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Abstract.  This paper studies a yard management problem in an automotive
transshipment terminal. Groups of cars arrive to and depart from the terminal in a given
planning period. These groups must be assigned to parking rows under some constraints
resulting from managerial rules. The main objective is the minimization of the total
handling time. Model extensions to handle application specific issues such as the rolling
horizon and a manpower leveling objective are also discussed. The main features of the
problem are modeled as an integer linear program. However, solving this formulation by a
state-of-the-art solver is impractical. In view of this, we develop a metaheuristic algorithm
based on the adaptive large neighborhood search framework. Computational results on
real-life data show the efficacy of the proposed metaheuristic algorithm.
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Optimizing Yard Assignment at an Automotive Transshipment Terminal

1 Introduction

The purpose of this paper is to model and solve the problem of assigning cars to parking
rows in an automotive transshipment terminal. Maritime automotive transportation is de-
veloping along the lines of container transportation where the hub and spoke arrangement
is widely adopted (Mattfeld, 2006). Deep-sea vessels operate between a limited number
of transshipment terminals called hubs. Smaller feeder vessels link the hubs with the other
ports which are the spokes of the system. This network topology results in the consoli-
dation of capacity along the routes connecting the transshipment ports, and in the growth
of their importance. Deep-sea car carriers have a capacity of up to 6000 vehicles whereas
the capacity of ships deployed on short-sea segments can attain 1000 vehicles. Therefore,
automotive transshipment terminals manage large flows of incoming and outgoing cars.
Unlike containers, cars are considered to be fragile objects that require careful and con-
sequently labour intensive handling. For example, cars cannot be stacked, which results
in larger yards compared with container terminals. Cars must be parked in a yard made
up of rows of varying lengths. Once assigned to their parking row, the cars remain in the
same yard position for the duration of their stay in order to reduce the risk of damage. This
“no-relocation” rule, combined with the low density of the yard, increases the importance
of optimal yard assignment. Cars are transported from the quay to their parking slot by
drivers who are grouped in teams and are transported by a mini-bus that brings them back
to their starting point. In the following a set of cars that arrive and depart by the same vessel
pair, and are of the same type (model and brand) will be called a group. To facilitate the
yard management and the driver busing process, a group is allocated to a set of adjacent
parking rows. The number of required rows depends on the car length and on the row
length. Yard managers prefer not to share a row between different groups, which often
results in partially empty rows.

This study was motivated by an application at the BLG Italia automotive transshipment
terminal which operates in the port of Gioia Tauro located in southern Italy, on the West
coast. Its barycentric position in the Mediterranean Sea makes this port very attractive as
a hub terminal (see Monaco et al. (2009) for a discussion about the Gioia Tauro container
terminal). The automotive terminal handles 75,000 cars per year. The yard is spread over
an area of 11 ha, and its 374 parking rows have lengths varying from 50 to 70 meters.
Figure 1 provides an aerial view of the terminal and highlights the two main yard areas.
Mother vessels unload cars while berthing at the quay on the right of Figure 1, and feeder

vessels load cars while berthing at the quay on the left of Figure 1.
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Figure 1: Aerial view of the BLG Italia terminal in the port of Gioia Tauro

The remainder of this paper is organized as follows. We present in Section 2 an
optimization model for the yard allocation process and we analyze the computational
complexity of the problem. Two integer linear programming formulations and model
extensions are discussed. The relationships between the yard assignment problem and other
known problems are investigated in Section 3. We describe in Section 4 a metaheuristic
algorithm for our problem, while Section 5 presents computational experiments followed

by a conclusion.

2 Optimization model

We first introduce the notation used to derive integer linear programming formulations for
our problem. We then discuss the computational complexity of the problem and some

extensions.

2.1 Notation

The problem is defined on a time horizon discretized in |T'| time steps indexed by 7 €
T ={1,...,|T|}. The set of groups to allocate during the time horizon is indicated by
K ={l1,...,|K|},and R ={1,...,|R|} is the set of parking rows. The data related to groups

are:

* ¥, number of cars in group k;

o 1K

Vi, maximum number of cars of group k that can fit in row r;

e ¢ €T, arrival time of group k;

CIRRELT-2010-28 2
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* b, departure time of group k;

* 0%, quay unloading position of group k;

* dk, quay loading position of group k;

* ¢k, largest admissible handling time when unloading group k;
. clg, largest admissible handling time when loading group k.

The groups considered in set K are those arriving inside the time horizon, and the departure
time of a group may exceed the time horizon.

Rows are numbered in their filling direction, i.e. if row r is filled before row s then
r < s. The row ordering is such that if rows r and s are adjacent and r < s, then s = r + 1.
We will consider later in this section the case of an “ending-row” arising when a given
row r does not have an adjacent row in the filling direction. In the following we assume
that there always exists an adjacent row. For each group k& we have to find a set of free
adjacent rows of sufficient capacity. Since we consider parking rows of varying lengths,
the number of required rows is variable as well. In other words, if 7 is the first row in the
filling direction assigned to group , then the last row will be r + ¢* — 1, where ¢ is the
smallest positive integer value satisfying

The q’; value expresses the number of rows needed by the group k when the first row of the
group is 7, i.e. the group would occupy the row interval F¥ defined as F¥ = {r,r+1,....,r +
g“—1}. Analogously, we denote by u’s‘ the number of rows that group k will require if s is

the last row of the group, i.e. u¥ is the smallest positive integer value satisfying

k1
s

k k
Z Ve_g =N
a=0

Consequently, we have the row interval BX = {s —u* + 1,5 —u* +2,....s} which is equiv-
alent to F¥ whenever r = s — u* + 1. Since the ¢* and u* values are related to the filling
direction, we refer to them as “forward row request”, and “backward row request”, respec-

tively. For notational compactness, we define the following sets:
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T(k)={t€T:d" <t <b'},Vk € K, the set T (k) represents the duration of stay of

group k in the planning horizon;

K(t)={keK:te€T(k)},Vt €T, groups that are in the terminal at time step ¢;

K,(t) ={k € K :t =d},Vt € T, groups that arrive at the terminal at time step ¢;
* Kp(t)={k € K:t =0} Vt € T, groups that leave the terminal at time step ¢.

The set of feasible first row assignments for a group k is denoted by R(k) C R. The set
R(k) handles some aspects of the planning problem in a rolling horizon framework. In fact,
the assignments must comply with rows occupied by groups already in the yard at the first
time step. Therefore, these pre-assigned groups are taken into account in the definition of
the sets R(k).

The “ending-row” case is now treated by considering as infeasible an assignment of
a group k to a first row r such that g€ > 1 and the set {r,r+1,...,7 +¢* — 2} contains an
ending row. Let R C R be the set of ending rows. We define as R(k) the subset of R such
that there does not exist an intermediate ending row for any assignment of k to r € R(k),
ie. R(k)={reR:F"\{r+4¢*—1}nR =0}.

With this notation we can characterize the assignment of a group by its assignment to

a first row. Our decision variables are:

» y*€{0,1},k € K,r € R(k), y* = 1 if the first row of the group k is r, i.e. the group
occupies the row set {r,r +1,...,r+¢* —1}.

The assignment of row r as the first row for group &, i.e. y* = 1, forbids some assignments
of groups to rows. The affected groups are those that are present in the yard during the stay
of group k, i.e. groups & such that T (k) N T (k) # 0. Any such group i cannot be assigned
to any row s that interferes with group k. A forbidden row s for 4 is such that Frk N Fsh # 0.
We define the set P as the set of quadruples (k,r,h,s):

® = {(k,r,h,s) :k,h € K,h > k,r € R(k),s € R(h), F*\NF" 0, T(k)NT(h) # 0}.

A quadruple (k,r,h,s) belonging to ® indicates that the variables y* and y” cannot be both
equal to one.
We now introduce the data required for the objective function of our problem. Since

we want to minimize the total handling time, we define as c¢,, the handling time required to
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move a car between v € RUO and z € RUD, where the set O = |Jycx{0*} represents the
unloading positions. Similarly we indicate by D = J;c «{d"} the set of loading positions.

Our decision variables induce cost coefficients defined as follows:

. c];kr, unloading handling time for the group k when the first assigned row is r:

k
k  _yq—2 k g2 WK
Cokr = ZOc:O CokrraVrta +cok,r+q — ( Za 0 r+oc)
o c > loading handling time for the group k£ when the first row is r:
k
k 2 k
C, ik Za 0 Crta, dkvr+oc + Crigk—1,dx (n - Z r+05)'

These cost coefficients are used in the objective function. Observe that the loading handling
time is defined for all groups, hence also for those leaving the terminal after the end of
the planning horizon. Thus we account for a future loading handling time in the current
planning horizon. Moreover, these cost coefficients are used to define the set of feasible

assignments R(k). A row r does not belong to R(k) whenever cX

e > c or c 0 > cb
We observe that this models loading and unloading priorities. The ca (respectlvely cb)
coefficient of a group k can be set to smaller values to ensure that the group k is assigned
to rows closer to the unloading (respectively loading) quay position. This results in user-
controlled parameters to specify group priorities, since closer rows mean shorter handling

times.

2.2 Integer linear programming formulations

We can now formulate our problem, hence called the adjacent row dynamic assignment
problem (ARDAP), by means of the following model .%#:

minimize | Z RS\ (1)
k€K reR(k
subject to
Y =1 Vk €K, @)
reR(k)
Yy <1 V(k,r,h,s) € P, 3)
ke {0, 1} Vk € K,Yr € R(k). (4)

5 CIRRELT-2010-28
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The objective function (1) minimizes the sum of the handling times. Constraints (2)
state that each group k& must be allocated to one and only one admissible first row r, since
r must belong to R(k). The feasibility of the assignment is guaranteed by constraints (3)
which forbid pairs of incompatible assignments as defined by the set .

The model uses |K| X |R| binary variables and the number of constraints is O(|K| +

|K|?> x |R|?). We can obtain a more compact model .% by replacing constraints (3) with

Y Y <t VreRNteT. (5)
keK(r) scBk

Indeed, for a given k € K(¢) the variables y’r‘ .,y* are such that if one of them is equal

—uk4+17"
to one, then the row r is used by group k as first row (the case y* = 1), or as last row (the

case y’r‘_uk 1= 1), or as intermediate row in the other cases. Thus, constraints (5) state that

if row r is+used by a group at time step ¢, but not necessarily as a first row, then its use is
forbidden for all other groups staying in the yard at that time step.

The new model .%, still has |K| x |R| binary variables, but the number of its constraints
isnow O(|K|+|T| x |R|). We found that model .% can only solve small instances, whereas
we are able to solve model .%, for larger instances. We will present this comparison in

Section 5.

2.3 Computational complexity

In the following we prove that ARDAP is strongly .4 #-hard.

Theorem 1 ARDAP is strongly A &?-hard.

Proof — We prove this result by showing that the generalized assignment problem (GAP),
which is is strongly .4 &?-hard, is a particular case of the ARDAP. In the GAP the aim is
to determine a minimum cost assignment of a set of weighted items to a set of knapsacks
(Martello and Toth, 1992). Let N = {1,...,n} be the set of items, and M = {1,...,m} the
set of knapsacks. We indicate by c;; the assignment cost of item i to knapsack j, by w;; the
weight of item i when assigned to knapsack j, and by W; the capacity of knapsack j. An

equivalent ARDAP instance can be defined as follows:

* anitem i corresponds to a group k and vice versa, i.e K = N, and in the following we

equivalently refer to items or groups;
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» the ARDAP time horizon consists of only one time step, |T'| = 1, and all groups

defined above arrive and leave the terminal at this time step, i.e. K(1) = K;
* the number of rows is equal to the sum of the knapsack capacities, [R| =} jcy W;

* wepartitionthe set Rintomsubsets S, j € M: S;={rj,....,s;}, wherer; = Z{;ll W+
lands;=rj+W;—1,ie. |S;| =W;;inthe following we denote these sets as artificial

knapsacks;

* the group forward row request ¢* is constant for the row belonging to a given subset
S, and it is equal to the corresponding weight of the item: qlr‘ =wy;,Vr€S;,j €M,
similarly, the group backward row request u¥ is equal to the weight of the item in

each subset S ;

* the group to row assignment cost c’; (0t c'r‘ i 1s constant for the row belonging to a given
subset S, and it is equal to the corresponding cost of the item, i.e ¢x;,Vr € S}, j € M;

* the set R(k) is constructed so as to avoid assignments of group k to rows that would
exceed the capacity of the artificial knapsack: row r ¢ R(k) if there are two artificial
knapsacks j and [ such that F¥ N S; # 0 and FFNS; #0.

The procedure outlined above constructs an ARDAP instance equivalent to a GAP. An
optimal solution for this ARDAP instance could be polynomially transformed into an
optimal solution for the GAP. Therefore, if there existed a pseudo-polynomial algorithm
o for the ARDAP, then &/ would solve the GAP as well. Since the GAP is known to be
strongly .4 &7-hard, the result follows. [J

2.4 Extensions of the model

In real-life, yard assignment decisions are made on a daily basis by the yard planner who
knows with a high degree of reliability the list of calling vessels and the groups of cars that
will arrive and depart within a planning horizon of one week. Data regarding the following
weeks are considered to be insufficiently reliable for yard planning. Every day the planner
assigns the groups expected to arrive within the planning horizon, but assignment for
an incoming group can change between two subsequent plans. The final assignment is
determined upon the arrival of the group. In this sense, the yard management operates
according to a rolling horizon framework. This dynamic setting, and the favorite policy of

assigning a group to adjacent rows can cause infeasibilities because of yard fragmentation.

7 CIRRELT-2010-28



Optimizing Yard Assignment at an Automotive Transshipment Terminal

This occurs whenever the number of free rows is at least equal to the number of requested
rows, but is insufficient to park the cars according to the favorite “adjacent rows” policy.
Whenever this situation occurs the yard planner must determine a configuration amenable
to the favorite policy. He can decide to break an incoming group into smaller ones, or to
relocate some groups of cars. This last option is the least preferred and is avoided as much
as possible.

We have devised a modification of the objective function in order to consider this issue.
The idea consists in favoring yard plans that have a large set of free adjacent rows at the
end of the planning horizon. Thus, the fragmentation risk is minimized when the new plan
is drawn on the following day. Let L; be the largest total length of free adjacent rows at

time step ¢ in a given yard plan. Then, the modified objective function is

minimize Z Z kT cr dk yle (6)
keK reR(k

where ¥ > 0. In Section 5 we will highlight the tradeoff between minimizing handling
times and minimizing fragmentation.

The yard planner faces another set of issues related to manpower planning. When-
ever the handling activities are low, he can choose assignments of incoming groups to
less favorable positions, i.e. more distant ones. This strategy could result in an advan-
tage because positions that are closer to the quay, and thus more favorable, are left free
for busier periods. It is then of paramount importance to profile the level of handling
activity in the terminal as a result of the yard allocation process. The concept of re-
source profile of planning activities upon shared terminal resources was introduced by
Won and Kim (2009), and was also used by Giallombardo et al. (2010) for quay cranes
in berth allocation plans. At time ¢ the total handling induced by yard allocation is equal
t0 Ykek, (1) Lrer(k) Cor, V5 + Lkek, (1) Lrer(k) € yr- We have added the following additional

term to the objective function in order to obtain “close to desired” handling profiles:

Yl Y Y d&yx+ Y ¥ c,dkyr Ht . (7

t€T [ keK,(t) reR(k) keK(t) reR(k

Here we indicate by H; the largest desired handling value at time ¢. Thus (7) is the sum of
the positive deviation from the desired handling profile. The positive weighting factor 9,
is used to control the relative importance of this term of the objective.

The model can be solved iteratively by using arbitrarily large H; values at the first

CIRRELT-2010-28 8
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iteration, which in fact disables the term (7). Then, if the planner prefers to smooth the
resulting handling peaks of this first solution, the model is solved by imposing the desired
H; values. The process is iterated until a feasible and satisfactory solution has been found.

The model extensions just introduced suggest an iterative use of the model under differ-
ent assumptions and input data such as group priorities, forecasts, desired fragmentation,
desired handling profile, etc. The modified objective function (6), plus the term (7), could
be incorporated within the integer linear programming formulation by adding proper vari-
ables and constraints. However, solving this problem exactly is impractical even for the
basic model because of its computational complexity. These are additional motivations for

the metaheuristic algorithm presented in Section 4.

3 Relations with other optimization problems

The scientific literature related to the management of container terminal yards is rich and
expanding. For reviews see Vis and Koster (2003), Steenken et al. (2004), and Stahlbock
and Vo3 (2008). The wide range of contributions is justified by the variety of technological
configurations, of decision levels (strategic, tactical, operational, real-time), and of types
of container flows (import, export, transshipment). Automotive terminals can be seen as
another type of technological setting. The distinguishing features of yard management in
automotive terminals with respect to container terminals have been discussed in Mattfeld
and Kopfer (2003) and Mattfeld (2006). These features derive from the no-relocation
policy, and the low density yard in this type of terminals. Therefore, container terminal
based approaches cannot be straightforwardly applied to this context.

The work of Mattfeld and Orth (2007) is the closest to our study. These authors present
a task scheduling and allocation problem in a large automotive terminal under different
assumptions than ours. They differentiate between inbound storage tasks and outbound
retrieval tasks. Both types of tasks must be executed within given time windows. This
flexibility is exploited to handle the objective of leveling manpower utilization. This feature
does not arise in our application because the terminal in our case deals mainly with vessel-
to-vessel flows, and the arrival and departure times of groups are input data. Furthermore,
in Mattfeld and Orth (2007) the space allocation is modeled at a more aggregate level than
in our model (with knapsack type capacity constraints). This is justified by the larger and
more complex layout of the terminal of Bremerhaven which serves as a basis for their study.

The smaller size of the Gioia Tauro terminal enables us to optimize the assignment of cars

9 CIRRELT-2010-28
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to parking rows under the favorite policy of adjacent rows for groups.

The ARDAP can be also viewed as a variant of the two-dimensional rectangle packing
problem. An assignment of a group to a set of yard rows is represented by a rectangle
with the duration of stay as height and the number of occupied rows as width. The two
dimensions of a bin are rows and time, and there are as many bins as the number of ending
rows. Thus, solving the ARDAP is equivalent to packing a set of rectangles in several bins
so that placement cost is minimized. Figure 2 illustrates the solution of an ARDAP instance
with 20 groups to be allocated in a yard with 374 rows (horizontal axis) in a time horizon
of 31 time steps (vertical axis), and with only one ending row (resulting in one bin). In this
instance group 8 arrives at time 0, departs at time 9, and occupies rows 0 to 57. However,

row
—

time

Figure 2: Optimal solution of an ARDAP instance in the row-time plane

the ARDAP exhibits many differences with respect to classical rectangle packing problems.
The most popular of these problems, see e.g. Lodi et al. (2002), are the bin packing problem
(BPP), and the strip packing problem (SPP), where the objective function to be minimized
is the number of bins (for the BPP), or the height of the strip containing all rectangles (for
the SPP). The ARDAP objective function is different because for each rectangle placement
there is a position specific cost whose sum must be minimized. We also point out that the
placement cost along the row axis is non-convex in our application and is specific for each
group (i.e. for each rectangle). In the following we provide an illustrative example which
needs some additional information about the application context.

The instance depicted in Figure 2 is derived from historical data of the operational

CIRRELT-2010-28 10
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Figure 3: Cost function for each group of the instance depicted in Figure 2

database of the Gioia Tauro terminal. The assignment cost function is obtained considering
the road network of the yard, and Figure 3 depicts these cost functions for all groups of this
instance. Figure 4 illustrates the yard layout with the parking rows. Filled parking rows
are represented as gray shaded. A similar shade intensity between adjacent rows indicates
that these rows are assigned to a group of cars. Cars are usually unloaded from vessels
berthing at the North quay (where the vessel on the right of Figure 4 is berthed) and loaded
in vessels at the East quay (on the left of Figure 4). This results in unloading and loading
costs for each assignment of groups to sets of adjacent rows. In Figure 4 we denote as area
A; and area B; the set of rows relative to the same quay segment, and A; is closer to the quay
than B; is. The set of rows are numbered in increasing order from left to right of Figure 4,
with the exception of area By which is a special area. This same ordering is applied to the
numbering of individual rows and the rows of type A have a lower index than those of type
B. In order to relate the cost functions of Figure 3 with the layout of Figure 4 we mention
that the row numbered as 178 is the last row of area Ag on the right of Figure 4. In fact,
this row could be considered as an ending row not adjacent to the row 179 which is in the
area By on the left of Figure 4. Considering ending rows would cause discontinuities in

the cost functions. We preferred to omit ending rows in the example for simplicity. This is
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not arbitrary because the yard planner often does not enforce the ending row concept and

some groups are allocated following this numbering order.

By B3 By Bs Bg

Figure 4: Example of yard allocation at the BLG Italia terminal

We can now discuss the impact of these rules on the solution method. The usual search
strategy in rectangle packing heuristics explores the space of contiguous rectangles because
this allows area minimization, but this could result in non-optimal solutions for the ARDAP.
The solution of Figure 2 is optimal even though some rectangles are not contiguous. The
optimal solution tends to assign some rectangles close to positions that would minimize
their cost function, whereas other rectangles are “sacrificed” with different placements
that tend to be as close as possible to other locally minimum positions. This issue is not
particular to this problem. For example, it also occurs in berth allocation problems where
yard costs are considered in the objective function. For the berth allocation problem see,
e.g. Park and Kim (2003), Cordeau et al. (2005), Meisel and Bierwirth (2009), and for a
recent survey Bierwirth and Meisel (2010). This is the reason that motivated us to develop a
metaheuristic algorithm that looks for the explicit minimization of the cost function instead
of the used area.

The ARDAP is more similar to the rectangle packing problem with general spatial
costs introduced by Imahori et al. (2003) and Imahori et al. (2005). However, the ARDAP

CIRRELT-2010-28 12
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exhibits distinctive features: the width of a rectangle is dependent on the assigned position
(the ¢¥ values in our notation), and the placement cost also depends on the assigned position.
The general packing problem of Imahori et al. (2003) and Imahori et al. (2005) could handle
the ARDAP artificially by expanding the number of modes of a rectangle. In the framework
of these authors, a rectangle can have different modes, i.e. dimensions, and mode specific
costs. The ARDAP could be modeled by introducing a mode (r, k) for each r € R(k), and
assigning a sufficiently high value to the cost of assigning a mode (r,k) to a row [ with
[ # r. However, itis clear that these ARDAP specific features (position dependent rectangle
dimensions and position specific costs) render the adaption of an existing algorithm for the
rectangle packing impractical. Another ARDAP feature which makes the problem more
constrained is that a rectangle can only move horizontally. The vertical placement cannot
change since the arrival and departure times are fixed. In view of this, we are interested in
exploiting the features of our problem. In particular, we can use the information of given
duration of stay of groups. We have thus defined search schemes using this information.

The literature concerning storage assignment for automatic warehouse systems is also
relevant to our problem. For example, an implicit assumption in yard management is the
use of a shared storage policy (as opposed to a dedicated storage policy) whose merits have
been discussed in the seminal paper of Goetschalckx and Ratliff (1990).

In the previous paragraphs we have examined the relationships between the ARDAP
and the GAP. Moccia et al. (2009) have introduced an extension of the GAP, called the
dynamic GAP (DGAP). Like the ARDAP, the DGAP considers a discretized time horizon
and associates a starting time and a finishing time with each task. The ARDAP is more
constrained than the DGAP which allows relocation during the duration of stay of the tasks
(groups), whereas the ARDAP does not. However, the main difference between the two
problems consists in the degree of detail on the spatial allocation: whereas the DGAP has

knapsack-like capacity constraints, the ARDAP defines adjacent row assignment for each

group.

4 A metaheuristic algorithm for the ARDAP

In the following we introduce a metaheuristic algorithm based on the adaptive large neigh-
borhood search (ALNS) framework. In the ALNS a number of simple heuristics compete
to modify the current solution (Pisinger and Ropke, 2007). A master level layer adaptively

selects heuristics to intensify and diversify the search. At each iteration a heuristic is cho-
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sen to destroy the current solution, and another is chosen to repair it. The new solution is
accepted if it satisfies the criteria of the local search algorithm chosen at the master level.
The ALNS framework can be applied to a wide class of optimization problems. The adap-
tive layer chooses the heuristics according to the scores obtained at previous iterations. We
denote the past score of the heuristic H; by 7;, and the probability of selecting the heuristic

HJ’ 1S
7T

i m

where z is the number of heuristics. Details about the scores will be given in Section 4.5. In

%

®)

order to solve a given optimization problem using the ALNS framework one needs to design
some destroy and repair heuristics, as well as a local search framework at the master level.
The destroy heuristics remove groups from the yard, and the repair heuristics try to insert
them in new positions. Sections 4.1 and 4.2 describe these two sets of heuristics. In our
ALNS implementation we use a two-phase mechanism. A first phase looks for feasibility
only, whereas the second phase tries to obtain good quality solutions. The reason for
this is that some of our destroy and repair heuristics are either useful for feasibility or for
optimality. We have designed a first phase in which the criterion for choosing the destroy
and repair combination of heuristics is fixed. The algorithm starts by assigning each group
to a dummy position with a high assignment cost. This is the starting infeasible solution.
The first phase ends when a feasible solution is obtained, or the maximum number of
iterations has been reached, in which case no feasible solution has been identified and an
error message is returned. After this first phase, the selection of the destroy and repair
heuristics is guided by the adaptive heuristic selection mechanism described in Section
4.5. Each improving solution is refined by applying a post-optimization procedure to
be presented in Section 4.3. The master level local search is described in Section 4.4.
Algorithm 1 outlines the ALNS algorithm.

4.1 Destroy heuristics

A destroy heuristic takes as input a given solution x and determines the @ groups to remove
from the yard, where @ is an input parameter. When selecting the group to be removed it
is important to consider the time relatedness of groups. Two groups are considered time
related if they are both in the yard at the same time step, i.e. if 7 (k) NT (h) # 0. Figure 5
depicts an example of time related groups. The main idea is that by re-assigning a set of

groups such that each group is time related to at least another group in the set increases the
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Algorithm 1 ALNS algorithm

1: Construct a starting solution x

2: X =x

3: repeat

4:  Choose a destroy heuristic H~ and a repair heuristic H* according to a given rule
(first phase), or according to the probability based on the previously obtained score
(second phase)

5. Generate a new solution x’ from x using the heuristics H~ and H*

6: if x canbe accepted then

7. x=x

8

9

Update score
if f(x) < f(x*) then

10: Apply a post-optimization procedure
11: X'=x

12:  endif

13:  end if

14: until stopping criterion is met
15: if x* is feasible then

16: return x*

17: else

18: return an error message
19: end if

likelihood of improving the objective function value.

In order to select the groups to be removed, the list of groups is sorted according to
some criterion. The groups are then chosen by scanning the list and selecting a group with
probability p, where p is an input parameter in the interval (0, 1]. This is accomplished
by randomly drawing a random number p in (0, 1] and comparing it with p. Whenever
p < p the current group is chosen from the list; otherwise the next group in the list is
considered. The parameter p plays a randomization role. Whenever p = 1 the groups
are selected exactly as in the list order. A smaller value of p increases the probability of
choosing groups further down the list. The removed groups are added to a destroy set to
be used by the repair heuristic that will try to reallocate them. Removing a group from the
yard corresponds to releasing the yard rows previously assigned to that group. Algorithm
2 outlines a generic destroy heuristic. We use four destroy heuristics that differ mainly
in the sorting criterion of the list of groups. The first is used only at the beginning of the

process, to find a feasible initial solution.
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Figure 5: Example of time related groups in a space-time representation. D, F, G, H, I and
L are the groups related to group C

Algorithm 2 Generic scheme of a destroy heuristic

: Sort groups according to some criterion

2: repeat

3:  Select a group k scanning the sorted list according to the randomization parameter p
4:  Add k to the destroy set

5:  Remove k from the list, from the current solution x and free yard rows previously
assigned to k

Perform some heuristic specific operations

: until @ groups are removed

—_—

U

4.1.1 Largest-out heuristic

The largest-out heuristic lists the groups in non-decreasing order of number of cars, which
is a proxy for the number of rows that will be used by a group. The list is then scanned and
a first group is selected with probability p. We denote the first chosen group as the seed
group. As soon as a seed group is selected, groups that follow in the list are chosen only if
they are time related to the seed group. If the end of the list is reached before selecting ®
groups, then the procedure iterates by choosing another seed group among the remaining

ones in the list.

4.1.2 Time-step destroy heuristic

The purpose of this heuristic is to remove a set of groups that are contemporary in the yard.
The algorithm randomly chooses a time 7, and then creates a list of groups such that each
group in the list is in the yard at time . Whenever the number of groups in this list is less
than w, all of them are added to the destroy set and the procedure iterates by choosing a
different time step. Otherwise, exactly @ groups are selected from the list by using the

randomization parameter p.

CIRRELT-2010-28 16



Optimizing Yard Assignment at an Automotive Transshipment Terminal

4.1.3 Worst-out heuristic

The worst-out heuristic is based on the guality of group-row assignments. For each group
k we define the quality index A as the difference between the current assignment cost
for the group k and the ideal cost f;’. The value f; is the best assignment cost that the
group k could have if the yard was entirely available, i.e. f;/ = min,¢ R(K) {c];kr + clr‘ dk}' The
heuristic first chooses a group k by scanning the list of groups ordered by non-increasing
values of Ay,. It then chooses groups that are time related to k by scanning the list starting

from a random position. The process is iterated until @ groups are selected.

4.1.4 Random removal heuristic

This is the simplest heuristic. It randomly selects @ groups to remove from the yard, the
only condition being that a group must be time related to at least another group already in

the destroy set. The aim of this heuristic is to diversify the search.

4.2 Repair heuristics

We now describe two greedy repair heuristics. As mentioned, the first heuristic is aimed
at recovering feasibility. This heuristic is used in the first phase of the algorithm. The
second heuristic tries to balance feasibility and cost minimization and is always applied in

the second phase after a feasible solution has been found.

4.2.1 Largest-first heuristic

The largest-first heuristic exploits as greedy principle the dimension of a group, defined as
the product of the total length of the cars in a group and their duration of stay expressed
in number of time steps. This value is a proxy for the area of the rectangle in the row-
time plane. Observe that in this plane the spatial dimension is variable, whereas this
dimension index has the advantage of being fixed. The groups are assigned to the yard in
non-increasing order of this index and according to the randomization parameter p. Every
selected group is assigned to the first feasible position in the yard filling direction. The aim
of this heuristic is to minimize the used area in the row-time plane, which helps reaching

feasibility.
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4.2.2 Worst-first heuristic

The worst-first heuristic favors the worst allocated groups in order to give them the opportu-
nity to be assigned first. This algorithm orders the groups by non-increasing values of A ¢ .
Groups are chosen by scanning the list with the randomization parameter p. Once selected,
a group is assigned to the yard at the minimum cost feasible position with probability p,
otherwise it is assigned to the first feasible position in the yard filling direction. Thus, this

heuristic looks at both cost and area minimization.

4.3 Post-optimization procedure

Every time an improving solution is found we apply a post-optimization process that
removes and then reassigns each group to a more favorable position, if any. Groups are
selected according to non-increasing values of Ay,. The process is iterated until, after a

complete scan of the sorted list of groups, no more improvement has been registered.

4.4 Master level local search

At the master level we choose to use simulated annealing as local search framework. We

accept a newly identified candidate solution x’, given a current solution x, with probability

e~ ()= fW)/. 9)

where 7 is the temperature which starts from 7+ and decreases at each iteration i according
to the expression 7; = ¢T;_1, and 0 < ¢ < 1 is the cooling rate. We only accept new solutions

that have not previously been accepted.

4.5 Adaptive heuristic selection mechanism

As mentioned, we have designed a first phase in which the criterion for choosing the
destroy and repair combination of heuristics is fixed and it results in the application of the
largest-out (Section 4.1.1) and the largest-first (Section 4.2.1) pair of heuristics. This is
because the largest-out and the largest-first heuristics is a destroy and repair combination
that excels at feasibility, whereas the other destroy heuristics and the worst-first repair
heuristic (Section 4.2.2) are particularly useful for generating good quality solutions. The
adaptive selection mechanism of heuristics is used in the second phase of the algorithm. It

is based on the scores 7; assigned to each destroy heuristic. The repair heuristic is always
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the worst-first heuristic. To select the destroy heuristics, we collect the scores, as suggested
by Pisinger and Ropke (2007), over a segment of 100 iterations. The score 7;; of a heuristic
i in a segment j is obtained from the score in the previous segment incremented, at each

iteration, with the following values depending on the new obtained solution x':
e 01, if X’ is a new best solution;
* 0y, if X’ is better than the current solution;
* 03, if ' is worse than the current solution, but it is accepted.

Since we accept only solutions not accepted before, a long term memory is needed in

order to keep track of all solutions already accepted.

S Computational experiments

We now present computational experiments. We first describe the generation of test in-
stances, we then provide implementations details, and finally we discuss results obtained
with the metaheuristic and with a commercial integer linear programming solver applied

to the proposed formulations.

5.1 Generation of test instances

We have generated a set of 63 instances for the ARDAP problem using real-life data of the
Gioia Tauro terminal. We have considered a time step of one day and a time horizon of 31
days. This results in a planning horizon of one month, i.e. four times larger than the usual

horizon of one week. The reasons for this choice are the following:
* A longer planning horizon gives more challenging instances.

* Terminal expansion and volume increase could occur in the future, and would result

in more difficult yard assignment problems.

* The current practice of planning with a time step of one day could also change.
Container terminals normally plan with a time step equal to the length of a work
shift, which results in four time steps per day, usually. If the Gioia Tauro terminal
were to adopt this practice, the number of time steps per week would be equal to 28,

close to the number considered in the generated instance set.
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* Another change that could require solving larger instances in the terms of the time
horizon would be the inclusion in the planning of forecasts for weeks following the

current one.

Furthermore, we observe that one-month instances are useful to assess the effect of the
rolling horizon. By solving the full instance of 31 days we obtain a lower bound on what
can be achieved by solving smaller problems with a one-week time horizon for each day
of the month.

At the time of our study, average speeds between yard positions where not available in
the terminal operational database. We have used physical distances as proxies for handling
times. The yard layoutis the one described in the Introduction. Each instance was generated
by fixing the number of groups, and randomly generating the values for the numbers of
cars and the duration of stay for each group according to discrete uniform distributions
within historical ranges. Arrival times were considered to be uniformly distributed in the
time period of 31 days, and every group must leave the terminal during this period. Tables
1 and 2 report average, minimum, and maximum values for a set of characteristics of the
generated instances. We indicate by yard saturation degree at a time step the ratio between
the total length of rows required to allocate cars at that time step, and the total length of
the parking rows in the yard. The total length of required rows at a time 7 is computed by
assigning the groups in the set K(¢) to consecutive parking rows. The sum of the length
of the used row defines the total length of required rows at the time #. This is clearly
an optimistic saturation index because it does not account for interferences in the spatial
allocation due to the duration of stay of the groups. These 63 instances are the feasible ones
of a larger set. Feasibility was established by running one of the proposed formulations on

the instance set.
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Yard saturation degree Number of cars Duration of stay Number of cars
Instance per time step per time step per group (days) per group
K| index avg min max | avg min max | avg min max | avg min max
20 1 0.63 0.10 0.85 | 2390 371 3238 8 2 14 |1 410 27 958
2 0.61 0.15 0.85 | 2327 564 3261 7 3 16 | 476 83 993
3 0.62 0.20 0.85 | 2372 802 3254 6 2 15503 60 930
4 0.65 0.21 0.86 | 2490 836 3288 7 1 16 | 488 13 964
5 0.67 0.20 0.86 | 2557 790 3297 8 2 151|449 30 973
6 0.64 0.21 0.86 | 2451 820 3294 6 2 15 | 501 12 948
7 0.57 0.23 0.74 | 2204 881 2839 7 1 16 | 439 13 916
8 054 0.22 0.79 | 2053 853 3021 7 1 15| 415 23 941
9 0.59 0.35 0.86 | 2245 1338 3292 7 1 16 | 501 46 949
10 0.58 0.21 0.78 | 2232 808 2967 7 2 16 | 440 26 936
11 0.57 0.21 0.77 | 2185 838 2938 7 1 16 | 468 63 966
12 0.59 0.32 0.80 | 2261 1224 3046 6 2 15 ] 530 48 999
40 13 0.68 0.03 0.87 | 2584 122 3257 7 1 16 | 243 15 470
14 0.64 0.02 0.85 | 2423 87 3212 7 1 16 | 239 20 487
15 0.64 0.13 0.86 | 2423 491 3279 7 1 15275 23 494
16 0.64 0.13 0.86 | 2402 491 3276 7 1 16 | 242 10 497
17 0.67 0.16 0.89 | 2530 613 3370 7 1 16 | 245 28 499
18 0.63 0.02 0.92 | 2371 81 3490 7 1 16 | 238 10 481
19 0.57 0.20 0.76 | 2142 767 2876 7 1 16 | 229 11 482
20 0.59 0.08 0.73 | 2242 305 2783 7 1 16 | 222 10 465
21 0.56 0.12 0.81 | 2110 444 3054 6 1 15 | 239 13 484
22 0.62 0.14 0.78 | 2339 538 2961 7 2 15 | 243 12 483
23 0.61 0.19 0.80 | 2325 732 3048 7 2 16 | 233 10 497
24 0.56 0.06 0.81 | 2121 223 3078 7 1 15 | 229 10 481
50 25 0.56 0.12 0.77 | 2095 462 2893 7 1 16 | 160 20 290
26 0.55 0.07 0.81 | 2092 255 3022 7 1 15 | 165 18 295
27 0.58 0.01 0.80 | 2178 31 2987 7 1 16 | 162 11 298
28 0.57 0.11 0.77 | 2151 423 2882 7 1 16 | 155 13 294
29 0.56  0.06 0.82 | 2122 243 3065 8 1 16 | 145 12 293
30 0.56 0.01 0.77 | 2101 49 2876 7 1 16 | 154 11 290

Table 1: Characteristics of the generated instances, part I.
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Yard saturation degree

Number of cars

Duration of stay

Number of cars

Instance per time step per time step per group (days) per group
K| index avg min max | avg min max | avg min max | avg min max
20 31 0.73 0.38 094 | 2785 1450 3615 7 2 15 | 572 14 997
32 0.73 0.39 094 | 2771 1514 3604 9 3 16 | 466 46 956
33 0.77 0.35 093 | 2947 1319 3572 7 2 16 | 554 56 965
34 0.72 0.24 097 | 2765 930 3715 7 2 16 | 494 42 986
35 0.72 0.22 0.93 | 2757 844 3543 7 2 15527 68 972
36 0.77 0.29 0.88 | 2935 1124 3381 8 2 14 | 472 67 985
37 0.68 0.27 091 | 2625 1026 3475 6 2 14 | 529 17 935
38 0.65 0.21 0.86 | 2490 836 3288 7 1 16 | 488 13 964
39 0.67 0.30 0.90 | 2553 1169 3423 8 1 16 | 449 49 992
40 0.69 0.26 091 | 2638 996 3474 7 1 151|545 26 970
41 0.69 0.33 0.90 | 2652 1258 3427 7 2 16 | 533 13 916
42 0.66 0.32 0.89 | 2532 1226 3419 7 3 16 | 465 22 893
40 43 0.73 0.10 0.97 | 2789 389 3690 7 1 16 | 281 41 496
44 0.72 0.21 0.95 | 2742 828 3595 7 2 16 | 255 18 489
45 0.73 0.24 091 | 2764 939 3435 8 1 16 | 263 12 495
46 0.72 0.12 0.88 | 2740 454 3342 7 1 16 | 263 22 493
47 0.72 0.18 098 | 2746 686 3714 7 2 16 | 269 18 489
48 0.73 0.10 093 | 2754 383 3519 8 3 16 | 249 21 476
49 0.68 0.03 0.87 | 2584 122 3257 7 1 16 | 243 15 470
50 0.67 0.18 092 | 2534 705 3487 8 1 16 | 237 16 471
51 0.73 0.24 091 | 2764 939 3435 8 1 16 | 263 12 495
52 0.67 0.12 0.89 | 2525 457 3378 7 2 15 | 254 26 481
53 0.72  0.12 0.88 | 2740 454 3342 7 1 16 | 263 22 493
54 0.68 0.17 091 | 2598 628 3462 7 1 15 | 261 13 484
50 55 0.66 0.09 0.93 | 2494 343 3497 8 1 16 | 164 20 299
56 0.68 0.17 093 | 2538 640 3490 8 1 16 | 163 11 299
57 0.68 0.07 093 | 2556 246 3521 8 3 16 | 166 19 298
58 0.66 0.12 0.89 | 2496 455 3349 8 2 16 | 169 19 300
59 0.67 0.13 0.87 | 2496 507 3264 8 2 16 | 165 19 300
60 0.67 0.06 092 | 2515 231 3490 8 3 16 | 160 19 298
30 61 0.78 0.32 096 | 2979 1205 3660 8 2 16 | 344 56 599
62 0.78 0.15 099 | 2986 576 3760 8 2 16 | 327 25 600
63 0.77 0.22 0.99 | 2954 829 3769 8 2 16 | 333 50 598

5.2 Implementation details

Table 2: Characteristics of the generated instances, part II.

We have implemented the mathematical formulations by using the integer linear program-

ming solver CPLEX 11.1. When reporting the experiments with the two formulations, .7}

and .%,, implemented in CPLEX we denote their results by the name of the formulation,

i.e. %) indicates the formulation as well as its CPLEX implementation. We have not
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tweaked the CPLEX parameters. We have only set the stopping rule for CPLEX to 3%
of the integer solution gap. The computational experiments were executed on a computer
equipped with two Xeon 3 GHz processors and 4 GB of RAM.

The metaheuristic algorithm was coded in C++. We have executed the tests for a
maximum number of 7 iterations, and we report the results for different values of this
parameter: 1 = 50 x 103 and = 200 x 103. The ALNS input parameters were determined
by some testing on a subset of the instance set. In our tests we have found that good values for
the o parameters are o1 = 2,0, = 0.1, and 03 = 0.01. We have used randomly generated
integer values for @ in the interval [min{5,|K]| x 0.2]},...,min{12,|K| x 0.8}], and the
randomization parameter p was set equal to 0.3. Regarding the master level simulated
annealing parameters, we have used a Ty,,; value such that a new solution with objective
function value differing by 0.5% from the initial feasible solution will be accepted with a
probability of 50%. The cooling rate ¢ was set in such a way that the temperature value at
the final iteration is equal to a given value (1000 in our experiments).

We denote by ALNS the algorithm with the same objective function as formulations
1 and .%,, and by ALNS-RH the modified version with the objective function (6). The
7 parameter for ALNS-RH was set in such a way that the second term of the objective
function (6) is one order of magnitude larger than the first term.

The metaheuristic algorithm with the objective function of the formulations .#; and
Z», and the additional term (7) is referred to as ALNS-PS for its peak shaving capabilities.

We will report an example of using this algorithm with the parameter 9 set equal to one.

5.3 Results

We report in Table 3 the comparison between the formulations .%#; and .%;. The four
listed instances are the only ones out of the 63 instances where the formulation .% does
not exceed memory limits. For these instances we report the objective function values
at the best found solutions, as well as the gaps. Here and in the following tables the
(percent) gaps are computed as 100 x (upper bound — lower bound) /upper bound. The
formulation .%, clearly outperforms % and it will therefore be exclusively used in the
following experiments.

Tables 4 and 5 compare .7, and ALNS. We list the lower bounds obtained by .%; at the
end of the computation, the computational times, and the gaps. The metaheuristic algorithm
obtains high quality solutions within short computational times, whereas CPLEX can be

rather slow on some instances. Using a larger number of iterations for ALNS (1 = 50 x 103
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versus 1] = 200 x 10°) improves solution quality only slightly. This is why in the following
experiments we have used 1 = 50 x 10°. Formulation .%, is rather useful in assessing the
quality of the metaheuristic because it provides good lower bounds. However, we already
mentioned that the devised solution approach requires an iterative use of the algorithm for
different data assumptions, and for the evaluation of different objective functions. Tables
6 and 7 assess the effect of the rolling horizon. Here formulation .%#, and the metaheuristic
algorithms solve smaller instances with a planning horizon of one week. The assignments
of groups arriving on the first day of the planning horizon are then fixed, and a new instance
is derived as long as the end of the planning horizon does not coincide with the end of the
period of 31 days. The lower bound for this type of problem is the same of the one computed
by assuming the full month knowledge. Therefore, the solution quality is measured in
terms of the gap with respect to this lower bound. For consistency, the reported gap for
ALNS-RH considers as upper bound the value of the first term of the objective function
only. Because of the rolling horizon framework .%,, ALNS, and ALNS-RH present some
infeasibility issues. Both .#, and ALNS fail in eight instances. The modified objective
function of ALNS-RH allows a significant reduction in the number of infeasible solutions
which are now only three. However, this advantage comes at the expense of a noticeable
worsening of the handling times. We observe that the handling times resulting from the
rolling horizon are on average four percentage points worse than those obtained when the
instance is solved with the full 31 days horizon. This could be defined as the price to pay
for the limited knowledge about the future. When we use ALNS-RH we have an additional
eight percentage points worsening which could be seen as the price of the more prudent
assumptions of ALNS-RH. Whether the more costly, but more resilient yard plans obtained
by ALNS-RH are valuable is a decision to be left to planners’ judgment.

Figure 6 illustrates the flexibility given by the objective function term (7) in the ALNS-
PS algorithm. The dashed line represents the handling profile induced by the yard assign-
ment decisions computed by the ALNS algorithm for instance 13. This handling profile
has a very high peak of 450,000. By imposing a desired largest handling value of 350,000
in the ALNS-PS algorithm we obtain the profile represented in Figure 6 by a solid line.
This avoids the high handling peak. However, the yard plan computed by ALNS-PS has a
total handling cost 7.6 percentage points higher than the one computed by ALNS.
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Figure 6: Comparison of handling profiles between ALNS and ALNS-PS algorithms

6 Conclusion

We have described, formulated and solved a yard management problem arising in an au-
tomotive transshipment terminal. Several constraints and objectives resulting from man-
agerial rules and policies were considered. We have devised an efficient adaptive large
neighborhood search metaheuristic for the problem. Extensive computational experiments
clearly show that the proposed metaheuristic yields high quality solutions when bench-
marked with a state-of-the-art integer linear programming solver. Furthermore, the meta-
heuristic can easily handle application specific practical issues such as a rolling horizon,
and a manpower leveling objective. A solution approach based on the iterative use of this

fast metaheuristic algorithm is then possible for the application under study.
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Fi T
Instance | Objective Time Objective  Time
K| index value (sec) Gap (%) value (sec) Gap (%)
20 3 5179419 798 2.7 5164749 27 23
7 4054548 457 1.8 3987629 12 0.0
10 4113687 429 2.0 4082843 27 0.5
42 4678907 1366 0.1 4791606 62 24
Average 763 1.6 32 1.3

Table 3: Comparison between the formulations .%; and .%; using CPLEX as in-
teger linear programming solver. The gaps are computed as 100 x (upper bound —
lower bound) /upper bound.
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T ALNS ALNS
Instance n=>50x103 n =200 x 10°
K| index Lower bound Time (sec) Gap (%) | Time (sec) Gap (%) | Time (sec) Gap (%)
20 1 3992465 106 2.9 30 0.4 163 0.3
2 4682893 75 0.4 30 0.8 159 0.8
3 5043894 27 2.3 32 0.6 172 0.5
4 4840143 108 2.7 30 0.8 165 0.8
5 4453641 209 3.0 32 1.6 172 1.3
6 4928722 112 0.9 32 0.5 172 0.6
7 3987629 12 0.0 32 0.2 189 0.0
8 3734106 13 1.6 40 0.1 175 0.1
9 4710034 17 0.0 36 0.1 175 0.1
10 4060795 27 0.5 49 0.0 180 0.0
11 4368846 13 1.6 51 0.6 181 0.3
12 5064482 13 0.0 48 0.1 194 0.1
40 13 4739218 454 2.4 32 1.5 242 14
14 4525567 755 2.9 33 2.0 234 1.6
15 5143900 1410 2.5 32 1.3 219 1.1
16 4662518 306 1.5 33 1.0 244 1.0
17 4722832 1316 0.9 32 1.6 233 1.1
18 4705636 1812 1.0 32 2.3 225 1.7
19 4109508 327 2.1 51 1.8 267 1.0
20 4057705 860 1.9 54 1.9 268 1.7
21 4379150 301 0.5 52 1.0 264 0.6
22 4507207 467 1.0 53 2.5 291 0.6
23 4241235 643 2.7 55 2.3 299 1.5
24 4094234 341 0.9 50 1.1 247 0.9
50 25 3560322 844 2.6 48 2.0 255 2.2
26 3674739 2959 1.6 51 1.3 283 1.2
27 3752604 2847 0.5 52 1.4 278 0.9
28 3448997 2865 3.0 52 2.1 260 2.3
29 3279645 411 2.9 53 2.5 260 1.1
30 3505008 820 2.3 50 2.5 284 1.6
Average 682 1.6 42 1.3 225 1.0

Table 4: Computational results, part I. The gaps are computed as 100 x (upper bound —

lower bound) /upper bound.
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T ALNS ALNS
Instance n=>50x103 n =200 x 10°
K| index Lower bound Time (sec) Gap (%) | Time (sec) Gap (%) | Time (sec) Gap (%)
20 31 5812495 22 1.6 34 0.4 202 0.4
32 4777588 167 0.8 29 0.5 142 0.5
33 5609889 711 2.0 30 0.7 130 0.7
34 5101031 30 0.0 28 2.2 142 0.2
35 5457213 183 24 31 1.4 160 1.2
36 4870599 203 1.1 34 1.8 159 1.3
37 5243680 41 1.6 49 0.4 181 0.4
38 4840143 107 2.7 45 0.8 166 0.8
39 4515430 61 2.2 46 24 158 0.9
40 5560969 28 2.8 53 0.7 194 0.7
41 5424514 491 0.8 48 0.4 165 0.3
42 4678045 62 2.4 50 0.4 175 0.3
40 43 5477806 1123 2.0 29 4.0 174 3.8
44 5118623 5290 2.6 29 1.9 200 1.7
45 5284799 7811 1.5 29 1.5 217 1.5
46 5035190 14052 2.9 31 3.0 227 2.5
47 5399131 3686 2.9 29 2.9 176 2.0
48 4881591 18963 1.2 28 5.0 169 4.0
49 4739218 455 24 46 1.5 242 14
50 4594082 9790 1.7 41 4.1 184 2.9
51 5284799 7832 1.5 43 1.5 218 1.5
52 4851810 377 24 42 3.3 191 2.1
53 5035190 14942 2.9 46 3.0 226 2.5
54 5046526 5645 2.8 43 2.0 217 14
50 55 3932682 10380 24 41 39 193 1.8
56 3995910 510 0.5 44 1.6 216 1.6
57 4084447 6736 1.3 43 2.0 182 1.9
58 4030744 817 2.8 47 2.1 220 14
59 3962657 7768 1.3 47 2.3 228 14
60 3868591 6787 1.3 42 3.6 187 2.3
30 61 5225164 690 2.1 43 4.0 156 2.2
62 5105719 38357 2.6 45 4.5 127 4.3
63 5270800 559 0.4 43 3.7 129 3.0
Average 4990 1.9 40 2.2 183 1.7

Table 5: Computational results, part II. The gaps are computed as 100 x (upper bound —

lower bound) /upper bound.
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Rolling horizon
) ALNS  ALNS-RH
Instance index | Gap (%) Gap (%) Gap (%)
1 7.2 4.3 14.8
2 2.9 1.8 8.8
3 4.8 2.0 11.8
4 n.a. 4.0 5.5
5 6.1 5.9 5.2
6 2.9 3.8 9.9
7 1.7 0.1 13.5
8 3.8 0.4 23.0
9 2.6 1.7 18.3
10 12.4 10.0 16.2
11 4.7 5.0 16.2
12 6.3 4.9 12.6
13 7.0 6.7 17.6
14 7.2 4.6 13.4
15 3.9 6.2 10.9
16 10.6 9.2 13.6
17 n.a. n.a. n.a.
18 6.5 6.2 12.6
19 5.1 4.6 11.3
20 6.0 8.2 19.5
21 7.2 3.1 17.1
22 6.8 2.6 20.1
23 7.3 6.8 13.5
24 5.8 7.4 16.8
25 10.2 5.3 14.2
26 9.6 4.1 17.3
27 6.2 5.8 14.6
28 7.8 5.2 13.9
29 11.7 5.8 12.0
30 13.7 6.7 14.7
Average 6.7 4.9 14.1

Table 6: Rolling horizon results, part I. The gaps are computed as 100 x (upper bound —
lower bound) /upper bound. We indicate by “n.a.” whenever the algorithm fails in obtain-
ing a feasible solution.
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Rolling horizon
P ALNS  ALNS-RH
Instance index | Gap (%) Gap (%) Gap (%)
31 n.a. n.a. 7.0
32 5.5 n.a. 9.7
33 n.a. n.a. 12.3
34 14.7 14.1 8.2
35 7.5 3.5 8.7
36 7.0 3.6 9.7
37 7.7 n.a. 54
38 n.a. 4.0 5.5
39 2.8 7.1 8.3
40 4.7 4.0 7.4
41 n.a. n.a. n.a.
42 1.8 3.5 4.9
43 4.7 2.1 16.2
44 7.9 5.7 11.6
45 7.4 3.9 16.3
46 6.4 6.0 12.7
47 8.4 5.3 13.7
48 6.9 7.4 12.2
49 7.0 6.7 17.6
50 8.9 10.0 13.5
51 7.4 3.9 16.3
52 94 7.2 12.3
53 6.4 6.0 12.7
54 114 6.9 16.0
55 7.8 8.7 18.0
56 7.1 5.4 9.1
57 7.6 6.1 15.3
58 10.5 7.7 16.3
59 7.9 6.3 13.5
60 6.0 7.0 15.4
61 5.5 8.8 11.4
62 n.a. n.a. n.a.
63 n.a. n.a. 8.9
Average 7.3 6.2 13.5

Table 7: Rolling horizon results, part II. The gaps are computed as 100 x (upper bound —
lower bound) /upper bound. We indicate by “n.a.” whenever the algorithm fails in obtain-
ing a feasible solution.
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