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Abstract.  This paper considers a single-vehicle Dial-a-Ride problem in which customers 

may experience stochastic delays at their pickup locations. If a customer is absent when 

the vehicle serves the pickup location, the request is fulfilled by an alternative service 

(e.g., a taxi) whose cost is added to the total cost of the tour. In this case, the vehicle skips 

the corresponding delivery location, which yields a reduction in the total tour cost. The aim 

of the problem is to determine an a priori Hamiltonian tour minimizing the expected cost of 

the solution. This problem is solved by means of an integer L-shaped algorithm. 

Computational experiments show that the algorithm yields optimal solutions for small and 

medium size instances within reasonable CPU times. It is also shown that the actual cost 

of an optimal solution obtained with this algorithm can be significantly smaller than that of 

an optimal solution obtained with a deterministic formulation. 
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1 Introduction

The single-vehicle Dial-a-Ride Problem (DARP) consists in satisfying at minimum cost a set of customer

transportation requests, each defined by a specific origin-destination pair, while respecting side constraints

related to operational considerations and to quality of service. These typically include load and capacity

constraints, total duration and ride time constraints, as well as time windows. Customer requests can

either be outbound — a desired arrival time at destination is specified —, or inbound — a desired

departure time from the origin is specified. Time windows of given widths are then constructed around

these desired times.

Our aim is to propose an exact algorithm for a stochastic version of the DARP called the single-vehicle

DARP with stochastic customer delays (S-DARP). In this problem, customers arrive at their origin with

a stochastic delay. Such delays are frequently encountered when customers must be picked up at hospitals

or other healthcare facilities. Indeed, because waiting times and the duration of medical appointments are

often unpredictable, customers cannot guarantee at which time they will become available to be picked

up for their inbound request. We assume that if a customer is absent when the vehicle serves the pickup

location, the vehicle moves immediately to the next location. In this case, the “missed” customer request

is fulfilled by an alternative service such as a taxi whose cost must be added to the total cost of the

tour. Furthermore, the vehicle will skip the corresponding delivery node, yielding a reduction in the tour

cost. The single-vehicle S-DARP consists in determining an a priori Hamiltonian tour that minimizes

the expected cost of the tour actually followed by the vehicle.

There exists a rich literature on the DARP. The single-vehicle case was introduced by Psaraftis [19, 20],

who solved it by dynamic programming. Desrosiers et al. [10] formulated the problem as an integer

program, and solved instances with up to 40 requests, also by dynamic programming. More recently,

Cordeau [5] presented some valid inequalities and a branch-and-cut algorithm for the multi-vehicle DARP.

The author solved instances involving up to 32 requests. Ropke et al. [22] later presented stronger for-

mulations and new valid inequalities for the DARP and the Pickup and Delivery Problem with Time

Windows (PDPTW), which can be viewed as a DARP without ride time constraints. They solved in-

stances with up to 96 requests using a branch-and-cut algorithm. Ropke and Cordeau [21] then proposed

a branch-and-cut-and-price method for the PDPTW. This algorithm uses some of the inequalities in-

troduced by Ropke et al. [22] within a column generation framework and it could solve some tightly

constrained instances with up to 500 requests. Very recently, Bartolini [1] also formulated the PDPTW

as a set partitioning problem with additional cuts. He proposed an exact algorithm for the problem, us-

ing both relaxations of the formulation and a branch-and-cut-and-price algorithm. His method provided

better results than that of Ropke and Cordeau [21] in terms of lower bound quality and computing time.

For recent reviews of the DARP, see Cordeau and Laporte [6] and Cordeau et al. [7].

The S-DARP is related to the Probabilistic Traveling Salesman Problem (PTSP), in which vertices

are present with given probabilities. The PTSP is solved in two stages. In the first stage, an a priori

Hamiltonian tour must be determined before any information on the present vertices is known. The set

of present vertices is then revealed. In the second stage solution, the vehicle follows its planned tour but
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skips the absent vertices. The PTSP consists in determining an a priori Hamiltonian tour that minimizes

the expected length of the tour actually followed by the vehicle in the second stage. The PTSP was

introduced by Jaillet [14, 15] who presented several combinatorial and asymptotic results, among which

an efficient method to compute the expected length of the second stage tour. Laporte et al. [17] proposed

an exact integer L-shaped algorithm for this problem and solved instances with up to 50 vertices. The

latter algorithm, which we will adapt to our problem, is based on the L-shaped method for continuous

programs (Van Slyke and Wets [24]) and on Benders decomposition [2]. The integer L-shaped algorithm

was put forward by Laporte and Louveaux [16] for stochastic integer programs with integer recourse.

It applies branch-and-cut to an initial relaxed model, which is then iteratively tightened by appending

lower bounding functionals and optimality cuts to the current problem. The optimality cuts require the

knowledge of an integer feasible solution and are thus only imposed at nodes of the branch-and-cut tree

corresponding to integer solutions. In contrast, the lower bounding functionals can be imposed at any

node of the tree.

The integer L-shaped algorithm was also applied by Gendreau et al. [11] to the Vehicle Routing

Problem (VRP) with stochastic customers and demands. In this problem, each vertex has a given

probability of being present and has a stochastic demand. The authors have solved instances involving up

to 70 vertices. Hjorring and Holt [13] presented improved optimality cuts and lower bounding functionals

for the related single vehicle problem with stochastic demands only (i.e., all vertices are present), and

solved instances with up to 90 vertices. Finally, Laporte et al. [18] derived better optimality cuts and

lower bounding functionals for a stochastic capacitated VRP with Poisson or normal demands. These

authors have solved instances involving up to 100 vertices. For more details about the stochastic VRP,

we refer the interested reader to the surveys of Gendreau et al. [12] and of Cordeau et al. [8].

In related work, Campbell and Thomas [3, 4] studied a PTSP in which customers should be visited

before a known deadline. In the first paper [3], the authors presented two recourse models and a chance

constrained model for the problem, and discussed several special cases. Whereas the recourse models

penalize deadline violations in the objective function, the chance constrained model restricts the proba-

bility that a deadline violation occurs. The authors also compared through computational experiments

the solution values obtained using stochastic or deterministic formulations. In a follow-up paper, Camp-

bell and Thomas [4] proposed approximation methods to quickly compute deadline violations. These

methods provide good quality solutions and yield significant reductions in computing time with respect

to an exact computation of the deadline violations. They can thus be incorporated within local search

algorithms.

The purpose of this paper is to introduce an integer L-shaped algorithm for the single-vehicle S-

DARP. The remainder of the paper is organized as follows. Section 2 provides a formal description of the

S-DARP, together with a mixed-integer linear programming formulation. Section 3 describes our integer

L-shaped algorithm. This section also includes details about the computation of the delay cost associated

to a feasible Hamiltonian tour, and provides the optimality cuts appended to the stochastic model. Note

that no lower bounding functionals are generated because no strong constraints of this type could be
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identified. Computational results are presented in Section 4, followed by the conclusion in Section 5.

2 Formal problem description

Consider a set of n customer requests r1, . . . , rn, where each ri is composed of a pickup node i and a

delivery node n+ i. Let G = (N,A) be the corresponding directed graph, with N = P ∪D ∪ {0, 2n+ 1},
P = {1, . . . , n} the set of pickup nodes, D = {n + 1, . . . , 2n} the set of delivery nodes, {0, 2n + 1} the

depot nodes, and A =
{

(i, j) : i ∈ N \ {2n+ 1}, j ∈ N \ {0, i, i− n}
}

the set of arcs.

To each node i ∈ N corresponds a load qi such that q0 = q2n+1 = 0, qi > 0 and qn+i = −qi
(i = 1, . . . , n), and the vehicle capacity is given by Q. Furthermore, a service duration di as well as a

time window [ei, li] are provided for each node i ∈ N . In a deterministic context, the latter corresponds

to an interval in which the vehicle must begin service at node i, which implies that a customer making a

request ri is supposed to be available at the pickup node at time ei at the latest. With each arc (i, j) ∈ A
are associated a routing cost cij and a travel time tij , which satisfy the triangle inequality. We assume

that ei ≥ e0 + d0 + t0i for all i ∈ N \ {0} since the vehicle starts from the depot node 0. Also, a maximal

ride time R is imposed on the duration of any customer trip, while an upper bound T is imposed on the

total tour duration.

In the S-DARP, customers can be delayed, i.e., the customer is present at node i ∈ P at time ei + ξi,

where ξi is a nonnegative random variable. The taxi cost corresponding to a “missed” customer request

ri is denoted by bi. We assume that bi ≥ maxk,l∈N{ck,n+i + cn+i,l − ckl} for all i ∈ P , i.e., the cost

of fulfilling a customer request by taxi is always larger than the reduction in the tour cost obtained by

skipping the corresponding delivery node. Furthermore, in the DARP, it is common to assume that if

the vehicle arrives at node j ∈ N earlier than ej , then waiting occurs before the beginning of service at

this node (Cordeau et al. [7]). In the S-DARP, we consider that the vehicle should avoid arriving at node

j ∈ N earlier than ej to maximize the probability of picking up a delayed customer. Hence, if the vehicle

travels on arc (i, j), any waiting necessary before the beginning of service at node j will be replaced by

a postponement of the beginning of service at node i, up to time li.

To model the S-DARP, we define binary flow variables xij equal to 1 if and only if the vehicle travels

on arc (i, j) ∈ A. Let yi, i ∈ N , be variables equal to the beginning of service at the nodes of G, and let
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ui be the vehicle load upon leaving node i ∈ P ∪D. The model is then:

S-DARP: minimize
∑

(i,j)∈A

cijxij + Θ(x, y) (1)

subject to:∑
j∈P

x0j = 1 (2)

∑
j∈D

xj,2n+1 = 1 (3)

∑
j∈N

xij = 1 i ∈ P ∪D (4)

∑
j∈N

xji −
∑
j∈N

xij = 0 i ∈ P ∪D (5)

yj ≥ yi + di + tij −Mij(1− xij) (i, j) ∈ A (6)

yi + di + ti,n+i ≤ yn+i i ∈ P (7)

yn+i − yi − di ≤ R i ∈ P (8)

uj − ui ≥ qj −Qi(1− xij) + (Qi − qi − qj)xji i, j ∈ P ∪D (9)

max{0, qi} ≤ ui ≤ min{Q,Q+ qi} i ∈ N (10)

y2n+1 − y0 ≤ T (11)

ei ≤ yi ≤ li i ∈ N (12)

yi ≥ ei +
∑
j∈N

max
{

0,min{ej − ei − di − tij , li − ei}
}
xij i ∈ N (13)

xij ∈ {0, 1} (i, j) ∈ A, (14)

with Mij = max{0, li + di + tij − ej}, Qi = Q for i ∈ P and Qi = Q − 1 for i ∈ D. The objective

function (1) minimizes the expected cost of the tour actually followed by the vehicle. In addition to

the cost of the a priori tour, a function Θ(x, y) measures the expected cost of delay caused by absent

customers (also called delay cost in the following). Constraint (2) (resp. (3)) imposes that the first

node after (resp. before) the depot is a pickup (resp. delivery) node. Constraints (4) and (5) mean that

all pickup and delivery nodes are visited. Constraints (6) and (7) ensure that the beginning of service

variables are consistent, and constraints (8) enforce a maximal ride time R for each customer. Constraints

(9) guarantee the consistency of load variables. Indeed, they consist of the linearization of constraints

uj − ui ≥ qjxij , lifted by using the reverse arc (j, i), as in Desrochers and Laporte [9]. Constraints (10)

define lower and upper bounds on the vehicle load. Constraints (11) impose a total maximal duration

T for the tour, while (12) are the time window constraints. Finally, constraints (13) ensure that the

vehicle avoids arriving at a node earlier than the beginning of the corresponding time window, if possible.

Indeed, if the vehicle travels on an arc (i, j) such that ei + di + tij ≤ ej , the earliest time ei is postponed

by min{ej − ei − di − tij , li − ei}. The last term li − ei ensures that the deadline li is not exceeded.
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3 The Integer L-Shaped Method for the S-DARP

In our implementation of the integer L-shaped method for the S-DARP, we solve a relaxed version of

model S-DARP, which is iteratively tightened by means of optimality cuts. Hence the objective function

(1) is replaced with

minimize
∑
i∈N

∑
j∈N\{i}

cijxij + θ, (15)

where θ is a lower bound on the delay cost Θ(x, y), while integrality constraints (14) are also relaxed.

A lower bounding constraint θ ≥ L is also included in the formulation, where L is a global lower bound

for the delay cost. Since we have assumed that the cost of fulfilling a request by taxi is larger than any

corresponding reduction in the tour cost, we can clearly set L = 0.

Our implementation of the integer L-shaped method for the S-DARP can be summarized as follows:

Step 1 (Initialization) Set a solution counter r = 0 and the best objective function

value z∗ =∞. The first subproblem in the search tree is the relaxed problem defined

above.

Step 2 (Subproblem selection) Choose a subproblem in the search tree (according

to a best-bound rule). If none exists, the best solution has been found: stop.

Step 3 (Subproblem solution) Solve the current subproblem and let z be its op-

timal value. If z > z∗, fathom the corresponding node of the search tree and go to

Step 2.

Step 4 (Integrality test) If the current solution is not integer, create two subprob-

lems by branching on a fractional variable xij , add these to the search tree and go to

Step 2.

Step 5 (Delay cost lower bounding) Set r = r+1. The current solution (xr, yr, θr)

is feasible. Compute a lower bound θ on the delay cost Θ(xr, yr). Compute the cor-

responding lower bound on the objective function value zr := cTxr + θ. If θ > λθr

(λ ∈ R+
0 ) or zr > z∗, generate optimality cuts and go to Step 2.

Step 6 (Delay cost computation) Compute the delay cost Θ(xr, yr). If

Θ(xr, yr) > θr, generate optimality cuts and go to Step 2.
Step 7 (Best solution test) Compute the objective function value zr := cTxr +

Θ(xr, yr) associated with the current feasible solution (xr, yr, θr). If zr ≤ z∗, set

z∗ = zr and save xr as the new best solution. Fathom the node of the search tree

and go to Step 2.

The main difficulty of this method consists in computing the delay cost Θ(xr, yr) associated with a

feasible solution (xr, yr, θr) in Step 6. In the following section, we define the delay cost more precisely

and provide details on its computation.
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3.1 Computing the delay cost associated with a feasible Hamiltonian tour

The probability that the vehicle picks up a customer at a node depends on the customer delay relative to

the beginning of service at this node. In order to ensure that the vehicle picks up as many customers as

possible, the beginning of service at any pickup node has to be scheduled as late as possible in order to

maximize the related probabilities. Consider that a feasible solution (xr, yr, θr) to the stochastic relaxed

model is known, and let the vector (s0 = 0, s1, . . . , s2n, s2n+1 = 2n + 1) describe the corresponding

Hamiltonian tour. The waiting times before the beginning of service at nodes are defined as

wrsi
= max{0, yrsi

− tsi−1si − dsi−1 − yrsi−1
} i = 1, . . . , 2n+ 1. (16)

Similarly to Savelsbergh [23], we define forward time slack variables zsi
(si ∈ N) such that

zs2n+1 = l2n+1 − yr2n+1 (17)

zsi = min{lsi − yrsi
, zsi+1 + wrsi+1

} i = 0, . . . , 2n. (18)

These correspond to the largest postponements that can be imposed on the beginning of service at the

nodes so that the Hamiltonian tour remains feasible. In order to satisfy constraint (11) on the maximal

tour duration, these variables are iteratively adjusted. Indeed, assume that yr0 + z0 + T > yr2n+1 + z2n+1,

i.e., the maximal postponements of beginning of service at nodes 0 and 2n + 1 yield a tour duration

larger than T . In this case, we set z2n+1 = yr0 + z0 + T − yr2n+1, and the variables zsi
(i = 0, . . . , 2n) are

recomputed using (18). Then we can set the updated beginning of service yR0 = yr0 + z0.

Next, the beginning of service at nodes are updated in order to maximize the probabilities that the

vehicle picks up customers. In order to satisfy constraints (8) on the maximal customer ride times, the

first pickup node sj of the tour is postponed:

yRsj
= yrsj

+ zsj
, (19)

where yRsj
is the updated beginning of service at node sj , and the forward time slack variable at the

corresponding delivery node is updated as follows:

zn+sj
= min{zn+sj

, R+ yRsj
+ dsj

− yrn+sj
} (20)

to ensure a maximal ride time R for this customer request. Let k be the index of the delivery node, i.e.,

n + sj = sk. Now let j denote the index of the second pickup node of the tour. Forward time slack

variables for nodes si such that j ≤ i < k are recomputed using (18). Then, the beginning of service at

the second pickup node can be postponed following (19), and this process is iterated until the last pickup

node of the tour has been reached. Note that the beginning of service at delivery nodes, as well as the

beginning of service at the depot node 2n+ 1, do not have to be scheduled as late as possible. The latter
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are set according to the postponements at pickup nodes, i.e.,

yRsi
= max{yrsi

, yRsi−1
+ dsi−1 + tsi−1si

} si ∈ D ∪ {2n+ 1}. (21)

Now consider a customer request rj , j ∈ {1, . . . , n}, and let (s0, . . . , sk = j, . . . , sl = n+ j, . . . , s2n+1)

be a feasible Hamiltonian tour. With probability 1 − pj , an additional taxi cost bj must be included in

the delay cost whereas the vehicle skips the delivery node n + j ∈ D, yielding a reduction in the tour

cost and thus in the delay cost. In this case, the beginning of service at each pickup node si ∈ P such

that k < i < l is postponed by at most g(rj) = tsl−1sl
+ dsl

+ tslsl+1 − tsl−1sl+1 in order to increase the

corresponding probabilities psi
. The beginning of service at delivery nodes si ∈ D such that k < i < l

are postponed accordingly. However, note that the full postponement g(rj) is only achieved at nodes such

that the remaining tour remains feasible. We thus define the following updated waiting times:

wR(rj)
sl+1

= max{0, yRsl+1
− tsl−1sl+1 − dsl−1 − yRsl−1

} (22)

wR(rj)
si

= max{0, yRsi
− tsi−1si

− dsi−1 − yRsi−1
} i = k + 2, . . . , l − 1. (23)

Hence new forward time slack variables z(rj)
si are defined for the nodes si ∈ N such that k < i < l:

z(rj)
sl−1

= min{lsl−1 − yRsl−1
, zsl+1 − yRsl+1

+ yrsl+1
+ wR(rj)

sl+1
} sl−1 ∈ P (24)

z(rj)
sl−1

= min{lsl−1 − yRsl−1
, zsl+1 − yRsl+1

+ yrsl+1
+ wR(rj)

sl+1
,

R+ yRsl−1−n + dsl−1−n − yRsl−1
} sl−1 ∈ D (25)

z(rj)
si

= min{lsi − yRsi
, z(rj)
si+1

+ wR(rj)
si+1

} si ∈ P, i = k + 1, . . . , l − 2 (26)

z(rj)
si

= min{lsi
− yRsi

, z(rj)
si+1

+ wR(rj)
si+1

, R+ yRsi−n + dsi−n − yRsi
}

si ∈ D, i = k + 1, . . . , l − 2. (27)

These correspond to the largest feasible postponements of beginning of service at nodes when the customer

request rj is fulfilled by taxi. In this case, updated beginning of service at nodes yR(rj)
si are set as follows:

yR(rj)
si

= yRsi
+ min{g(rj), z(rj)

si
} k < i < l, si ∈ P (28)

yR(rj)
si

= max{yRsi
, yR(rj)
si−1

+ dsi−1 + tsi−1si} k < i < l, si ∈ N \ P, (29)

with y
R(rj)
sk = yRsk

. Note that the computation of the forward time slack variables implies that, even if

the beginning of service is further postponed at a pickup node j, a maximal ride time of R still holds

with respect to yRj .

If several delivery nodes are skipped by the vehicle, the services times at nodes must be updated

accordingly. Let rj1 and rj2 be two customer requests whose corresponding delivery nodes n+j1, n+j2 ∈ D
are skipped by the vehicle with probability (1 − pj1) and (1 − pj2), respectively. Let (s0, . . . , sh =

j1, . . . , sk = j2, . . . , sl = n + j1, . . . , sm = n + j2, . . . , s2n+1) be the feasible tour. The updated waiting
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times are then defined as:

w
R(rj1 ,rj2 )
sl+1 = max{0, yR(rj2 )

sl+1 − tsl−1sl+1 − dsl−1 − y
R(rj2 )
sl−1 } m > l + 1 (30)

w
R(rj1 ,rj2 )
sm+1 = max{0, yRsm+1

− tsl−1sl+1 − dsl−1 − y
R(rj2 )
sl−1 } m = l + 1 (31)

w
R(rj1 ,rj2 )
si = max{0, yR(rj2 )

si − tsi−1si
− dsi−1 − y

R(rj2 )
si−1 }

i = k + 2, . . . , l − 1. (32)

In what concerns the forward time slack variables, several particular cases must be considered for the

node sl−1, which depend on the relative positions of the nodes sl and sm:

z
(rj1 ,rj2 )
sl−1 = min{lsl−1 − y

R(rj2 )
sl−1 , z

(rj2 )
sl+1 − y

R(rj2 )
sl+1 + yRsl+1

+ w
R(rj1 ,rj2 )
sl+1 }

sl−1 ∈ P,m > l + 1 (33)

z
(rj1 ,rj2 )
sl−1 = min{lsl−1 − y

R(rj2 )
sl−1 , z

(rj2 )
sl+1 − y

R(rj2 )
sl+1 + yRsl+1

+ w
R(rj1 ,rj2 )
sl+1 ,

R− yR(rj2 )
sl−1 + yRsl−1−n + dsl−1−n}

sl−1 ∈ D,m > l + 1 (34)

z
(rj1 ,rj2 )
sl−1 = min{lsl−1 − y

R(rj2 )
sl−1 , zsm+1 − yRsm+1

+ yrsm+1
+ w

R(rj1 ,rj2 )
sm+1 }

sl−1 ∈ P,m = l + 1 (35)

z
(rj1 ,rj2 )
sl−1 = min{lsl−1 − y

R(rj2 )
sl−1 , zsm+1 − yRsm+1

+ yrsm+1
+ w

R(rj1 ,rj2 )
sm+1 ,

R− yR(rj2 )
sl−1 + yRsl−1−n + dsl−1−n}

sl−1 ∈ D,m = l + 1. (36)

The remaining forward time slack variables are defined as follows:

z
(rj1 ,rj2 )
si = min{lsi

− yR(rj2 )
si , z

(rj1 ,rj2 )
si+1 + w

R(rj1 ,rj2 )
si+1 }

si ∈ P, i = k + 1, . . . , l − 2 (37)

z
(rj1 ,rj2 )
si = min{lsi

− yR(rj2 )
si , z

(rj1 ,rj2 )
si+1 + w

R(rj1 ,rj2 )
si+1 ,

R− yR(rj2 )
si + yRsi−n + dsi−n}

si ∈ D, i = k + 1, . . . , l − 2. (38)
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For the corresponding beginning of service at nodes, we obtain

y
R(rj1 ,rj2 )
si = y

R(rj2 )
si + min

{
g(rj1 ,rj2 ), z

(rj1 ,rj2 )
si

}
k < i < l, si ∈ P (39)

y
R(rj1 ,rj2 )
si = max{yR(rj2 )

si , y
R(rj1 ,rj2 )
si−1 + dsi−1 + tsi−1si

}

k < i < l, si ∈ D, (40)

where

g(rj1 ,rj2 ) = tsl−1sl
+ dsl

+ tslsl+1 − tsl−1sl+1 m > l + 1 (41)

g(rj1 ,rj2 ) = tsl−1sl
+ dsl

+ tslsl+2 − tsl−1sl+2 m = l + 1. (42)

Indeed, if the vehicle skips node n + j2 ∈ D, the beginning of service at pickup nodes si ∈ P such that

k < i < m can be postponed by at most g(rj2 ). Since the vehicle skips both nodes n + j1, n + j2 ∈ D
with probability (1 − pj1)(1 − pj2), the beginning of service at pickup nodes si ∈ P such that k < i < l

can be further postponed by at most g(rj1 ,rj2 ). This quantity results from the elimination of node n+ j1

from the tour, considering that node n+ j2 has already been skipped. As before, the beginning of service

at delivery nodes are postponed according to the previous modifications. Also, the maximal ride time

of R for customer request rj is still ensured with respect to the updated beginning of service yRj at the

corresponding pickup node.

The beginning of service at nodes can be updated similarly when more than two delivery nodes are

skipped by the vehicle. In order to compute all possible updated beginnings of service at nodes, we use

the following pseudo-codes. We denote by π(k) the index of node k ∈ N in the current feasible tour. The

purpose of Algorithm 1 is to compute all possible updated beginnings of service at nodes. The updated

beginning of service at nodes yRi , i ∈ N are first provided. For each pickup node i ∈ P which is not

immediately before the corresponding delivery node n + i ∈ D in the Hamiltonian tour, Algorithm 1

also computes the updated beginning of service at nodes yR(ri)
π(l) , π(i) < π(l) < π(n+ i), i.e., at the nodes

lying between i and n + i in the Hamiltonian tour. Next, for each pickup node j ∈ P such that the

corresponding delivery node n+ j ∈ D (i) lies between i and n+ i and (ii) is not the immediate successor

of j in the Hamiltonian tour, Algorithm 1 selects the maximal index I between π(i) and π(j), and then

calls a function ‘Revision(j, I, yR(ri))’. In this function, whose description is provided in Algorithm 2, the

updated beginning of service at nodes yR(rj ,ri)

π(l) , I < π(l) < π(n + j) are computed. Then, as above, for

each pickup node k ∈ P such that n + k ∈ D (i) lies between I and n + j and (ii) is not the immediate

successor of k in the Hamiltonian tour, the maximal index J between I and π(k) is selected and the

recursive function Revision(k, J, yR(rj ,ri)) is called again. The latter will compute the updated beginning

of service at nodes yR(rk,rj ,ri)

π(l) , J < π(l) < π(n + k), and so on until all possible updated beginnings of

service at nodes are provided.
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Algorithm 1 Computation of all updated beginnings of service at nodes (represented by a vector y)

1: compute yR

2: for all i ∈ P s.t. π(n+ i) > π(i) + 1 do
3: compute yR(ri) from yR

4: for j ∈ P s.t. π(i) < π(n+ j) < π(n+ i) and π(n+ j) > π(j) + 1 do
5: I ← max{π(i), π(j)}
6: Revision(j, I, yR(ri))

{this function computes the updated beginning}
{of service at nodes of the form yR(rj ,ri), from yR(ri)}

7: end for
8: end for
9: return y

Algorithm 2 Revision (j, I, y)

1: compute yR(rj ,...) from y {for instance, compute yR(rj ,ri) from yR(ri)}
2: for all k ∈ P s.t. I < π(n+ k) < π(n+ j) and π(n+ k) > π(k) + 1 do
3: J ← max{I, π(k)}
4: Revision(k, J, yR(rj ,...))

{this function computes the updated beginning}
{of service at nodes of the form yR(rk,rj ,...), from yR(rj ,...)}

5: end for

The delay cost associated with a feasible Hamiltonian tour of the form (s0, s1, . . . , s2n, s2n+1) can now

be defined as follows:

Θ(xr, yr) = EξΘ(xr, yr, ξ)

=
∑
si∈D

bsi−n(1− vsi
) +

2n∑
i=0

2n+1∑
j=i+1

csisj
vsi
vsj

j−1∏
k=i+1

(1− vsk
)−

2n∑
i=0

csisi+1 , (43)

where
∏j−1
k=i+1(1− vsk

) = 1 for i = j − 1, and vsi is the probability that the vehicle actually visits node

si ∈ N . This probability is defined as

vsi
=

1 if si ∈ P ∪ {0, 2n+ 1}

psi−n if si ∈ D,
(44)

where psi is the probability that the vehicle picks up the customer at node si ∈ P . To obtain the latest

psi
, we need to aggregate the probabilities that the vehicle picks up the customer at node si ∈ P , over all

possible values for the beginning of service variable ysi
. DefineR(si) as the set of customer requests rj such

that node si appears between the nodes j and n+ j on the tour, i.e., R(si) = {rj : π(j) < i < π(n+ j)}.
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The set Y (si) of all possible values for ysi
can be described as Y (si) = {yR(S)

si : S ⊆ R(si)}. We obtain:

psi =
∑

y
R(S)
si
∈Y (si)

P (ξsi ≤ yR(S)
si

− esi)P (ysi = yR(S)
si

) (45)

=
∑

y
R(S)
si
∈Y (si)

psi
|
y

R(S)
si

P (ysi
= yR(S)

si
). (46)

with

P
(
ysi

= yR(S)
si

)
=
∏
rk∈S

(1− pk)
∏

rk∈R(si)\S

pk. (47)

Indeed, the probability that the beginning of service at node si ∈ P equals yR(S)
si depends on what

happened before this node on the Hamiltonian tour. More precisely, it depends on the probabilities pk
that the vehicle picks up the customer at node k, where rk ∈ R(si).

Note that, because calculating all possible updated beginnings of service at nodes of N is computa-

tionally expensive, the same is true for the computation of the exact delay cost Θ(xr, yr) using (43) to

(47). This explains why, in Step 5 of the integer L-shaped algorithm, a lower bound θ for Θ(xr, yr) is

first computed. In the following section, we provide a valid setting for θ and focus on the optimality cuts

appended to the stochastic model in Steps 5 and 6 of the integer L-shaped algorithm.

3.2 Optimality cuts

Every time a feasible solution (xr, yr, θr) of the stochastic model is found in Step 5 of the integer L-shaped

algorithm, a lower bound θ for Θ(xr, yr) is computed. Similarly to Hjorring and Holt [13], we define a

partial route as a sequence (s0 = 0, s1, s2, . . . , sp) such that sp ∈ P and xsisi+1 = 1 for i = 0, . . . , p − 1.

The next proposition provides a valid setting for θ.

Proposition 1 Assume that (s0 = 0, s1, s2, . . . , sp) is a partial route, where sp ∈ P and V ⊆ N is the

corresponding node set. Then a lower bound for the delay cost associated to the partial route can be

computed as:

θ =
∑

si∈D∩V
bsi−n(1− v̄si

) +
p−1∑
i=0

p∑
j=i+1

csisj
vsi
vsj

j−1∏
k=i+1

(1− v̄sk
)−

p−1∑
i=0

csisi+1 (48)

where
∏l
k=i+1(1− v̄sk

) = 1 for i = l, while vsi
and v̄si

(si ∈ V ) are computed as follows:

vsi
= v̄si

= 1 si ∈ P (49)

vsi
= p

si−n
= P (ξsi−n ≤ ysi−n

− esi−n) si ∈ D (50)

v̄si = p̄si−n = P (ξsi−n ≤ ȳsi−n − esi−n) si ∈ D, (51)
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with

y
s0

= e0 (52)

y
si

= max{esi
, ysi−1 + dsi−1 + tsi−1si

} 1 ≤ i ≤ p (53)

ȳsp = min
{
lsp , ln+sp − tsp,n+sp − dsp , min

i∈P\V
{lsi − tsp,si − dsp}

}
(54)

ȳsi
= min

{
lsi
, ln+si

− tsi,n+si
− dsi

, ȳsk
− tsi,sk

− dsi

}
si ∈ P (55)

ȳsi
= min

{
lsi
, ȳsk

− tsi,sk
− dsi

}
si ∈ D, (56)

where sk is the next pickup node appearing after si in the partial route. Further, for any pickup node si
such that the corresponding delivery node n + si appears before sk in the partial route, we can replace

ln+si by ȳn+si in (55).

Proof The lower bound θ can be decomposed into several parts: a reduction in the tour cost according

to the sequence of nodes that are actually visited by the vehicle, and an additional taxi cost for customer

requests whose corresponding delivery node belongs to the partial route.

Since s1 and sp are pickup nodes, these are actually visited by the vehicle. Hence the reduction in the

tour cost for the partial route is equal to the total cost of the successive arcs that are actually traversed

by the vehicle, minus the cost of all arcs belonging to the sequence.

The probability psi
that the vehicle picks up the customer at node si ∈ P is psi

= P (ξsi
≤ ysi

− esi
),

where ysi is the beginning of service at node si. By constraints (6) and (12), the lower bounds (52) and

(53) can easily be deduced. Next, the beginning of service at node si can be postponed depending on the

delivery nodes that the vehicle will skip on its tour. One can easily check that it cannot be scheduled

after ȳsi
, and we obtain 1− psi

= P (ξsi
> ysi

− esi
) ≥ P (ξsi

> ȳsi
− esi

). The result follows. 2

Now let S ⊆ A be the arc set corresponding to a partial route. As in Hjorring and Holt [13], a general

optimality cut for this partial route is:

θ ≥ θ

 ∑
(i,j)∈S

xij − |S|+ 1

 , (57)

where θ is a lower bound on the delay cost associated to the partial route. The number of general

optimality cuts associated with any feasible Hamiltonian tour xr is in O(n). In order to avoid appending

all these to the stochastic model in Step 5, this step is executed as follows:
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Step 5.1 (Initialization) Let (s0 = 0, s1, . . . , s2n, s2n+1 = 2n+ 1) represent the fea-

sible Hamiltonian tour xr. Set a boolean b = 0, an arc counter k = 1, S = {(s0, s1)}
and θ = 0.

Step 5.2 (Partial route construction) While sk+1 ∈ D, set S = S ∪ {(sk, sk+1)}
and k = k + 1. If sk+1 = 2n+ 1: stop (go to Step 6 of the algorithm).

Step 5.3 (Delay cost lower bounding) Set S = S ∪ {(sk, sk+1)}, k = k + 1 and

update θ. If b = 0 and θ ≥ λθr (λ ∈ R+
0 ), append the corresponding optimality cut

to the model and set b = 1.

Step 5.4 (Optimality cut test) If cTxr + θ ≥ z∗, append the corresponding opti-

mality cut to the stochastic model and stop (go to Step 2 of the algorithm). Otherwise

go to Step 5.2.

With the above decomposition of Step 5, at most two general optimality cuts are appended to the

stochastic model from a given feasible solution (xr, yr, θr). Next, if we obtain sk+1 = 2n+ 1 in Step 5.2,

this means that the partial route corresponds to the feasible Hamiltonian tour xr. In this case, the exact

delay cost Θ(xr, yr) is computed in Step 6 and compared to the current value θr. If Θ(xr, yr) > θr, then

the specific optimality cut

θ ≥ Θ(xr, yr)

 ∑
(i,j)∈A:xr

ij=1

xij − 2n

 (58)

is included in the stochastic model. However, we should note that this cut is only active when x = xr,

which means that numerous optimality cuts could be required during the algorithm.

4 Computational results

The integer L-shaped algorithm for the single-vehicle S-DARP was incorporated within the branch-and-

cut algorithm of Cordeau [7] and tested on several instances. The algorithm was programmed in C++

and implemented with ILOG CPLEX 10.1 and the Concert Library. All tests were run on an AMD

Opteron 285 computer (2.6 GHz) running Linux.

The algorithm was applied to four sets of randomly generated instances involving from 12 to 26

customer requests. As in Cordeau [5], the node positions are randomly chosen in a square [−10, 10]2

according to a continuous uniform distribution, and the depot is located at the center of the square.

Routing costs and travel times are both equal to the Euclidean distance between the nodes. All instances

include half inbound requests and half outbound requests. For an inbound request, an earliest time ei
at the pickup node is randomly generated in [0, T − 60], where T is the maximal tour duration. For an

outbound request, a deadline ln+i at the delivery node is randomly generated in [60, T ]. The corresponding

deadline li at the pickup node and earliest time en+i at the delivery node are then set according to a

prespecified time window width. The latter is equal to 15 for half of the inbound and outbound requests;

the time window width for the other half of the requests is equal to 30 in instances C1 and CL1, and
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to 60 in instances D1 and DL1. Furthermore, instances C1 and D1 are generated with R = 30, Q = 3,

qi = 1 and di = 3. Instances CL1 and DL1 are generated with R = 45, Q = 6 and di = qi, where qi is

randomly chosen according to a uniform distribution on {1, . . . , Q}. Finally, the maximum tour duration

is set to T = 720 for instances with up to 18 customer requests, and to T = 840 otherwise.

In what concerns the taxi costs, we consider that the cost of a taxi from node i to node n+ i is equal

to twice the Euclidean distance between these nodes plus a fixed cost of 25, i.e., bi = 2di,n+i + 25. The

fixed cost can be interpreted as an administrative cost related to calling a taxi and updating data in

the computer system. Furthermore, we assume that each stochastic delay variable ξi (i ∈ P ) follows a

semi-triangular distribution on the interval [0, li − ei], whose density function f(x) is given by

f(x) =
−2x

(li − ei)2
+

2
li − ei

x ∈ [0, li − ei]. (59)

It follows that

P (ξi ≤ x) =
∫ x

0

−2t
(li − ei)2

+
2

li − ei
dt =

−x2

(li − ei)2
+

2x
li − ei

. (60)

In Tables 1 to 4, we compare several possible choices in terms of optimality cuts for instances C1,

D1 and CL1, DL1, respectively. The columns ‘CPU’ and ‘Cuts’ provide the CPU times (in seconds) and

the number of optimality cuts appended to model S-DARP. The first six columns provide the results

obtained when adding general optimality cuts during the algorithm. The notation ‘O1’ means that a

cut is appended to the model when the current feasible solution is such that cTxr + θ ≥ z∗, i.e., a lower

bound on the current objective function value is larger that the best current objective function value.

The notation ‘O2 (1.1)’ (resp. ‘O2 (2.5)’) means that a cut is appended to the model when θ ≥ λθr with

λ = 1.1 (resp. λ = 2.5), i.e., a lower bound on the current delay cost exceeds the current θr value by

10% (resp. 150%). The last two columns provide the results obtained when appending only specific cuts

during the algorithm. We have also imposed a time limit of two hours on the solution of any instance,

after which the solution process was aborted.

From Tables 1 to 4, we observe that appending general optimality cuts to S-DARP allows us to solve

more instances than with specific optimality cuts. Also, appending general cuts yields smaller CPU

times and fewer cuts than with specific cuts. However, the differences are not always important. The

largest instances solved to optimality within two hours involve 20 customer requests for instances C1, 14

customer requests for instances D1, 26 customer requests for instances CL1, and 22 customer requests for

instances DL1. For most instances, the best strategy in terms of optimality cuts consists in appending

both types (‘O1’ and ‘O2’) of general cuts. Furthermore, the second type ‘O2’ of general cuts should not

be used too often, and the parameter λ = 2.5 is preferred to λ = 1.1. However, note that appending only

the first type ‘O1’ of general cuts provides better CPU times for several large instances.

In Tables 5 to 8, we compare the results obtained by solving the S-DARP with the integer L-shaped

algorithm to the results obtained by first solving the corresponding deterministic model, and then com-

puting the expected delay cost associated with the optimal solution. Both types of general optimality cuts
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General cuts Specific cuts
O1 + O2 (1.1) O1 + O2 (2.5) O1

Inst. Cuts CPU Cuts CPU Cuts CPU Cuts CPU
C1-12 161 6 161 6 160 6 166 6

101 3 101 3 101 3 100 3
26 3 26 3 34 2 47 3

C1-14 4154 328 4146 328 3958 350 6395 560
66 4 66 4 66 4 73 4

1260 82 1296 80 1250 85 1833 122
C1-16 10054 3466 10052 3795 10135 4154 10368 3900

3370 260 3366 272 3669 396 11574 2240
21977 7200 21834 7200 20945 7200 22045 7200

C1-18 754 65 754 65 751 65 759 64
15549 7200 15209 7200 15175 7200 15310 7200
18050 7200 18241 7200 17985 7200 19751 7200

C1-20 16810 7200 17476 7200 16076 7200 17861 7200
5659 1327 5505 1365 5252 1415 5387 1615

18859 7200 18043 7200 16338 7200 15824 7200

Table 1: Appending general or specific optimality cuts to (S-DARP) for instances C1

General cuts Specific cuts
C1 + C2 (1.1) C1 + C2 (2.5) C1

Inst. Cuts CPU Cuts CPU Cuts CPU Cuts CPU
D1-12 310 20 310 21 310 21 350 23

232 14 232 14 284 19 363 21
14744 7200 14513 4002 13478 7091 17247 7200

D1-14 13995 7200 12883 7200 13508 7200 16052 7200
5499 608 5499 609 5499 601 5495 546
780 43 780 44 780 44 780 42

Table 2: Appending general or specific optimality cuts to (S-DARP) for instances D1

(with parameter λ = 2.5) are appended during the algorithm, i.e., cuts are added whenever cTxr+θ ≥ z∗

or θ ≥ 2.5θr. To compare the stochastic and deterministic models in terms of optimal solution values,

we have also computed the delay cost associated to the deterministic optimal solution. Columns ‘F.Cost’

and ‘D.Cost’ denote the fixed and delay costs associated with the optimal tour. For the stochastic model,

column ‘IGap’ provides the percent gap between the first integer feasible solution and the optimal solu-

tion. For the deterministic model, column ‘Gap’ provides the percent gap between the optimal solutions

of the linear relaxation and of the integer problem, respectively. Columns ‘CPU’ and ‘Nodes’ provide the

CPU times (in seconds) and the number of nodes in the branch-and-cut tree. As above, a time limit of

two hours was imposed, after which the solution process was aborted. In this case, the reported results

are those corresponding to the best integer feasible solution found by the algorithm. Finally, the column

‘% Red’ provides the percent cost reduction achieved by solving the stochastic model optimally, compared
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General cuts Specific cuts
C1 + C2 (1.1) C1 + C2 (2.5) C1

Inst. Cuts CPU Cuts CPU Cuts CPU Cuts CPU
CL1-12 190 5 189 5 186 6 186 5

591 23 591 25 591 23 622 24
33 1 33 1 33 1 33 1

CL1-14 42 2 42 2 40 3 114 8
21530 7200 20350 7200 21932 7200 23400 7200

932 52 928 49 944 50 1306 63
CL1-16 69 3 68 3 66 4 66 4

21374 7200 18652 7200 19187 7200 19840 7200
1533 115 1533 104 1532 102 1841 120

CL1-18 116 7 114 7 115 7 148 8
2273 202 2273 200 2130 205 2402 222

14011 7200 14206 7200 14167 7200 16217 7200
CL1-20 4987 677 4987 641 4983 650 4983 627

18197 7200 19152 7200 17818 7200 18866 7200
137 14 137 14 137 14 137 14

CL1-22 10581 2215 10567 2174 10564 2300 10564 2112
17122 7200 17292 7200 16287 7200 17492 7200
14555 7200 14916 7200 14859 7200 15919 7200

CL1-24 17879 7200 19278 7200 17799 7200 19488 7200
11911 7200 12075 7200 9311 7200 10045 7200
5041 1215 4825 1129 4709 1164 4709 1083

CL1-26 2541 572 2290 572 2107 559 2138 547
5731 7200 6273 7200 4837 7200 5212 7200

14982 7200 15430 7200 15213 6913 18309 7200

Table 3: Appending general or specific optimality cuts to (S-DARP) for instances CL1

with solving a deterministic model and then computing the associated delay cost.

Comparing Tables 5, 6, 7 and 8, we conclude that the wider time windows of instances D1 and DL1

make the problem more difficult to solve. Indeed, we observe larger CPU times for these instances, both

for the stochastic and for the deterministic models. These tables also show that instances C1 and D1

are more difficult to solve than instances CL1 and DL1. Hence the S-DARP is easier to solve for larger

vehicles.

As expected, the CPU times are larger for the S-DARP than for the corresponding deterministic model.

For the former problem, we also observe very large gaps between the first integer feasible solutions and the

optimal solutions, as well as a large number of nodes in the branch-and-cut tree. This can be explained

by the fact that the integer L-shaped algorithm starts without any information on the delay cost. Yet, we

can solve several small to medium size instances. Furthermore, from the last columns ‘% Red’ of Tables

5 to 8, we conclude that using a stochastic model yields a significant reduction of the optimal solution

values (i.e., fixed costs plus delay costs).

Since solving the deterministic model does not encourage Hamiltonian tours with late beginnings of
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General cuts Specific cuts
C1 + C2 (1.1) C1 + C2 (2.5) C1

Inst. Cuts CPU Cuts CPU Cuts CPU Cuts CPU
DL1-12 306 8 303 8 316 9 364 10

2549 182 2549 182 2525 157 4236 292
286 31 286 31 286 31 287 30

DL1-14 103 3 98 3 94 3 97 3
1523 128 1522 130 1516 130 1607 132
147 8 147 8 147 8 147 7

DL1-16 367 34 363 34 351 35 418 35
7431 1486 7845 1698 6950 1294 10533 2327

16913 7200 16639 7200 11763 7200 14429 7200
DL1-18 882 64 882 64 882 64 882 61

21976 7200 21722 7200 20688 7200 22396 7200
750 148 741 150 607 153 1418 221

DL1-20 15253 7200 15280 7200 15089 7200 16604 7200
12973 7200 13059 7200 13166 7200 14050 7200

366 27 364 27 291 26 295 26
DL1-22 2774 359 2774 356 2774 358 2773 344

13080 7200 12945 7200 13235 7200 14311 7200
14589 7200 12636 7200 13342 7200 14539 7200

Table 4: Appending general or specific optimality cuts to (S-DARP) for instances DL1

Stochastic Deterministic

Inst. F.Cost D.Cost IGap CPU Nodes F.Cost D.Cost Gap CPU % Red

C1-12 142.84 3.24 22.42 6 428 125.86 63.30 0.00 <1 22.76
142.54 5.41 31.91 3 209 139.84 11.18 0.00 <1 2.02
133.74 0.34 34.63 3 184 121.84 58.67 0.00 <1 25.71

C1-14 153.54 12.05 30.85 328 14233 150.14 54.41 7.35 3 19.04
146.00 5.10 9.39 4 212 142.12 23.17 0.00 <1 8.57
135.87 6.24 36.36 80 4283 123.93 61.50 0.00 <1 23.35

C1-16 159.70 44.96 11.84 3795 34475 141.12 90.13 8.69 7 11.49
173.40 21.06 23.07 272 9488 157.84 80.80 0.00 <1 18.5
161.39 32.94 15.05 7200 75737 146.07 89.84 3.55 3 17.62

C1-18 208.93 26.57 19.15 65 2056 204.26 40.66 2.31 3 3.84
191.45 27.66 28.58 7200 48320 176.38 107.33 5.91 4 22.76
185.34 18.99 49.72 7200 70061 171.61 72.70 0.00 1 16.35

C1-20 195.27 26.02 19.60 7200 45831 181.90 125.56 1.64 4 28.02
194.36 54.00 24.43 1365 17174 188.99 120.06 3.73 5 19.63
182.49 42.69 18.12 7200 61950 164.97 101.02 16.55 433 15.33

Table 5: Comparison of stochastic and deterministic optimal solutions for instances C1

service at the nodes, we questioned the fairness of the above comparison. In order to better assess the

value of a stochastic model, we have compared the corresponding optimal solution values with those of

restricted or penalized deterministic models, both constructed to encourage Hamiltonian tours with late
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Stochastic Deterministic

Inst. F.Cost D.Cost IGap CPU Nodes F.Cost D.Cost Gap CPU % Red

D1-12 117.35 0.96 35.93 21 1564 109.80 36.84 5.53 1 19.31
150.64 8.67 44.62 14 1158 142.38 82.68 0.00 <1 29.20
115.32 23.16 29.64 4002 85047 84.86 94.67 0.00 <1 22.86

D1-14 135.20 5.77 31.85 7200 130725 119.58 68.53 10.09 62 25.05
141.64 13.95 5.32 609 19044 140.24 20.80 5.12 2 3.37
129.12 16.77 20.42 44 2602 128.86 17.17 0.00 <1 0.09

Table 6: Comparison of stochastic and deterministic optimal solutions for instances D1

Stochastic Deterministic

Inst. F.Cost D.Cost IGap CPU Nodes F.Cost D.Cost Gap CPU % Red

CL1-12 123.12 13.44 18.43 5 385 112.00 49.73 0.00 <1 15.55
111.31 6.66 13.66 25 1914 103.02 31.07 0.00 <1 12.01
128.39 5.58 0.31 1 84 125.46 8.92 0.00 <1 0.30

CL1-14 156.53 3.36 13.94 2 111 147.10 35.09 0.00 <1 12.23
130.47 8.62 21.30 7200 68370 119.36 59.26 3.15 1 22.12
131.01 15.01 1.25 49 2911 122.32 25.53 0.00 <1 1.23

CL1-16 184.23 26.81 27.40 3 133 174.66 80.72 0.00 <1 17.35
153.61 18.60 14.24 7200 59626 146.94 69.20 8.17 10 20.31
154.02 33.39 28.47 104 4464 148.40 82.07 0.00 <1 18.67

CL1-18 183.10 35.24 17.95 7 238 182.17 75.35 0.00 <1 15.20
177.36 18.84 33.55 200 6817 177.34 32.37 0.00 <1 6.43
170.17 42.06 26.07 7200 69633 156.06 100.29 0.83 1 17.20

CL1-20 206.04 9.23 16.89 641 13203 195.16 45.75 0.00 <1 10.63
191.27 0.00 60.83 7200 46160 155.62 62.04 5.09 6 12.11
210.37 20.39 0.48 14 450 205.01 26.85 0.00 <1 0.46

CL1-22 233.57 31.55 26.07 2174 22132 225.59 80.74 6.87 7 13.44
212.21 8.07 17.23 7200 46421 175.00 81.38 0.23 1 14.07
203.82 12.12 26.25 7200 57918 193.74 57.27 2.40 2 13.96

CL1-24 217.06 46.76 1.30 7200 48587 209.80 89.24 0.00 1 11.77
212.71 57.06 20.11 7200 36330 185.44 132.03 3.94 10 15.02
256.60 75.21 30.54 1129 13192 247.77 125.20 3.58 9 11.03

CL1-26 214.75 70.89 10.36 572 7453 206.37 108.88 6.25 20 9.38
251.20 47.90 30.61 7200 56776 238.39 154.94 9.42 340 23.95
276.76 35.19 26.51 7200 45867 260.37 176.48 3.11 10 28.58

Table 7: Comparison of stochastic and deterministic optimal solutions for instances CL1

beginnings of service at the nodes. In the restricted deterministic model, the earliest times ei of inbound

requests (i.e., those for which a desired departure time is specified by the customer) were increased by

E(ξi) = (li− ei)/3. In the penalized deterministic model, the term
∑
i∈P (li− yi)/(li− ei) was appended

to the objective function. We then compared the corresponding optimal solution values with those of the

stochastic and deterministic models presented earlier. We first observed that several instances became

infeasible when reducing the time window width of inbound requests. In addition, we observed that the

modified models do not necessarily decrease the gap with respect to the optimal solution values of the
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Stochastic Deterministic

Inst. F.Cost D.Cost IGap CPU Nodes F.Cost D.Cost Gap CPU % Red

DL1-12 116.31 9.49 19.48 8 640 105.45 52.41 0.00 <1 20.30
101.54 3.30 34.55 182 11058 93.14 47.92 0.00 <1 25.67
113.01 12.67 45.91 31 2561 106.78 31.03 2.62 2 8.79

DL1-14 152.58 16.79 12.75 3 176 145.84 39.35 0.00 <1 8.53
161.06 6.42 26.90 130 7364 159.68 9.75 3.61 1 1.14
140.98 9.60 51.04 8 418 136.15 87.61 0.00 <1 32.69

DL1-16 163.94 17.68 36.22 34 1473 154.37 53.43 5.66 2 12.59
141.31 0.00 52.98 1698 35343 125.75 82.58 0.00 <1 32.16
148.56 7.77 16.32 7200 55011 137.09 44.75 5.46 7 14.02

DL1-18 177.15 7.21 17.18 64 2122 168.13 42.06 0.00 <1 12.28
180.41 17.97 36.96 7200 42428 166.74 78.30 2.94 1 19.03
168.97 22.56 1.59 150 5047 167.93 26.64 4.28 3 1.55

DL1-20 200.05 5.36 14.47 7200 76469 196.04 27.72 3.74 2 8.19
172.31 30.44 12.97 7200 40324 168.36 69.77 8.35 12 14.85
200.34 14.84 14.08 27 850 185.55 59.93 0.00 <1 12.33

DL1-22 219.97 18.2 13.43 356 7512 209.11 61.05 0.18 1 11.83
215.67 43.04 14.50 7200 55415 187.19 160.39 4.05 13 25.56
207.67 32.46 4.96 7200 45647 206.29 38.16 6.58 19 1.76

Table 8: Comparison of stochastic and deterministic optimal solutions for instances DL1

stochastic model. Indeed, modifying the deterministic model implies changes in the optimal tour, which

could force the vehicle to serve some customers earlier than what is desirable. Instead, the stochastic

model allows the identification of good tradeoffs, i.e., it encourages the vehicle to serve some customers

early and thus to follow a tour in which several other customers are served sufficiently late.

5 Conclusion

This paper was concerned with a single-vehicle Dial-a-Ride Problem with stochastic customer delays, a

problem often arising when customers need to be picked up after a medical appointment. The aim is

then to determine an a priori Hamiltonian tour minimizing the expected cost of the tour followed by

the vehicle. Since customer delays can yield important modifications of the objective function, we have

decomposed the actual cost of a tour into two parts. The first one corresponds to the deterministic tour

cost, whereas the second one is a cost associated with stochastic customer delays. We have described

an integer L-shaped algorithm for the problem. Computational results have shown that this algorithm

provides optimal solutions for small to medium size instances within reasonable computing times. We

have also observed that solving the problem as a stochastic program instead of a deterministic program

can yield reductions of up to 33% in the expected solution cost.
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