

 Mémoire de maîtrise

Parallel Metaheuristics for
Stochastic Capacitated
Multicommodity Network Design

Xiaorui Fu

July 2010

CIRRELT-2010-32

G1V 0A6

Bureaux de Montréal : Bureaux de Québec :
Université de Montréal Université Laval
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau 2642
Montréal (Québec) Québec (Québec)
Canada H3C 3J7 Canada G1V 0A6
Téléphone : 514 343-7575 Téléphone : 418 656-2073
Télécopie : 514 343-7121 Télécopie : 418 656-2624

 www.cirrelt.ca

Parallel Metaheuristics for Stochastic Capacitated Multicommodity
Network Design1

Xiaorui Fu*

Agence de la santé et des services sociaux de Montréal, 400 boul. De Maisonneuve Ouest,
bureau 300, Montréal, Canada H3A 1L4

Abstract. Fixed-charge capacitated multicommodity network design (CMND) formulations
have a wide range of applications in transportation, logistics, telecommunication and
production planning. Metaheuristics such as tabu search, scatter search and path-
relinking have been tailored to solve this problem using cycle-based neighborhood
structures. When studying network design problems it is customary to assume that point-
to-point demands are given. However, future demands are generally unknown at the time
when the design decisions are made. One should therefore consider the stochastic
network design (SND) model instead. We model the uncertain demands through scenario
analysis, then propose a progressive hedging-inspired parallel metaheuristic algorithm
using master/slave architecture. The slaves use the cycle-based tabu search algorithm to
solve modified subproblems iteratively, while the master collects scenario solutions and
modifies subproblems accordingly. Master and slaves cooperate under this metaheuristic
framework until some level of saturation is observed, then a second phase is performed
on the restricted problem in order to obtain the final design decisions. We first performed a
software re-engineering of the existing code of the cycle-based tabu search algorithm, and
then implemented the proposed progressive hedging algorithm. Experimental results show
that high quality designs can be obtained by the proposed algorithm. At the same time, the
software is designed and implemented keeping in mind its re-usability, extensibility and
maintainability.

Keywords. Network design, stochastic programming, tabu search, parallel programming,
cycle-based neighborhood.

1 Mémoire présenté en vue de l’obtention du grade de M.Sc. en informatique, Université

de Montréal (avril 2008). Directeurs de recherche : Teodor Gabriel Crainic, Michel
Gendreau.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: xiaorui.fu.tcr06@ssss.gouv.qc.ca

Dépôt légal – Bibliothèque nationale du Québec,
 Bibliothèque nationale du Canada, 2010

© Copyright Fu and CIRRELT, 2010

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

2.2 Stochastic network design . 6

2.2.1 Mathematical formulations . 7

2.2.2 Value of the stochastic model . 9

2.2.3 Related works . 13

2.2.4 Problem addressed and methodological approach 14

Chapter 3

Re-engineering of the cycle-based tabu search for deterministic network

design 15

3.1 Cycle-based tabu search algorithm . 15

3.1.1 Cycle-based neighborhood . 16

3.1.2 Tabu search procedure . 18

3.2 Requirement analysis of the new implementation 24

3.2.1 Data file format . 24

3.2.2 Parameter file format . 25

3.3 Architecture design . 26

3.4 Class design and implementation . 27

3.4.1 Graph package . 27

3.4.2 CMCF package . 28

3.4.3 Cycle package . 29

3.4.4 Tabu package . 31

3.4.5 MIP and Main package . 32

3.5 Numerical results . 32

3.6 Conclusion . 36

vi

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Chapter 4

Progressive hedging algorithms for stochastic network design 38

4.1 Progressive hedging algorithm . 38

4.2 Research methodology . 40

4.2.1 Augmented Lagrangian relaxation 41

4.2.2 Heuristic fixed cost adjustment 43

4.3 Specification of the algorithm . 45

4.3.1 Stopping criteria and second phase 47

4.3.2 Solving subproblems . 48

4.3.3 Parallel computation structure . 50

Chapter 5

Implementation of progressive hedging algorithm for stochastic network

design 53

5.1 Requirement analysis . 53

5.1.1 Scenario generation . 53

5.1.2 Command line format . 56

5.1.3 Parameter file format . 57

5.1.4 Parallel implementation . 58

5.2 Architecture design . 59

5.3 Class design and implementation . 59

5.3.1 Modified Graph package . 59

5.3.2 Stoch package . 60

5.3.3 Modified MIP and Main package 62

vii

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

5.4 Conclusion . 62

Chapter 6

Experimental results and analysis 64

6.1 MIP and LP results . 65

6.2 EVPI and VSS results . 66

6.3 PHA1 and PHA2 results . 69

6.4 Conclusion . 72

Chapter 7

Conclusion 74

Bibliography 75

Appendix 79

viii

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

List of Figures

3.1 Determine residual arc’s tabu status . 19

3.2 Architecture design for the cycle-based tabu search 26

3.3 Graph package design . 27

3.4 CMCF package design . 28

3.5 Cycle package design . 30

3.6 Tabu package design . 31

4.1 Parallel computation structure . 51

5.1 System interface for stochastic network design 56

5.2 Modified architecture for stochastic network design 59

5.3 Modified Graph package design . 60

5.4 Stoch package design . 61

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
ix

List of Tables

3.1 Computational results for tabu search . 33

3.2 Gap between two implementations . 34

3.3 Computational results of diversification 35

6.1 Problem set S, solving as MIP and LP 65

6.2 Problem set S, EVPI . 67

6.3 Problem set S, VSS . 68

6.4 Problem set S, PHA with Augmented Lagrangian 69

6.5 Problem set S, PHA with heuristic adjustment 70

6.6 Problem set R: Summary . 71

7.1 R04-1: 10N, 25A, 10C, F01, C1, 31730 80

7.2 R04-3: 10N, 25A, 10C, F10, C1, 63767 80

7.3 R04-5: 10N, 25A, 10C, F05, C2, 53790 81

7.4 R04-7: 10N, 25A, 10C, F01, C8, 68291.7 81

7.5 R04-9: 10N, 25A, 10C, F10, C8, 163208 82

7.6 R06-1: 10N, 50A, 50C, F01, C1, 245936 82

7.7 R06-3: 10N, 50A, 50C, F10, C1, 559477 83

7.8 R06-5: 10N, 50A, 50C, F05, C2, 498266 83

7.9 R06-7: 10N, 50A, 50C, F01, C8, 682921 84

7.10 R06-9: 10N, 50A, 50C, F10, C8, 423316 84

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
x

7.11 R10-1: 20N, 100A, 40C, F01, C1, 200087 85

7.12 R10-3: 20N, 100A, 40C, F10, C1, 488015 85

7.13 R10-5: 20N, 100A, 40C, F05, C2, 411664 86

7.14 R10-7: 20N, 100A, 40C, F01, C8, 486895 86

7.15 R10-9: 20N, 100A, 40C, F10, C8, 1421740 87

xi

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

List of Abrevations

CMCF : capacitated multicommodity minimum cost flow problem
CMND : capacitated multicommodity network design problem
EV : expected value solution
EEV : expected result of using the EV solution
EVPI : expected value of perfect information
LP : linear programing
MIP : mixed integer programing
MPI : message passing interface
PHA : progressive hedging algorithm
RP : recourse problem
SIP : stochastic integer programming
SND : stochastic network design problem
TS : tabu search
VSS : value of stochastic solution
WS : wait and see solution

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
xii

List of Algorithms
1 Heuristic label correcting algorithm . 17
2 Local search procedure of tabu search . 20
3 Intensification procedure of tabu search 21
4 Restoration procedure of tabu search . 22
5 Progressive hedging algorithm . 39
6 Progressive hedging algorithm with Augmented Lagrangian 44
7 Progressive hedging algorithm with heuristic cost adjustment 46

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
xiii

Acknowledgements

I would like to express my sincere appreciation to my supervisor, Michel Gendreau, and
my co-supervisor, Teodor Gabriel Crainic, for their continuous inspiration, expertise and
guidance, for having accepted me in their research group, for having given me the great
opportunity to pursue my study in a famous research centre. With their support, this
study has been an invaluable learning experience for me.

I would like to express my honest gratitude to Walter Rei, for his constant support,
encouragement and patience. His help makes my integration to Canadian society much
easier. His remarks and recommendations on my thesis have been invaluable.

I am also indebted to the professional staff and technical personnel of the former CRT
(Centre de Recherche sur les Transports), actually CIRRELT (Centre Interuniversitaire
de Recherche sur les Réseaux d’Entreprise, la Logistique et le Transport), where I had the
privilege to carry out all my research work. I would like to thank particularly François
Guertin, Pierre Girard, Daniel Charbonneau, Serge Bisaillon, Geneviève Hernu, Luc
Rocheleau and Denise Desjardins, for their generous help within their area of expertise.

I would like to thank Ilfat Ghamlouche, although I did not have the chance to contact
her in person, for all previous research work she completed, which is an essential basis of
my thesis. I would like to thank Stein William Wallace and Michal Kaut for generously
sending us their scenario generation program and giving us detailed instructions, which
makes our numerical experiments more meaningful.

I would like to thank all my friends for the moral support that they always demon-
strated, in the happy days as well as in the sad moments. I would like to thank Nadia
Lahrichi for her help on LaTeX, Massimo Di Francesco for his help on mathematical
models, Michel Toulouse for his listening and encouragement.

Finally, I would like to express my deepest gratitude to my husband Zhenfeng Li, for
his love, understanding and support. Without him, I would not have accomplished my
graduate studies.

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
xiv

Chapter 1

Introduction

The fixed-charge capacitated multicommodity network design (CMND) formulation rep-
resents a generic model that arises in various applications in telecommunication, trans-
portation, logistic and production planning [5, 16, 12, 18, 34, 35]. In these applications,
it is required to route multiple commodities over a given network with arc capacities
in order to satisfy known demands between origin-destination pairs. In doing so, one
pays not only a routing cost proportional to the number of units of each commodity
transported over a network link, but also the fixed cost representing the construction or
improvement of a link if it is used. The objective of CMND is to find the optimal design
(selected links in the final network) that minimizes the total cost, computed as the sum
of the fixed and routing costs.

Fixed-charge network design problems belong to the NP-hard complexity class [34],
and capacitated ones are particularly difficult [4]. Not only is finding the optimal solution
to a large problem instance a significant challenge, but even identifying efficiently good
feasible solutions might be a difficult task. As a consequence, only specially tailored
heuristics have been proven to be of any help.

In various heuristic or metaheuristic methods that search for good designs in the
solution space, the neighborhood structure plays an important role in the efficiency of
the search mechanisms. The cycle-based neighborhood proposed by Ghamlouche, Crainic
and Gendreau [21] defines moves that deviate flow around cycles which close and open arcs
accordingly. Such a neighborhood is quite powerful since it modifies the flow distribution
of several commodities simultaneously and takes explicitly into account the impact on
the total cost. In [21], the authors tested this cycle-based neighborhood within a simple
tabu search algorithm and got interesting numerical results.

In CMND models, commodities usually correspond to origin-destination pairs with
given demands. Generally speaking, this is unsuitable in practice, since future demands
are usually unknown at the time when the design decisions are made. In order to deal with
the uncertainty of demands, we consider stochastic network design (SND) models, which
can be formulated as two-stage stochastic integer programming problems. A common
approach to address such problems is through scenario analysis, which represents future
events as possible alternative scenarios. Then the question becomes how to work with
different scenario solutions and consolidate them into an overall decision scheme.

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

The progressive hedging algorithm (PHA) of Rockafellar and Wets [37] is a general
method for solving linear continuous stochastic programs. The idea behind PHA is
that by solving individual scenario problems and insisting progressively more and more
on the requirement that the solutions generated by the scenario problems must be im-
plementable, one may identify “trends” and eventually come up with a “well hedged”
solution. The algorithm is intuitively appealing and has been proven to converge to a
global optimum in the linear stochastic case.

Inspired by PHA, our research strategy is to take PHA as a metaheuristic framework,
and make use of the special structure of the network design problem. We propose a
parallel metaheuristic algorithm using master/slave architecture to solve SND problems.
First, several slaves solve in parallel the deterministic network design problem for different
scenarios using the cycle-based tabu search algorithm. The design vectors are then sent
back to the master. The master modifies the subproblems by penalizing more and more
the inconsistency of scenario solutions. The master also constructs and broadcasts a new
design vector that is used later by slaves to guide their tabu search. This information
exchange and cooperation continues until some level of saturation is observed. Finally,
a second phase is performed on the restricted problem to achieve final design decisions.
We propose two ways to modify the objective function of the subproblems in the PHA
framework, one is an Augmented Lagrangian method and the other is a heuristic fixed
cost adjustment.

In order to solve the scenario problems, we first performed a software re-engineering
of existing code of the cycle-based tabu search algorithm. We tested the re-implemented
software on the same instances than [21] and got comparable results. Then, we imple-
mented the proposed parallel metaheuristic algorithm for the stochastic problem, and
conducted experiments on two instance sets. Numerical results show that high quality
designs can be achieved by the proposed algorithm. Meanwhile, the software is designed
and implemented by keeping in mind its reusability, extensibility and maintainability.
Design and implementation details are also reported in this thesis for further reference.

This thesis is organized as follows. The mathematical formulation and related works
of CMND and SND are introduced in Chapter 2. The design and implementation details
of the cycle-based tabu search algorithm, as well as the numerical results, are reported
in Chapter 3. Chapter 4 presents the proposed parallel metaheuristic algorithm, whose
design and implementation details are given in Chapter 5. Computational results and
analysis for the SND problems follow in Chapter 6. Conclusions and suggestions for
future work are outlined in Chapter 7.

2

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Chapter 2

Fixed-charge capacitated multicommodity network

design

This chapter consists of two sections. In the first section, we present the arc-based math-
ematical formulation of the fixed-charge capacitated multicommodity network design
problem (CMND) and related works. In the second section, we examine the stochas-
tic network design formulations, analyze the value of the stochastic model and review
the related research in literature. We conclude this chapter with our methodological
approach.

2.1 Deterministic network design

The CMND problem has a wide range of applications in telecommunication, transporta-
tion and logistics. In these applications, multiple commodities are required to be routed
over a capacitated network. In addition to the transportation cost, one pays a construc-
tion or improvement cost for the first time a link is used. The goal is to find the design
that minimizes the total cost, computed as the sum of the fixed and routing costs.

2.1.1 Mathematical formulation

Let G = (N ,A) be a network with a node set N and a directed design arc set A. Let K
denote the set of commodities to be routed using this network. Each commodity k ∈ K
has a single origin o(k), a single destination s(k), and a given demand wk. Let i and j

be the node indices. The arc-based formulation of the CMND can then be written as
follows:

min z(y, x) =
∑

(i,j)∈A

fijyij +
∑

k∈K

∑

(i,j)∈A

ck
ijx

k
ij (2.1a)

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
3

subject to:

∑

j∈N+(i)

xk
ij −

∑

j∈N−(i)

xk
ji = dk

i ∀i ∈ N ,∀k ∈ K (2.1b)

∑

k∈K

xk
ij ≤ uijyij ∀(i, j) ∈ A (2.1c)

yij ∈ {0, 1} ∀(i, j) ∈ A (2.1d)

xk
ij ≥ 0 ∀(i, j) ∈ A,∀k ∈ K (2.1e)

where yij is a binary variable representing whether or not arc (i, j) is selected in the
final design, xk

ij is a non-negative continuous variable standing for the flow amount of
commodity k on arc (i, j). The constant parameters in model (2.1) are :

fij : fixed cost of arc (i, j)

ck
ij : routing cost of one unit flow of commodity k on arc (i, j)

uij : capacity of arc (i, j)

dk
i =











wk if i = o(k)

−wk if i = s(k)

0 otherwise.

The objective function (2.1a) accounts for the total system cost, including the fixed
costs for the arcs selected in a given design and the routing costs for the distribution
of commodities. As for the constraints, Equations (2.1b) represent the network flow
conservation relations, requiring that the demands on all nodes be satisfied, where N+(i)
and N−(i) are the set of outward and inward neighbors of node i, respectively. Equations
(2.1c) are called arc capacity constraint, indicating that the total amount of flow for all
commodities on an arc should not exceed its capacity if this arc is opened (yij = 1), and
must be zero if this arc is closed (yij = 0). Equations (2.1d) and (2.1e) are the integrality
and non-negativity constraints.

Recall that, for a given design vector ŷ (an assignment of 0 and 1 to each design
variable), the above CMND model becomes a capacitated multicommodity minimum
cost flow problem (CMCF) whose formulation is given below:

min z(x(ŷ)) =
∑

k∈K

∑

(i,j)∈A

ck
ijx

k
ij (2.2a)

subject to (2.1b) plus:

∑

k∈K

xk
ij ≤ uij ŷij ∀(i, j) ∈ A(ŷ) (2.2b)

xk
ij ≥ 0 ∀(i, j) ∈ A(ŷ),∀k ∈ K (2.2c)

4

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

where A(ŷ) represents the set of arcs that are opened in the design vector ŷ. A feasible
solution to model (2.1) thus can be viewed as (ŷ, x∗(ŷ)), where x∗(ŷ) stands for the
optimal solution of model (2.2), i.e., the optimal flow distribution of the corresponding
CMCF problem. The objective function value associated to a solution (ŷ, x∗(ŷ)) therefore
can be calculated as the sum of the fixed costs for the arcs that are opened in ŷ plus the
optimal objective function value of (2.2):

z(ŷ, x∗(ŷ)) =
∑

(i,j)∈A(ŷ)

fij ŷij + z(x∗(ŷ)).

It should be noted here before calculating the total cost z(ŷ, x∗(ŷ)), a trim procedure
should be performed, which closes the arcs that do not carry any flow, i.e., set ŷij = 0 if
∑

k∈K xk
ij = 0.

Finally, in addition to the arc-based model, a number of applications might be mod-
eled by using the path-based formulation [5, 14]. In this thesis, we concentrate on the
arc-based formulation.

2.1.2 Addressing the CMND model

Some exact methods for CMND problems have been developed, such as the simplex-based
cutting plane algorithm [11], the bundle-based relaxation method [13], the Lagrangian
relaxation algorithm [18], the Lagrangian heuristic based branch-and-bound approach
[24], and some combinations of the cutting, relaxing and variable fixing approaches [29,
38]. However, these methods can only solve moderately sized instances. For reasonably
large instances, only heuristics have proven to be effective.

Crainic, Gendreau and Farvolden [14] proposed a tabu search meta-heuristic in 2000
for the path-based formulation of the problem. This method explores the space of the
path-flow variables by using pivot-like moves and column generation. Even though it
produced very impressive results, its search efficiency may be limited since each move
considers only the impact of changing the flow of one commodity. Moreover, there is no
guarantee that all paths will be considered, which, in turn, impairs the capability of the
algorithm to explore thoroughly the search space.

In 2003, Ghamlouche, Crainic and Gendreau [21] proposed a cycle-based neighbor-
hood for the arc-based formulation. In this neighborhood structure, moves are defined
as re-deviation of the flow around cycles and for which arcs are closed and opened ac-
cordingly. This neighborhood is quite powerful since it modifies the flow distribution
of several commodities simultaneously and takes into account the impact on the total
cost explicitly. The authors tested this neighborhood in a simple tabu search procedure.
Numerical results showed that this approach appeared as the best known approximate

5

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

solution method at that time in terms of robust performance, solution quality and com-
puting efficiency. However, given the simplicity of the tabu search procedure used in [21],
this approach seemed to produce a rather local exploration of the search space.

A path relinking procedure is proposed in [20] in order to refine the search method
in [21]. The authors combined the path relinking framework and the cycle-based neigh-
borhood structure into a meta-heuristic for the CMND problem. They compared several
strategies to both build the reference set and to select initial and guiding solutions.
Experimental results showed that the proposed approach offered the best performance
among approximate solution methods for the CMND problem. Moreover, the algorithm
appeared robust in terms of solution quality and computational effort.

In 2004, Crainic, Gendron and Hernu [15] proposed a slope scaling heuristic that inte-
grates a Lagrangian perturbation scheme and intensification/diversification mechanisms
based on a long-term memory. Computational results showed that the proposed method
is competitive with the best known heuristic approaches for the problem. Moreover, it
generally provides better solutions on larger, more difficult instances.

2.2 Stochastic network design

In the CMND models, the design parameters are assumed to be deterministic. Unfor-
tunately, critical parameters such as demands, costs and capacities are quite uncertain.
Future demands are usually unknown at the time when the design decisions are made.
Moreover, the construction or improvement cost of an arc may be underestimated or
overestimated at the planning time, the routing cost of delivering some commodities over
an arc may change due to some unforeseen reason, and some ad-hoc events may cause
the decrease of the capacity for an arc, or even make the arc totally unusable. In order
to model these kinds of stochasticity, one should consider the stochastic network design
(SND) model instead.

Among all the uncertainties mentioned above, uncertain demand is often considered
in the first place in the literature [3]. Within this thesis, we address only the demand
uncertainty of stochastic network design problem. Applications can be found in many
fields such as telecommunication, hub location, transportation and production system.

6

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

2.2.1 Mathematical formulations

Two-stage stochastic model

To capture the stochastic feature of the demands in the CMND problem, we extend the
deterministic model to a two-stage stochastic model. The network design decisions are
made in the first stage while future demands are unknown. In the second stage, the
stochastic demands become known, then the flow distribution decisions can be made.
The decisions that are made in the second stage can be viewed as a recourse action,
which introduces a recourse cost to the objective function. The recourse cost is defined
here as the expectation of the routing costs over all demand scenarios.

Most of the notations in the following models are from the book of Birge and Louveaux
[6]. We made a slight change in order to be coherent with the notation used for the
network design problem. Using the matrix form, the SND model can be stated as follows:

min z(y, ξ) = fT y + Eξ[min cT x(y, ω)] (2.3a)

subject to:

W1x(y, ω) = d(ω) (2.3b)

Ty + W2x(y, ω) ≤ 0 (2.3c)

y ∈ {0, 1}|A| (2.3d)

x(y, ω) ≥ 0. (2.3e)

where y represents the first stage variable vector containing |A| binary design variables,
ξ is the random variable vector for which ω ∈ Ω defines a particular realization, x

stands for the second stage variable vector containing |A||K| non-negative continuous
flow variables, which depends both on the network design decision y and the random
demand realization ω. f and c are constant coefficients representing respectively the
fixed costs and the routing costs.

The objective function (2.3a) accounts for the total system cost, including the fixed
costs for the opened arcs and the expectation of the routing costs taken over all realiza-
tions of the random demands.

Equations (2.3b) represent the network flow conservation relations, where W1 is a
matrix of size |N ||K|×|A||K|, which includes |K| node-arc incidence matrices of network
G on its diagonal and where all other entries are zeros, and d(ω) is a column vector of
size |N ||K| with entries dk

i (ω) defined as

dk
i (ω) =











wk(ω) if i = o(k)

−wk(ω) if i = s(k)

0 otherwise.

7

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Equations (2.3c) are the arc capacity constraints, where T is a diagonal matrix of size
|A|× |A| with −uij on its diagonal, W2 is a matrix of size |A|× |A||K| which includes K

identity matrices of size |A| × |A|. Constraints (2.3c) are also called linking constraints,
since they involve both the first and second stage variables.

It should be noted that in model (2.3), the first stage variables are all required to be
binary, while the second stage ones are all continuous. The only constraints in the first
stage are the integrality constraints (Equation 2.3d). In the second stage, the objective
coefficients c, recourse matrices W1 and W2, and the matrix T that links the first and
second stage are all fixed.

Scenario model

In many situations, only limited statistical information about future demands is available.
Even when a probabilistic description of the unknown demands is at hand, it is usually
of doubtful quality. Besides, the associated optimization problem can be notoriously
hard to solve. A common approach to deal with this situation is scenario analysis, where
the uncertain parameters are modeled by a number of representative scenarios. In the
SND problem we addressed, each scenario stands for a possible realization of the random
demands. Given a set of scenarios S with index s, the stochastic model (2.3) can be
rewritten as follows:

min
∑

(i,j)∈A

fijyij +
∑

s∈S

ps
∑

k∈K

∑

(i,j)∈A

ck
ijx

ks
ij (2.4a)

subject to:

∑

j∈N+(i)

xks
ij −

∑

j∈N−(i)

xks
ji = dks

i ∀i ∈ N ,∀k ∈ K,∀s ∈ S (2.4b)

∑

k∈K

xks
ij ≤ uijyij ∀(i, j) ∈ A, ∀s ∈ S (2.4c)

yij ∈ {0, 1} ∀(i, j) ∈ A (2.4d)

xks
ij ≥ 0 ∀(i, j) ∈ A, ∀k ∈ K,∀s ∈ S (2.4e)

where ps is the probability of scenario s (ps ≤ 1,
∑

s∈S ps = 1), xks
ij represents the flow

amount of commodity k on arc (i, j) if scenario s is observed, and dks
i is defined as

dks
i =











wks if i = o(k)

−wks if i = s(k)

0 otherwise

8

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

for each scenario s.

By modeling uncertainty through scenarios, problem (2.4) becomes a deterministic
mixed integer linear program, for which different solution methods have been proposed in
the literature. It should be noted that the CMND problem in itself is already NP-hard in
the strong sense. The stochastic version, which includes multiple demands scenarios, is
even more difficult to solve, since the number of variables and constraints are multiplied
by |S|. As a consequence, for SND problems of any interesting size, decomposition
methods are of great interest.

Scenario decomposition model

The block structure in model (2.4) naturally leads us to consider scenario decomposition
approaches. By introducing S copies of the first stage decision variables y, model (2.4)
can be rewritten as

min
∑

s∈S

ps(
∑

(i,j)∈A

fijy
s
ij +

∑

k∈K

∑

(i,j)∈A

ck
ijx

ks
ij) (2.5a)

subject to (2.4b), (2.4e) plus:

∑

k∈K

xks
ij ≤ uijy

s
ij ∀(i, j) ∈ A, ∀s ∈ S (2.5b)

ys
ij ∈ {0, 1} ∀(i, j) ∈ A, ∀s ∈ S (2.5c)

ys
ij = yt

ij ∀(i, j) ∈ A, ∀s, t ∈ S, s 6= t (2.5d)

where ys
ij is the design variable for arc (i, j) in scenario s, and relations (2.5d) are called

the non-anticipativity constraints. Constraints (2.5d) make sure that the solution of (2.5)
is implementable, i.e., the network design decisions are taken globally and do not depend
on particular scenarios.

Model (2.5) is equivalent to (2.4). The only difference is the number of variables and
constraints. It should be noted that model (2.5) has a desirable property: if the non-
anticipativity constraints (2.5d) are relaxed, the problem becomes scenario-separable.
There are several ways to rewrite then relax these constraints. We will discuss this in
detail in Section 4.2.

2.2.2 Value of the stochastic model

The CMND problem is NP-hard in the strong sense, and the SND problem is even harder,
since it combines the difficulty of stochastic and integer programming. There should be a

9

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

good incentive to consider the stochastic version instead of assigning “reasonable” values
to the unknown demands. In this section, we present two ways to measure the value
of uncertainty for the network design problem. Through this analysis, we define both
lower bounds for model (2.5), as well as upper bounds, from which some valuable initial
solutions may be obtained. We refer to [6] for a complete introduction of the concepts
presented in this section.

Expected value of perfect information

The concept of expected value of perfect information (EVPI) was first developed in
the context of decision analysis [2]. It measures the potential value of having perfect
(complete and accurate) information about the future. In other words, it represents the
maximum amount a decision maker would be willing to pay to be able to predict with
certainty which scenario will be observed prior to making a decision.

In the stochastic programming setting, EVPI is defined as the difference between the
wait-and-see solution and the here-and-now solution [6]. Models (2.3), (2.4), (2.5) are
recourse problems (RP) whose solutions are the so-called here-and-now solutions, where
decisions must be taken before the demand realization is known. In turn, if one could
predict with certainty which of the scenarios will be observed, the problem to be solved,
if scenario s is to occur, is the CMND problem defined as follows:

min
∑

(i,j)∈A

fijy
s
ij +

∑

k∈K

∑

(i,j)∈A

ck
ijx

ks
ij (2.6a)

subject to:

∑

j∈N+(i)

xks
ij −

∑

j∈N−(i)

xks
ji = dks

i ∀i ∈ N ,∀k ∈ K (2.6b)

∑

k∈K

xks
ij ≤ uijy

s
ij ∀(i, j) ∈ A (2.6c)

ys
ij ∈ {0, 1} ∀(i, j) ∈ A (2.6d)

xks
ij ≥ 0 ∀(i, j) ∈ A, ∀k ∈ K. (2.6e)

Model (2.6) will be refered to as a subproblem, or a scenario problem for scenario s.
Without loss of generality, we can assume that there exists at least one feasible solution
for each subproblem, which, in turn, implies the existence of at least one optimal solution
for the subproblem. Let ys∗ denote the optimal design of (2.6) and z(ys∗) the related

10

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

optimal objective function value. The wait-and-see solution (WS) can then be defined
as the expected value of the optimal solutions taken over all scenario problems:

WS =
∑

s∈S

psz(ys∗).

Here follows the definition of EV PI,

EV PI = RP −WS

where RP is the optimal objective function value of the recourse problem. The nonneg-
ative property of EV PI makes WS a lower bound for the SND problem. In fact, this is
quite intuitive, since for each scenario s, we have

z(ys∗) ≤ z(y∗), (2.7)

where ys∗ represents the optimal solution of the scenario problem, y∗ stands for the
optimal solution to the recourse problem, and z(·) is the related objective function value.

Equation (2.7) can be explained as follows: Given scenario s, the scenario solution
ys∗ is the best design which can be found. However, this scenario solution may turn out
to be poor (or even infeasible) for a different scenario. On the other hand, the stochastic
optimal solution (y∗), which may be inferior in quality to any scenario solution (ys∗) once
the realization of the random event is known, provides a good compromise among all
possible scenarios. For the SND problem addressed within this thesis, we aim at high
quality, if not optimal, stochastic solutions.

It should be noted that the wait-and-see solution is not a feasible solution for the
recourse problem. It provides only a lower bound. The procedure of finding this lower
bound can be viewed as an approach of relaxing the non-anticipativity constraints. If
at least one feasible solution is found for each scenario problem, a global design can be
constructed by opening all arcs that carry flow in at least one scenario solution. An
upper bound can then be derived from this global design, which can also be used as an
initial solution for various heuristic search strategies.

For the SND problem, the computation of WS requires solving each CMND to opti-
mality, which rapidly becomes very expensive whenever the network size and the number
of commodities become too large. For the instances whose subproblems cannot be solved
to optimality within a reasonable time limit, their lower bounds can be obtained. Denote
z(ys) the lower bound of the subproblem, the lower bound of wait-and-see solution is
then defined as

WS =
∑

s∈S

psz(ys),

which can be used in place of WS to estimate the EVPI value.

11

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Value of stochastic solution

For practical purposes, finding the wait-and-see solution is sometimes too difficult. On
the one hand, solving to optimality each scenario problem is computationally expensive;
on the other hand, the wait-and-see approach often delivers a set of solutions that conflict
with each other, while what we are looking for is an implementable global design.

To obtain a global design, a natural temptation is to solve the corresponding expected
value (EV) problem obtained by replacing the random demands with their expected
values. The EV problem can be expressed as

EV = min z(y, ξ),

where ξ = E(ξ) represents the expectation of random demands ξ taken over all scenarios.
Let us denote by ŷ the optimal solution to EV problem. Using ŷ as the global design,
one can solve for each scenario s the second-stage CMCF problem, then get the expected
result of using the EV solution:

EEV =
∑

(i,j)∈A

fij ŷij +
∑

s∈S

ps[min z(x(ŷ, ξ))],

where min z(x(ŷ, ξ)) is the related CMCF problem using design ŷ. It should be noted
here a trim procedure should be performed before calculating EEV , which closes the
arcs that do not carry any flow in any scenario.

The value of stochastic solution (VSS) is then defined as

V SS = EEV −RP,

which precisely measures how good or, more frequently, how bad the decision ŷ is in terms
of the recourse problem. This measure can also be interpreted as the cost of ignoring
uncertainty, or, the gain in using the stochastic model.

The nonnegative property of V SS makes EEV an upper bound of the SND problem.
It should be noted that the EV solution ŷ is not always feasible for the associated CMCF
problems. In fact, in the context of the network design problem, if there is some kind of
backup transportation methods that can be used when ŷ turned out to be infeasible for
some scenarios, the EV solution is guaranteed to be feasible. On the contrary, if there is
no available backup transportation method, an infeasible EV solution ŷ will lead to an
infinite EEV, thus an infinite VSS.

For all instances where both EV PI and V SS are equal to zero, it is unnecessary to
solve a recourse problem. In such situations, the optimal solutions are insensitive to the
realization of the random event, thus finding the optimal solution for one scenario would
yield the same result as solving the recourse problem. The stochastic network design
model should only be solved on those instances where the EVPI or VSS are large.

12

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

2.2.3 Related works

The stochastic network design problem belongs to the group of stochastic integer pro-
gramming (SIP) problems, which are challenging from both computational and theoret-
ical point of views. They combine the difficulty associated with stochastic programming
and integer programming.

In the situations where it is reasonable to assume that the random variables are all
discretely distributed and that their joint distribution has a finite number of possible
realizations, scenario analysis can be used. Otherwise, a careful discretization procedure
is needed to carry on the scenario analysis.

Given a set of scenarios S, the stochastic model becomes a large-scale, dual block-
angular mixed-integer problem, as in the equations (2.4) and (2.5). Decomposition is a
natural way to solve this large-scale formulation.

Decomposition methods for stochastic integer programs generally fall into two groups:
primal methods that work with subproblems assigned to time stages and dual methods
that work with subproblems assigned to scenarios [8]. The L-shaped procedure in [9, 31,
36] belongs to the first group. According to [9], however, the master problem obtained
from this kind of decomposition is not, in general, computationally attractive.

As for the second group, Carøe and Schultz [8] proposed a branch and bound algo-
rithm that uses Lagrangian relaxation of the non-anticipativity constraints as bounding
procedure. Rounding heuristics are applied on the average over all scenario solutions in
order to fulfill the integrality restrictions. The numerical results show that this algorithm
can provide very good feasible solutions (within 0.2% of the optimun). However, the in-
stances used in this paper have very low VSS values (less than 0.8%), which means that
randomness has little influence on the optimal first-stage solution. This is generally not
the case for the stochastic network design problems.

Rockafellar and Wets proposed a progressive hedging algorithm (PHA) in [37] for solv-
ing stochastic programs. This progressive hedging algorithm will generate a sequence of
estimates of the optimal solution, obtained by insisting more and more on the require-
ment that the solutions generated by the scenario problems be globally implementable.
The algorithm is intuitively appealing and has the desirable property of converging to a
global optimum in the linear stochastic case.

Løkketangen and Woodruff [33] introduced a general purpose algorithm for finding
good solutions to mixed integer multistage stochastic programming problems. In their
algorithm, the progressive hedging algorithm in [37] was used as a framework to blend
scenario solutions. Tabu search was used to solve the induced quadratic mixed-integer
subproblems, which consists of the deterministic function and the Lagrangian terms that

13

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

penalize the lack of global implementability. Computational experiments on a family of
problems with 3, 5, and 10 scenarios verified that the proposed algorithm is effective in
finding good solutions.

2.2.4 Problem addressed and methodological approach

Inspired by the progressive hedging algorithm [37], our research strategy is to combine
the progressive hedging framework and the cycle-based tabu search algorithm into a
metaheuristic algorithm. We aim at an algorithm that is able to find good solutions
efficiently for the stochastic network design problem with uncertain demands.

The challenge is twofold. First, the difficulty inherited from the CMND problem
makes it a formidable task to identify good feasible solutions for the stochastic network
design problem. Second, it is hard to make a tradeoff between the effort put in finding
good scenario solutions and that put in consolidating the scenario solutions into one
global design.

The implementation of the proposed algorithm is performed in two steps. The first
step is to do the software re-engineering work on the existing research code of the cycle-
based tabu search algorithm proposed in [21], so that it can be efficiently used in various
contexts. Moreover, we also established a good basis for future software evolution. Chap-
ter 3 reports on the re-engineering work for the cycle-based tabu search algorithm. In the
second step, we implement the progressive hedging algorithm using a master/slave archi-
tecture, and reuse the cycle-based tabu search algorithm to solve the scenario problems.
The algorithm is proposed in Chapter 4, while the implementation and the experimental
results are reported in Chapters 5 and 6, respectively. We summarize our contribution
and point out future research avenues in Chapter 7.

14

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Chapter 3

Re-engineering of the cycle-based tabu search for

deterministic network design

This chapter can be viewed as a technical report of the software re-engineering work to
the cycle-based tabu search algorithm proposed in [21]. We first present the cycle-based
neighborhood structure and the tabu search algorithm, then give out the requirement
analysis, design and implementation details of the new code. We report at last the
numerical results.

3.1 Cycle-based tabu search algorithm

First of all, let us recall the fundamental idea of the cycle-based neighborhood structure
proposed in [21]: One may move from one solution to another by

1. Identifying two points in the network together with two paths connecting these
points, thus closing a cycle;

2. Deviating the total flow from one path to another such that at least one currently
open arc becomes empty;

3. Closing all previously open arcs in the cycle that are empty following the flow devi-
ation and, symmetrically, opening all previously closed arcs that now have flow.

The general neighbourhood structure is written as

V(ŷ) = { y: obtained from ŷ by complementing the status of a number of arcs following
the deviation of flow in a given cycle in A(ŷ) }.

Since such neighbourhoods are huge and their explicit exploration is not practical,
a label-correcting based heuristic is proposed in [21] in order to identify low cost cycles
in the residual network. Section 3.1.1 explains how to build a residual network from

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
15

a given solution, and how to find the low cost cycle in a residual network. The tabu
search procedures, including the local search, the intensification and the restoration, are
described in Section 3.1.2.

3.1.1 Cycle-based neighborhood

Residual network

The concept of residual network is based on the following idea. Suppose that arc (i, j)
carries xij units of flow. Then we can send an additional uij − xij units of flow from
node i to node j along arc (i, j), which will increase the routing cost by cijxij. Also
notice that we can send up to xij units of flow from node j to node i over the arc (j, i),
which amounts to canceling the existing flow on the arc (i, j), thus causing a routing
cost decrement of cijxij. When using this idea in fixed-charge network, the fixed cost fij

should also be considered, because sending more flow or canceling some may cause the
arc (i, j) to be opened or closed.

For a given solution ŷ and a specified flow value γ, a residual network G(γ, ŷ) can be
constructed by replacing each arc (i, j) of the original network by at most two residual
arcs (i, j)+ and (j, i)−. A residual arc (i, j)+ is included if its residual capacity rij =
uij −

∑

k∈K xk
ij is greater than or equal to γ, which means we can send γ additional units

of flow on (i, j). The cost c+
ij associated to (i, j)+ approximates the cost of routing γ

units of additional flow on arc (i, j). It is equal to the average commodity routing costs
on the arc, plus the fixed cost if it is currently closed:

c+
ij =

∑

k∈K ck
ij

| K |
γ + fij(1− (⌈min(1,

∑

k∈K

xk
ij)⌉)). (3.1)

Symmetrically, a residual arc (j, i)− is included if its residual capacity rji =
∑

k∈K xk
ij

is equal or greater than γ. The cost c−ji associated to (j, i)− approximates the value of a
reduction of γ units of the total flow (all commodities) currently using arc (i, j). This
approximation is computed as the weighted average of the routing costs of the commodi-
ties currently using arc (i, j). The fixed cost fij is then subtracted if the reduction of γ

units of flow leaves the arc empty:

c−ji =







−
P

k∈K
ck
ijxk

ij
P

k∈K
xk

ij

γ − fij if
∑

k∈K xk
ij = γ

−
P

k∈K
ck
ijxk

ij
P

k∈K
xk

ij

γ if
∑

k∈K xk
ij > γ

(3.2)

In the data files used by [21] and also by our re-implementation, the routing costs on

16

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

an arc are the same for all commodities, i.e., ck
ij = cij ∀k ∈ K,∀(i, j) ∈ A. As a result,

Equations (3.1) and (3.2) can be simplified as follows:

c+
ij =

{

cijγ if yij = 1

cijγ + fij if yij = 0.
(3.3)

c+
ji =

{

−cijγ if
∑

k∈K xk
ij > γ

−cijγ − fij if
∑

k∈K xk
ij = γ.

(3.4)

Heuristic to identify low-cost cycles

In order to identify low cost cycles in the residual network, a heuristic is proposed in
[21]. This heuristic is based on the label-correcting algorithm [1] that finds the shortest
path between two nodes. In the presence of negative directed cycles, as in the case of the
residual network, the original label-correcting algorithm gets trapped and keeps cycling.
To avoid this, an explicit verification of cycles is added: if a scanned node j already
belongs to the current shortest path from the source node to its predecessor node i, the
label of node j will not be modified. Although the path generated by this heuristic is not
necessarily the shortest path, it does produce very good cycles. Algorithm 1 describes
this in detail.

Algorithm 1 Heuristic label correcting algorithm

d(s)← 0, pred(s)← 0

d(j)←∞ for each node j ∈ N − {s}

LIST ← {s}

while LIST 6= φ do

remove an element i from LIST

for each node j ∈ N+(i) do

if (d(j) > d(i) + cij) and (j is not in the path from s to i) then

d(j)← d(i) + cij ;

pred(j) = i;

if j 6∈ list then add j to LIST.

In our implementation, a heap is used to maintain the LIST, so that each time the
node with smallest label in the LIST is removed and evaluated.

17

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

3.1.2 Tabu search procedure

The initial solution is obtained by opening all arcs, solving the CMCF problem and
triming the unused arcs. After that, the tabu search procedure explores the solution
space iteratively until a predefined stopping criterion is met.

At each iteration, the local search procedure described in Algorithm 2 determines and
implements the best non-tabu move regardless of whether it improves the overall solution
or not. When a particularly good solution is encountered, the search is intensified using
Algorithm 3. If an infeasible solution is produced by a local search move, the restoration
phase described in Algorithm 4 is undertaken.

The tabu search algorithm in [21] was quite simple, since the authors aimed only to
test the performance of the cycle-based neighborhood structure. We complete the tabu
search procedure with aspiration and diversification mechanisms.

Tabu status

A tabu list is a short-term memory that records characteristics of visited solutions to
avoid cycling. At each time a residual network is built for a given solution, the tabu
status of the residual arcs are determined. The rules used to determine a residual arc’s
tabu status are given in Figure 3.1.

As shown in Figure 3.1, a residual arc is made tabu if its corresponding arc in the
original network is in the tabu list AND one of the following two cases occur: First, it
has the same direction as its reference arc AND its reference arc is closed in the current
solution, which means we want to route flow on a recently closed arc; Second, its direction
is the opposite of its reference arc AND its reference arc carries exactly γ units of flow,
which means we are trying to close this recently opened arc by canceling γ units of flow
on it.

The tabu status of the residual arcs is checked during the exploration of the neigh-
borhood. More specifically, it is checked when searching for the low cost path between
two nodes using Algorithm 1. In this way, the low cost cycle identified will not close or
open the arcs whose status have recently changed.

Local search procedure

The local search procedure builds the neighborhood from the current solution, finds the
best cycle, then carries out a local search move to modify the current design, and solves

18

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Figure 3.1: Determine residual arc’s tabu status

19

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

the corresponding CMCF problem using Cplex [26], as shown in Algorithm 2.

Algorithm 2 Local search procedure of tabu search

bestCycle ← NULL

build residual value set Γ(ŷ)

for each γ ∈ Γ(ŷ) do

build residual network G(γ, ŷ)

build candidate link set C(γ)

find the best cycle for C(γ) in G(γ, ŷ)

update bestCycle if needed

if bestCycle 6= NULL then

carry out a local search move to modify ŷ using bestCycle

solve the associated CMCF using Cplex

if the solution is infeasible then

restoration

if ŷ is good then

intensification

else

diversification

The residual value set Γ(ŷ) in Algorithm 2 is defined as the set of the total strictly
positive volumes on the open arcs of the corresponding network:

Γ(ŷ) = {
∑

k∈K

xk
ij > 0 : (i, j) ∈ A(ŷ)}.

The candidate link set C(γ) is built by choosing the residual arcs that meet one of
the following rules: residual arc (i, j)+ is selected if arc (i, j) is closed and uij ≥ γ;
residual arc (j, i)− is added to the set if arc (i, j) is opened and

∑

k∈K xk
ij = γ. In the

first case, routing flows on the cycle including (i, j)+ will open (i, j), while in the second
one, routing flows on the cycle including (j, i)− will close (i, j). In both cases, we are
interested only in the moves that will change the network configuration. However, it is
very time-consuming to consider the whole neighborhood, thus a percentage parameter
is used to control the neighborhood size.

For each combination of γ ∈ Γ(ŷ) and (i, j) ∈ C(γ), a low-cost cycle is identified using
the label-correcting based heuristic. The non-tabu cycle with lowest cost is identified as

20

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

the best cycle. A local search move is then carried out by traversing the residual arcs of
this best cycle and modifying the current network design as follows: for a residual arc
(i, j)+, open (i, j) if it is closed in the current config, because we want to route flow on
it; for a residual arc (j, i)−, close (i, j) if

∑

k∈K xk
ij = γ, since the flow on (i, j) will be

canceled. The arcs that changed their status are added to the tabu list.

After the local search move, the associated CMCF problem is solved using Cplex. If
the solution becomes infeasible, call the restoration procedure to deviate flows on artificial
arcs in order to get a feasible solution. If the solution is “good”, call the intensification
procedure to search using the per-commodity cycle-based neighborhood. Here, by “good”
solution, we mean the solution is within IntensGap percentage of the best solution, where
IntensGap is a parameter. If no cycle is found for the current solution, which means a
“cul-de-sac” is encountered, call the diversification procedure to jump out.

Intensification phase

When a local search move yields a solution that improves the overall best solution or is
close to it, the intensification procedure is called. This procedure searches to improve
the solution further by iteratively modifying the flow distribution of one commodity at
a time. Algorithm 3 describes this in detail.

Algorithm 3 Intensification procedure of tabu search

improveFound ← TRUE

while improveFound do

improveFound ← FALSE

for each k ∈ K do

bestCycle ← NULL

build residual value set Γ(ŷ, k)

for each γ ∈ Γ(ŷ, k) do

build residual network G(γ, ŷ, k)

build candidate link set C(γ, k)

find the best cycle for C(γ, k) in the residual network

update bestCycle if needed

if bestCycle has negative cost then

improveFound ← TRUE

carry out an intensive move to modify ŷ and current solution using bestCycle

solve ŷ using Cplex

21

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

In the intensification phase, the residual value set is built for each commodity k to
contain the strictly positive flow of k:

Γ(ŷ, k) = {xk
ij > 0 : (i, j) ∈ A(ŷ)}.

Building the residual network G(γ, ŷ, k) in the intensification phase for a specific
commodity k is a little bit different from that in the local search phase: when considering
canceling flows, we cancel only the flow of commodity k and keep the flow for other
commodities fixed, that is, a residual arc (j, i)− is included in the residual network if
xk

ij ≥ γ.

Compared to the local search procedure, only closed arcs are considered when building
the candidate link set C(γ, k), since canceling the flow of commodity k on arc (i, j) has
little help in closing arc (i, j).

An intensification move for commodity k is carried out only after a negative cost cycle
is found. In the intensification move, γ units of flow of commodity k are deviated around
the given cycle on the current solution, and the arcs are opened or closed correspondingly
in the current configuration. The arcs that changed their status by this flow deviation
are added to the tabu list.

At the end of the intensification phase, the CMCF associated to the current configu-
ration is solved by Cplex, in order to make sure that the current solution represents its
optimal flow distribution.

Restoration phase

A local search move may cause an infeasible solution, that is why a restoration phase is
necessary. Algorithm 4 describes the procedure.

Algorithm 4 Restoration procedure of tabu search

for each artificial arc (i, j) do

if (i, j) carries positive flow for commodity k then

γ ← the flow amount on (i, j)

build residual network G(γ, ŷ, k)

find the shortest cycle for (j, i)− in G(γ, ŷ, k)

carry out an intensive move using the above cycle

solve the modified config

22

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

In the restoration phase, the flows on artificial arcs are deviated around the shortest
cycle by an intensification move, as in the intensification phase. At the end of the
restoration phase, Cplex is called in order to have optimal flow distribution.

It is possible that there is no non-tabu cycle found for a specified artificial flow in
the current solution. In such a case, we try to find a cycle without considering the tabu
status. If there is still no cycle to use, we use the path in the current best solution to
deliver the commodity on this artificial arc.

Diversification

Ensuring proper diversification is possibly the most critical issue in the design of tabu
search heuristics [17]. By forcing the search into previously unexplored areas of the search
memory, the diversification technique tries to alleviate the “local-optimal” problem, i.e.,
the local search procedure tends to spend most of its time in a restricted portion of the
search space.

Our diversification mechanism is based on a frequency memory, where one records for
each design arc the total number of times it is opened during the search process.

A diversification phase is triggered in two situations: when the overall best solution
has not been improved for a predefined number of iterations, or when there is no cycle
found for the current solution thus nowhere to move. In the diversification procedure,
the most often opened arcs are closed and the least often opened ones are opened on the
basis of the current configuration, then the modified configuration is solved using Cplex.
The percentages of total arcs that will be opened or closed in this diversification phase
can be specified as parameters.

Aspiration

The tabus are sometimes too powerful and they may prohibit attractive moves, or they
may lead to an overall stagnation of the search process [17]. It is thus necessary to allow
some tabu moves when there is no danger of cycling.

In the proposed cycle-based neighborhood, the cost of a cycle is only an approximation
of the change to the objective function value. It is not practical to evaluate them explicitly
and then allow the one that results in an overall best solution, as the most commonly
used aspiration criterion in almost all tabu search implementations.

In our implementation, a cycle is made tabu if it includes a tabu residual arc. There

23

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

are two cases where we need to consider the tabu cycles. First, in the local search process,
if there is no non-tabu cycle found for a given γ, we try to find the shortest cycle without
considering their tabu status, but we penalize this cycle by a ratio less than 1. By doing
so, the tabu cycle is allowed to enter in the competition for the overall best cycle.

The second case of using aspiration is during the restoration phase. If for an artificial
flow amount γ of commodity k, there is no non-tabu cycle found in its residual network,
try to find the shortest cycle without considering tabu status, and use this cycle to deviate
the artificial flow.

3.2 Requirement analysis of the new implementation

The available code prior to this work was a super set of the tabu search algorithm
proposed in [21], which includes tabu search, path-relinking and learning mechanisms
(see Ghamlouche’s Ph.D. thesis [19]). The main problems are: it is a mix of C and C++
style, there are too many global functions and variables, there are too few comments,
and there are about 100 parameters used to control the search procedure. It is almost
impossible to take out the tabu search part and modify it. So we decided to re-design
and re-implement it according to [21].

The main function of this software is to solve the CMND problem described in a
given data file. Several parameters can be specified by the user to control the tabu
search procedure. So we keep the command line format as:

./main dataFileName parameterFileName

The output of the existing research code consists of the tabu search trace and the
overall best solution. We keep the format of the output too.

3.2.1 Data file format

We use the same two data sets as in [21]. Problems in these sets are general transshipment
networks with no parallel arcs, single origin-destination pair for each commodity, and
unique but arc-specific commodity routing costs. The format is described as follows:

MULTIGEN.DAT:

number_of_nodes number_of_arcs number_of_commodities

(for each arc:) from to routing_cost capacity fixed_cost dump1 dump2

(for each commodity:) from to demand

24

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

where dump1 and dump2 can be any number.

3.2.2 Parameter file format

The tabu search process can be controlled by many parameters. The original parameter
file format is not user-friendly, so we created a new format. Comment line begins with
#, the parameter file ends with the line ”END”. Unspecified parameters will be assigned
to their default values which are given in the header file Parameters.h. An example of
parameter file is given below. Most parameters are self explainable or explained by the
comments line.

#Stopping criteria

TabuTotalIteration = 400

TabuNonImproveIteration = 400

TabuTotalRunSec = 36000

#The percentage of closed arcs randomly selected

NeighbourhoodPercentage = 0.5

#Tabu tenure

TabuTenure = 2

#The threshold used to determine a good solution

IntensGap = 0.09

#Whether or not to do intensification on the initial solution

IntensInitialSolution = 1

#Whether or not use aspiration

Aspiration = 0;

#Aspiration rate: If no NON-TABU cycle found, try to find

#a cycle with TABU but penalize the cycle cost with this rate

TabuPenalty = 0.8;

#Whether or not do diversification

Diversification = 0

#How many iterations without improvement will cause diversification

DiversBeginIters = 9

#The percentage of arcs to open or close in diversification

DiversOpenArcs = 0.03

DiversCloseArcs = 0.03

RandomSeed = 1

END

25

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

3.3 Architecture design

The project can be divided into several relatively independent packages as shown in
Figure 3.2.

Figure 3.2: Architecture design for the cycle-based tabu search

The Graph package reads the data file and creates a graph object, which contains all
data information about the problem instance. Once created, the graph becomes read-
only.

The CMCF package is able to solve the capacitated multicommocity minimum cost
flow problem. Given a configuration (a design) of the graph, Cplex is called to solve
the CMCF problem, and solution information is then recorded. Here a solution should
contain not only the flow distribution and routing cost, but also the arc status and fixed
cost. It is a solution to the CMND problem.

The Cycle package deals with the cycle-based neighborhood. For a given solution of
the graph, a residual network can be created for a specified flow value, from which the
low-cost cycle can be identified.

The Tabu package provides the function of tabu search. At each search step, it uses
the CMCF package to solve a configuration, creates a neighborhood for the current solution,
then asks the Cycle package to give the best cycle in the neighborhood, and takes a move
using the best cycle. Intensification, restoration from infeasible solution, aspiration and
diversification should be provided in this package.

In order to evaluate the tabu search performance, the MIP package defines a solver
that solves the CMND problem as a mixed integer program using Cplex. At last, the

26

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Main package defines global constants, reads parameter files and tests the software.

3.4 Class design and implementation

In this section, we present class design for each package, and descibe some important
data structures.

3.4.1 Graph package

Graph and its helper classes, including NetworkArc, Node and Prod, are defined in this
package, as shown in Figure 3.3.

Figure 3.3: Graph package design

The NetworkArc class represents a directed design arc, its data fields are origin i,
destination j, fixed cost fij, routing cost cij, and arc capacity uij. The Prod class stands
for a transportation requirement (i.e., a commodity), and its data fields are origin o(k),
destination s(k) and demand wk. For each commodity k, there is also an artificial arc
from o(k) to s(k) with high routing cost, zero fixed cost and a capacity of wk. Artificial
arcs are added in order to avoid infeasible solutions. The Node class has information
about its in-degree, out-degree, as well as the index of its first outgoing arc and first
incoming arc in order to traverse its neighbors.

27

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

The Graph class is a container class. Three vectors are used to hold the elements:
nodes[N], arcs[A + K] and prods[K]. In order to traverse the outward and inward
neighbors (N+(i) and N−(i)) of node i, two help vectors inArcIndice[A + K] and
outArcIndice[A + K] are used to record the incoming and outgoing arc indices for each
node. Together with the information in Node, this data structure is the so-called forward
and reverse star representation. It provides an efficient way to traverse a node’s neigh-
bours [1]. Besides, vector artiArcIndice[K] is used to specify the artificial arc’s index
for each commodity.

The constructor of the Graph class reads the data file, creates and fills the above
three vectors, and throws DataFileReadingException if the data file is not in good format
or an error occurred during reading the data file.

3.4.2 CMCF package

In this package, CplexSolver solves the CMCF problem for a given design vector (a
Config) of the graph, and returns a Solution, as displayed in Figure 3.4.

Figure 3.4: CMCF package design

The Config class represents a design vector ŷ of the graph to be solved. Its data field
contains simply a boolean vector of size A + K, where “true” means an arc is open and
“false” means it is closed. It also provides functions to manipulate the arc status.

The CplexSolver class solves the corresponding CMCF problem for a given design of
the graph as a linear program. There are K(A + K) decision variables that represent
the flow distribution on each arc for each product, including artificial arcs. There are
two constraint arrays, the first contains NK expressions representing the network flow

28

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

conservation relations, and the second contains A + K expressions that stand for the arc
capacity constraints.

The CplexSolver class is constructed using the Graph. During the construction, the
model is created, which means the objective function and all constraints are populated.
In the initial model, all arcs are considered opened, so the right-hand side of the arc
capacity constraints are set to arc capacities. The function solve() requires a Config as
input and a Solution as output parameters. Inside this function, the right hand side
of arc capacity constraints are reset to uij or 0 according to the arc status specified in
the given Config. Then Cplex is called to solve this model as a linear program, and
the resulting variable value array is used to specify the values in the Solution. The arcs
that are opened in the Config but carry zero flow are then closed by a so-called trim
procedure.

A Solution to the CMND problem holds information about the design decision, the
flow decision and the resulting costs. Vector varY [A + K] contains the design variables
yij, the two-dimensioned vector varX[K][A + K] holds the flow distribution variables
xk

ij. From these variables, the routing cost, fixed cost and total cost are calculated. For
computation convenience, a helper vector flow[A + K] is used to store the amount of
flow on each arc, i.e., xij =

∑

k∈K xk
ij. If there is any flow on some artificial arc, the

solution is considered infeasible.

The setValue() function of Solution takes as input an array of K(A + K) numbers
representing the flow distribution, fill the corresponding vectors and calculate the costs.
Solution class also provides some functions to modify the flows, the arc status, and
recalculate the costs. The overloaded function getArcFlowSet() is used in the tabu search
process to construct residual value set Γ(ŷ).

3.4.3 Cycle package

This package deals with the idea of cycle-based neighborhood. A ResidualGraph can be
constructed for a given solution and a specified flow value γ. It contains N ResidualNodes
and at most 2(A + K) ResidualArcs. A low-cost Cycle then can be identified from the
ResidualGraph, which consists of a sequence of ResidualArcs. See Figure 3.5 for their
interfaces and relationshipss.

The constructor of the ResidualGraph class takes a Solution ŷ and a residual value γ

as parameters to build the residual network G(γ, ŷ).

The ResidualNode class has information about a node’s out-degree and the index of
its first out-going arc in the residual network. Both are used to traverse its outward
neighbors efficiently. Besides, in order to find a shortest path using the label-correcting

29

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Figure 3.5: Cycle package design

algorithm, each node i has a distance label d(i) representing the length of the current
directed path from the source, and the predecessor node pred(i) in the current directed
path.

The ResidualArc class records the origin, destination, direction, cost and tabu status
of an arc in the residual network. The cost of a residual arc is given in equations (3.3)
and (3.4). The data field direction means this residual arc has the same or the opposite
direction compared to the original arc (i, j), that is, it is (i, j)+ or (j, i)−. The data field
refIndex refers to the arc (i, j) in the original network. A residual arc’ s tabu status is
decided during the construction of the residual network. The rules used to determine a
residual arc’s tabu status are given in Figure 3.1.

Cycle class contains a vector of ResidualArcs, its residual capacity, and the cost, which
is calculated as the sum of its residual arcs’ cost. The residual capacity of a cycle denotes
the maximum flow one can deviate around the cycle.

The function findShortestCycle() of ResidualGraph is used to find the low-cost path
from j to i for a given ResidualArc (i, j) using Algorithm 1, and thus construct a cycle.
For a given set of residual arcs, the function findBestCycle() identifies the best one among
all the low-cost cycles constructed using the former function. The caller of these functions
even has the flexibility of specifying whether or not to consider the tabu status of residual
arcs when looking for such cycles.

30

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

3.4.4 Tabu package

In this package, as shown in Figure 3.6, the TabuSolver class solves the CMND problem.
The TabuList class is a short-term memory used to prevent cycling, and FreqMemory
class is a long-term memory used for diversification.

Figure 3.6: Tabu package design

The TabuList class is very simple. It contains a vector of A + K integer elements
representing the tabu status of each arc. Initially, all elements are set to 0 which means
no arc is made tabu. When an arc is added to the tabu list, its tabu status is set to
TabuTenure, a constant specified in the parameter file. A nonzero tabu status t for arc
(i, j) means the arc is made tabu for the next t iterations. Tabu list is updated at each
tabu search iteration by decreasing the non-zero tabu status.

FreqMemory is a long-term memory where we record for each design arc the total
number of times it is opened during the search process. Function recordConfig() records
the arc status of a Config after it is evaluated (the corresponding CMCF problem is
solved). Another function getArcSets() sorts the elements according to their frequency,
and returns two sets of arc indices: the most often opened arcs and the least often
opened arcs. The number of arcs in these two sets are specified by DiversOpenArcs and
DiversCloseArcs in the parameter file.

The TabuSolver class holds the total iteration number and non-improvement iteration
number as its data fields, as well as a TabuList, a CplexSolver and a FreqMemory as its
object data fields. After construction using Graph, its public function solve() takes a
Config as input parameter, and writes results to its output parameter, the solution.

In the public function solve(), an initial solution is obtained at first by solving the
given Config by Cplex and triming the unused arcs. If IntensInitialSolution in the

31

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

parameter file is turned on, an intensification procedure is carried out on this initial so-
lution. Then, the search proceeds until one of the stopping criteria is met. Three criteria
are given in the parameter file by TabuTotalIteration, TabuNonImproveIteration and
TabuTotalRunSec. At each search iteration, the private function localSearch() is called
to explore the neighborhood and follow the best non-tabu move. If Diversification

is enabled in the parameter file and the non improvement iteration number reaches
DiversBeginIters, diversify() is triggered to jump out of the “valley”. During the
search process, the current config, the current solution and the current best solution are
maintained.

The procedures localSearch(), restore(), intensify() and diversify() implement the
algorithms described in Section 3.1.2.

3.4.5 MIP and Main package

The MIP package contains only one class MIPCplexSolver, which inherits from CplexSolver
and modifies the model by adding binary design variables. The objective function and
capacity constraints are adjusted too by adding yij terms, as shown in Equation (2.1) in
Chapter 2.

The Main package consists of a Clock class used to time the process, a static class
Parameters used to read the parameter file, a header file Global that defines global
constant numbers, some utility functions, and, of course, a main() function to run the
algorithm.

3.5 Numerical results

To evaluate our implementation, we experiment with the same 43 problem instances of
set C used by [21]. The computer code is written in C++, Cplex version is 10.0. Tests
were conducted on one 3.00GHz processor with 1 Gigabyte of RAM, operating under
Linux CentOs 4.2. Since Cplex solver’s version and hardware have changed, the only
meaningful way to compare the two implementations is to use the same number of total
iterations. We set this number to 400, and use the same search parameters as those
used in [21], that is, NeighborhoodPercentage = 0.5, TabuTenure = 2 and IntensGap

= 0.09. As for the diversification and aspiration, we turned them off in order to simulate
the existing research code.

32

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 3.1: Computational results for tabu search

No. Prob Opt Tc(400) Min Gap Avg Gap

25 25.100.10.V.L 14712 14712 14712 0.00% 14746 0.23%
26 25.100.10.F.L 14941 14941 15037 0.64% 15216 1.84%
28 25.100.10.F.T 49899 49899 50460 1.12% 50948 2.10%
31 25.100.30.V.T 365272 365385 365385 0.00% 365385 0.00%
30 25.100.30.F.L 37055 37583 38093 1.36% 38379 2.12%
32 25.100.30.F.T 85530 86296 87000 0.82% 87189 1.03%
33 20.230.40.V.L 423848 424778 424277 -0.12% 425264 0.11%
35 20.230.40.V.T 371475 371893 371778 -0.03% 371778 -0.03%
36 20.230.40.F.T 643036 645812 648392 0.40% 648949 0.49%
41 20.300.40.V.L 429398 429535 429535 0.00% 429672 0.03%
42 20.300.40.F.L 586077 593322 597711 0.74% 598510 0.87%
43 20.300.40.V.T 464509 464724 466102 0.30% 466904 0.47%
44 20.300.40.F.T 604198 607100 611899 0.79% 614680 1.25%
37 20.230.200.V.L 94247 98995 100496 1.52% 100992 2.02%
38 20.230.200.F.L 138182 146535 148804 1.55% 151260 3.22%
39 20.230.200.V.T 98013 104752 105016 0.25% 106098 1.28%
40 20.230.200.F.T 136072 147385 150098 1.84% 150774 2.30%
45 20.300.200.V.L 74929 80819 78820 -2.47% 81034 0.27%
46 20.300.200.F.L 116489 123347 124777 1.16% 125855 2.03%
47 20.300.200.V.T 74991 79619 79183 -0.55% 79733 0.14%
48 20.300.200.F.T 108037 114484 115563 0.94% 116247 1.54%
65 100.400.10.V.L 28423 28677 28744 0.23% 28823 0.51%
66 100.400.10.F.L 23949 23949 24022 0.30% 24096 0.61%
68 100.400.10.F.T 64757 67014 68142 1.68% 69008 2.98%
71 100.400.30.V.T 384802 385508 385508 0.00% 385510 0.00%
70 100.400.30.F.L 50573 51552 51850 0.58% 52076 1.02%
72 100.400.30.F.T 138107 145144 145276 0.09% 147563 1.67%
49 30.520.100.V.L 53964 54958 54959 0.00% 55106 0.27%
50 30.520.100.F.L 94747 99586 102156 2.58% 102644 3.07%
51 30.520.100.V.T 52062 52985 52876 -0.21% 53098 0.21%
52 30.520.100.F.T 98286 105523 104079 -1.37% 104899 -0.59%
57 30.700.100.V.L 47603 48398 48787 0.80% 49066 1.38%
58 30.700.100.F.L 60324 62471 62520 0.08% 62844 0.60%
59 30.700.100.V.T 45949 47025 47085 0.13% 47218 0.41%
60 30.700.100.F.T 55365 57886 56534 -2.34% 57092 -1.37%
53 30.520.400.V.L 112774 120652 120241 -0.34% 121129 0.40%
54 30.520.400.F.L 149759 161098 163334 1.39% 163867 1.72%
55 30.520.400.V.T 114687 121588 121358 -0.19% 122477 0.73%
56 30.520.400.F.T 153262 167939 167168 -0.46% 167680 -0.15%

Continued on next page

33

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

No. Prob Opt Tc(400) Min Gap Avg Gap

61 30.700.400.V.L 98268 106777 105605 -1.10% 106337 -0.41%
62 30.700.400.F.L 136123 148950 147420 -1.03% 149077 0.09%
63 30.700.400.V.T 95530 101672 101343 -0.32% 102043 0.37%
64 30.700.400.F.T 130698 142778 141532 -0.87% 143454 0.47%

The numerical results are displayed in Table 3.1. The first two columns give the
number of the instance and its characteristics, which includes the number of nodes,
arcs and commodities, as well as two letters summarizing the fixed cost and capacity
information: a relatively high or low fixed cost relative to the routing cost is signaled by
the letter F or V, respectively, while letters T and L indicate whether the problem is
tightly or somewhat loosely capacitated compared to the total demand.

The Opt column corresponds to the best integer solution found by MIPCplexSolver
within a time limit of 10 hours. Column Tc(400) corresponds to the results displayed in
[21]. Then, we have column Min the best solution over three runs of our implementation,
column Avg the average value of three runs. The two columns Gap following column Min

and Avg are the relative gap between our implementations and the result of Tc(400),
respectively.

The highest gap between Min and Tc(400) is 2.58%, the lowest one is −2.47%, and the
average is 0.23%. As for the gap between Avg and Tc(400), these numbers are 3.22%,
−1.37% and 0.87%, respectively. Because of the existence of random factors (when
constructing the neighborhood), it is reasonable to believe that our re-implementation
achieved the same performance as that in [21].

To see further the similarity between the two implementations, the distribution of the
gap between Min and Ttc(400) is given in Table 3.2.

Table 3.2: Gap between two implementations

≤ −2 (−2,−1.5] (−1.5,−1] (−1,−0.5] (−0.5, 0]

2 0 3 2 11

(0, 0.5] (0.5, 1] (1, 1.5] (1.5, 2] > 2

9 7 4 4 1

From the numerical results, we can see that the gaps between the two implementations
are quite small (0.23% for best solution and 0.87% for average solution). They are even
smaller than the average random difference over three runs (the random difference is
1.07% in average). As for the gap distribution, it is almost normally distributed, from
which we can say that the two implementations reach the same performance.

In order to test the aspiration and diversification procedures, we turn on the relative

34

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 3.3: Computational results of diversification

No. Off 20-0.01 20-0.02 20-0.03 40-0.01 40-0.02 40-0.03

25 14712 14742 14750 14729 14712 14814 14712
0.20% 0.26% 0.12% 0.00% 0.69% 0.00%

30 39088 38660 38289 38266 39025 39062 38384
-1.09% -2.04% -2.10% -0.16% -0.07% -1.80%

35 372142 371778 371612 371778 372097 371893 371893
-0.10% -0.14% -0.10% -0.01% -0.07% -0.07%

44 612267 613468 607725 610353 615060 615972 612093
0.20% -0.74% -0.31% 0.46% 0.61% -0.03%

37 102508 102702 104086 102277 102782 102532 102656
0.19% 1.54% -0.23% 0.27% 0.02% 0.14%

46 125528 125357 126711 127692 124982 123998 127692
-0.14% 0.94% 1.72% -0.43% -1.22% 1.72%

72 146139 144444 147942 147672 148433 147570 148174
-1.16% 1.23% 1.05% 1.57% 0.98% 1.39%

49 55053 55503 55664 55539 55175 55175 54910
0.82% 1.11% 0.88% 0.22% 0.22% -0.26%

58 64235.3 63750 63430 62218 63101 63626 62825
-0.76% -1.25% -3.14% -1.77% -0.95% -2.20%

55 120564 122902 123178 122032 122044 122044 122044
1.94% 2.17% 1.22% 1.23% 1.23% 1.23%

64 144053 144053 144053 143066 144053 141209 144053
0.00% 0.00% -0.69% 0.00% -1.97% 0.00%

total 0.10% 3.07% -1.58% 1.37% -0.52% 0.14%

35

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

parameters and experiment with 11 instances selected from the instance set C. For the
aspiration operation, we tried three different values (0.8, 0.9 and 1.0) of TabuPenalty.
The numerical results are almost identical to that without aspiration. This can be ex-
plained as follows: the aspiration is carried out when there is no non-tabu cycle found
in the residual network G(γ, ŷ) for a given combination of γ ∈ Γ and (i, j) ∈ C(γ). It is
quite rare that this situation occurs. Even when an aspiration is carried out, the resulting
cycle has to enter the competition for the overall best cycle, which reduced further its
potential impacts.

As for the diversification option, there are three parameters to be ajusted. The
DiversBeginIters parameter represents the frequency of diversification, while the DiversOpenArcs
and DiversCloseArcs parameters represent the strength of the diversification operation.
We tried two values (20, 40) for DiversBeginIters and three values (0.01, 002 and 0.03)
for DiversOpenArcs and DiversCloseArcs. All other parameters are kept same. The
numerical results are shown in Table 3.3.

In Table 3.3, the Off column corresponds to the solution obtained without diversifi-
cation. The percentage under each solution is the relative difference between the solution
and that in the column Off. The last row of this table is the sum of the relative difference.
From the numerical results, we can see that with careful calibration, the diversification
procedure is able to improve the performance of the cycle-based tabu algorithm.

3.6 Conclusion

The cycle-based neighborhood structure is known to be powerful in addressing CMND
problems. By re-implementing the algorithm, we got a profound understanding about
tabu search, the CMND problem and the cycle-based neighborhood. From the soft-
ware engineering point of view, after the re-design and re-implementation, this valuable
research work now can be reused, maintained and extended.

Two useful extensions should be considered. One is to change the data file format so
that the routing costs may be specified for each commodity on each arc. On the current
software basis, the constuctor of the class Graph has to be changed to read the new data
file, and the NetworkArc class needs to be changed to hold the different routing costs
for different commodities. Another slight modification is to change the calculation of the
residual arc cost in the constructor of the class ResidualGraph.

The other extension is to use other algorithms than Cplex to solve the related CMCF
problems. An intermediate function is needed to transform the Graph defined in the
current implementation to that used by other solvers.

36

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

The implementation and numerical experimentation raised several points that need
to be mentioned.

First, intensifying on the initial solution can make a big difference, especially for larger
instances. It can be explained as follows: there is a lot of room to improve the initial
solution, and we can begin from a better point after the initial intensification. But from
this point, we can also infer that the whole search process does not diversify sufficiently.
It is the intensification phase that contributes mostly to finding good solutions. Maybe
the search is captive in the local valley since we moved down from the very first solution.
Performance improvements then can be expected after turning on the diversification.
More tests should be done for tuning the diversification parameters.

Second, when constructing the candidate link set C(γ, k) in the intensification phase,
we tried two approaches. The first way is to choose the arcs that carry flow of product
k at each iteration, thinking that maybe we can deviate the flow, then close the arc
(hopefully). We tried 100%, 70% and 50% of such arcs. The second way is to randomly
choose the closed arcs as in the local search step. By comparing the results, we found
that the second way works better, which is quite out of our expectation. Here we can
explain it as follows: since the intensification phase is very powerful in moving down to
the local minimum, the first way does not help much in doing so, while the second way
introduces some random factor that plays a diversification-like role to some degree. Once
again, we feel the need for a good diversification.

The last observation is about when to check the tabu status. At the beginning, we just
tried to find the shortest cycle for each combination of γ and candidate link (i, j), then
ignore the tabu moves, but the performance on larger instances was inferior to Tc(400) in
[21]. We thus found the first version of the existing code, traced the program line by line,
and finally realized the reason. In the existing research code, the tabu status is checked
during the identification of the shortest cycle in the residual network. As a consequence,
only non-tabu cycles take part in the competition of the overall best cycle, which is then
used as a local search move. While in our first implementation, the shortest cycle for
the pair (γ, (i, j)) was dropped if it is unfortunately made tabu. This trival change made
a big difference: by considering tabu status in a profound level (in the label-correcting
algorithm), the number of candidate moves from which we choose the best one is indeed
increased, and better solutions can be found. This shows again the importance of having
a well documented software project.

37

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Chapter 4

Progressive hedging algorithms for stochastic

network design

In this chapter, we first present at first the progressive hedging algorithm (PHA) of
Rockafellar and Wets [37]. We then cast PHA into a meta-heuristic framework, where
the sub-problems are modified for each scenario and solved heuristically. Two ways
to modify the sub-problems are proposed, the first one uses augmented Lagrangian to
relax the non-anticipativity constraints, while the second one modifies the subproblems
heuristically in order to drive all scenarios toward one global design. Last, we present
how to transform the proposed idea into an actual algorithm by specifying the stopping
criteria, subproblem solver and parallel computation structure.

4.1 Progressive hedging algorithm

The progressive hedging algorithm is proposed in [37] and reviewed in [39]. It enforces
the implementability constraint algorithmically. It can be interpreted as a scenario de-
composition method for stochastic programming problems.

Let x∗ be the optimal solution to the following stochastic problem

min E{f(x, ξ)}

subject to x ∈ C ⊂ Rn.

Let S denote the scenario set. For each scenario s ∈ S, let the scenario solution xs

represents an optimal solution to the deterministic scenario problem:

min f(x, s)

subject to x ∈ Cs ⊂ Rn.

Define the average solution x as the expectation taken over the scenario solutions:

x =
∑

s∈S

psxs.

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
38

The progressive hedging algorithm generates a sequence of estimates of the optimal
solution x∗, obtained by insisting progressively more and more on the requirement that
the solutions generated by the scenario problems must be implementable.

At each iteration t, the average solution is calculated as

xt =
∑

s∈S

psxst (4.1)

where xst is an optimal solution to the modified scenario problem

min f t(x, s) = f(x, s) + λt−1(s)x +
1

2
ρ|x− xt−1|2. (4.2)

subject to x ∈ Cs

The vectors λt are adjusted as follows:

λt(s) = λt−1(s) + ρ[xst − xt]. (4.3)

The progressive hedging algorithm is described in Algorithm 5.

Algorithm 5 Progressive hedging algorithm

Initialize:

f0(x, s)← f(x, s), x0 ← 0,

λ0(s)← 0, choose ρ > 0

t← 1

repeat

for each s ∈ S do

solve equation (4.2) to get scenario solution xst

calculate xt using equation (4.1)

update λt(s) using equation (4.3)

t← t + 1

until xst = xt, ∀s ∈ S

This algorithm only requires the capability of solving individual scenario problems
(and linear-quadratic perturbations thereof). Its terminating criterion is that for all s ∈
S, the scenario solution xst converges to the average solution xt, which is implementable
and feasible. At each iteration t, the distance between the scenario solution vector
{xst,∀s ∈ S} and the average solution xt can be defined as follows:

θt =
∑

s∈S

ps|xst − xt|2.

39

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

This distance converges to 0, at least in the convex case. Even if the functions are
nonconvex, xt is still the global minimum provided the functions f(·, s) satisfy certain
minimum growth conditions [39].

For linear stochastic problems without integer requirements, Rockafellar and Wets
proved that PHA converges to the global optimum in a linear rate. Another advantage is
that at each iteration, we can always have at hand a solution estimate that is better than
that of all previous iterations. Unfortunately, this is not the case in stochastic integer
programming. The convergence to optimality of this algorithm has not been formally
proved for stochastic integer programming, and nonconvergence is possible [33].

4.2 Research methodology

We repeat the scenario-decomposition model (Equation 2.5 in Chapter 2) here for clarity.

min
∑

s∈S

ps(
∑

(i,j)∈A

fijy
s
ij +

∑

k∈K

∑

(i,j)∈A

ck
ijx

ks
ij) (4.4a)

subject to

∑

j∈N+(i)

xks
ij −

∑

j∈N−(i)

xks
ji = dks

i ∀i ∈ N ,∀k ∈ K,∀s ∈ S (4.4b)

∑

k∈K

xks
ij ≤ uijy

s
ij ∀(i, j) ∈ A, ∀s ∈ S (4.4c)

ys
ij ∈ {0, 1} ∀(i, j) ∈ A (4.4d)

xks
ij ≥ 0 ∀(i, j) ∈ A, ∀k ∈ K,∀s ∈ S (4.4e)

ys
ij = yt

ij ∀(i, j) ∈ A, ∀s, t ∈ S, s 6= t (4.4f)

This model is scenario-separable except for the non-anticipativity constraints (4.4f),
which imply that the design decision taken for each scenario should be the same. In other
words, the global design decision should not depend on scenarios.

There are several possible ways to solve this mixed integer program, among which
the traditional way is to relax the integrality constraints (4.4d) to get a lower bound,
then do branching, bounding and cutting. But the CMND problem itself is already
notoriously difficult to solve, this stochastic network design model is even harder because
its dimension is multiplied by S, the size of the scenario set.

40

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

The scenario decomposition structure of model (4.4) leads us naturally to the relax-
ation of the non-anticipativity constraints.

4.2.1 Augmented Lagrangian relaxation

Since all design decisions ys
ij are required to be boolean, the non-anticipativity constraints

can be aggregated as follows:

yij =
∑

s∈S

psys
ij ∀(i, j) ∈ A (4.5a)

yij ∈ {0, 1} ∀(i, j) ∈ A (4.5b)

Notice that without equation (4.5b), this aggregated constraint is not correct, since
equation (4.5a) itself cannot prevent the scenario solutions ys

ij from being different with
each other.

The constraints (4.5a) can be relaxed by augmented Lagrangian relaxation, where
a Lagrangian multiplier λij is associated to each constraint. Once again, yij should be
kept binary during the relaxation. Some rounding heuristics can be used to fullfill this
binary requirement, but a more systematic method must be carried out afterwards, like
the branch and bound used in [8]. On the other hand, a binary y carries less information
than a continuous one.

Here is another way to represent the non-anticipativity constraints:

ys
ij = yij,∀(i, j) ∈ A, ∀s ∈ S, (4.6)

where yij ∈ [0, 1] is defined as the expected value of the design variables over all scenarios,
as in Equation (4.5a).

Equations (4.6) imply that for each scenario s, its decision on arc (i, j) should be
the same as that in the global decision. Equations (4.6) are different from Equation
(4.5) in two points: first, yij in Equation (4.6) is not required to be binary; second,
Equation (4.6) is the disaggregated version of Equation (4.5). Using Equation (4.6),
the model (4.4) contains more constraints. However, when a scenario decomposition
method like PHA is used to solve this model, the total computation complexity remains
the same. The advantage of Equations (4.6) is that these constraints can be relaxed
individually in the corresponding scenario problems, which makes it possible to penalize
the difference between the scenario solutions and the global expectation individually in
order to consolidate them into a global solution.

After relaxing the constraints (4.6) using the Augmented Lagrangian, the objective

41

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

function of model (4.4) becomes

min
∑

s∈S

ps(
∑

(i,j)∈A

fijy
s
ij +

∑

k∈K

∑

(i,j)∈A

ck
ijx

ks
ij

+
∑

(i,j)∈A

λs
ij(y

s
ij − yij) +

ρ

2

∑

(i,j)∈A

(ys
ij − yij)

2). (4.7)

However, the above equation is not very useful since the problem is still insepara-
ble because of the existence of yij. In the progressive hedging algorithm proposed by
Rockafellar and Wets [37], the average solution is taken from the previous iteration (xt−1

in Equation 4.2). If we replace y by the same value from the previous iteration, this
value becomes a constant in the current iteration, which makes this model completely
separable by scenarios.

Let t denote the iteration index of PHA, the modified objective function for each
scenario s at iteration t can be written as

min
∑

(i,j)∈A

fijy
st
ij +

∑

k∈K

∑

(i,j)∈A

ck
ijx

kst
ij

+
∑

(i,j)∈A

λst−1
ij (yst

ij − yt−1
ij) +

ρt−1

2

∑

(i,j)∈A

(yst
ij − yt−1

ij)2. (4.8)

The Lagrangian multipliers λst
ij and penalty ratio ρt are updated as follows:

λst
ij ← λst−1

ij + ρt−1(yst
ij − yt−1

ij) (4.9)

ρt ← αρt−1 (4.10)

where α is a constant greater than 1, and ρ0 should be positive in order to make sure
that ρt →∞.

Comparing equation (4.8) to its deterministic version, a linear and a quadratic term
have been added. After opening the square term and dropping the constant terms in
(4.8), we have

min
∑

k∈K

∑

(i,j)∈A

ck
ijx

kst
ij +

∑

(i,j)∈A

(fij + λst−1
ij − ρt−1yt−1

ij)yst
ij +

ρt−1

2

∑

(i,j)∈A

(yst
ij)

2 (4.11)

Now we can take advantage of the integrality constraint on yst
ij . Since they are required

to be binary variables, we can drop the square sign and rearrange the above equation as

min
∑

k∈K

∑

(i,j)∈A

ck
ijx

kst
ij +

∑

(i,j)∈A

(fij + λst−1
ij − ρt−1yt−1

ij +
ρt−1

2
)yst

ij (4.12)

42

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

The above equation is in fact a CMND problem with modified fixed costs, and all previous
research works on CMND problems can be used.

To clarify the idea, we focus on the fixed cost term and repeat it here. At iteration t

the fixed costs are modified for scenario s as follows

f st
ij = fij + λst−1

ij − ρt−1yt−1
ij +

ρt−1

2
,∀(i, j) ∈ A (4.13)

Now, the subproblem for each scenario s at iteration t has its objective as follows

min
∑

k∈K

∑

(i,j)∈A

ck
ijx

kst
ij +

∑

(i,j)∈A

f st
ij yst

ij . (4.14)

At each iteration t, we can construct a feasible global design by opening all arcs that
are used by at least one scenario. Formally speaking, denote max design for arc (i, j) at
iteration t as

yMt
ij = ∪s∈S{y

st
ij}, (4.15)

where ∪ is “or”. As the hedging proceeds, the overall best integer solution should be
recorded and updated, since it is possible that yMt is inferior to that of its previous
iterations.

The progressive hedging algorithm combined with the Augmented Lagrangian relax-
ation is described in Algorithm 6.

4.2.2 Heuristic fixed cost adjustment

By applying the Augmented Lagrangian relaxation to the non-anticipativity constraints
of SND problems, and integrating this into the progressive hedging algorithm framework,
we got in fact for each scenario a CMND problem with modified arc fixed costs. It is very
natural to think about modifying the fixed costs more “intelligently” instead of using λ

and ρ blindly.

At the end of each iteration t, we have yt
ij ∈ [0, 1], the expected value of binary design

variables for arc (i, j) over all scenarios. This value can be viewed as a “trend” of opening
or closing arc (i, j). A lower value of yt

ij means that only a small portion of scenarios
chose to open this arc, while a higher value means that the majority prefers to open it.
In the case that yt

ij is less than a threshold clow, increasing the fixed cost of arc (i, j) has
the potential of driving the subproblems to avoid using that arc. On the contrary, when
yt

ij is higher than a threshold chigh, in order to attract the subproblems to use arc (i, j),
its fixed cost should be lowered.

43

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Algorithm 6 Progressive hedging algorithm with Augmented Lagrangian

Initialization

t← 0

λst
ij ← 0 ∀(i, j) ∈ A,∀s ∈ S

ρt ← ρ0

for all s ∈ S do

fst
ij ← fij , ∀(i, j) ∈ A

solve the corresponding CMND subproblem

yt
ij ←

∑

s∈S psyst
ij , ∀(i, j) ∈ A

calculate and evaluate yMt

bestSolution← yMt

while stopping criteria are not met do

t← t + 1

for all s ∈ S do

fst
ij ← fij + λst−1

ij − ρt−1yt−1
ij + ρt−1

2 , ∀(i, j) ∈ A

solve the corresponding CMND subproblem

Update

yt
ij ←

∑

s∈S psyst
ij

λst
ij ← λst−1

ij + ρt−1(yst
ij − yt−1

ij)

ρt ← αρt−1

calculate and evaluate yMt

update bestSolution if yMt gives current best

44

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Here comes the formal presentation of the heuristic fixed costs adjustment method:

f t
ij =











βf t−1
ij if yt−1

ij < clow

1
β
f t−1

ij if yt−1
ij > chigh

f t−1
ij otherwise,

(4.16)

where β is a constant larger than 1, clow and chigh are two constants such that 0 < clow <

0.5 and 0.5 < chigh < 1, and f t
ij represents the modified fixed cost of arc (i, j) at iteration

t.

The above adjustment can be called “global”, since the fixed cost modifications are
made for all scenarios. Keeping in mind the aim of an unanimous design, this heuristic
modification can be pushed even further. For each scenario s, if it is too far from the
average (for example, yst = 0 and yij = 0.9, or yst = 1 and yij = 0.1), we can enforce
the adjustment to increase or decrease the fixed cost temporarily even more just for this
scenario. This modification is done locally in the sense that it only affects scenario s at
the current iteration. Formally speaking,

f st
ij =











βf t
ij if |yst−1

ij − yt−1
ij | ≥ cfar and yst−1

ij = 1
1
β
f t

ij if |yst−1
ij − yt−1

ij | ≥ cfar and yst−1
ij = 0

f t
ij otherwise,

(4.17)

where 0.5 < cfar < 1 and β > 1 are two given constant parameters, and f st
ij stands for

the modified local fixed cost of (i, j) for scenario s at iteration t.

There is another possible heuristic local modification to the subproblems: if for current
scenario s, the decision on arc (i, j) is in the majority, that is, |yst−1

ij − yt−1
ij | ≤ cnear, this

decision should be kept by fixing yst
ij to yst−1

ij , where cnear is a constant between 0 and
0.5.

The progressive hedging algorithm with heuristic fixed cost adjustment is described
in Algorithm 7.

4.3 Specification of the algorithm

Before we can implement Algorithms 6 and 7, there are several things that need to be
defined, such as the stopping criteria and the subproblem solver. Also, the nature of this
algorithm drives us to consider its parallel implementation.

45

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Algorithm 7 Progressive hedging algorithm with heuristic cost adjustment

Initialization

t← 0

for all s ∈ S do

fst
ij ← fij , ∀(i, j) ∈ A

solve the corresponding CMND subproblem

yt
ij ←

∑

s∈S psyst
ij , ∀(i, j) ∈ A

calculate and evaluate yMt

bestSolution← yMt

while stopping criteria are not met do

t← t + 1

∀(i, j) ∈ A, modify f t
ij globally using equation (4.16)

for all s ∈ S do

∀(i, j) ∈ A, modify fst
ij locally using equation (4.17)

fix some yst
ij if needed

solve the corresponding CMND subproblem

Update

yt
ij ←

∑

s∈S psyst
ij , ∀(i, j) ∈ A

calculate and evaluate yMt

update bestSolution if yMt gives current best

46

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

4.3.1 Stopping criteria and second phase

The stopping criteria in the PHA for linear stochastic problems (Algorithm 5) is that all
scenario solutions converge to the average solution. But in stochastic integer problems
like SND problem, this is not formally justified and nonconvergence is possible. We need
therefore other stopping criteria such as total running time, total iteration number or
non-improvement iteration number, often used in metaheuristic procedures.

In order to evaluate the convergence of the PHA for SND problems, we define for
iteration t of PHA

max design for arc (i, j): yMt
ij = ∪s∈S{y

st
ij}

minimum design for arc (i, j): ymt
ij = ∩s∈S{y

st
ij}

inconsistency of arc (i, j): Dt
ij = yMt

ij − ymt
i,j

inconsistency level: Dt =
∑

(i,j)∈A Dt
ij

active arc set: At = {(i, j)|Dt
ij = 1},

where ∪ is “or” and ∩ is “and”. yMt
ij is equal to 1 if at least one scenario chooses to

open arc (i, j), while ymt
ij is equal to 1 only if all scenarios choose to open arc (i, j). Dt

ij

represents whether the status of arc (i, j) is the same for all scenarios: Dt
ij = 0 means

yst
ij is the same, Dt

ij = 1 means they are not the same. The inconsistency level Dt is a
non-negative integer whose maximum value is the total number of arcs. It stands for the
number of arcs whose status have not been agreed upon by all scenarios. This level can
be seen as a measure of convergence for iteration t. The active arc set At contains the
arcs whose status is not yet the same.

Convergence based only on integer variables in stochastic integer programming is
called integer convergence [33]. In our case, Dt = 0, At = ∅, or yMt = ymt all mean that
an integer convergence is achieved, i.e., a network design that is agreed by all scenarios.
However, this integer convergence can not be guaranteed by the progressive hedging
algorithm.

Imagine a simple example where two commodities k1 and k2 need to be transported
on a network, and there are only two extreme scenarios s1 and s2 in the scenario set:
scenario s1 has d1 = 100 and d2 = 0, while scenario s2 has d1 = 0 and d2 = 100. For
each commodity, there is only one possible path to deliver it. No matter how we modify
the fixed costs for each scenario, it is still impossible to convince s1 to open the path for
k2, then pay the construction for it, and vice versa, unless negative costs are permitted
in our model. Since each subproblem itself is an optimization problem solved toward its
own optimality, and the global design is required to be integer, it is quite possible that
PHA is unable to achieve integer convergence.

Furthermore, even when integer convergence is somehow achieved, there is no theoret-

47

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

ical guarantee that it is the optimal design for the SND problem. The convergence rate
is related to the intensity of the penalization on the difference between scenario solutions
and average solution. If this punishment is too harsh, a compromise may be reached out
quickly but with poor quality. From this point of view, Algorithm 6 has the advantage
that it needs less parameters.

By the end of the progressive hedging algorithm, if the active arc set At 6= ∅, which
means an integer convergence is not achieved, a second phase can be carried out. The
problem becomes a restricted SND problem, where the “active” design variables are those
in At that need to be decided, and all other arc status are fixed.

There are several ways to solve the restricted model in the second phase, such as
enumeration or branch and bound on the active arc set. We can also consider tabu
search with cycle-based neighborhood. The neighborhood can be restricted to the active
arc set, and a move can be defined as deviating flows on the active arcs. As for the
cost of a cycle, it can be defined as an expectation of the estimated cycle costs over all
scenarios. For the time being, we use the branch and bound algorithm of Cplex to solve
the restricted SND problem.

4.3.2 Solving subproblems

PHA does not need exact optimal solutions to subproblems at each iteration t. On
the contrary, one should solve them approximately [27]. So the tabu search algorithm
proposed in [21] and re-implemented in Chapter 3 is a good choice.

Another choice for solving the subproblems is the path relinking algorithm proposed
in [20]. By generating a path from yst−1 towards yt, good solutions could be found for
subproblems. In order to use the continuous vector y as a guiding solution, some adaption
of the original algorithm must be made.

We use the cycle-based tabu search algorithm of [21] and adapt it in the following
three aspects: the initial solution, the candidate arc set and the initial tabu list.

Initial solution

There are two steps in the PHA algorithm where we need to consider the initial solution.

In the initialization step of PHA algorithm, each subproblem is solved from scratch,
which means the initial solution for each subproblem is obtained by opening all design
arcs, then solving the CMCF problem and closing the unused arcs. There are some other

48

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

initial solutions that can be used.

The linear relaxation of the SND model gives us S identical continuous variables
vector ys with ys

ij ∈ [0, 1], because we kept the non-anticipativity constraints during
the relaxation. An initial feasible solution can be achieved by rounding up all non-zero
design variables to 1. But one cannot expect too much regarding its quality. Meanwhile,
sometimes even the linear relaxation is too big to be solved exactly within a reasonable
time limit.

The wait-and-see solution defined in Section 2.2.2 can give us a lower bound. This
lower bound is achieved by solving for each scenario the deterministic network design
problem, and taking the expectation of the total costs. The non-anticipativity con-
straints (4.4f) are ignored temporarily. This lower bound should be better than the
linear relaxation, at the cost of more computational effort. An initial feasible solution
can be obtained by constructing the max design vector yMt. However, this initial solution
is computationally expensive since it solves to optimality each subproblem. Furthermore,
the scenario solutions usually conflict with each other, which makes the initial solution
quite poor.

Another initial solution can be constructed using the EEV solution defined in Section
2.2.2. The EEV solution can be obtained by solving one CMND problem with average
demands. This may speed up the convergence of PHA, but at the risk of losing diversity
of the scenario problems. It should be noted that this EEV solution is not necessarily
feasible for the scenario problems. A restoration phase is needed before the tabu search
process begins.

Another step that uses the initial solution in the PHA algorithm is at the beginning of
each iteration t. The subproblems are solved by tabu search on the basis of the solution
from the previous iteration, that is, yst−1 is used as the initial solution of tabu search
at iteration t. In the PHA framework, we can take advantage of the global information
in yt−1 and make a heuristic modification on the best solution found at the previous
iteration. For example, open ys

ij if the average is greater than a threshold chigh, and close

it if the average is lower than clow; or be even more strict by opening ys
ij if yt−1

ij ≥ 0.5,
which makes all tabu search procedures solve each subproblem from the same initial
point. The option of how to modify the initial solution can be specified in the parameter
file.

Candidate arc set

The candidate set C(γ) contains the arcs that are used to begin the construction of cycles.
The idea behind this is that by redelivering γ amount of flow around a selected cycle,
at least one arc in this cycle will change its status. In order to accelerate the integer

49

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

convergence, we amend the way to build C(γ) as follows:

C(γ) = C1(γ) ∪ C2(γ),

where

C1(γ) = {(i, j)+ | ys
ij = 0 and uij ≥ γ and yt−1

ij ≥ clow}

C2(γ) = {(j, i)− | ys
ij = 1 and xij = γ and yt−1

ij ≤ chigh},

and xij means the total amount of flow on arc (i, j).

The first subset C1(γ) consists of the residual arcs (i, j)+ that meet the following
three criteria simultaneously: (i, j) is closed in the current solution; its capacity uij is
greater than γ; and the average decision on this arc yij is greater than a threshold clow

(0 < clow < 0.5). We would like to open the arcs that have a higher average design
value, since the cycle that begins with (i, j)+ will put flow on arc (i, j) and thus open
the arc if this cycle is selected as the next move in the tabu search procedure. If yij is
low, which means only a few scenarios opened this arc, we would rather keep it closed
for this scenario.

As for the second subset C2(γ), if the flow amount on a currently open arc (i, j) equals
γ, and the average decision on this arc yij is less than a threshold chigh (0.5 < chigh < 1),
add (j, i)− to this subset, because the cycle that begins with (j, i)− will close (i, j) if it
is selected as the next move. If yij is high, which means the majority of scenarios chose
to open this arc, we would rather keep it open for this scenario.

Initial tabu list

In Section 4.2.2, we mentioned that the “good” decisions can be fixed. One way to fix
them in the tabu search procedure is to add these arcs to the initial tabu list. Their
tabu status expires after TabuTenure iterations, which makes this fix operation a little
bit “softer”.

4.3.3 Parallel computation structure

The structure of Algorithms 6 and 7 leads us naturally to consider parallel computation,
because solving each subproblem is an independent task. A master/slave structure for
the proposed algorithms is given in Figure 4.1.

As shown in Figure 4.1, the master process is responsible for testing the stopping
criterion, calculating the average design yt, constructing and evaluating the max design

50

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Figure 4.1: Parallel computation structure

yMt, and updating the best solution. In Algorithm 6, the master process updates ρt,
while in Algorithm 7, it updates f t

ij.

The slave processes are in charge of modifying the fixed costs locally and solving each
CMND problem. A slave process holds the modified fixed costs f st, the scenario solution
yst and xst, and the Lagrangian multipliers λst when Algorithm 6 is used.

The information exchanges between master and slaves are also shown in figure 4.1.
The master broadcasts yt, ρt and f t, the slaves return yst.

The synchronization is done at the end of each iteration t. Within each iteration,
scheduling can be done statically or dynamically. For example, if there are 16 scenarios
and 4 slave processes, static scheduling will assign scenarios 1 to 4 to process 1, scenarios
5 to 8 to process 2, etc. Dynamic scheduling will assign to each process one scenario, then
the process that finished its task will be assigned another scenario, until there is no more
scenario to solve. Dynamic scheduling should offer the advantage of a shorter total time
and a better workload balance, since it takes different time to solve each subproblem.

Several variations can be done on this basis. It is possible to update the global infor-
mation within an iteration t, instead of waiting until all scenarios are finished. Another
possibility is not to solve all scenarios within each iteration, but only scenarios that have
arc status in the minority group.

Scenario clustering is another furture research avenue. By grouping multiple scenarios

51

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

into clusters, the size of subproblems gets bigger, but the quality of the global design will
hopefully improve. The criterion for grouping the scenarios, as well as the subsolver that
solves a scenario cluster need to be defined in the progressive hedging framework.

52

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Chapter 5

Implementation of progressive hedging algorithm

for stochastic network design

This chapter is similar to Chapter 3. It is a technical report for the implementation
of the algorithms proposed in Chapter 4. We analyze the requirements, draw out the
architecture design, and describe the class design. Numerical results will be given in
Chapter 6.

5.1 Requirement analysis

The main function of this software is to solve the SND problem using the progressive
hedging algorithm proposed in Chapter 4.

5.1.1 Scenario generation

In our stochastic network design model, demands are described by a scenario tree. The
scenario tree must represent the underlying distribution of future demands in a good way,
because the quality of the solution is directly linked to the quality of the scenario tree
[28]: garbage in, garbage out. On the other hand, the number of scenarios must be limited
for the stochastic program to be solvable. Pure sampling will not work in our case, since
the size of the scenario tree grows exponentially with the number of commodities.

We derive the testing problems from the instances used in [23] for stochastic service
network design (SSND) problems. These instances are generated for the time-dependent
stochastic service network design problem. Each instance consists of two data files: one
presents the network structure and commodity O-D pairs, the other provides scenarios
of demands.

The network structure has T time periods, N nodes for each period, and N2T arcs
that connect all nodes of period t to those in period (t + 1) mod T . A commodity k

is represented by an O-D pair in this time-dependent network structure, specified by

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
53

(o(k), to(k))→ (s(k), ts(k)) where o(k) is the origin node, to(k) is the commodity available
time period, s(k) is the destination node, and ts(k) is the required delivery time period.
Its format is given below:

NAME : file_name

NODES : number_of_nodes

PERIODS: number_of_time_periods

OUTSOURCING : outsourcing_cost

CAPACITY : vehicle_capacity

COMMODITIES : number_of_commodities

VEHICLES : number_of_vehicles

SCENARIOS : number_of_scenarios

RELOADCOST : reload_cost

MARGINALTRUCKCOST: marginal_truck_cost

COST :

(for each node i:) (for each node j:) cost_i_j

DISTANCE :

(for each node i:) (for each node j:) distance_i_j

ORIGIN :

(for each commodity:) commodity_origin

DESTINATION :

(for each commodity:) commodity_destination

AVAILABLE :

(for each commodity:) available_time_period

DELIVERED :

(for each commodity:) deliver_time_period

EOF

The scenario data file consists of S rows, each stands for one scenario containing its
probability ps followed by K demand values. Its format is given below:

number_of_scenarios

(for each scenario:) probability (for each commodity :) demand

We used this data set as a starting point to derive our problems in the following
way: We ignored the time periods and interpret an instance as a network with N nodes
and N2 arcs. The value of vehicle capacity is used as the unique arc capacity, the
cost i j is used as the routing cost of arc (i, j). We assigned a unique value of 100 to the
arc fixed cost. For each commodity, we use its origin and destination node information,
but ignore its available time period and the time period it is required to be delivered.
An artificial arc is added for each commodity with outsourcing cost as its routing
cost and zero fixed cost, which means if the current network design is not able to fulfill
the commodity’s demand, some ad-hoc capacity increasing is needed, see [32] for the

54

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

definition of this capacity increase. The addition of artificial arcs make sure that any
network design is feasible.

After the re-interpretation, however, some problems arise. First, the network struc-
ture becomes a complete network with identical arc fixed costs and capacities, which is
not common in practice. Secondly, in the original instances, there exists self circle com-
modity whose origin and destination are the same nodes (o(k) = s(k)), but in different
time periods (to(k) 6= ts(k)). It is meaningful in the time-dependent network, which simply
means to keep the commodity at the node. But in our model, this kind of commodity
violates the flow conservation constraints and thus makes the instance infeasible. Last
but not least, the current implementation of our tabu search algorithm does not support
parallel commodities (o(k1) = o(k2) and s(k1) = s(k2)), since the restoration from an
infeasible solution is done on the basis of artificial arcs, while two artificial arcs are not
distinguishable if they are constructed for parallel commodities. Some modification must
be done to solve this kind of instances. Because we use these SSND instances temporar-
ily, instead of modifying our implementation, we chose to slightly modify the instances
to avoid self circles and parallel commodities. Denote this data set S.

Thanks to the generosity of Doctor Kaut and Professor Wallace, we could generate
scenarios for the CMND problems using their scenario generation program based on [25].
We use the deterministic instances from the data set R of [21] as network structure, and
generate the scenario tree for these instances. In order to generate the scenario tree, we
must specify for each random variable its distribution and the correlation between each
pair of random variables.

We assume the future demands follow a triangular distribution, as often used in
business decision making when little information is available. Three values need to be
specified for such a distribution: min a, max b and mode c. In the deterministic instances,
we have a given demand value d(k) for each commodity k, which can be used as the mode
c, representing the most likely outcome. We set the min a = 0 and the max b = 1.25c,
but this risks of yielding infeasible scenarios. So we need to check the feasibility of each
scenario and decrease some demand value for infeasible scenarios before we solve the
stochastic design problem.

We assume that the correlation between two demands is linear, which means the
correlation coefficient rij between demand di and dj should always lies between −1 and
1. rij = 1 if i = j, rij = 0 if di and dj are independent. In real life, these demands
are not independent. The commodities that share the same origin or the same “origin
area” are often correlated. We would like to see how the behavior of progressive hedging
algorithm is influenced by different levels of correlations. Thus, another task of our
implementation is to group the demands for a given network structure and prepare the
required distribution and correlation input files for scenario generation.

Since the executable program of scenario generation provided by the authors of [25] is

55

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

compiled under Windows 32 system, while we are using Linux system in our implemen-
tation, we cannot run the scenario generation program within our code. Text files are
used to exchange the distribution and correlation requirements, as well as the resulting
scenario instances. Figure 5.1 shows how our code interacts with the scenario generation
program.

Figure 5.1: System interface for stochastic network design

5.1.2 Command line format

In the command line, we provide the flexibility of specifying which progressive hedging
algorithm to use (Augmented Lagrangian or heuristic fixed cost adjusting), and how
to solve the subproblems (Cplex or tabu search). Besides this main work, to generate
scenarios, the program is able to output the distribution and correlation files and do
feasibility checking. Furthermore, in order to evaluate the proposed algorithms, the
following methods are implemented: solving the model as a mixed integer problem using
Cplex; finding the lower bound using the linear relaxation; computing the lower bound
and initial solution of the wait-and-see solution; calculating the EEV solution (expected
result of using the EV solution). We include also the deterministic methods implemented
in Chapter 3, so that each scenario can be solved individually. The command line has
the following format

./main option paramFileName dataFileName [scenFileName]

and the options are given below:

List of options:

-df : solve CMCF using cplex to check feasibility

-dc : solve CMND using cplex

-dt : solve CMND using tabu

-sc : solve SCMND using cplex

56

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

-sl : solve SCMND’s linear relaxation using cplex

-se : solve SCMND’s expected value solution using cplex

-pc : solve SCMND using Lagrangian PHA with cplex as subsolver

-pt : solve SCMND using Lagrangian PHA with tabu as subsolver

-hc : solve SCMND using heuristic PHA with cplex as subsolver

-ht : solve SCMND using heuristic PHA with tabu as subsolver

-sgN : generate correlation and distribution files for scenGen.exe

N in -sgN is the correlation level

The wait-and-see solution can be obtained using option -pc with iteration number
set to 1.

5.1.3 Parameter file format

There are several parameters that need to be specified by the user to control the algo-
rithms, including tabu search parameters and progressive hedging parameters. We use
the same parameter file format as in Chapter 3, and add the following parameter settings.

#================= Stochastic Strategy Parameters

PHATotalIter = 30

PHANonImproveIter = 5

PHATotalSec = 36000

#====parameters in PHA with augmented Lagrangian

Increasing rate of rho

Alpha = 1.1;

#====parameters in heuristic PHA for fix cost adjusting

LocalFixCostAdjust = 1;

Upper and lower thresholds used to decide arc status

CHigh = 0.8;

CLow = 0.2;

Increasing or decreasing factor of fix cost

Beta = 1.1;

The constant used to compare local design to average

#CNear is used to fix good local design decisions

CNear = 0.2

#CFar is used to modify local fix cost in heuristic PHA

CFar = 0.7

57

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

#=====parameters for the modified tabu search

#Initial config of tabu search

#0 means using old config; 1 means using Upper/Lower thresholds;

#2 means using 0.5 to guess

InitialConfigGuess = 1;

#Initial tabu list

#0 means empty list; 1 means put agreed arcs into tabu list

InitialTabuList = 0;

5.1.4 Parallel implementation

The parallel computation structure specified in 4.3.3 can be implemented in different
ways. Our first issue is how to develop the parallel program: explicit or implicit paral-
lel programming? Explicit parallel programming requires the programmer to explicitly
specify how the processors will cooperate, also called hand threading, such as POSIX
Threads (PThreads) [7], while implicit parallel programming asks the compiler to cre-
ate and manage threads, such as OpenMP (Open Multi-Processing)[30]. Comparing to
PThreads, OpenMP takes parallel programming to a higher level. Using OpenMP, we
can produce elegant code that is easier to understand and maintain. Besides, OpenMP
scales well with the number of processors. The program will scale the number of threads
when running on a platform where more processors are available.

The next decision is how to share information among processors: shared-address-
space or message-passing? In the shared-address-space programming paradigm, such as
OpenMP [10], programs can be viewed as a collection of processes accessing a central
pool of shared variables. While in the message-passing programming paradigm such as
MPI (Message Passing Interface)[22], there are no shared variables, each processor uses
its local variables, and occasionally sends or receives data from other processors [30].
Using OpenMP, the parallel programs are limited to run on a group of computers that
have a shared address space, which is usually a multi-CPU computer; while using MPI,
the parallel programs can be run on a larger cluster, or even on heterogenous networks.

Although OpenMP limits the parallel level, it does help the programmers to focus
on the algorithm itself, because the information exchange is done through the shared-
address-space, which is accessible to all threads, just like in the sequential programs.
Furthermore, the OpenMP parallel code can be run as a sequential one without any
modification. This makes the debugging much more easier, because in our algorithm,
each slave process needs a Cplex license during the tabu search procedure to solve the
corresponding CMCF problem, and sometimes the requirement of several licenses at the
same time is too difficult to meet.

58

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Last but not least, the nature of our algorithm is suitable for OpenMP. In the pro-
gressive hedging algorithms, the most time-consuming part is to solve the modified sub-
problem for each scenario. This can be done by several slave processes independently. At
the end of the for each s ∈ S loop, control is given back to the master process. This is the
classical OpenMP parallel loop structure. It can be parallelized easily with a compiler
directive.

5.2 Architecture design

On the basis of the implementation work in Chapter 3, we need to add a Stoch package to
specify the progressive hedging algorithms. Also, scenario information should be added
to the Graph package, and the EEV solver, linear relaxation and MIP solver should be
added to the MIP package. The Main package deals with command line options, reads
and constructs Graph and reads parameters. The other packages are untouched.

Figure 5.2: Modified architecture for stochastic network design

5.3 Class design and implementation

5.3.1 Modified Graph package

As shown in figure 5.3, a Scenario class is added to this package. The Scenario class
contains its probability and a vector of demands. The Graph class is modified by adding
a vector scenarios[S] and a function createScens(). The latter reads a given scenario
data file and stores the data in the former.

59

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Figure 5.3: Modified Graph package design

In the proposed algorithm, the arc fixed costs are modified globally and locally. This
modification should not be done directly on NetworkArcs, since we need the original arc
fixed costs to evaluate a design. So another vector fixedCosts[A + K] is added to the
Graph class, in order to hold the modified fixed costs.

Furthermore, in order to allow slave threads to modify the Graph in parallel without
conflicting each other, a copy constructor should be provided. Each slave thread modifies
and solves its local copy.

5.3.2 Stoch package

Figure 5.4 presents the classes in Stoch package. The ModifiedTabuSolver class derives
from TabuSolver. It contains two vectors as data fields: avgY holds the average design
value yij, activeStatus keeps the arc inconsistency information Dt

ij. It overwrites three
virtual functions of its father class: buildNeighborhood() creates a set of residual arcs
that are used to begin cycle construction; createGamma() builds the residual value set
Γ; initialModification() modifies the initial config and initial tabu list as specified by the
parameter file.

60

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Figure 5.4: Stoch package design

Here we used the polymorphism technique to reuse the TabuSolver class. By claiming
these three functions as virtual functions, only the modified parts need to be implemented,
the other functions like localSearch(), restore(), intensify() stay untouched. Notice that
we need to change the private functions in TabuSolver into protected, in order to allow
the inherited class to access them.

The StochPHASolver class is the kernel of this implementation. As the master thread,
it keeps the global Config, the average design vector avgY and the inconsistency status
vector activeStatus. The vectors configs and solutions are shared by slave threads to
store for each scenario the design and flow decisions.

The constructor of StochPHASolver takes the Graph, masterAlgo and slaveAlgo as
parameters. masterAlgo can be ‘p’ for augmented Lagrangian PHA or ‘h’ for heuristic
adjusting PHA; slaveAlgo can be ‘c’ for Cplex or ‘t’ for tabu search. Its public function
solve() does the progressive hedging until some stopping criterion is met.

There are six private functions defined in this class. modifyFixCostGlobally() modifies
f t

it at each iteration t according to the specified method; modifyFixCostLocally() modifies
f st

ij for scenario s on the given copy graph; combine() constructs the feasible global design
yMt; initialize() solves each original subproblems in parallel; update() solves the modified
subproblems in parallel. evaluate() calculates the objective function for a given design,
which is the sum of fixed costs and the expectation of routing costs over all scenarios.
Notice that the routing cost for scenario s is obtained by solving the corresponding CMCF
problem using original arc fixed costs, and this step can also be parallelized.

61

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

5.3.3 Modified MIP and Main package

We add several independent solvers to the MIP package. StochEEVSolver solves at first
the EV solution (the CMND problem with expected demands), then evaluate this de-
sign and output the EEV solution. StochMIPSolver0 and StochMIPSolver1 represent
models (2.4) and (2.5) respectively. They solve the model as a mixed integer program
using Cplex. StochLPSolver0 and StochLPSolver1 inherit from StochMIPSolver0 and
StochMIPSolver1 respectively, they relax the integrality constraints on the given model
and output the lower bound.

In the Main package, the static class Parameter is modified to deal with more pa-
rameters. Class ScenGenerator groups the demands of the Graph, then outputs two
text files to specify the distribution and correlation of the random demands. These two
text files are then used by the scenario generation program [28]. Feasibility checking for
each scenario s is done by simply opening all arcs and solving the corresponding CMCF
problem by Cplex. A scenario is infeasible if the solution has positive flow on artificial
arcs.

5.4 Conclusion

From the software engineering point of view, the implementation of the proposed meta-
heuristic algorithm tested the reusability of the re-implemented software of the cycle-
based tabu search. In fact, we found that it is quite easy to extend the functions of the
current software.

There is an important remark from our debugging process that we need to mention
here. We chose OpenMP to implement this parallel algorithm because it is convenient,
it allowed us to develop and test the proposed algorithm easily. Unfortunately, we found
that the Concert technology of ILOG Cplex does not work well with OpenMP. We tested
the following simple program, and it crashed as soon as the number of threads was set
to more than 1.

#include <ilcplex/ilocplex.h>

#include <omp.h>

const int bignumber=4;

int main(int argc, char** argv)

{

#pragma omp parallel for

for (int i=0; i<bignumber; i++)

62

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

{

IloEnv env;

IloModel model(env);

IloCplex cplex(model);

cplex.end();

model.end();

env.end();

}

return 0;

}

We contacted the technical support of ILOG Cplex, they confirmed our observation
and promised more parallel support in the future. For the time being, we simulated the
shared memory in the master class, created the models sequentially, and kept all pointers
in the master class. A future implementation using MPI is needed in order to run the
algorithm in parallel on larger clusters or on heterogenous networks.

63

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Chapter 6

Experimental results and analysis

In this chapter, we report the experimental results and analyze the performance of the
proposed algorithms. Experiments were conducted on a Sun Fire X4100 cluster of 16 com-
puters, each has two 2.6 GHz Dual-Core AMD Opteron processors and 8192 Megabytes
of RAM, operating under Solaris 2.10. For the parallel experiments, the number of par-
allel threads is set to 4. Computation times are wall-clock time in seconds. The Cplex
solver version is 10.1.1.

Experiments are performed on two instance sets, denoted S and R respectively.

The instance set S consists of 16 problems derived from the instances used in [23] for
the time-dependent stochastic service network design problems. As described in Section
5.1.1, each instance is a complete graph with unique arc fixed cost and arc capacity.
The routing costs are arc-specific for each commodity. An artificial arc is added for each
commodity with much higher routing cost and zero fixed cost, which means that if the
current network design is not able to fulfill the demands, some other high-cost backup
transportation methods have to be used. Detailed numerical results are reported in this
chapter for the 16 instances in this set, including the results of solving the problems
as mixed integer programs using the branch and bound algorithm of Cplex, their linear
relaxations, the measures of EVPI and VSS, as well as the performance of the two
progressive hedging algorithms proposed in Chapter 4.

The instance set R contains 180 problems. These problems are generated for 3 groups
of deterministic network design problems with 5 different combined levels of fixed cost
and capacity ratios selected from the instance set R used in [21]. For each deterministic
instance, we generated 16, 32 and 64 scenarios for 3 different levels of positive correlations
using the program provided by the authors of [23]. Thus, we have a total of 3∗5∗3∗3 = 135
instances in this set. We compared the best solutions obtained by the branch and bound
algorithm of Cplex and those obtained by using our progressive hedging algorithms.
Results for this set are listed in the Appendix and summarized in this chapter.

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
64

6.1 MIP and LP results

Table 6.1 displays the results of solving the instances in set S as mixed integer programs
and their linear relaxations.

Table 6.1: Problem set S, solving as MIP and LP

Branch & Bound Linear Relaxation

Prob Opt Time LB Gap Linear Time Int Diff

16N14C10S 4909.3 11.5 4909.3 0.00% 4228.7 0.4 5225.2 6.43%
16N14C20S 4990.1 47.3 4990.1 0.00% 4376.0 1.3 6414.8 28.55%
30N14C10S 5198.6 10.8 5198.6 0.00% 4523.5 1.2 5199.9 0.03%
30N14C20S 5218.6 25.7 5218.6 0.00% 4612.9 4.1 5630.2 7.89%
16N40C20S 15184.9 4569.6 15184.9 0.00% 13709.1 21.5 19611.6 29.15%
16N40C60S 15244.7 36006.4 15112.8 0.87% 13767.5 206.0 19798.0 29.87%
16N40C90S 15204.8 36019.3 15103.9 0.66% 13762.6 302.8 19896.6 30.86%
30N40C20S 14301.0 36009.9 14056.5 1.71% 12739.6 92.8 18508.2 29.42%
30N40C60S 14723.1 36029.0 13409.3 8.92% 12788.3 1304.7 19003.1 29.07%
30N40C90S 14723.0 36048.6 12787.0 13.15% 12787.0 2720.8 19110.5 29.80%
16N80C20S 27167.5 36013.6 26773.0 1.45% 24576.4 100.2 33208.7 22.24%
16N80C60S 28621.4 36030.8 26330.8 8.00% 24652.1 1028.5 34018.7 18.86%
16N80C90S 28621.1 36032.7 25709.6 10.17% 24659.4 1863.3 33531.5 17.16%
30N80C20S 31408.3 36027.3 29303.9 6.70% 27385.7 1911.4 40872.6 30.13%
30N80C60S 31412.7 36051.4 27491.8 12.48% 27491.8 22128.2 43592.4 38.77%
30N80C90S 31412.4 72106.8 27473.0 12.54% 27473.0 34870.4 42401.0 34.98%

The problems are identified in the first column by the number of nodes, commodities
and scenarios. Since the instances in this set are complete graphs, the number of arcs is
N2.

The results in the columns under Branch&Bound are obtained by solving the instances
as mixed integer programs. The Opt column corresponds to the best integer solution
found by the branch&bound algorithm of Cplex within a time limit of 10 hours. For the
last instance 30N80C90S, the procedure failed to produce a feasible solution within this
time limit. In order to facilitate further calculations of relative difference, we increase the
time limit to 20 hours for this instance, and obtained a feasible solution. The LB column
represents the lower bound found by Cplex, and the following column Gap indicates the
optimality gap between the best integer solution and the lower bound.

The figures in the columns under Linear Relaxation are obtained by solving the
linear relaxation of the problems. The Linear column corresponds to the value of the
linear relaxation of the SND problem. The column Int represents the integer solution
obtained by rounding up all non-zero design variables. The Diff column indicates the

65

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

relative difference between this integer solution and the best integer solution found by
Cplex.

A first conclusion that emerges from Table 6.1 is that stochastic network design
problems are indeed difficult to solve. As indicated by the performance of a state-of-
the-art mixed integer programming solver, most of the instances cannot be solved to
optimality within 10 hours, except for the instances in the first group, which are relatively
trivial. For some larger instances, the optimality gaps are more than 10% after 10 hours
of computation.

The experimental results also indicate clearly that the linear relaxation can provide
little help. On the one hand, the relaxation values cannot be used as good lower bounds;
on the other hand, the integer solutions obtained from this relaxation have very poor
quality.

The same experiments are conducted on the 135 instances of set R and the same
conclusions can be derived. The best integer solutions found by Cplex are given in
Appendix in order to compare with the results obtained by our progressive hedging
algorithms.

Another observation is the impact of the correlation levels on the results. Basically
speaking, the higher the correlation level, the longer it takes Cplex to solve the problem,
and the higher the optimal solution value. Three different correlation coefficients (r=0,
r=0.2, r=0.8) are used to generate the scenarios, thus we have 3 groups of instances, each
containing 45 problems. Compared to the results of the first group (r=0), 31 instances
in the second group (r=0.2) have higher Opt values, while 35 instances in the third group
(r=0.8) have higher Opt values. This trend is more clear when the problem becomes
harder to solve.

6.2 EVPI and VSS results

Before solving these stochastic network design problems, we would like to measure their
value of stochasticity. The EVPI and VSS values for the instance set S are reported in
Tables 6.2 and 6.3, respectively.

In Table 6.2, the column WS represents the wait-and-see value, which is calculated as
the expectation of total costs over all scenario problems. Each subproblem is solved by
Cplex within a time limit of 1 hour. If the subproblem cannot be solved to optimality
within the time limit, the value of WS is calculated using the best integer solution, while
the WS value is computed as the expectation of the lower bounds found by Cplex.

66

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 6.2: Problem set S, EVPI

Prob WS WS Time EVPI Int Diff D

16N14C10S 4896.5 4896.5 5.2 12.8 5209.3 6.11% 8
16N14C20S 4982.0 4982.0 10.3 8.1 5290.1 6.01% 8
30N14C10S 5198.6 5198.6 19.5 0.0 5198.6 0.00% 0
30N14C20S 5218.6 5218.6 37.7 0.0 5218.6 0.00% 0
16N40C20S 15086.5 15086.5 3006.9 98.4 16435.7 8.24% 35
16N40C60S 15062.1 15062.1 5518.3 182.6 16725.8 9.72% 43
16N40C90S 15064.7 15064.7 9224.5 140.1 17137.0 12.71% 48
30N40C20S 14083.0 13829.1 18149.1 471.9 15724.4 9.95% 34
30N40C60S 14084.2 13828.0 54568.1 895.1 15735.8 6.88% 35
30N40C90S 14079.8 13830.1 83882.3 892.9 16023.0 8.83% 40
16N80C20S 26773.1 26416.1 18136.7 751.4 31351.9 15.40% 90
16N80C60S 26790.0 26405.9 54204.0 2215.5 32926.6 15.04% 113
16N80C90S 26785.6 26407.7 83241.0 2213.4 33421.4 16.77% 116
30N80C20S 30528.9 29311.0 18415.1 2097.3 39153.4 24.66% 142
30N80C60S 30741.3 29301.3 55081.6 2111.4 41412.7 31.83% 170
30N80C90S 30635.2 29311.8 84041.1 2100.6 46312.4 47.43% 222

The column Time corresponds to the wall-clock time when the subproblems are solved
in parallel using 4 processors. The EVPI column holds the difference between the best
solution found by Cplex (the Opt column of Table 6.1) and the value of WS. For the
instances whose subproblems are not solved to optimality, the value in the column EVPI

is an estimation of the expected value of perfect information.

The column Int reports the integer solution value obtained by opening all arcs that
carry flows in at least one scenario solution. The next Diff column displays the relative
difference between this integer solution and the best solution found by Cplex. The last
column D represents the inconsistency level defined as the number of arcs that are not
agreed upon by all scenarios.

The results displayed in Table 6.2 indicate that the stochastic information has a
relatively high value, except for some small instances. Another conclusion is that the
integer solution constructed is time consuming and has very poor quality. The inconsis-
tency level reported in column D reveals the challenge of finding a compromise between
different scenario solutions into one global design.

Table 6.3 reports the measures of the value of the stochastic solution for the instance
set S. The column EV represents the optimal solution of the expected value problem,
which is obtained by replacing the random demands with its expected value, and solved
by Cplex within a time limit of 10 hours. The EEV column corresponds to the expected
result of using the EV solution, which is obtained by using the EV solution as a global

67

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 6.3: Problem set S, VSS

Prob EV EEV Time Diff VSS

16N14C10S 4909.3 4909.3 1.5 0.00% 0.0
16N14C20S 4990.1 4990.1 0.9 0.00% 0.0
30N14C10S 5198.6 5198.6 2.5 0.00% 0.0
30N14C20S 5218.6 5218.6 3.4 0.00% 0.0
16N40C20S 15061.0 15796.7 10.7 4.03% 611.8
16N40C60S 15107.5 15360.8 24.7 0.76% 248.0
16N40C90S 15063.3 15944.9 20.0 4.87% 841.0
30N40C20S 14108.1 14346.6 36034.5 0.32% 290.1
30N40C60S 14110.3 14367.2 19258.8 -2.42% 957.9
30N40C90S 14110.2 14338.6 3915.9 -2.61% 1551.6
16N80C20S 26770.4 27812.7 36096.0 2.37% 1039.7
16N80C60S 26783.4 28242.0 36130.0 -1.33% 1911.2
16N80C90S 26773.8 28267.8 36161.4 -1.23% 2558.2
30N80C20S 30286.2 31464.9 36185.1 0.18% 2161.0
30N80C60S 30224.5 31372.8 36100.1 -0.13% 3881.0
30N80C90S 30187.8 31061.0 36123.7 -1.12% 3588.0

design and solving for each scenario the related CMCF problem. The Time column shows
the computation time in seconds.

The Diff column illustrates the relative difference between the EEV value and the
best solution found by Cplex. The last column VSS indicates the difference between the
EEV value and the lower bound found by Cplex (the column LB of Table 6.1). For the
instances whose EV problem is not solved to optimality, the value in the column EEV is
an estimation of the value of the stochastic solution.

Our first observation from Table 6.3 is that some EEV solutions are better than the
best solution found by Cplex, which is quite out of intuition. A further research on
the flow distribution for scenario problems revealed the reason: for some scenarios, it
is possible that the given expected value design is incapable of delivering the required
demands for all commodities, in which case the artificial arc is used to carry flow. As
indicated in 5.1.1, the artificial arc represents ad-hoc capacity increase [32]. The existence
of the artificial arc makes sure that any design is feasible, including the expected value
design. Recall that for the instances in set S, the routing cost of artificial arc is set to the
outsourcing cost whose value is 330, while the average routing cost for design arcs is
about 50. The relative small difference between the artificial routing cost and “normal”
routing costs leads to the acceptable EEV cost. With higher artificial routing costs, the
EEV value should have been much higher. The value of the artificial routing cost also
has a direct influence on the VSS value, which can be explained intuitively that the more
expensive the ad-hoc capacity increase, the higher the cost of ignoring uncertainty.

68

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

For the instances in set R, artificial arcs are added with very high routing cost (1E10)
in order to indicate that no ad-hoc capacity increase is available besides the given design
arcs. For most instances in set R, the expected value designs are infeasible for one or
more scenarios, which makes the EEV value very high.

A conclusion from the VSS calculation is that for the network design problem, this
value depends on the artificial routing cost. In the case that no ad-hoc capacity increase is
available, the EEV solution is out of interest because of the high risk of having infeasible
design for some scenarios.

6.3 PHA1 and PHA2 results

In this section, we report the experimental results of the progressive hedging algorithms
proposed in Chapter 4. We denote PHA1 the PHA with Augmented Lagrangian and
PHA2 the PHA with heuristic cost adjustment, respectively. The results of PHA1 are
given in Table 6.4 and those for PHA2 are given in Table 6.5.

Table 6.4: Problem set S, PHA with Augmented Lagrangian

Final Phase I

Prob Best Time Diff Best Time Diff Iters D

16N14C10S 4909.3 20.4 0.00% 5009.3 20.1 2.04% 10 3
16N14C20S 4990.1 39.3 0.00% 5090.1 38.7 2.00% 11 3
30N14C10S 5198.6 161.2 0.00% 5298.6 160.3 1.92% 11 2
30N14C20S 5218.6 357.8 0.00% 5318.6 355.9 1.92% 27 2
16N40C20S 15243.1 244.4 0.38% 15922.4 241.1 4.86% 34 11
16N40C60S 15196.3 686.8 -0.32% 16324.8 672.5 7.09% 27 24
16N40C90S 15194.3 1112.0 -0.07% 17124.6 1057.6 12.63% 24 33
30N40C20S 14498.9 8018.9 1.38% 15121.2 8012.4 5.74% 25 14
30N40C60S 14350.1 11998.7 -2.53% 15623.1 11957.7 6.11% 23 25
30N40C90S 14321.4 13802.0 -2.73% 15623.0 13716.5 6.11% 23 29
16N80C20S 27464.4 342.4 1.09% 29918.2 294.7 10.12% 37 46
16N80C60S 27272.0 12977.7 -4.71% 31121.4 843.9 8.73% 31 74
16N80C90S 27347.4 31349.2 -4.45% 31121.1 1297.9 8.73% 35 75
30N80C20S 31010.6 13023.5 -1.27% 32708.3 13007.0 4.14% 23 30
30N80C60S 30874.2 19048.1 -1.71% 33712.7 18926.2 7.32% 31 54
30N80C90S 30704.5 17236.2 -2.25% 33812.4 16933.2 7.64% 24 57

The parallel progressive hedging algorithms stop after one of the following three cri-
teria is met: the total iteration number is 50, the non improvement iteration number is
10, or the wall-clock running time is over 10 hours. A second phase then follows, which

69

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 6.5: Problem set S, PHA with heuristic adjustment

Final Phase I

Problem Best Time Diff Best Time Diff Iters D

16N14C10S 4909.3 20.3 0.00% 5009.3 20.0 2.04% 10 3
16N14C20S 4990.1 39.2 0.00% 5090.1 38.5 2.00% 10 3
30N14C10S 5198.6 154.8 0.00% 5198.6 154.7 0.00% 6 0
30N14C20S 5218.6 352.9 0.00% 5318.6 351.0 1.92% 25 2
16N40C20S 15243.1 227.3 0.38% 16422.4 223.0 8.15% 22 23
16N40C60S 15196.3 743.9 -0.32% 17124.8 715.3 12.33% 38 31
16N40C90S 15194.3 1216.8 -0.07% 17224.6 1162.5 13.28% 40 34
30N40C20S 14321.9 7956.6 0.15% 15121.2 7948.9 5.74% 17 24
30N40C60S 14317.9 12117.8 -2.75% 15923.1 12063.9 8.15% 34 29
30N40C90S 14287.8 13956.3 -2.96% 16223.0 13825.3 10.19% 26 37
16N80C20S 27359.9 795.1 0.71% 30718.2 290.8 13.07% 39 56
16N80C60S 27190.2 30799.5 -5.00% 32321.4 776.6 12.93% 27 88
16N80C90S 27371.2 31478.3 -4.37% 31721.1 1412.3 10.83% 45 76
30N80C20S 30913.5 13037.0 -1.58% 32608.3 13019.8 3.82% 50 30
30N80C60S 30829.7 20780.1 -1.86% 34112.7 20608.8 8.60% 37 61
30N80C90S 30627.4 18761.0 -2.50% 34012.4 18478.6 8.28% 50 59

solves the restricted stochastic network design problem sequentially as a mixed integer
program using Cplex within a time limit of 30000 seconds.

A calibration phase could be helpful in determining the appropriate values for the key
parameters. However, due to time limit, we conducted the experiments with reasonable
parameter settings. For PHA1, α is set to 1.1, ρ0 is set to 1+ lg(1+D0), where D0 is the
inconsistency level (the number of arcs that are not agreed upon by all scenarios) after the
initialization phase. For PHA2, both global and local fixed cost adjusting are enabled,
with penalizing ratio β = 1.1, thresholds chigh = 0.8, clow = 0.2 for global adjustment,
and cfar = 0.7, cnear = 0.2 for local adjustment. As for the modified tabu search strategy,
the initial config and initial tabu list are not modified. Most parameters used in Chapter
3 are kept at the same values, except that the running time and intense gap are decreased
in order to keep the total running time for both PHA1 and PHA2 less than 10 hours.

In Tables 6.4 and 6.5, the column Final displays the results obtained after the second
phase, while the column Phase I represents the results of the first phase, i.e., the pro-
posed progressive hedging algorithm with different subproblem modification strategies.
The column Best reports the best integer solution found by the algorithms, while the
column Time represents the wall-clock time in seconds. The column Diff indicates the
relative difference between the results listed in the previous column Best and the best
results returned by Cplex (the Opt column in Table 6.1). In order to see the integer con-
vergence of the progressive hedging algorithms, the total iteration numbers are reported

70

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

in the column Iters. The column D shows the inconsistency level at the end of Phase I.

Our first conclusion from Tables 6.4 and 6.5 is very encouraging: the proposed algo-
rithms perform very well in finding high quality designs for the stochastic network design
problem. For the first group of instances that are relatively easy to solve, both algorithms
are able to obtain the optimal solutions. As for the second and third groups, both PHA1
and PHA2 improved the best solutions found by Cplex for 9 instances over 12. As for
the 3 instances where PHA1 and PHA2 cannot outperform Cplex, good solutions are
achieved very quickly, with a relative difference less than 1.5% for PHA1, and less than
1% for PHA2.

The experiments conducted on the 135 instances of set R also support the above
conclusion. PHA1 is able to find the optimal solution for 72 instances, and to improve
the solution quality for 40 instances. As for PHA2, optimal solutions are achieved for
65 instances, and improvements are observed for 41 instances. For both algorithms, the
largest improvement is over 25%, while the worst deterioration in quality is less than 2%.
We summarize in Table 6.6 the numerical results presented in Appendix.

Table 6.6: Problem set R: Summary

PHA1 PHA2

Group Probs TimeRatio SolDiff TimeRatio SolDiff

R04-1 10N 25A 10C F01 C1 5.24 0.00% 5.27 0.00%
R04-3 10N 25A 10C F10 C1 0.12 0.00% 0.12 0.00%
R06-7 10N 50A 50C F01 C8 2.36 0.00% 2.34 0.00%
R04-5 10N 25A 10C F05 C2 0.07 0.05% 0.07 0.05%
R06-1 10N 50A 50C F01 C1 0.41 0.02% 0.38 0.02%
R04-7 10N 25A 10C F01 C8 0.36 0.06% 0.36 0.06%
R04-9 10N 25A 10C F10 C8 0.17 0.18% 0.17 0.18%
R10-1 20N 100A 40C F01 C1 0.07 0.00% 0.07 0.11%
R06-9 10N 50A 50C F10 C8 0.47 0.16% 0.40 0.16%
R06-3 10N 50A 50C F10 C1 0.65 -1.34% 0.65 -1.43%
R10-7 20N 100A 40C F01 C8 0.64 -1.38% 0.69 -1.38%
R06-5 10N 50A 50C F05 C2 0.66 0.11% 0.63 0.07%
R10-3 20N 100A 40C F10 C1 0.43 -15.99% 0.47 -15.54%
R10-9 20N 100A 40C F10 C8 0.79 -2.52% 0.70 -2.65%
R10-5 20N 100A 40C F05 C2 0.84 -5.01% 0.64 -7.37%

In Table 6.6, 15 groups of instances are sorted according to their difficulty. In other
words, how long does it take for Cplex to solve the corresponding deterministic network
design problem. The total number of nodes, arcs and commodities, as well as the fixed
cost and capacity ratios are displayed in Column Probs. The number following the letter
F indicates a relatively high or low fixed cost relative to the routing cost. Three different
levels (01, 05, 10) are used. The larger this number, the higher the fixed cost. The

71

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

number following the letter C indicates a relatively tight or loose capacity constraints
relative to the demands. Three different levels (1, 2, 8) are used. The larger this number,
the tighter the capacity constraints. The columns TimeRatio represent the ratio between
the total time used by Cplex and that used by PHA1 or PHA2 to solve the 9 instances
in a group. The columns SolDiff report for each group the average relative difference
between the best solution found by Cplex and that found by PHA1 or PHA2.

We can conclude from Table 6.6 that PHA1 and PHA2 outperform Cplex in two
aspects. First, for easy problems (except some trivial ones), PHA1 and PHA2 can reach
the optimal or near-optimal solutions very efficiently. Second, for harder problems, PHA1
and PHA2 can find better solutions using less time. Our experiments are conducted
with a given parameter setting. With careful calibration on the parameters, further
improvements can be expected.

Another observation from Tables 6.4 and 6.5 is that PHA2 performs better than
PHA1 in finding good solutions. For 8 instances over 12 in the second and third group,
the solutions found by PHA2 are better than those of PHA1. As for the instance set R,
there is no apparent impact observed for the correlation levels, nor systematic superiority
between PHA1 and PHA2.

A more in-depth study of the first phase on instance set S supports the conclusion
that for stochastic network design problem, non-convergence of the progressive hedging
algorithm is not only possible, but very common. Even for the small instances in the
first group, only PHA2 converged for one instance, all other inconsistency levels D are
positive at the end of the first phase.

By comparing the relative difference and running time of Phase I with that of the
overall algorithm, we can see that over 90% of computation time is used by the first
phase, except for two instances (16N80C60S and 16N80C90S). The first phase itself
cannot improve the best solution, but it is efficient in decreasing the inconsistency level,
thus restricting the size of the original problems.

6.4 Conclusion

Summarizing the computational results, we can conclude that the proposed algorithms
are able to find high quality designs efficiently for the stochastic network design problems.
The integration of the cycle-based tabu search and the progressive hedging framework is
successful. Within the progressive hedging framework, both the Augmented Lagrangian
and the heuristic fixed cost adjustment strategies are able to drive different scenario
solutions toward a global design. Another conclusion is that non-convergence is common
for the progressive hedging algorithms, due to the integrality constraints on the design

72

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

decisions. A second phase is necessary to determine the final decisions on the controversial
arcs.

The progressive hedging approach for stochastic network design problem is very
promising. Further research can be undertaken on several avenues. One avenue is to
balance the effort of pushing scenario problems to optimality and that of pulling them
together as a global design. At each iteration, how good the scenario solutions should
be? A comparison between using exact methods and heuristic methods to solve subprob-
lems will be interesting. A second direction is to adapt existing metaheuristic methods
for the second phase, such as tabu search, path relinking and scatter search. Finally,
the parallel implementation can be carried out using MPI (message passing interface)
instead of OpenMP, in order to run the program in parallel over a network of heteroge-
neous computers and profit more from the parallel structure of the progressive hedging
algorithm.

73

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Chapter 7

Conclusion

In this thesis, we proposed and implemented a parallel metaheuristic algorithm that
integrates the cycle-based tabu search method and the progressive hedging framework, in
order to obtain good solutions for the stochastic fixed-charge capacitated multicommodity
network design problem with uncertain demands. Experimental results show that this
combination is powerful in finding high quality design decisions.

The contribution of this thesis is twofold. First, from an operations research point of
view, the proposed scenario-decomposition and relaxation method for stochastic network
design problem, together with the second phase, provides an efficient way to solve the
stochastic network design problems with uncertain demands. Second, from the software
engineering point of view, the re-engineering work for the existing code of the cycle-
based tabu search method, together with the implementation of the proposed progressive
hedging-inspired algorithm, provides a good basis for future research.

Several interesting research avenues are now before us. One avenue consists in study-
ing the impact of the subproblem solver on the efficiency and quality of the proposed
algorithm. In other words, how to make a better tradeoff between the effort in finding
good scenario solutions and that in consolidating the scenario solutions into one global
design. More experiments are needed to establish effective parameter ranges and to study
the performance of the proposed algorithm. Using other metaheuristic methods, such as
path relinking, in place of tabu search will also be an interesting try.

Another avenue of research would be to group multiple scenarios, solving the resulting
smaller number of larger subproblems, and blending these solutions. Finding appropriate
criteria for partitioning the scenarios could be a difficult but interesting task. Should
similar or different scenarios be grouped together?

Developing the second phase algorithm to solve the restricted problem opens up an-
other intriguing but challenging perspective. Metaheuristics such as tabu search, path
relinking and scatter search are promising.

Finally, from the software point of view, an MPI implementation of the parallel al-
gorithm is needed in order to run the algorithm in parallel on bigger clusters or on
heterogenous networks.

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
74

Bibliography

[1] Ahuja, R.K., T.L. Magnanti et J.B. Orlin, Network Flows Theory, Algorithms
and Applications. Prentice Hall, New Jersey, 1993.

[2] Anderson, D.R., D.J. Sweeney et T.A. Williams, An Introduction to Manage-
ment Science: Quantitative Approaches to Decision Making. George Werthman,
Mason, Ohio, USA, 2005.

[3] Atamtük, A. et M. Zhang, «Two-Stage Robust Network Flow and Design Under
Demand Uncertainty», Operations Research, vol. 55, no. 4, 2007, pp. 662–673.

[4] Balakrishnan, A., T.L. Magnanti et P. Mirchandani. «Network Design». In
Annotated Bibliographies in Combinatorial Optimization, M. Dell’Amico, F. Maffioli,
et S. Martello, Eds. Jonh Wiley & Sons, Chichester, 1997, pp. 311–334.

[5] Balakrishnan, A., T.L. Magnanti, A. Shulman et R.T. Wong, «Models for
Planning Capacity Expansion in Local Access Telecommunication Networks», An-
nals of Operations Research, vol. 33, no. 4, 1991, pp. 239–284.

[6] Birge, J.R. et F. Louveaux, Introduction to Stochastic Programming. Springer,
New York, NY, 1997.

[7] Butenhof, D.R., Programming with POSIX Threads. Addison-Wesley Longman
Publishing Co., Inc, Boston, MA, USA, 1997.

[8] Carøe, C.C. et R. Schultz, «Dual Decomposition in Stochastic Integer Program-
ming», Operations Research Letters, vol. 24, 1998, pp. 37–45.

[9] Carøe, C.C. et J. Tind, «L-shaped Decomposition of Two-stage Stochastic
Programs with Integer Recourse», Mathematical Programming, vol. 83, 1998,
pp. 451–464.

[10] Chandra, R., R. Menon, L. Dagum, D. Kohr, D. Maydan et J. McDonald,
Parallel Programming in OpenMP. Academic Press, Morgan Kaufmann, 2000.

[11] Chouman, M., T.G. Crainic et B. Gendron. «A Cutting-Plane Algorithm Based
on Cutset Inequalities for Multicommodity Capacitated Fixed Charge Network De-
sign». Publication CRT-316, Centre de recherche sur les transports, Université de
Montréal, Montréal, QC, Canada, 2003.

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
75

[12] Crainic, T.G., «Service Network Design in Freight Transportation», European
Journal of Operational Research, vol. 122, 2000, pp. 272–288.

[13] Crainic, T.G., A. Frangioni et B. Gendron, «Bundle-Based Relaxation Meth-
ods for Multicommodity Capacitated Network Design», Discrete Applied Mathemat-
ics, vol. 112, 2001, pp. 73–99.

[14] Crainic, T.G., M. Gendreau et J.M. Farvolden, «A Simplex-Based Tabu
Search Method for Capacitated Network Design», INFORMS Journal on Comput-
ing, vol. 12, no. 3, 2000, pp. 223–236.

[15] Crainic, T.G., B. Gendron et G. Hernu, «A Slope Scaling/Lagrangian Pertur-
bation Heuristic with Long-Term Memory for Multicommodity Capacitated Fixed-
Charge Network Design», Journal of Heuristics, vol. 10, no. 3, 2004, pp. 525–545.

[16] Frangioni, A. et B. Gendron. «0-1 Reformulations of the Multicommodity Ca-
pacitated Network Design Problem». Publication CIRRELT-2007-29, Centre In-
teruniversitaire de Recherche sur les Réseaux d’ Entreprise, la Logistique et le Trans-
port (CIRRELT), Montréal, QC, Canada, 2007.

[17] Gendreau, M. et J.Y. Potvin. «A Guide to Tabu Search». Publication CRT-
2003-23, Centre de recherche sur les transports, Université de Montréal, Montréal,
QC, Canada, 2003.

[18] Gendron, B., T.G. Crainic et A. Frangioni. «Multicommodity Capacitated
Network Design». In Telecommunications Network Planning, P. Soriano et B. Sansò,
Eds. Kluwer Academics Publisher, 1999, pp. 1–19.

[19] Ghamlouche, I. Métaheuristiques de Recherche avec Tabous pour le Problème
de Synthèse de Réseau Multiproduits avec Capacités. PhD thesis, Université de
Montréal, Montréal, QC, Canada, 2004.

[20] Ghamlouche, I., T.G. Crainic et M. Gendreau, «Path Relinking, Cycle-Based
Neighborhoods and Capacitated Multicommodity Network Design», Annals of Op-
erations Research, vol. 131, 2004, pp. 109–133.

[21] Ghamlouche, I., T.G. Crainic et M. Gndreau, «Cycle-Based Neighbourhoods
for Fixed-Charge Capacitated Multicommodity Network Design», Operations Re-
search, vol. 51, no. 4, 2003, pp. 655–667.

[22] Gropp, W., E. Lusk et A. Skjellum, Using MPI, 2nd Edition: Portable Paral-
lel Programming with the Message Passing Interface. MIT Press in Scientific and
Engineering Computation Series, Cambridge, MA, USA, 1999.

[23] Hoff, A., A-G. Lium, A. Løkketangen et T.G. Crainic. «A Metaheuristic
for Stochastic Service Network Design». Publication CIRRELT-2007-623, Centre
Interuniversitaire de Recherche sur les Réseaux d’ Entreprise, la Logistique et le
Transport (CIRRELT), Montréal, QC, Canada, 2007.

76

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

[24] Holmberg, K. et D. Yuan, «A Lagrangian Heuristic Based Branch-and-Bound Ap-
proach for the Capacitated Network Design Problem», Operations Research, vol. 48,
no. 3, 2000, pp. 461–481.

[25] Høyland, K., M. Kaut et S.W. Wallace, «A Heuristic for Moment-Matching
Scenario Generation», Computational Optimization and Applications, vol. 24,
no. 2-3, 2003, pp. 169–185.

[26] ILOG. ILOG CPLEX 10.0. ILOG, Mountain View, CA. U.S.A, 2006.

[27] Kall, P. et S.W. Wallace, Stochastic Programming. Jonh Wiley & Sons, Chich-
ester, 1994.

[28] Kaut, M. et S.W. Wallace. «Evaluation of Scenario-generation Methods for
Stochastic Programming». Stochastic Programming E-Print Series (SPEPS) 2003-
14, 2003.

[29] Kliewer, G. et L. Timajev. «Relax-and-Cut for Capacitated Network Design».
In Proceedings of Algorithms-ESA 2005: 13th Annual European Symposium on Al-
gorithms (2005), Lecture Notes in Computer Science 3369, pp. 47–58.

[30] Kumar, V., A. Grama, A. Gupta et G. Karpis, Introduction to Parallel Comput-
ing: Design and Analysis of Parallel Algorithms. Benjamin-Cummings Publishing
Company, Harlow, England, 1993.

[31] Laporte, G. et F.V. Louveaux, «The Integer L-Shaped Method for Stochastic
Integer Programs with Complete Recourse», Operations Research Letters, vol. 13,
no. 3, 1993, pp. 133–142.

[32] Lium, A.-G., Crainic, T.G. et Wallace, S., «A Study of Demand Stochasticity
in Service Network Design», Transportation Science, 2007. forthcoming.

[33] Løkketangen, A. et D. Woodruff, «Progressive Hedging and Tabu Search Ap-
plid to Mixd Integer (0,1) Multistage Stochastic Programming», Journal of Heuris-
tics, vol. 2, 1996, pp. 111–128.

[34] Magnanti, T.L. et R.T. Wong, «Network Design and Transportation Planning:
Models and Algorithms», Transportation Science, vol. 18, no. 1, 1984, pp. 1–55.

[35] Minoux, M., «Network Synthesis and Optimum Network Design Problems: Models,
Solution Methods and Applications», Networks, vol. 19, no. 3, 1989, pp. 313–360.

[36] Riis, M. et K.A. Andersen, «Capacitated Network Design with Uncertain De-
mand», INFORMS Journal on Computing, vol. 14, no. 3, 2002, pp. 247–260.

[37] Rockafellar, R.T. et R.J.-B. Wets, «Scenarios and Policy Aggregation in Op-
timization under Uncertainty», Mathematics of Operations Research, vol. 16, 1991,
pp. 119–147.

77

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

[38] Sellmann, M., G. Kliewer et A. Koberstein. «Lagrangian Cardinality Cuts
and Variable Fixing for Capacitated Network Design». In Proceedings of Algorithms-
ESA 2002: 10th Annual European Symposium on Algorithms (2002), Lecture Notes
in Computer Science 2461, pp. 845–858.

[39] Wets, R.J.-B. «The Aggregation Principle in Scenario Analysis and Stochastic Op-
timization». In Algorithms and Model Formulations in Mathematical Programming
(Berlin, 1989), S. Wallace, Ed., vol. 51, Springer-Verlag, pp. 91–113.

78

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Appendix

Results for the instances of set R are given in Tables 7.1 to 7.15.

We tested on three groups of deterministic instances (R04, R06, R10) selected from
the data set R of [21], with 5 different combined levels of fixed cost and capacity ratio
(1, 3, 5, 7, 9). The total number of nodes, arcs and commodities, as well as the relative
fixed cost ratio and capacity ratio are displayed in the title of the tables. Finally, the
optimal solution value for the deterministic network design problem is displayed. Recall
that the stochastic demands are generated using the triangle distribution whose mode
value is set to the value of its corresponding deterministic demands wk, min value is
zero, and max value is 1.25wk. The optimal solution value of the deterministic problem
represents the total cost of the decision where the unknown demands are estimated as
80% of their maximum values. By comparing this value with the solution values of the
stochastic model, we can see the saving of using the stochastic model, or, in another
words, the value of the stochastic solution.

The following information is displayed in the tables:

• Prob: The correlation coefficient used to generate the scenarios and the number of
scenarios.

• Opt: The best integer solution found by Cplex.

• LB: The lower bound found by Cplex.

• Gap: The optimality gap between the best integer solution and the lower bound
found by Cplex, in the case that an optimal solution is not found within the time
limit.

• PHA1: The best integer solution found by the progressive hedging algorithm with
Augmented Lagrangian.

• PHA2: The best integer solution found by the progressive hedging algorithm with
heuristic fixed cost adjusting.

• Diff: The relative difference between the best solution found by PHA and that
obtaind by Cplex.

On the second line, the figures under the solutions are the wall-clock time in seconds.

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

nath
Texte tapé à la machine
79

Table 7.1: R04-1: 10N, 25A, 10C, F01, C1, 31730

Prob Opt PHA1 Diff PHA2 Diff

0r 16S 24443.5 24443.5 0.00% 24443.5 0.00%
0.76 3.31 3.39

0r 32S 25219.9 25219.9 0.00% 25219.9 0.00%
1.40 6.87 6.70

0r 64S 25291.3 25291.3 0.00% 25291.3 0.00%
5.03 20.83 19.41

0.2r 16S 24557.7 24557.7 0.00% 24557.7 0.00%
0.68 3.30 3.47

0.2r 32S 25437.4 25437.4 0.00% 25437.4 0.00%
1.73 9.47 9.95

0.2r 64S 25091.2 25091.2 0.00% 25091.2 0.00%
3.72 19.71 18.89

0.8r 16S 25765.8 25765.8 0.00% 25765.8 0.00%
0.55 4.49 4.13

0.8r 32S 25403.5 25403.5 0.00% 25403.5 0.00%
1.21 9.25 8.32

0.8r 64S 25122.2 25122.2 0.00% 25122.2 0.00%
3.47 19.93 23.59

Table 7.2: R04-3: 10N, 25A, 10C, F10, C1, 63767

Prob Opt PHA1 Diff PHA2 Diff

0r 16S 53399.3 53399.3 0.00% 53399.3 0.00%
5.20 5.78 5.83

0r 32S 54527.5 54527.5 0.00% 54527.5 0.00%
30.23 11.66 11.82

0r 64S 54503.1 54503.1 0.00% 54503.1 0.00%
183.38 26.51 25.71

0.2r 16S 56121.9 56121.9 0.00% 56121.9 0.00%
17.63 5.72 5.72

0.2r 32S 57463.3 57463.3 0.00% 57463.3 0.00%
173.54 13.80 11.95

0.2r 64S 57062.9 57062.9 0.00% 57062.9 0.00%
542.90 27.03 27.19

0.8r 16S 55470.2 55470.2 0.00% 55470.2 0.00%
4.07 5.74 6.40

0.8r 32S 54765.0 54765.0 0.00% 54765.0 0.00%
21.27 12.39 14.05

0.8r 64S 54340.3 54340.3 0.00% 54340.3 0.00%
180.23 28.46 28.14

80

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 7.3: R04-5: 10N, 25A, 10C, F05, C2, 53790

Prob Opt PHA1 Diff PHA2 Diff

0r 16S 44681.7 44720.2 0.09% 44720.2 0.09%
19.12 5.48 5.40

0r 32S 46033.2 46033.2 0.00% 46033.2 0.00%
196.80 12.87 13.05

0r 64S 45938.3 46097.2 0.35% 46097.2 0.35%
686.51 42.00 42.34

0.2r 16S 45307.0 45307.0 0.00% 45307.0 0.00%
21.74 5.98 6.02

0.2r 32S 46377.5 46377.5 0.00% 46377.5 0.00%
167.54 14.05 13.93

0.2r 64S 45840.0 45840.0 0.00% 45840.0 0.00%
780.34 45.28 44.90

0.8r 16S 47302.3 47302.3 0.00% 47302.3 0.00%
44.09 6.00 5.78

0.8r 32S 46842.5 46842.5 0.00% 46842.5 0.00%
182.25 13.50 12.87

0.8r 64S 46392.4 46392.4 0.00% 46392.4 0.00%
1080.20 66.26 65.60

Table 7.4: R04-7: 10N, 25A, 10C, F01, C8, 68291.7

Prob Opt PHA1 Diff PHA2 Diff

0r 16S 47003.3 47003.3 0.00% 47003.3 0.00%
15.67 9.82 9.95

0r 32S 48707.3 48711.2 0.01% 48711.2 0.01%
86.57 36.87 36.94

0r 64S 48975.9 48975.9 0.00% 48975.9 0.00%
546.18 109.74 110.56

0.2r 16S 48382.3 48645.6 0.54% 48645.6 0.54%
42.28 13.88 15.78

0.2r 32S 50128.5 50128.5 0.00% 50128.5 0.00%
49.24 27.88 28.60

0.2r 64S 49649.7 49649.7 0.00% 49649.7 0.00%
294.58 127.91 165.44

0.8r 16S 51716.8 51716.8 0.00% 51716.8 0.00%
23.53 13.13 13.28

0.8r 32S 51049.1 51049.1 0.00% 51049.1 0.00%
88.74 36.29 36.34

0.8r 64S 50270.5 50270.5 0.00% 50270.5 0.00%
481.98 218.06 173.22

81

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 7.5: R04-9: 10N, 25A, 10C, F10, C8, 163208

Prob Opt PHA1 Diff PHA2 Diff

0r 16S 140513 140513 0.00% 140513 0.00%
409.15 52.30 38.70

0r 32S 144062 144062 0.00% 144062 0.00%
1083.92 116.88 118.14

0r 64S 147914 147914 0.00% 147914 0.00%
7465.32 545.62 544.44

0.2r 16S 141344 141344 0.00% 141344 0.00%
640.23 62.59 55.78

0.2r 32S 147961 147961 0.00% 147961 0.00%
1915.91 221.81 221.61

0.2r 64S 148351 148351 0.00% 148351 0.00%
10260.20 1968.49 1983.03

0.8r 16S 151937 153176 0.82% 153176 0.82%
119.08 42.55 42.68

0.8r 32S 151795 153034 0.82% 153034 0.82%
581.80 383.22 382.58

0.8r 64S 152150 152155 0.00% 152155 0.00%
4825.28 1197.54 1197.11

Table 7.6: R06-1: 10N, 50A, 50C, F01, C1, 245936

Prob Opt PHA1 Diff PHA2 Diff

0r 16S 188606 188606 0.00% 188606 0.00%
269.45 71.24 70.90

0r 32S 188093 188093 0.00% 188093 0.00%
1099.49 326.69 321.48

0r 64S 189598 189598 0.00% 189598 0.00%
4283.06 2081.46 2077.88

0.2r 16S 192667 193050 0.20% 193050 0.20%
225.56 78.47 60.56

0.2r 32S 191256 191256 0.00% 191256 0.00%
705.08 330.24 256.47

0.2r 64S 190419 190419 0.00% 190419 0.00%
3088.04 1251.32 1098.92

0.8r 16S 191947 191947 0.00% 191947 0.00%
210.95 70.43 68.87

0.8r 32S 194169 194169 0.00% 194169 0.00%
895.40 288.38 241.59

0.8r 64S 191903 191903 0.00% 191903 0.00%
3205.25 1240.86 1081.42

82

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 7.7: R06-3: 10N, 50A, 50C, F10, C1, 559477

Prob Opt LB Gap PHA1 Diff PHA2 Diff

0r 16S 464744 464744 0.00% 464744 0.00% 464744 0.00%
27687.9 3946.04 3927.46

0r 32S 471673 441978 6.30% 464115 -1.60% 464115 -1.60%
t 30051.1 30052.5

0r 64S 536416 424970 20.78% 482959 -9.97% 482959 -9.97%
t 30100.4 30101.7

0.2r 16S 472709 472709 0.00% 476182 0.73% 476182 0.73%
17809.4 4749.63 4719.27

0.2r 32S 477375 449023 5.94% 473709 -0.77% 473709 -0.77%
t 30052.7 30052.0

0.2r 64S 485055 424766 12.43% 485843 0.16% 485843 0.16%
t 30101.6 30100.0

0.8r 16S 474333 474333 0.00% 474333 0.00% 474333 0.00%
9749.17 1660.8 1659.15

0.8r 32S 480563 461377 3.99% 477338 -0.67% 477338 -0.67%
t 15978.1 16013.5

0.8r 64S 477260 438256 8.17% 477417 0.03% 473763 -0.73%
t 30076.0 30083.6

Table 7.8: R06-5: 10N, 50A, 50C, F05, C2, 498266

Prob Opt LB Gap PHA1 Diff PHA2 Diff

0r 16S 397396 392374 1.26% 396980 -0.10% 396980 -0.10%
t 13108.0 3843.9

0r 32S 399850 386240 3.40% 401241 0.35% 401241 0.35%
t 30054.7 30055.4

0r 64S 405562 375486 7.42% 408260 0.67% 408260 0.67%
t 30107.4 30106.5

0.2r 16S 408612 405503 0.76% 408612 0.00% 408612 0.00%
t 6144.8 5643.1

0.2r 32S 413984 396902 4.13% 411309 -0.65% 411309 -0.65%
t 30054.3 30060.3

0.2r 64S 416166 382776 8.02% 423123 1.67% 423123 1.67%
t 30104.9 30105.8

0.8r 16S 419464 410285 2.19% 419464 0.00% 419464 0.00%
t 15715.0 13187.6

0.8r 32S 420822 407749 3.11% 423535 0.64% 421995 0.28%
t 30053.2 30061.5

0.8r 64S 431105 393020 8.83% 424362 -1.56% 424362 -1.56%
t 30105.2 30109.7

83

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 7.9: R06-7: 10N, 50A, 50C, F01, C8, 682921

Prob Opt PHA1 Diff PHA2 Diff

0r 16S 412085 412085 0.00% 412085 0.00%
9.81 28.23 29.88

0r 32S 409609 409609 0.00% 409609 0.00%
19.95 53.98 56.51

0r 64S 409033 409033 0.00% 409033 0.00%
59.37 114.93 109.30

0.2r 16S 431646 431646 0.00% 431646 0.00%
8.33 26.16 25.67

0.2r 32S 424527 424527 0.00% 424527 0.00%
20.39 57.64 57.12

0.2r 64S 417223 417223 0.00% 417223 0.00%
54.92 111.76 110.04

0.8r 16S 441098 441098 0.00% 441098 0.00%
7.96 25.71 25.74

0.8r 32S 436548 436548 0.00% 436548 0.00%
17.44 53.32 53.43

0.8r 64S 428714 428714 0.00% 428714 0.00%
50.71 114.55 113.85

Table 7.10: R06-9: 10N, 50A, 50C, F10, C8, 423316

Prob Opt LB Gap PHA1 Diff PHA2 Diff

0r 16S 353124 353124 0.00% 359863 1.91% 359863 1.91%
3427.45 1176.18 1173.16

0r 32S 351558 351558 0.00% 358349 1.93% 358349 1.93%
7900.68 2886.36 3246.53

0r 64S 353682 339976 3.88% 350335 -0.95% 350335 -0.95%
t 16837.1 12681.60

0.2r 16S 352792 352792 0.00% 352792 0.00% 352792 0.00%
1768.30 388.60 389.95

0.2r 32S 351464 351464 0.00% 351464 0.00% 351464 0.00%
7746.51 1544.03 1519.97

0.2r 64S 355284 345867 2.65% 355284 0.00% 355284 0.00%
t 15519.5 15511.1

0.8r 16S 366153 366153 0.00% 366153 0.00% 366153 0.00%
2148.84 746.32 741.50

0.8r 32S 363209 363209 0.00% 363209 0.00% 363209 0.00%
7202.98 2489.33 2497.49

0.8r 64S 366715 352438 3.89% 361316 -1.47% 361316 -1.47%
t 22708.6 17708.3

84

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 7.11: R10-1: 20N, 100A, 40C, F01, C1, 200087

Prob Opt PHA1 Diff PHA2 Diff

0r 16S 157212 157212 0.00% 157391 0.11%
128.07 40.22 41.29

0r 32S 157027 157027 0.00% 157268 0.15%
634.57 78.83 87.24

0r 64S 158162 158162 0.00% 158428 0.17%
4421.14 187.62 203.15

0.2r 16S 161953 161953 0.00% 161976 0.01%
207.00 37.95 38.46

0.2r 32S 162697 162697 0.00% 162959 0.16%
778.63 105.02 113.06

0.2r 64S 161811 161811 0.00% 161936 0.08%
5095.02 371.95 226.15

0.8r 16S 149496 149496 0.00% 149991 0.33%
169.95 42.05 54.81

0.8r 32S 157132 157132 0.00% 157132 0.00%
818.55 86.05 88.67

0.8r 64S 157982 157982 0.00% 157982 0.00%
4336.90 243.95 251.86

Table 7.12: R10-3: 20N, 100A, 40C, F10, C1, 488015

Prob Opt LB Gap PHA1 Diff PHA2 Diff

0r 16S 422737 397312 6.01% 414893 -1.86% 414893 -1.86%
t 785.35 535.18

0r 32S 545291 390615 28.37% 411154 -24.60% 418407 -23.27%
t 4800.88 13919.2

0r 64S 545526 358575 34.27% 417406 -23.49% 423467 -22.37%
t 30169.7 30228.9

0.2r 16S 445535 407364 8.57% 433244 -2.76% 433244 -2.76%
t 3387.66 3379.81

0.2r 32S 550822 401589 27.09% 435142 -21.00% 436274 -20.80%
t 24188.1 30094.8

0.2r 64S 549234 366599 33.25% 443535 -19.24% 443535 -19.24%
t 30169.4 30169.3

0.8r 16S 413712 385596 6.80% 400062 -3.30% 403744 -2.41%
t 1563.38 621.74

0.8r 32S 560316 389341 30.51% 415919 -25.77% 415919 -25.77%
t 14700.2 12358.6

0.8r 64S 545477 352787 35.33% 426133 -21.88% 428732 -21.40%
t 30166.5 30169.5

85

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 7.13: R10-5: 20N, 100A, 40C, F05, C2, 411664

Prob Opt LB Gap PHA1 Diff PHA2 Diff

0r 16S 351503 321461 8.55% 345486 -1.71% 345321 -1.76%
t 30062.5 29804.3

0r 32S 364302 322212 11.55% 341437 -6.28% 341437 -6.28%
t 30120.7 30120.9

0r 64S 468867 305347 34.88% 450573 -3.90% 450573 -3.90%
t 30247.0 30256.5

0.2r 16S 357027 330396 7.46% 353769 -0.91% 348255 -2.46%
t 30067.8 5240.4

0.2r 32S 465347 331946 28.67% 352548 -24.24% 349931 -24.80%
t 30125.6 13574.3

0.2r 64S 463309 307762 33.57% 450668 -2.73% 357695 -22.80%
t 30259.1 30317.5

0.8r 16S 335980 310975 7.44% 330408 -1.66% 333614 -0.70%
t 30060.5 8773.5

0.8r 32S 359393 320636 10.78% 357134 -0.63% 357134 -0.63%
t 30125.7 30126.8

0.8r 64S 468849 298968 36.23% 454733 -3.01% 454733 -3.01%
t 30251.2 30250.9

Table 7.14: R10-7: 20N, 100A, 40C, F01, C8, 486895

Prob Opt LB Gap PHA1 Diff PHA2 Diff

0r 16S 326484 326484 0.00% 326484 0.00% 326484 0.00%
32803.10 13153.7 14385.9

0r 32S 327372 321219 1.88% 326778 -0.18% 327334 -0.01%
t 30152.0 30162.7

0r 64S 344050 318810 7.34% 330915 -3.82% 330915 -3.82%
t 30303.7 30304.7

0.2r 16S 345146 343040 0.61% 345130 0.00% 345130 0.00%
t 9292.4 21534.6

0.2r 32S 350681 347923 0.79% 350585 -0.03% 350510 -0.05%
t 30145.7 30144.6

0.2r 64S 359702 333581 7.26% 344542 -4.21% 344542 -4.21%
t 30290.2 30292.5

0.8r 16S 307068 307068 0.00% 307712 0.21% 307712 0.21%
16010.60 4788.3 4750.4

0.8r 32S 329339 325059 1.30% 329031 -0.09% 329031 -0.09%
t 14558.2 14489.2

0.8r 64S 348317 324212 6.92% 333436 -4.27% 333011 -4.39%
t 30313.5 30294.8

86

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

Table 7.15: R10-9: 20N, 100A, 40C, F10, C8, 1421740

Prob Opt LB Gap PHA1 Diff PHA2 Diff

0r 16S 1143160 1059240 7.34% 1141320 -0.16% 1140800 -0.21%
t 30096.4 12370.2

0r 32S 1224320 1032810 15.64% 1145330 -6.45% 1147270 -6.29%
t 30197.3 30216.9

0r 64S 1223720 987389 19.31% 1204500 -1.57% 1199340 -1.99%
t 30347.5 30416.0

0.2r 16S 1177240 1095320 6.96% 1176120 -0.10% 1176120 -0.10%
t 15732.4 3467.6

0.2r 32S 1251260 1065030 14.88% 1180580 -5.65% 1180740 -5.64%
t 30168.8 30197.7

0.2r 64S 1259000 1015950 19.31% 1242250 -1.33% 1242250 -1.33%
t 30364.0 30441.6

0.8r 16S 1114670 1041250 6.59% 1115020 0.03% 1114540 -0.01%
t 30103.4 29695.6

0.8r 32S 1246500 1053660 15.47% 1153380 -7.47% 1152530 -7.54%
t 30185.0 30211.4

0.8r 64S 1210520 1006030 16.89% 1210520 0.00% 1201710 -0.73%
t 30328.1 30416.4

87

Parallel Metaheuristics for Stochastic Capacitated Multicommodity Network Design

CIRRELT-2010-32

	content
	MemoireCRT.pdf

