Table 1: Comparison of Benders reformulations.
Optimal found Average time (sec) Average iterations

|H| 1-cut |H|-cuts 1-cut |H|-cuts 1-cut |H|-cuts
25 9/9 9/9 8.43 0.67 65.00 9.78
50 9/9 9/9 78.37 4.28 98.11 11.67
75 9/9 9/9 158.37 7.20 87.78 11.11
100 8/9 9/9 1727.41 54.27 171.11 15.67
125 8/9 9/9 950.24 68.64 119.22 13.56
150 8/9 9/9 1040.05 166.83 134.11 15.22
175 7/9 9/9 1885.27 325.66 112.89 12.67
200 7/9 8/9 2069.38 1340.87 118.67 18.56

Average 65/72 71/72 989.69 246.05 113.36 13.53

Table 1 shows that both algorithms 1-cut and |H|-cut are able to solve most instances
within two hours. However, the strong multicut reformulation is able to solve 71 out of the
72 considered instances whereas the standard Benders reformulation can solve only 65. The
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columns Average time (sec) indicate that |H|-cut requires on average much less computation
time than 1-cut. Moreover, as can be seen in the Average iterations columns, the convergence
of the Benders algorithm is greatly improved by using |H|-cut. The number of required
iterations to converge is reduced by a factor of 10 on average. Given that algorithm |H|-
cut clearly outperforms 1-cut, we only consider the multicut Benders reformulation in the
remainder of the computational experiments.

We next focus on analyzing the effectiveness of generating stronger, possibly undomi-
nated, optimality cuts. In particular, we have implemented three different versions of Al-
gorithm 1. The first version, referred to as NC, uses the optimality cuts obtained from
Algorithm 2. The second version, referred to as POC, uses the Pareto-optimal cuts obtained
when solving POt by using the dual simplex algorithm of CPLEX 10.1. The third version,
referred to as SC, uses the strong optimality cuts obtained from Algorithm 4. The results
of the comparison between these algorithms are summarized in Table 2. The three columns
under the heading Optimal found give the number of optimal solutions found for each of the
considered algorithms. The next columns provide computing times and iterations counts for
each version.

Table 2: Comparison of optimality cuts.
Optimal found Average time (sec) Average iterations

|H| NC POC SC NC POC SC NC POC SC
25 9/9 9/9 9/9 0.67 1.13 0.50 9.78 6.78 7.89
50 9/9 9/9 9/9 4.28 9.05 2.10 11.67 7.67 8.00
75 9/9 9/9 9/9 7.20 32.75 5.91 11.11 7.00 7.89
100 9/9 9/9 9/9 54.27 126.78 21.28 15.67 8.22 9.56
125 9/9 9/9 9/9 68.64 366.86 56.72 13.56 9.44 10.67
150 9/9 9/9 9/9 166.83 766.42 123.23 15.22 9.89 11.89
175 9/9 9/9 9/9 325.66 1130.43 254.76 12.67 8.33 9.56
200 8/9 9/9 9/9 1340.87 2275.53 738.05 18.56 10.89 13.78

Average 71/72 72/72 72/72 262.17 588.62 150.32 13.53 8.53 9.90

The results of Table 2 confirm the efficiency of generating stronger optimality cuts. Both
the POC and SC algorithms are able to obtain the optimal solution of all considered in-
stances within two hours of computation time. However, the larger CPU time needed to solve
the POt problems using POC does not compensate for the improvements in convergence,
even for the small size instances. As can be seen in the Average time (sec) columns, SC is
considerably more efficient than NC and SC. Even though SC generates optimality cuts that
are not necessarily Pareto-optimal, these seem to be stronger than those used in NC. The
Average iterations columns also confirm that the convergence of the Benders algorithm can
be improved by using SC, but this version is slightly worse than POC. Given that algorithm
SC clearly outperforms NC and POC, we only consider the generation of optimality cuts
with Algorithm 4 in the rest of the experiments.

We next focus on analyzing the performance of the heuristic described in Section 4.4 and
its contribution to the convergence of the Benders decomposition algorithm. As mentioned,
we can use the solutions obtained from the heuristic procedure to generate a promising initial
set of optimality cuts and generate a good approximation of the MP. We first use Algorithm
7 to generate a diverse set of feasible solutions, called I, where potential structural cuts
can be selected to generate initial optimality cuts. Let Ip ⊂ I denote the subset of feasible
solutions containing exactly p open hub nodes, and let pub denote the cardinality of the best
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solution contained in I. We construct the initial set of cuts, denoted by P I
D, by selecting

solutions from different sets Ip. More specifically, we select the best solution from each set
Ip such that p ∈ {1, pub − r2, . . . , pub, . . . , pub + r2}, where r2 > 0 is a parameter controlling
the range of the selected p values.

We have tested three different version of Algorithm 1. The first version uses no initial
cuts at all, i.e. |P I

D| = 0. The second version uses an initial set P I
D containing only one

cut generated from the best solution obtained from the heuristic. The third version uses an
initial set P I

D containing five different cuts generated by setting r2 = 2. The results of the
heuristic procedure as well as the comparison of three algorithms are summarized in Table
3. The column under the heading Optimal Found gives the proportion of optimal solutions
found by the heuristic procedure for each group of instances. The column Average % dev.
gives the average percent deviation between the best solution found by the heuristic and
the optimal solution, i.e. % dev = 100(UBH − OPT )/(UBH), where OPT is the optimal
value and UBH is the best upper bound obtained with Algorithm 7. The remaining column
headings are self-explanatory.

Table 3: Effects of using the heuristic procedure.
Optimal Average Average time (sec) Average iterations

|H| found % dev. Heur |P ID| = 0 |P ID| = 1 |P ID| = 5 |P ID| = 0 |P ID| = 1 |P ID| = 5
25 9/9 0.00 0.06 0.50 0.24 0.24 7.89 5.22 6.00
50 9/9 0.00 0.44 2.10 1.79 1.77 8.00 5.78 7.00
75 9/9 0.00 1.48 5.91 5.41 5.80 7.89 6.11 7.67
100 9/9 0.00 3.57 21.28 19.62 22.16 9.56 8.44 10.22
125 7/9 0.02 6.11 56.72 52.78 57.01 10.67 9.56 11.22
150 8/9 0.02 14.48 123.23 110.64 115.28 11.89 9.78 11.22
175 9/9 0.00 16.40 254.76 232.30 244.22 9.56 8.33 9.33
200 8/9 0.03 33.44 738.05 679.33 652.30 13.78 12.44 13.44

Average 68/72 0.01 9.50 150.32 137.76 137.35 9.90 8.21 9.51

The results of Table 3 confirm the efficiency of the heuristic procedure. It is able to find
the optimal solution in 68 out of the 72 tested instances. Moreover, for the instances in
which the optimal solution could not be found, the percent deviation never exceeds 0.3%.
The fact that our heuristic is not very sophisticated and yet able to produce very good results,
indicates that the UHLPMA is a problem for which good solutions can be obtained easily.
However, proving optimality remains challenging. The computational time required by the
heuristic to produce a good solution is just a fraction of the time needed for the Benders
algorithm to obtain the optimal solution. The columns Average iterations confirm that
the convergence of the Benders algorithm can be further improved by using good feasible
solutions to obtain an initial set of cuts. However, the best results are obtained when
considering only the best solution produced by the heuristic. Although the improvement in
computational time is relatively small for these instances, we will show later that it becomes
more important on the larger size instances. Furthermore, the best upper bound provided
by the heuristic also has a positive effect on the performance of the elimination tests, as we
will show.

We now analyze the effect of incorporating the elimination tests of Section 4.3 into the
Benders decomposition algorithm. We have implemented four versions of the algorithm. The
first two consider the case in which no initial cuts are generated, i.e. |P I

D| = 0, whereas the
last two work with |P I

D| = 1. Moreover, the first and the third versions only execute the first
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reduction test, denoted as EI, whereas the second and fourth version execute both the first
set EI and the second test, called EII, performed by applying Algorithm 5. The test EI is
applied at every iteration of the Benders algorithm whereas EII is applied once the relative
optimality gap is below 1% and is performed only once. The results of the elimination tests
are summarized in Table 4. The headings of this table are again self-explanatory.

Table 4: Effects of elimination tests.
Average time (sec) Average iterations
|P ID| = 0 |P ID| = 1 |P ID| = 0 |P ID| = 1

|H| No tests E I EI + EII E I EI + EII No tests EI EI + EII EI EI + EII
25 0.50 0.35 0.33 0.29 0.31 7.89 7.22 6.89 5.11 5.11
50 2.10 2.12 2.14 2.80 2.94 8.00 7.78 7.89 6.33 6.56
75 5.91 5.29 5.42 7.13 7.08 7.89 7.00 7.11 6.33 6.44
100 21.28 19.52 20.81 22.00 24.52 9.56 9.33 9.44 7.67 8.44
125 56.72 55.05 53.69 54.37 56.25 10.67 10.44 10.22 9.89 9.00
150 123.23 105.54 108.94 107.24 118.24 11.89 10.56 10.11 10.22 8.44
175 254.76 236.17 250.11 243.14 249.27 9.56 9.11 9.33 9.22 8.00
200 738.05 673.49 590.76 632.12 540.32 13.78 13.11 12.11 12.67 10.00

Average 150.32 137.19 129.02 133.64 124.87 9.90 9.32 9.14 8.43 7.75

The columns Average iterations show that for small size instances, the improved conver-
gence of the algorithms with the elimination tests does not yield much lower CPU times.
However, for the larger 200 node instances, improved convergence translates into shorter
computational time, particularly with |P I

D| = 1 and EI + EII. Observe that the average
required CPU time for this version is 73% of the required CPU time without any reduction
tests and initial cuts. In the last part of the computational experiments, we will perform
additional experiments to confirm and assess the efficiency of the elimination tests and the
heuristic on more difficult and larger instances.

5.2 Comparison with Alternative Solution Methods

We now present a comparison between our best version of the Benders decomposition algo-
rithm and several exact solution methods previously proposed in the literature. In particular,
we compare our exact method with the following five exact algorithms: i) the Benders de-
composition algorithm of Camargo et al. (2008), ii) the dual adjustment procedure developed
by Cánovas et al. (2007), iii) the relax-and-cut algorithm proposed by Maŕın (2005), iv) the
solution of a flow-based formulation using CPLEX as described in Boland et al. (2004), and
v) the solution of the strong path-based formulation presented in Section 2.1, using CPLEX.
To provide a fair comparison, we have run all algorithms on the same computer. The dual
adjustment procedure and the relax-and-cut algorithm were obtained from their respective
authors, whereas the remaining algorithms were coded by us.

The detailed results of the comparison between the exact methods using the AP data
set are provided in Table 5. The first three columns give the number of nodes, the discount
factor and the transportation scale factor. The remaining columns give the CPU time in
seconds needed to obtain an optimal solution for each exact algorithm. The Benders column
provides the results obtained with the best version of our Benders decomposition algorithm.
Whenever a solution method cannot optimally solve an instance within two hours of CPU
time, we write time in the corresponding entry of the table. If an algorithm runs out of
memory we then write memory.
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Table 5: Comparison of exact methods with AP instances from 25 to 200 nodes.
Total time (sec)

|H| τ TC CPLEX Boland et al. (2004) Maŕın (2005) Cánovas et al. (2007) Camargo et al. (2008) Benders
25 0.2 2 1.69 1.37 5.24 0.30 0.24 0.11

0.2 5 1.36 3.59 2.13 0.19 4.01 0.30
0.2 10 0.80 2.20 3.07 0.28 73.00 0.85
0.5 2 1.12 13.78 2.38 0.11 0.20 0.08
0.5 5 5.29 18.35 3.74 0.29 1.76 0.56
0.5 10 0.82 5.63 1.29 0.10 10.78 0.44
0.8 2 0.99 36.22 2.04 0.09 0.19 0.06
0.8 5 1.04 17.83 1.01 0.06 0.56 0.17
0.8 10 0.93 9.83 1.11 0.11 2.54 0.25

50 0.2 2 874.46 526.70 786.14 21.36 4.18 0.96
0.2 5 159.27 644.38 1292.35 6.39 20.38 1.76
0.2 10 57.70 218.54 80.64 12.34 624.41 11.75
0.5 2 61.62 4982.49 119.75 5.20 2.65 0.85
0.5 5 102.06 4128.70 72.27 5.52 12.04 1.76
0.5 10 54.58 1030.34 50.36 6.20 67.16 3.50
0.8 2 34.34 time 80.91 2.54 2.33 0.80
0.8 5 61.31 6406.17 28.09 1.31 5.35 0.87
0.8 10 166.38 2471.61 39.33 7.87 35.04 2.24

75 0.2 2 memory 6817.61 time 104.31 27.43 4.73
0.2 5 memory 2579.95 time 86.34 73.94 5.80
0.2 10 memory 3045.77 time 61.12 2208.01 19.06
0.5 2 memory time time 40.89 21.40 4.78
0.5 5 memory time time 59.71 53.98 5.83
0.5 10 memory time time 24.14 129.12 7.72
0.8 2 memory time time 35.03 17.02 4.30
0.8 5 memory time time 12.52 50.29 4.43
0.8 10 memory time time 37.82 77.54 7.05

100 0.2 2 memory time time 568.43 210.72 15.14
0.2 5 memory time time 1196.08 1364.60 28.09
0.2 10 memory time time 1244.14 time 58.48
0.5 2 memory time time 182.37 165.75 13.81
0.5 5 memory time time 417.31 787.01 22.61
0.5 10 memory time time 1762.05 4586.82 34.77
0.8 2 memory time time 102.84 126.38 13.68
0.8 5 memory time time 155.74 259.70 15.32
0.8 10 memory time time 415.01 1198.83 18.79

125 0.2 2 memory time memory 2399.08 747.44 47.77
0.2 5 memory time memory 1584.67 2406.95 56.34
0.2 10 memory time memory 2691.29 time 112.20
0.5 2 memory time memory 625.49 503.83 38.23
0.5 5 memory time memory 836.01 2150.63 49.51
0.5 10 memory time memory 3420.10 time 73.52
0.8 2 memory time memory 179.88 459.49 36.78
0.8 5 memory time memory 547.98 1061.16 43.55
0.8 10 memory time memory 1556.03 time 48.36

150 0.2 2 memory time memory memory 2360.82 121.83
0.2 5 memory time memory memory time 123.90
0.2 10 memory time memory memory 2360.82 121.83
0.5 2 memory time memory memory 1814.04 96.16
0.5 5 memory time memory memory time 112.44
0.5 10 memory time memory memory time 135.71
0.8 2 memory time memory memory 1278.42 86.26
0.8 5 memory time memory memory 3816.60 91.66
0.8 10 memory time memory memory 6638.50 105.07

175 0.2 2 memory memory memory memory 2062.87 237.55
0.2 5 memory memory memory memory time 256.08
0.2 10 memory memory memory memory time 525.67
0.5 2 memory memory memory memory 1776.36 196.25
0.5 5 memory memory memory memory 6575.61 206.45
0.5 10 memory memory memory memory time 263.70
0.8 2 memory memory memory memory 1425.14 176.31
0.8 5 memory memory memory memory 3621.65 184.16
0.8 10 memory memory memory memory time 197.27

200 0.2 2 memory memory memory memory time 483.91
0.2 5 memory memory memory memory time 485.47
0.2 10 memory memory memory memory time 1271.34
0.5 2 memory memory memory memory time 393.36
0.5 5 memory memory memory memory time 394.65
0.5 10 memory memory memory memory time 750.23
0.8 2 memory memory memory memory time 338.44
0.8 5 memory memory memory memory time 361.97
0.8 10 memory memory memory memory time 383.49
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The results of Table 5 clearly indicate that our exact method outperforms all previously
proposed methods. Observe that our algorithm is able to solve all 72 instances whereas
the algorithm of Camargo et al. (2008) is only able to optimally solve 52 within two hours
of CPU time. The dual adjustment approach by Cánovas et al. (2007) is able to find the
optimal solution in 45 out of the 72 instances, and the relax-and-cut approach of Maŕın
(2005) can only solve instances with up to 50 nodes. Similar results are obtained when
solving the flow-based formulation of Boland et al. (2004) and the path-based formulation
(5)–(9) with CPLEX. This is a clear indication of the limitations of using a commercial solver
to solve the UHLPMA. In the case of the path-based model, eight GB of memory are not
sufficient to load the model into CPLEX when |H| > 50. With the flow-based model, larger
size instances can be loaded into CPLEX, but their weaker LP bounds do not allow solving
instances with more than 75 nodes within two hours of CPU time. It can be seen that our
algorithm is always at least one order of magnitude faster than the other exact methods,
with the exception of the small instances involving 25 nodes.

5.3 A New Data Set

In the previous experiments, we have shown that the largest size instances of the AP set,
containing 200 nodes, can be optimally solved by our algorithm within less than 20 minutes
of CPU time. Given that this set contains the largest size instances currently available, we
have generated a set of larger instances in order to test the robustness and limitations of our
Benders decomposition algorithm.

At this stage, some comments on the structure of flows in the AP set are in order. We
have observed that the amount of flow originating at each node is highly variable in every
instance of this set: all instances have a very small number of nodes for which the outgoing
flow is much larger than for the other nodes. For instance, the 200 nodes instance of the
AP set has one node generating 15% of the total flow of the network, another generating
7%, and the remaining ones each generating less than 1%. This situation seems to make
the solution of these instances rather easy since very few nodes have a large impact on the
overall cost of the network and thus greatly influence the hub location decisions. As we will
show next, instances in which the outgoing flow of each node is within a narrow range are
considerably more difficult to solve.

For this reason, we introduce three different sets of instances with diverse structural
characteristics in the flow network. In particular, we consider different levels of magnitude
for the amount of flow originating at a given node to obtain three different sets of nodes: low-
level (LL) nodes, medium-level (ML) nodes, and high-level (HL) nodes. The total outgoing
flow of LL, ML and HL nodes lies in the interval [1, 10], [10, 100], and [100, 1000], respectively.
Using these nodes, we generate three different classes of instances. In the first set of instances,
called Set I, the number of HL, ML, and LL nodes is 2%, 38% and 60% of the total number
of nodes, respectively. In the second set, called Set II, we construct an instance is such a
way that the number of HL, ML, and LL nodes is 30%, 35% and 35% of the total number
of nodes, respectively. Finally, in the third set, called Set III, the number of HL, ML,
and LL nodes is 0%, 1% and 99% of the total number of nodes, respectively. In Set I we
generate instances with |H| = 50, 100, 150, 200, 250, 300, 350, 400, 450 and 500. In Set
II and Set III, we generate instances with |H| = 50, 100, 150, and 200. For each value of
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n in each set, we randomly generate the (x, y)-coordinates of the nodes from a continuous
uniform distribution in [0, 1000] × [0, 1000] and define the distance between pairs of nodes
as the Euclidean distance. We generate the fixed costs for the hub facilities as fi = θ×AD,
where θ ∼ U [0.3, 0.8] and AD =

∑
k∈KWk. Finally, for each basic instance we generate nine

instances corresponding to different combinations of values for the inter-hub discount factor
τ ∈ {0.2, 0.5, 0.8} and the transportation costs scale factor TC ∈ {2, 5, 10}. Therefore, Set
I contains a total of 90 instances whereas sets Set II and Set III contain 36 instances each.

In these final computational experiments, we further analyze and evaluate the perfor-
mance of the algorithmic refinements, especially the heuristic procedure and the elimination
tests. To this end, we consider two different versions of Algorithm 1. The first version,
referred to as B1, uses the multicut reformulation and the strong optimality cuts obtained
from Algorithm 4. However, it does not include the initial cuts nor the elimination tests.
The second version, referred to as B2, uses the multicut reformulation, the strong cuts, an
initial cut associated to the best upper bound found by Algorithm 7, and the two elimination
tests. Because of the increase in instance size, we have extended the CPU time limit to one
day, i.e. Timemax = 86, 400 seconds.

Computational results are summarized in Tables 6, 7 and 8. The columns Optimal found
give the number of optimal solutions found by the heuristic, B1 and B2. The columns
Average % gap provide the average percent deviation between the best upper and lower
bounds, for the heuristic, B1 and B2 when the optimal solution cannot be found within the
given time limit. That is % gap = 100(UBT − LBT )/(UBT ), where UBT and LBT are the
upper an lower bounds, respectively, obtained with T = B1, B2. The columns Average time
(sec) provide the average CPU time in seconds needed to obtain an upper bound, in the case
of the heuristic, and an optimal solution of the problem by using B1 and B2, respectively.
The columns Average iterations give the average number of iterations for B1 and B2. The
column % Closed hubs gives the average percent of hubs that were closed by the reduction
tests in B2.

Table 6: Summary results of 54 instances of Set I with |H| = 50, 100, 150, 200, 250 and
300.

Optimal found Average % gap Average time (sec) Average iterations % Closed
|H| Heur B1 B2 Heur B1 B2 Heur B1 B2 B1 B2 hubs
50 7/9 9/9 9/9 0.08 0.00 0.00 0.62 1.69 2.11 9.89 8.00 70.89
100 9/9 9/9 9/9 0.00 0.00 0.00 4.52 10.21 12.67 9.33 7.89 79.11
150 9/9 9/9 9/9 0.00 0.00 0.00 21.92 80.44 72.41 14.11 11.33 84.37
200 8/9 9/9 9/9 0.03 0.00 0.00 39.80 321.43 236.49 14.89 11.00 86.06
250 8/9 9/9 9/9 0.00 0.00 0.00 114.58 4976.90 2597.97 24.56 17.33 82.89
300 7/9 8/9 8/9 0.12 0.07 0.07 169.05 15380.02 8832.61 35.67 30.33 74.41

Average 48/54 53/54 53/54 0.04 0.01 0.01 58.41 3461.78 1959.04 18.07 14.31 79.62

Table 6 shows that both B1 and B2 algorithms are able to obtain an optimal solution
in all instances, except one. The relative gap in the remaining instance is 0.67% for B1 and
0.59% for B2. The heuristic reaches an optimal solution 48 times out of 54. Moreover, the
percent deviation in the instances in which the optimal solution could not be found never
exceeds 0.8% and the total average deviation is 0.04%. Algorithm B2 is clearly faster than
B1 on large-scale instances. On 250-nodes and 300-nodes instances, the average CPU time
is reduced by half when using the reduction tests and the heuristic procedure. Also, from the
Average iterations columns we observe that the convergence of the Benders algorithm can be
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improved by incorporating these features. Moreover, column % Closed hubs indicates that
a considerable number of candidate hub nodes can be eliminated by using the elimination
tests. The percent of closed hubs ranges from 46% to 98%, with an average of 79.62%.

Table 7: Summary results of 36 instances of Set II with |H| = 50, 100, 150, and 200.
Optimal found Average % gap Average time (sec) Average iterations % Closed

|H| Heur B1 B2 Heur B1 B2 Heur B1 B2 B1 B2 hubs
50 9/9 9/9 9/9 0.00 0.00 0.00 0.86 3.00 3.81 8.11 7.22 69.33
100 8/9 9/9 9/9 0.06 0.00 0.00 8.20 27.23 21.61 14.44 11.00 74.56
150 7/9 9/9 9/9 0.09 0.00 0.00 24.80 1729.73 601.38 23.89 18.22 78.22
200 6/9 7/9 7/9 0.09 0.08 0.06 71.98 1880.77 861.39 37.78 33.89 71.78

Average 30/36 34/36 34/36 0.06 0.02 0.02 26.46 910.18 372.05 21.06 17.58 73.47

Similar observations can be drawn from Table 7 for Set II instances. We observe that
these instances are more difficult than those of Set I and the largest instances solved contain
only 200 nodes. One possible explanation for this behavior is that the instances in Set II do
not longer have the peculiarity that very few nodes generate a large proportion of the total
flow of the network and thus, the decision of where to locate the hubs becomes much more
difficult.

Table 8: Summary results of 36 instances of Set III with |H| = 50, 100, 150, and 200.
Optimal found Average % gap Average time (sec) Average iterations % Closed

|H| Heur B1 B2 Heur B1 B2 Heur B1 B2 B1 B2 hubs
50 8/9 9/9 9/9 0.06 0.00 0.00 0.85 8.70 8.22 10.89 10.89 61.56
100 7/9 9/9 9/9 0.04 0.00 0.00 8.51 56.60 42.73 16.11 12.00 61.33
150 7/9 9/9 9/9 0.01 0.00 0.00 30.08 5373.33 1226.42 34.89 23.44 63.56
200 7/9 7/9 8/9 0.14 0.09 0.02 70.00 5912.76 2727.85 38.56 34.67 63.67

Average 29/36 34/36 35/36 0.06 0.02 0.00 27.36 2837.85 1001.31 25.11 20.25 62.53

Table 8 shows that B2 is still superior to B1 and that the instances of Set III are the
most difficult of the test bed. This translates into a smaller percentage of closed hubs and
into much longer CPU times.

To better analyze the limit of our algorithm, we have run a final series of computational
experiments using the 36 instances of Set I with |H| = 350, 400, 450, and 500. Given that
algorithm B2 has proven to be the best version of our Benders decomposition algorithm,
these experiments were performed only with this variant.

The results of these experiments are summarized in Table 9. They confirm the efficiency
and robustness of our algorithm on very large-scale instances. We have proved optimality
of 26 out of the 36 considered instances. For the remaining instances, the relative duality
gap is below 1%, with a maximum of 1.5% in one instance. The heuristic was able to obtain
the optimal or best known solution in 25 cases out of 36, and the relative deviation for the
remaining instances never exceeds 0.7%, except for one instance with 2.56%. From column
% Closed hub we note that the elimination tests can again close a considerable number of
candidate hub nodes. The percent of closed hubs ranges from 2% to 98%, with an average
of 72.02%.
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Table 9: Summary results of 36 instances of Set I with |H| = 350, 400, 450, and 500.
Optimal found Average % gap Average time (sec) Average iterations % Closed

|H| Heur B2 Heur B2 Heur B2 B2 hubs
350 6/9 7/9 0.33 0.27 359.24 32141.39 30.33 69.11
400 8/9 8/9 0.04 0.03 610.69 41844.17 31.67 78.89
450 5/9 5/9 0.17 0.23 1100.41 19819.68 33.67 75.38
500 6/9 6/9 0.12 0.23 912.02 31108.20 23.71 64.69

Average 25/36 26/36 0.16 0.19 745.59 31228.36 29.85 72.02

6 Conclusions

We have presented an exact Benders decomposition algorithm for large-scale instances of the
classical Uncapacitated Hub Location Problem with Multiple Assignments. A standard Ben-
ders decomposition was enhanced through the incorporation of several algorithmic features
such as a multicut reformulation, the generation of stronger optimality cuts, the incorpo-
ration of reduction tests, and the use of a heuristic procedure. Extensive computational
experiments on a large set of existing and new instances with up to 500 nodes and 250,000
commodities have clearly confirmed the efficiency and robustness of the algorithm. To the
best of our knowledge, the new instances are by far the largest and most difficult ever solved
for any type of hub location problem.
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Hamacher, H.W., M. Labbé, S. Nickel, T. Sonneborn. 2004. Adapting polyhedral properties
from facility to hub location problems. Discrete Applied Mathematics 145 104–116.

Klincewicz, J.G. 1996. A dual algorithm for the uncapacitated hub location problem. Location
Science 4 173–184.

Klincewicz, J.G. 1998. Hub location in backbone/tributary network design: A review. Loca-
tion Science 6 307–335.

Magnanti, T.L., R.T. Wong. 1981. Accelerating Benders decomposition: Algorithmic en-
hancement and model selection criteria. Operations Research 29 464–484.

Benders Decomposition for Large-Scale Uncapacitated Hub Location

CIRRELT-2010-26 32
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Online Supplement

In this Online Supplement we present the detailed computational results of Section 5. In
particular, Tables 10 and 11 provide the computational results for the comparison of the Ben-
ders reformulations. The results for the comparison of algorithms for generating optimality
cuts are given in Tables 12 and 13. The results of the heuristic procedure and some variants
of the Benders algorithm containing different sets of initial optimality cuts are provided in
Tables 14 and 15. The results of the elimination tests are given in Tables 16 and 17. Finally,
Tables 18–21 provide the detailed computational results relative to the new set of instances.
The headings of these tables are self-explanatory or have been defined in the paper.

Table 10: Comparison of Benders reformulations using 36 instances of AP set with |H| =
25, 50, 75 and 100.

Total time (sec) Iterations Optimal solution
|H| τ TC 1-cut |H|-cuts 1-cut |H|-cuts Value Set of hubs
25 0.2 2 0.20 0.11 16 5 198152.69 8 18

0.2 5 4.38 0.77 83 11 372917.47 2 8 15 16 18
0.2 10 58.18 1.97 206 17 575514.42 2 4 5 8 11 15 17 18
0.5 2 0.21 0.13 14 5 206559.35 8 18
0.5 5 1.69 1.03 60 15 420252.84 2 8 14 18
0.5 10 8.72 1.18 109 13 695200.36 2 5 8 14 16 18
0.8 2 0.14 0.08 12 5 212227.82 8 18
0.8 5 0.40 0.18 25 7 438906.58 8 18
0.8 10 1.97 0.55 60 10 770835.99 2 8 14 16 18

50 0.2 2 1.94 1.11 28 8 198606.10 15 36
0.2 5 12.02 2.58 90 11 384589.91 6 22 27 35
0.2 10 618.99 15.13 352 20 629478.04 3 9 15 21 28 33 35
0.5 2 1.06 0.82 18 6 206938.91 15 36
0.5 5 4.93 3.12 62 13 425809.79 6 27 35
0.5 10 49.66 6.95 173 16 730413.83 3 9 15 28 32 35
0.8 2 0.91 0.82 15 6 211809.78 15 36
0.8 5 1.72 1.22 30 8 443079.34 15 36
0.8 10 14.09 6.73 115 17 794145.54 3 15 27 32 35

75 0.2 2 7.25 5.20 30 9 195761.92 22 68
0.2 5 18.59 7.00 69 10 377893.29 8 40 47 52
0.2 10 1323.30 16.23 361 16 629153.82 4 7 11 22 47 52 58
0.5 2 4.79 4.47 23 8 204199.76 22 52
0.5 5 8.07 6.99 49 12 419794.51 8 40 47 52
0.5 10 38.82 7.15 116 11 724355.30 4 11 22 47 52 58
0.8 2 3.96 4.50 19 9 208876.08 22 68
0.8 5 6.85 6.08 51 12 442308.85 22 52
0.8 10 13.66 7.19 72 13 787147.05 8 22 47 52 58

100 0.2 2 21.38 14.64 28 7 198620.55 29 73
0.2 5 162.22 69.15 168 23 391144.24 29 44 54 71
0.2 10 time 170.00 500 23 642832.63 5 18 29 52 58 64 70
0.5 2 15.11 13.66 21 7 206992.89 29 73
0.5 5 46.50 38.85 96 20 429862.06 29 54 71
0.5 10 2514.49 113.32 500 24 747284.96 6 18 30 56 64 70
0.8 2 13.27 12.91 17 6 211399.54 29 73
0.8 5 16.45 17.54 34 11 447136.10 29 71
0.8 10 125.05 38.38 176 20 802972.37 29 52 64 70
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Table 11: Comparison of Benders reformulations using 36 instances of AP set with |H| =
125, 150, 175 and 200.

Total time (sec) Iterations Optimal solution
|H| τ TC 1-cut |H|-cuts 1-cut |H|-cuts Value Set of hubs
125 0.2 2 60.07 47.20 25 10 195896.01 37 86

0.2 5 117.79 52.92 84 12 377694.40 11 47 81 86
0.2 10 time 170.82 383 25 628314.63 7 20 28 37 68 81 86
0.5 2 41.22 36.63 18 6 203742.38 37 86
0.5 5 73.36 53.26 72 16 419899.65 33 47 81 86
0.5 10 806.1 137.54 305 25 732973.18 7 37 68 81 86
0.8 2 36.25 35.70 16 6 208128.33 37 86
0.8 5 43.60 38.06 48 9 441429.82 33 81 90
0.8 10 100.06 45.66 122 13 790675.99 11 60 81 86

150 0.2 2 225.26 138.66 38 12 192280.70 40 100
0.2 5 359.6 143.40 131 16 375646.21 11 80 94 100
0.2 10 time 455.93 427 25 623773.71 7 25 40 62 82 94 100
0.5 2 126.83 91.57 29 6 199546.92 40 99
0.5 5 222.75 155.32 130 22 418433.02 12 80 94 100
0.5 10 783.4 202.96 245 20 726703.57 11 25 40 82 94 100
0.8 2 87.23 82.82 22 5 203945.31 40 99
0.8 5 104.78 107.40 65 15 439397.54 40 100
0.8 10 155.2 123.39 120 16 786644.08 11 40 82 94 100

175 0.2 2 430.36 287.08 21 7 188078.83 44 121
0.2 5 648.64 276.74 102 15 372751.79 46 93 109 121
0.2 10 time 1031.62 255 32 628214.33 8 30 44 93 109 121
0.5 2 244.74 210.40 16 5 196283.17 44 121
0.5 5 308.17 203.82 53 10 411927.96 46 93 109 121
0.5 10 time 391.21 451 24 729241.06 8 30 44 93 109 121
0.8 2 177.27 172.08 13 4 200335.63 44 121
0.8 5 189.4 177.84 31 8 432513.74 46 93 121
0.8 10 226.62 180.13 74 9 781209.12 46 93 108 121

200 0.2 2 1139.49 656.69 21 8 187460.90 53 184
0.2 5 1269.81 463.78 96 12 368847.02 22 77 126 184
0.2 10 time time 207 47 631458.20 13 32 53 97 113 126 184
0.5 2 653.74 419.86 19 6 197011.18 53 184
0.5 5 841.89 408.06 93 16 411477.77 22 104 126 184
0.5 10 time 2436.64 372 39 733190.17 14 32 61 113 126 184
0.8 2 351.28 332.53 14 5 201286.60 53 184
0.8 5 400.77 362.31 47 13 436165.81 57 126 184
0.8 10 761.51 455.65 199 21 787170.71 22 104 126 140
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Table 12: Comparison of optimality cuts using 36 instances of AP set with |H| = 25, 50, 75
and 100.

Total time (sec) Iterations
|H| τ TC NC POC SC NC POC SC
25 0.2 2 0.11 0.96 0.11 5 4 4

0.2 5 0.77 1.67 1.19 11 8 12
0.2 10 1.97 1.92 1.16 17 9 12
0.5 2 0.13 0.64 0.13 5 4 4
0.5 5 1.03 1.72 0.56 15 11 11
0.5 10 1.18 1.13 0.75 13 7 11
0.8 2 0.08 0.44 0.09 5 4 4
0.8 5 0.18 0.78 0.19 7 7 6
0.8 10 0.55 0.89 0.29 10 7 7

50 0.2 2 1.11 11.81 1.17 8 6 7
0.2 5 2.58 10.88 1.38 11 6 6
0.2 10 15.13 22.57 8.21 20 13 15
0.5 2 0.82 5.49 0.78 6 5 5
0.5 5 3.12 7.83 1.50 13 8 9
0.5 10 6.95 8.24 1.82 16 8 7
0.8 2 0.82 3.17 0.79 6 5 5
0.8 5 1.22 4.18 1.08 8 7 8
0.8 10 6.73 7.26 2.19 17 11 10

75 0.2 2 5.20 63.09 6.08 9 7 9
0.2 5 7.00 48.18 6.02 10 6 7
0.2 10 16.23 45.53 11.48 16 6 10
0.5 2 4.47 31.99 4.49 8 7 7
0.5 5 6.99 23.10 4.60 12 5 6
0.5 10 7.15 28.66 6.18 11 7 8
0.8 2 4.50 17.42 4.43 9 8 8
0.8 5 6.08 17.45 4.10 12 8 6
0.8 10 7.19 19.30 5.78 13 9 10

100 0.2 2 14.64 209.46 15.55 7 6 6
0.2 5 69.15 254.53 32.89 23 11 15
0.2 10 170.00 207.16 32.77 23 9 12
0.5 2 13.66 79.08 13.59 7 5 5
0.5 5 38.85 136.65 23.83 20 11 13
0.5 10 113.32 123.48 28.16 24 11 13
0.8 2 12.91 34.59 12.97 6 5 5
0.8 5 17.54 44.45 14.74 11 7 7
0.8 10 38.38 51.61 17.02 20 9 10
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Table 13: Comparison of optimality cuts using 36 instances of AP set with |H| = 125, 150,
175 and 200.

Total time (sec) Iterations
|H| τ TC NC POC SC NC POC SC
125 0.2 2 47.20 734.78 48.67 10 8 8

0.2 5 52.92 527.13 54.07 12 8 9
0.2 10 170.82 670.35 107.67 25 12 17
0.5 2 36.63 221.91 38.54 6 5 6
0.5 5 53.26 280.32 43.97 16 8 9
0.5 10 137.54 511.92 98.41 25 19 22
0.8 2 35.70 97.19 36.65 6 6 6
0.8 5 38.06 115.43 38.71 9 8 8
0.8 10 45.66 142.71 43.81 13 11 11

150 0.2 2 138.66 1310.32 141.06 12 8 10
0.2 5 143.40 1370.39 154.09 16 11 15
0.2 10 455.93 1157.68 170.20 25 10 15
0.5 2 91.57 582.45 95.22 6 6 6
0.5 5 155.32 970.64 133.45 22 14 17
0.5 10 202.96 674.03 127.31 20 12 13
0.8 2 82.82 190.32 84.28 5 5 5
0.8 5 107.40 355.26 104.40 15 12 14
0.8 10 123.39 286.69 99.07 16 11 12

175 0.2 2 287.08 1675.29 311.86 7 7 7
0.2 5 276.74 1586.16 287.86 15 8 12
0.2 10 1031.62 2614.34 442.48 32 16 19
0.5 2 210.40 864.59 215.48 5 5 5
0.5 5 203.82 983.15 209.37 10 8 8
0.5 10 391.21 1219.99 288.62 24 12 16
0.8 2 172.08 347.30 174.02 4 4 4
0.8 5 177.84 468.69 181.61 8 8 8
0.8 10 180.13 414.40 181.52 9 7 7

200 0.2 2 656.69 2431.71 613.25 8 6 6
0.2 5 463.78 2623.35 485.63 12 8 10
0.2 10 time 6698.61 2541.63 47 21 31
0.5 2 419.86 1495.22 432.01 6 6 6
0.5 5 408.06 1681.55 418.60 16 9 13
0.5 10 2436.64 2755.24 1059.11 39 18 27
0.8 2 332.53 636.47 336.72 5 5 5
0.8 5 362.31 1034.27 365.87 13 11 12
0.8 10 455.65 1123.34 389.65 21 14 14
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Table 14: Results of heuristic using 36 instances of AP set with |H| = 25, 50, 75 and 100.
Total time (sec) Iterations

|H| τ TC % Dev Heur |P ID| = 0 |P ID| = 1 |P ID| = 5 |P ID| = 0 |P ID| = 1 |P ID| = 5
25 0.2 2 0.00 0.01 0.11 0.11 0.07 4 3 3

0.2 5 0.00 0.06 1.19 0.23 0.32 12 5 7
0.2 10 0.00 0.2 1.16 0.61 0.53 12 9 9
0.5 2 0.00 0.01 0.13 0.09 0.06 4 2 3
0.5 5 0.00 0.04 0.56 0.5 0.68 11 10 13
0.5 10 0.00 0.12 0.75 0.32 0.25 11 7 7
0.8 2 0.00 0.01 0.09 0.05 0.05 4 2 3
0.8 5 0.00 0.03 0.19 0.13 0.1 6 5 5
0.8 10 0.00 0.06 0.29 0.14 0.07 7 4 4

50 0.2 2 0.00 0.14 1.17 0.85 1.2 7 4 7
0.2 5 0.00 0.5 1.38 1.11 1.34 6 4 6
0.2 10 0.00 1.23 8.21 7.15 6.1 15 10 11
0.5 2 0.00 0.11 0.78 0.73 0.83 5 4 5
0.5 5 0.00 0.28 1.5 1.31 1.22 9 7 7
0.5 10 0.00 0.94 1.82 2.14 2.16 7 7 8
0.8 2 0.00 0.1 0.79 0.71 0.81 5 4 5
0.8 5 0.00 0.14 1.08 0.78 0.8 8 5 6
0.8 10 0.00 0.55 2.19 1.3 1.49 10 7 8

75 0.2 2 0.00 0.38 6.08 5.52 5.6 9 8 8
0.2 5 0.00 1.37 6.02 4.8 5.57 7 4 6
0.2 10 0.00 4.79 11.48 11.73 11.71 10 9 10
0.5 2 0.00 0.39 4.49 4.25 4.58 7 6 7
0.5 5 0.00 1.25 4.6 4.07 4.52 6 4 6
0.5 10 0.00 2.5 6.18 5.42 5.83 8 6 7
0.8 2 0.00 0.39 4.43 3.9 4.41 8 5 8
0.8 5 0.00 0.55 4.1 3.89 4.27 6 5 7
0.8 10 0.00 1.68 5.78 5.12 5.68 10 8 10

100 0.2 2 0.00 1.39 15.55 15.68 15.65 6 6 6
0.2 5 0.00 3.29 32.89 25.83 32.6 15 12 15
0.2 10 0.00 10.26 32.77 30.73 33.25 12 10 11
0.5 2 0.00 0.86 13.59 13.12 14.31 5 4 6
0.5 5 0.00 2.16 23.83 22.78 28.68 13 13 16
0.5 10 0.00 8.2 28.16 24.01 26.51 13 11 12
0.8 2 0.00 0.8 12.97 12.87 14.45 5 4 7
0.8 5 0.00 1.67 14.74 13.25 14.79 7 5 8
0.8 10 0.00 3.46 17.02 18.34 19.23 10 11 11
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Table 15: Results of heuristic using 36 instances of AP set with |H| = 125, 150, 175 and
200.

Total time (sec) Iterations
|H| τ TC % Dev Heur |P ID| = 0 |P ID| = 1 |P ID| = 5 |P ID| = 0 |P ID| = 1 |P ID| = 5
125 0.2 2 0.00 2.46 48.67 50.26 50.52 8 8 9

0.2 5 0.00 7.17 54.07 57.12 57.52 9 10 10
0.2 10 0.00 15.64 107.67 102.29 116.97 17 15 15
0.5 2 0.00 1.85 38.54 37.17 41.02 6 5 8
0.5 5 0.00 5.63 43.97 48.28 49.61 9 11 12
0.5 10 0.00 10.09 98.41 64.08 69.27 22 15 16
0.8 2 0.00 1.5 36.65 35.37 36.85 6 4 6
0.8 5 0.13 3.83 38.71 39.66 43.82 8 9 12
0.8 10 0.02 6.85 43.81 40.83 47.5 11 9 13

150 0.2 2 0.00 3.73 141.06 135.96 137.28 10 9 11
0.2 5 0.00 13.89 154.09 118.11 133.07 15 8 12
0.2 10 0.17 50.87 170.2 132.85 146.88 15 11 12
0.5 2 0.00 3.12 95.22 95.4 99.13 6 6 8
0.5 5 0.00 10.58 133.45 129.41 126.03 17 15 16
0.5 10 0.00 26.73 127.31 111 113.88 13 12 13
0.8 2 0.00 2.7 84.28 84.22 86.1 5 5 6
0.8 5 0.00 3.7 104.4 95.36 98.12 14 12 12
0.8 10 0.00 14.97 99.07 93.45 97.05 12 10 11

175 0.2 2 0.00 5.8 311.86 246.19 280.14 7 3 6
0.2 5 0.00 17.55 287.86 264.21 267.17 12 11 11
0.2 10 0.00 47.63 442.48 395.09 421.18 19 18 18
0.5 2 0.00 4.84 215.48 196.53 214.17 5 3 5
0.5 5 0.00 14.71 209.37 195.51 199.22 8 7 8
0.5 10 0.00 27.3 288.62 261.83 281.35 16 15 18
0.8 2 0.00 4.59 174.02 171.71 175.77 4 3 5
0.8 5 0.00 7.65 181.61 180.38 179.16 8 8 7
0.8 10 0.00 17.57 181.52 179.22 179.78 7 7 6

200 0.2 2 0.00 9.44 613.25 548.34 603.02 6 5 7
0.2 5 0.00 29.83 485.63 494.38 535.71 10 9 10
0.2 10 0.00 108.43 2541.63 2274.19 1825.69 31 28 28
0.5 2 0.00 8.06 432.01 420.51 432.78 6 4 6
0.5 5 0.00 17.57 418.6 431.21 444.05 13 13 14
0.5 10 0.28 64.21 1059.11 880.76 948.57 27 26 26
0.8 2 0.00 6.76 336.72 335.9 341.78 5 4 6
0.8 5 0.00 18.47 365.87 356.56 347.28 12 11 9
0.8 10 0.00 38.2 389.65 372.11 391.78 14 12 15
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Table 16: Results of elimination tests using 36 instances of AP set with |H| = 25, 50, 75
and 100.

Average time (sec) Average iterations % Closed hubs

|P I
D| = 0 |P I

D| = 1 |P I
D| = 0 |P I

D| = 1 |P I
D| = 0 |P I

D| = 1
|H| τ TC E I EI + EII E I EI + EII EI EI + EII EI EI + EII E I EI + EII E I EI + EII
25 0 2 2 0.11 0.11 0.11 0.11 4 4 3 3 88.00 92.00 44.00 44.00

0 2 5 0.84 0.85 0.30 0.30 11 11 5 5 20.00 28.00 32.00 48.00
0 2 10 0.59 0.35 0.74 0.85 10 7 8 8 8.00 4.00 0.00 4.00
0 5 2 0.08 0.09 0.07 0.08 4 4 2 2 84.00 88.00 0.00 0.00
0 5 5 0.53 0.55 0.55 0.56 11 11 10 10 32.00 36.00 28.00 48.00
0 5 10 0.46 0.48 0.41 0.44 8 8 7 7 4.00 12.00 12.00 16.00
0 8 2 0.08 0.08 0.07 0.06 4 4 2 2 88.00 92.00 0.00 0.00
0 8 5 0.20 0.20 0.17 0.17 6 6 5 5 40.00 56.00 28.00 28.00
0 8 10 0.29 0.30 0.21 0.25 7 7 4 4 4.00 16.00 0.00 32.00

50 0 2 2 0.91 0.89 1.00 0.96 6 6 4 4 88.00 90.00 58.00 58.00
0 2 5 1.43 1.46 1.69 1.76 7 7 4 5 58.00 66.00 38.00 74.00
0 2 10 8.49 8.42 12.72 13.75 13 14 14 14 8.00 32.00 10.00 18.00
0 5 2 0.69 0.71 0.83 0.85 5 5 4 4 90.00 92.00 76.00 92.00
0 5 5 1.59 1.51 1.96 1.76 9 9 8 8 60.00 70.00 50.00 76.00
0 5 10 1.73 1.77 3.16 3.50 7 7 7 7 32.00 42.00 30.00 38.00
0 8 2 0.67 0.68 0.82 0.80 5 5 4 4 92.00 96.00 74.00 92.00
0 8 5 0.96 0.95 0.83 0.87 7 7 4 4 80.00 76.00 80.00 84.00
0 8 10 2.58 2.89 2.18 2.24 11 11 8 9 52.00 54.00 52.00 64.00

75 0 2 2 4.75 4.75 4.74 4.73 7 7 6 6 89.33 88.00 88.00 92.00
0 2 5 5.34 5.28 5.89 5.80 7 7 4 4 77.33 81.33 80.00 90.67
0 2 10 10.51 10.60 20.12 19.06 10 10 11 11 38.67 60.00 36.00 62.67
0 5 2 4.06 4.06 4.65 4.78 7 7 8 8 92.00 93.33 89.33 89.33
0 5 5 4.22 4.24 5.86 5.83 5 5 6 6 76.00 81.33 80.00 86.67
0 5 10 5.57 6.78 7.74 7.72 7 8 5 5 52.00 64.00 53.33 66.67
0 8 2 3.86 3.83 4.20 4.30 6 6 5 5 89.33 92.00 82.67 92.00
0 8 5 4.11 4.09 4.43 4.43 6 6 5 5 82.67 81.33 81.33 92.00
0 8 10 5.15 5.13 6.56 7.05 8 8 7 8 68.00 73.33 66.67 78.67

100 0 2 2 15.15 15.27 15.18 15.14 6 6 5 5 77.00 89.00 76.00 95.00
0 2 5 24.84 24.12 24.22 28.09 13 12 11 13 70.00 67.00 71.00 77.00
0 2 10 32.05 37.35 49.42 58.48 12 13 12 14 51.00 56.00 51.00 61.00
0 5 2 13.28 13.30 13.59 13.81 5 5 4 4 90.00 92.00 74.00 95.00
0 5 5 18.59 20.77 20.09 22.61 12 13 11 12 79.00 80.00 77.00 77.00
0 5 10 27.36 28.66 28.29 34.77 13 12 9 11 49.00 56.00 55.00 60.00
0 8 2 12.91 12.91 13.59 13.68 5 5 4 4 95.00 96.00 74.00 74.00
0 8 5 15.28 15.90 14.87 15.32 8 8 5 6 68.00 70.00 83.00 92.00
0 8 10 16.19 18.98 18.75 18.79 10 11 8 7 76.00 73.00 77.00 71.00

Table 17: Results of elimination tests using 36 instances of AP set with |H| = 125, 150, 175
and 200.

Average time (sec) Average iterations % Closed hubs

|P I
D| = 0 |P I

D| = 1 |P I
D| = 0 |P I

D| = 1 |P I
D| = 0 |P I

D| = 1
|H| τ TC E I EI + EII E I EI + EII EI EI + EII EI EI + EII E I EI + EII E I EI + EII
125 0 2 2 44.42 44.40 44.41 47.77 7 7 7 7 89.60 91.20 89.60 93.60

0 2 5 50.40 50.28 50.34 56.34 9 9 9 8 74.40 81.60 81.60 85.60
0 2 10 119.43 104.19 111.81 112.20 18 17 17 14 40.00 63.20 40.00 64.00
0 5 2 36.47 36.48 36.48 38.23 5 5 5 5 89.60 93.60 89.60 96.80
0 5 5 40.88 41.65 41.27 49.51 9 10 9 9 84.80 85.60 83.20 83.20
0 5 10 88.30 90.90 89.60 73.52 21 20 18 15 44.80 60.00 47.20 59.20
0 8 2 36.01 35.86 35.94 36.78 6 6 6 5 92.80 95.20 93.60 96.80
0 8 5 37.30 37.69 37.50 43.55 8 8 8 9 86.40 86.40 86.40 89.60
0 8 10 42.20 41.72 41.96 48.36 11 10 10 9 64.00 78.40 67.20 81.60

150 0 2 2 109.71 110.40 110.06 121.83 9 9 9 7 93.33 90.00 93.33 94.00
0 2 5 117.21 116.37 116.79 123.90 12 11 11 9 82.00 75.33 84.00 87.33
0 2 10 151.17 169.74 160.46 191.13 14 13 12 12 62.67 65.33 62.67 63.33
0 5 2 89.51 89.95 89.73 96.16 6 6 6 6 92.67 91.33 92.67 93.33
0 5 5 102.15 103.66 102.91 112.44 14 13 14 10 86.00 84.67 78.00 83.33
0 5 10 114.80 121.15 117.98 135.71 13 13 13 10 68.00 72.67 69.33 80.67
0 8 2 83.40 83.65 83.53 86.26 5 5 5 5 89.33 91.33 76.67 78.00
0 8 5 90.04 90.98 90.51 91.66 11 11 11 9 86.67 83.33 86.00 89.33
0 8 10 91.88 94.56 93.22 105.07 11 10 11 8 77.33 72.67 74.67 82.00

175 0 2 2 268.83 268.73 268.78 237.55 7 7 7 3 94.86 96.00 71.43 77.71
0 2 5 254.92 255.49 255.21 256.08 10 10 10 10 77.71 86.86 81.71 85.71
0 2 10 410.31 520.80 465.56 525.67 19 20 20 20 48.57 61.71 55.43 69.14
0 5 2 202.80 202.69 202.75 196.25 5 5 5 3 97.14 98.29 94.29 98.29
0 5 5 200.88 201.97 201.43 206.45 8 8 8 7 90.29 85.71 88.57 95.43
0 5 10 258.70 268.96 263.83 263.70 15 15 15 14 53.14 65.14 56.57 65.71
0 8 2 173.48 173.57 173.53 176.31 4 4 4 3 94.86 97.71 91.43 98.29
0 8 5 177.39 179.25 178.32 184.16 7 8 7 7 82.86 90.86 85.14 96.57
0 8 10 178.23 179.50 178.87 197.27 7 7 7 5 72.00 82.29 75.43 85.71

200 0 2 2 523.96 523.78 523.87 483.91 6 6 6 5 95.50 97.50 86.00 90.00
0 2 5 447.96 448.25 448.11 485.47 10 9 10 7 89.50 80.50 81.50 87.50
0 2 10 2395.21 1603.71 1999.46 1271.34 29 26 28 21 32.50 62.00 34.00 63.50
0 5 2 390.77 392.37 391.57 393.36 6 6 6 4 95.50 97.50 92.50 96.50
0 5 5 383.47 389.44 386.46 394.65 11 11 11 10 92.50 87.50 85.50 89.50
0 5 10 874.78 914.56 894.67 750.23 26 23 26 21 48.00 57.50 46.50 60.00
0 8 2 329.82 332.90 331.36 338.44 5 5 5 4 97.50 98.00 96.50 98.00
0 8 5 342.15 347.76 344.96 361.97 11 11 11 9 92.00 83.50 82.50 92.50
0 8 10 373.31 364.04 368.68 383.49 14 12 11 9 76.50 73.00 71.50 83.50
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Table 18: Comparison of Benders algorithm using 54 instances of Set I with |H| = 50, 100,
150, 200, 250 and 300.

% Gap Total time (sec) Iterations % Closed Optimal solution
|H| τ TC Heur B1 B2 Heur B1 B2 B1 B2 hubs Value Set of hubs
50 0.2 2 0.53 0.00 0.00 0.2 1.63 1.17 11 8 80.00 95453.05 17 20 43

0.2 5 0.00 0.00 0.00 1.01 1.76 2.77 10 9 66.00 176755.87 17 19 28 43 50
0.2 10 0.00 0.00 0.00 1.33 3.68 4.12 10 8 54.00 280490.13 3 17 19 28 31 34 47
0.5 2 0.00 0.00 0.00 0.22 0.7 0.7 8 7 86.00 99796.22 43 50
0.5 5 0.00 0.00 0.00 0.5 1.29 1.76 11 9 64.00 199897.39 17 43 47
0.5 10 0.00 0.00 0.00 1.14 4.34 6.17 15 13 46.00 342846.18 17 19 28 43 47
0.8 2 0.17 0.00 0.00 0.21 0.43 0.59 7 7 90.00 101431.59 43 50
0.8 5 0.00 0.00 0.00 0.22 0.69 0.58 9 6 78.00 210616.58 17 43 47
0.8 10 0.00 0.00 0.00 0.71 0.68 1.12 8 5 74.00 375563.34 17 19 28 43 47

100 0.2 2 0.00 0.00 0.00 1.61 6.04 7.26 5 7 94.00 958448.03 47 67
0.2 5 0.00 0.00 0.00 5.27 13.62 13.56 11 8 81.00 1717247.23 19 20 67 87
0.2 10 0.00 0.00 0.00 11.84 21.29 29.9 12 11 78.00 2733587.92 17 19 20 43 67 87
0.5 2 0.00 0.00 0.00 1.29 4.54 4.32 7 5 77.00 1022032.03 50 67
0.5 5 0.00 0.00 0.00 3.28 5.68 9.4 9 10 84.00 2032155.05 19 67 81
0.5 10 0.00 0.00 0.00 9.47 30.72 34.91 19 15 56.00 3479465.06 20 43 67 87 96
0.8 2 0.00 0.00 0.00 1.67 1.56 2.89 4 3 80.00 1022322.83 77
0.8 5 0.00 0.00 0.00 1.91 1.85 3.34 5 4 90.00 2189049.87 50 67
0.8 10 0.00 0.00 0.00 4.34 6.56 8.41 12 8 72.00 3945197.08 19 67 81

150 0.2 2 0.00 0.00 0.00 7.2 91.55 67.02 11 7 94.00 1981357.21 20 66 128
0.2 5 0.00 0.00 0.00 23.64 80.77 76.45 10 9 86.00 3617316.49 20 43 66 137 150
0.2 10 0.00 0.00 0.00 48.66 138.36 177.33 15 15 75.33 5818351.14 19 36 43 103 137 138 141 150
0.5 2 0.00 0.00 0.00 6.13 60.18 38.57 14 11 92.67 2192049.63 66 103 150
0.5 5 0.00 0.00 0.00 18.65 62.4 59.53 15 13 87.33 4370594.00 20 66 96 137
0.5 10 0.00 0.00 0.00 54.64 203.75 145.83 23 18 67.33 7459760.40 19 34 36 103 137 138 150
0.8 2 0.00 0.00 0.00 6.3 15.53 14.42 10 7 95.33 2260991.32 118 150
0.8 5 0.00 0.00 0.00 10.41 19.37 23.33 11 9 86.00 4767506.82 20 66 150
0.8 10 0.00 0.00 0.00 21.65 52.08 49.17 18 13 75.33 8582350.85 19 20 137 138 150

200 0.2 2 0.00 0.00 0.00 16.59 721.55 408.63 12 10 93.00 4581052.59 17 152 180
0.2 5 0.00 0.00 0.00 78.95 529.97 466.82 22 15 84.50 8690186.86 17 43 141 152 180
0.2 10 0.00 0.00 0.00 113.33 434.75 512.53 17 18 68.00 14029111.00 17 42 43 66 97 115 180
0.5 2 0.00 0.00 0.00 16.54 476.25 173.92 18 12 92.50 4882414.46 88 115
0.5 5 0.00 0.00 0.00 26.88 161.05 139.13 10 9 87.00 9987580.92 17 115 118 180
0.5 10 0.00 0.00 0.00 76.55 416.02 266.05 23 15 72.00 17427726.67 17 28 63 115 118 180
0.8 2 0.00 0.00 0.00 14.94 44.64 38.65 10 5 97.00 4983776.59 88 103
0.8 5 0.00 0.00 0.00 17.1 37.44 42.48 9 6 96.50 10614381.69 17 115 180
0.8 10 0.23 0.00 0.00 39.8 71.17 80.18 13 9 84.00 19410105.16 17 81 100 180

250 0.2 2 0.00 0.00 0.00 33.38 3314.85 1423.53 14 10 92.80 3874482.18 88 103
0.2 5 0.00 0.00 0.00 142.65 1755.94 1232.83 22 16 80.40 7282336.18 28 78 88 141 213
0.2 10 0.01 0.00 0.00 346.38 31189.44 17222.68 71 52 69.20 11873568.51 19 28 88 141 164 213 235 237
0.5 2 0.00 0.00 0.00 35.09 1016.14 515.34 10 6 97.20 4062441.10 88 103
0.5 5 0.00 0.00 0.00 108.6 1049.36 544.68 23 13 86.00 8425749.10 88 141 152 201
0.5 10 0.00 0.00 0.00 157.84 5079.08 1660.4 34 25 61.60 14584699.51 24 28 88 141 213 235
0.8 2 0.00 0.00 0.00 29.55 100.17 109.33 7 4 98.00 4146606.99 88 103
0.8 5 0.00 0.00 0.00 51.16 152.9 152.23 13 10 92.40 8941909.55 88 152 201
0.8 10 0.00 0.00 0.00 126.6 1134.23 520.73 27 20 68.40 16327319.27 24 28 66 88 213 235

300 0.2 2 0.00 0.00 0.00 102.57 20624.68 5149.04 24 23 91.67 3928387.32 77 103
0.2 5 0.74 0.00 0.00 168.47 28914.76 17453.65 51 48 66.67 7425734.30 141 150 198 254
0.2 10 0.00 0.67 0.59 496.46 time time 58 54 47.00 12240606.61 28 43 128 141 243 256
0.5 2 0.00 0.00 0.00 57.61 3656.84 1651.73 9 5 98.33 4018433.63 172
0.5 5 0.00 0.00 0.00 115.23 9231.32 3596.2 38 31 71.67 8321461.85 77 152 180
0.5 10 0.00 0.00 0.00 297.21 21107.77 11922.04 45 35 60.00 14339548.71 128 152 254 256 275
0.8 2 0.00 0.00 0.00 42.59 322.7 248.09 6 4 94.33 4018433.63 172
0.8 5 0.36 0.00 0.00 86.4 916.53 435.92 20 15 87.33 8687780.51 77 152 180
0.8 10 0.00 0.00 0.00 154.91 38265.58 30204.22 70 58 52.67 15724133.58 77 128 152 254
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Table 19: Comparison of Benders algorithm using 36 instances of Set II with |H| = 50, 100,
150 and 200.

% Gap Total time (sec) Iterations % Closed Optimal solution
|H| τ TC Heur B1 B2 Heur B1 B2 B1 B2 hubs Value Set of hubs
50 0.2 2 0.00 0.00 0.00 0.23 1.86 0.99 10 7 80.00 1068384.96 19 47

0.2 5 0.00 0.00 0.00 1.24 1.93 2.65 9 8 62.00 1982230.84 11 17 19 31 42 47
0.2 10 0.00 0.00 0.00 1.82 16.89 19.16 13 15 28.00 3053193.54 3 11 17 19 22 27 28 31 47
0.5 2 0.00 0.00 0.00 0.18 0.46 0.41 5 4 90.00 1117953.42 19 47
0.5 5 0.00 0.00 0.00 0.82 0.99 1.5 8 7 74.00 2290402.89 11 17 19 43 47
0.5 10 0.00 0.00 0.00 1.92 3.32 7.23 11 11 42.00 3896604.16 3 11 17 19 22 31 47
0.8 2 0.00 0.00 0.00 0.20 0.53 0.37 6 4 92.00 1144745.11 19 47
0.8 5 0.00 0.00 0.00 0.45 0.47 0.6 5 3 94.00 2432686.22 11 19 47
0.8 10 0.00 0.00 0.00 0.86 0.57 1.35 6 6 62.00 4381754.77 11 17 19 43 47

100 0.2 2 0.00 0.00 0.00 2.45 26.34 11.2 15 10 87.00 6475483.69 17 19 28
0.2 5 0.00 0.00 0.00 11.73 43.71 29.36 18 13 74.00 12000667.43 17 28 43 66 79
0.2 10 0.00 0.00 0.00 19.02 24.82 33.63 11 12 80.00 18760244.63 28 43 66 67 75 79 81 88
0.5 2 0.00 0.00 0.00 1.47 11.8 4.85 11 6 84.00 7014709.34 28 88
0.5 5 0.00 0.00 0.00 6.26 43.47 18.65 20 14 76.00 14097698.70 28 34 79 88
0.5 10 0.00 0.00 0.00 17.17 20.87 36.12 14 13 71.00 23962527.74 28 43 66 67 79 81 88
0.8 2 0.00 0.00 0.00 1.41 4.42 2.86 7 4 66.00 7194920.97 28 88
0.8 5 0.51 0.00 0.00 4.42 8.95 6.92 10 7 65.00 15198974.03 19 28 77
0.8 10 0.00 0.00 0.00 9.86 60.68 50.93 24 20 68.00 27446996.05 28 34 79 88

150 0.2 2 0.00 0.00 0.00 9.28 87.73 63.23 8 7 92.67 13840337.13 28 66 128
0.2 5 0.00 0.00 0.00 24.83 405.71 156.2 26 19 75.33 26725935.73 17 20 43 66 128
0.2 10 0.38 0.00 0.00 75.74 8163.97 3588.99 51 43 51.33 44590550.97 19 28 43 47 66 67 137 150
0.5 2 0.00 0.00 0.00 7.40 89.61 41.49 16 13 90.67 15485950.81 66 103 128
0.5 5 0.00 0.00 0.00 18.47 104.44 54.9 17 13 82.00 31169206.40 19 20 66 150
0.5 10 0.00 0.00 0.00 45.15 6445.11 1379.4 50 36 57.33 54965468.04 20 24 66 90 150
0.8 2 0.00 0.00 0.00 4.93 33.35 13.47 11 8 94.67 15969490.54 96 118
0.8 5 0.00 0.00 0.00 13.80 65.17 33.73 16 12 88.00 33599533.73 20 66 128
0.8 10 0.46 0.00 0.00 23.63 172.48 81.02 20 13 72.00 61091408.94 19 20 66 150

200 0.2 2 0.80 0.00 0.00 17.60 870.61 397.49 15 16 93.00 28312270.32 66 103 128
0.2 5 0.00 0.00 0.00 74.05 2208.66 1209.08 37 29 75.00 54925668.74 17 19 66 115
0.2 10 0.00 0.26 0.30 258.48 time time 70 68 41.00 90790523.74 17 19 20 43 66 113 137
0.5 2 0.00 0.00 0.00 14.28 347.62 142.64 16 10 95.50 29883949.79 50 128
0.5 5 0.00 0.00 0.00 60.42 3815.15 1865.61 57 46 66.50 62434123.12 17 66 115 180
0.5 10 0.05 0.49 0.28 105.75 time time 63 75 45.00 109722466.01 17 24 34 113 152
0.8 2 0.00 0.00 0.00 12.79 26.94 42.7 12 8 93.00 30467892.95 50 128
0.8 5 0.00 0.00 0.00 29.56 310.74 143.41 26 18 84.50 65867505.7 47 88 180
0.8 10 0.00 0.00 0.00 74.93 5585.69 2228.77 44 35 52.50 119827042.48 17 19 50 66 103

Table 20: Comparison of Benders algorithm using 36 instances of Set III with |H| = 50,
100, 150 and 200.

% Gap Total time (sec) Iterations % Closed Optimal solution
|H| τ TC Heur B1 B2 Heur B1 B2 B1 B2 hubs Value Set of hubs
50 0.2 2 0.00 0.00 0.00 0.43 1.21 1.12 8 6 84.00 213384.42 17 20 43

0.2 5 0.00 0.00 0.00 1.50 1.87 3.79 9 10 62.00 396277.88 17 19 28 34 43 47
0.2 10 0.00 0.00 0.00 1.70 49.51 27.64 17 16 22.00 637858.99 3 17 19 28 31 34 47
0.5 2 0.00 0.00 0.00 0.21 1.24 0.56 9 5 62.00 229430.34 19 47
0.5 5 0.00 0.00 0.00 0.73 3.16 11.88 16 24 60.00 465625.17 17 19 20 43 50
0.5 10 0.00 0.00 0.00 1.21 2.62 10.08 13 16 40.00 791449.46 17 19 28 34 43 47
0.8 2 0.00 0.00 0.00 0.34 0.58 0.63 7 5 90.00 233796.77 19 47
0.8 5 0.52 0.00 0.00 0.45 1.59 1.34 11 10 72.00 497326.01 4 20 43
0.8 10 0.00 0.00 0.00 1.10 1.23 1.68 8 6 62.00 886675.04 17 19 28 34 43 47

100 0.2 2 0.00 0.00 0.00 2.34 54.25 14.86 21 13 82.00 907379.18 20 43 88
0.2 5 0.00 0.00 0.00 12.15 31.9 26.12 15 10 69.00 1661263.35 17 19 20 43 66
0.2 10 0.00 0.00 0.00 19.93 45.62 35.25 13 9 77.00 2687610.56 19 28 43 47 60 66 67 88
0.5 2 0.00 0.00 0.00 1.44 16.89 6.66 14 9 82.00 961919.22 47 88
0.5 5 0.00 0.00 0.00 7.71 88.08 44.74 24 20 72.00 1964190.84 17 19 20 34 43
0.5 10 0.29 0.00 0.00 16.76 91.82 92.98 21 20 55.00 3378760.50 17 19 28 34 43 47
0.8 2 0.00 0.00 0.00 1.56 4.62 4.00 8 7 91.00 977835.63 47 88
0.8 5 0.10 0.00 0.00 3.76 19.21 9.88 15 10 75.00 2090495.80 19 20 77
0.8 10 0.00 0.00 0.00 10.98 28.26 21.33 14 10 58.00 3762525.47 19 20 34 43 88

150 0.2 2 0.03 0.00 0.00 11.79 266.72 89.07 23 14 85.33 1982556.18 103 118 150
0.2 5 0.00 0.00 0.00 34.96 1530.73 207.36 41 20 73.33 3754614.74 17 19 20 43 141
0.2 10 0.00 0.00 0.00 89.08 8701.56 3011.01 47 36 52.00 6189074.11 19 28 43 47 60 67 141 150
0.5 2 0.00 0.00 0.00 5.90 164.59 46.59 22 16 87.33 2129448.17 88 103
0.5 5 0.00 0.00 0.00 20.08 1405.08 164.85 39 21 76.67 4343129.83 17 19 115 141
0.5 10 0.00 0.00 0.00 59.32 32454.78 5255.47 70 52 48.00 7597481.26 17 24 28 43 47 141
0.8 2 0.00 0.00 0.00 5.47 36.61 16.18 12 9 92.00 2166739.51 88 103
0.8 5 0.00 0.00 0.00 13.04 117.51 33.60 19 12 82.67 4620013.77 103 118 150
0.8 10 0.03 0.00 0.00 31.09 2084.38 615.66 41 31 50.67 8396538.43 19 34 115 150

200 0.2 2 0.00 0.00 0.00 21.02 954.27 364.19 17 12 88.00 3491300.05 103 118 128
0.2 5 0.59 0.00 0.00 79.96 24896.54 10182.09 73 59 56.00 6723977.42 17 19 43 141 152
0.2 10 0.00 0.27 0.00 221.95 time 62960.59 62 73 44.00 11055338.21 19 28 43 75 103 141 164 172
0.5 2 0.00 0.00 0.00 13.48 461.66 155.96 18 12 90.50 3726506.36 50 128
0.5 5 0.00 0.00 0.00 49.19 3457.64 1550.68 46 35 64.00 7650937.45 17 19 103 118
0.5 10 0.00 0.51 0.17 117.28 time time 62 71 41.50 13406864.52 17 24 43 113 141 152
0.8 2 0.00 0.00 0.00 17.68 59.53 48.98 11 8 91.50 3786269.19 88 103
0.8 5 0.66 0.00 0.00 33.52 63.88 103.53 12 11 84.00 8093276.59 34 103 128
0.8 10 0.00 0.00 0.00 75.94 10399.75 5593.50 46 39 47.50 14741708.60 19 88 103 151
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Table 21: Computational results of 36 instances of Set I with |H| = 350, 400, 450 and 500.
% Gap Total time (sec) Iterations % Closed Optimal solution

|H| τ TC Heur B2 Heur B2 B2 hubs Value Set of hubs
350 0.2 2 0.00 0.00 149.27 9867.9 14 93.14 4814837.17 103 128 275

0.2 5 0.00 0.00 423.60 42209.42 49 70.00 9266821.81 17 275 323 333 348
0.2 10 0.00 1.55 888.77 time 40 1.71 15414338.11 19 28 43 150 226 235 275
0.5 2 0.00 0.00 145.65 2939.2 10 97.71 5182254.33 34 180
0.5 5 0.37 0.00 293.12 40300 60 67.14 10679368.78 17 103 275 323
0.5 10 0.00 0.88 497.13 time 41 46.57 18668497.14 50 110 156 323 333 348
0.8 2 2.56 0.00 120.15 609.29 8 98.57 5182254.33 34 180
0.8 5 0.00 0.00 156.42 755.06 12 89.71 11332464.07 34 103 128
0.8 10 0.00 0.00 345.46 19791.7 39 57.43 20669490.79 77 103 156 323

400 0.2 2 0.00 0.00 214.92 24506.22 31 85.75 11647182.77 66 235 323
0.2 5 0.00 0.00 655.28 80603.09 56 79.75 21918766.87 11 55 66 235 323 390
0.2 10 0.00 0.29 2008.59 time 32 67.50 34991534.99 28 50 118 271 308 323 336 390
0.5 2 0.00 0.00 210.69 6304.99 14 95.00 12246703.45 118 180
0.5 5 0.00 0.00 382.69 12036.96 34 81.50 25158258.50 17 235 275 323
0.5 10 0.00 0.00 1181.91 83162.59 39 69.00 43348414.05 50 60 275 333 348 390 397
0.8 2 0.00 0.00 98.60 1130.79 9 96.25 12503643.67 118 180
0.8 5 0.00 0.00 221.13 2426.71 25 79.75 26889674.22 180 320 390
0.8 10 0.35 0.00 522.41 80026.2 45 55.50 48694157.48 66 86 103 320 397

450 0.2 2 0.00 0.00 358.53 50970.6 33 88.22 15231788.68 180 226 348
0.2 5 0.70 0.74 825.23 time 35 74.22 28590433.45 17 225 302 320 379
0.2 10 0.00 0.80 2686.16 time 26 51.78 46044048.31 17 103 128 132 225 299 407
0.5 2 0.00 0.00 429.17 15741.29 32 90.67 16434881.90 180 348 390
0.5 5 0.37 0.27 786.33 time 49 77.11 33189201.77 17 225 226 235 254
0.5 10 0.00 0.26 1503.69 time 35 66.44 56769271.61 17 103 128 218 225 226 407
0.8 2 0.00 0.00 231.03 1981.52 19 92.00 16762883.77 103 390
0.8 5 0.46 0.00 442.49 10585.3 29 78.67 35580614.86 180 348 390
0.8 10 0.00 0.00 874.98 85105.27 45 59.33 63935092.11 96 254 353 407 412

500 0.2 2 0.00 0.00 534.15 59474.39 10 87.80 18367424.23 118 235 271
0.2 5 0.00 0.56 1229.15 time 40 69.40 35417722.40 11 43 47 270 291
0.2 10 0.00 0.97 2739.08 time 26 17.80 575116180.16 43 270 271 291 300 348 386 469
0.5 2 0.00 0.00 639.64 26133.4 15 94.40 19828698.61 103 225
0.5 5 0.00 0.00 1062.82 34151.86 41 77.80 40697258.74 118 260 271 477
0.5 10 0.20 0.54 2049.76 time 34 69.20 70787217.57 11 110 242 260 271 291
0.8 2 0.00 0.00 271.06 4053.58 11 97.20 20200841.36 103 225
0.8 5 0.34 0.00 530.23 4170.19 15 89.60 43227344.28 103 180 271
0.8 10 0.28 0.00 1264.02 58665.77 40 66.20 78492890.70 118 226 260 271 477
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