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Abstract. A linear binary programming formulation is introduced to generate a solution for 

the cell formation problem using CPLEX. Numerical experimentation is completed with 35 

benchmark problems to evaluate the quality of the solution generated with heuristic 

methods proposed in the literature. This experimentation indicates that for the smaller 

problems, the best-known solutions are the same as those generated with CPLEX. 
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1. Introduction 
 
In group technology or in cellular manufacturing, a system including machines and parts 
are interacting. To maximize the efficiency of the system, a cell formation problem is 
solved in order to partition the system into subsystems that are as autonomous as possible 
in the sense that the interactions of the machines and the parts within a subsystem are 
maximize and that the interactions between machines and parts of other subsystems are 
reduced as much as possible. This gives rise to solving a cell formation problem. 
 
The cell formation problem is a NP hard optimization problem [13]. For this reason, 
several heuristic methods have been developed over the last forty years to generate good 
solutions in reasonable computational time. Nevertheless, only few integer programming 
formulations [1, 23, 27] have been proposed to solve the smaller problems in order to 
evaluate the quality of the solutions proposed by the heuristic methods. In this paper we 
try to give a partial answer to evaluate how close the solutions generated by heuristic 
methods are from optimality. To complete this analysis, we consider a set of 35 
benchmark problems that the authors solve to compare their results. 
 
In order to learn more about the different methods proposed to solve the cell formation 
problem, we refer the reader to the survey proposed in [14], where the authors review 
briefly the different methodologies used to solved the problem: cluster analysis, graph 
partitioning, mathematical programming, genetic (population based) algorithms, local 
search methods (tabu search, simulated annealing), and hybrids of these methods. To 
determine the best-known solutions for the 35 benchmark problems, we consider the 
results reported in [35] where the authors compare their results with other already 
published in the literature. Hence for each problem we consider the best-known solution 
among those generated by the following methods: 
ZODIAC (clustering method) [10] 
GRAPHICS (clustering method) [32] 
MST (clustering method) [31] 
GATSP (genetic algorithm solving a traveling salesman formulation) [11] 
GP–GA (genetic programming) [12] 
SA (simulated annealing) [37] 
GA (genetic algorithm) [37] 
TS (tabu search) [37] 
EA–GA (genetic algorithm and local search) [14] 
EnGGA (grouping genetic algorithm and greedy heuristic) [35]. 
 
In Section 2, we consider the grouping efficiency measure to formulate the cell 
formulation problem as a fractional binary integer programming problem. Then we 
approximate this problem into a binary integer programming problem in order to solve 
the problem with CPLEX. The numerical results summarized in Section 3 indicate that 
for the smaller problems, the best-known solutions are the same as those generated with 
CPLEX. 
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2. Problem formulation 
 
To formulate the cell formation problem, consider the following two sets  

 set of  machines: 1, ,
set of  parts: 1, , .

I m i m
J n j n
= =
= =

K
K

 

The production incidence matrix ijA a⎡ ⎤= ⎣ ⎦  indicates the interactions between the 
machines and the parts: 

1 if machine  process part 
0 otherwise.ij

i j
a ⎧

= ⎨
⎩

 

Furthermore, a part j may be processed by several machines. A production cell k 
( )1, ,k K= K  includes a subset (group) of machines kC I⊂  and a subset (family) of 
parts kF J⊂ . The problem is to determine a solution including K production cells  

( ) ( ) ( ){ }1 1, = , , , ,K KC F C F C FK as autonomous as possible. Note that the K production 
cells induces partitions of the machines set and of the parts set: 

{ }
1 2 1 2

1 1

1 2

and
and for all pairs of different cell indices  and 1, ,

and    .

K K

k k k k

C C I F F J
k k K

C C F Fφ φ

= =

∈

= =

UKU UKU

K

I I

 

 
In the following example [3], the second matrix indicates a partition into 3 different cells 
illustrated in the gray zones. The solution includes the 3 machine groups {(6,7), (1,2), 
(3,4,5)} and the 3 part families {(4,5,8,10), (1,2,6,9), (3,7,11)}.  
 
  

 
Figure 1. Boctor Matrix 

 
The exceptional elements (5,4) and (3,1) correspond to entries having a value 1 that lay 
outside of the gray diagonal blocks. 
 
To measure the autonomy of a solution, different measures have been proposed, and 
Sarker and Khan carry out a comparative study in [28]. In this paper we consider the 
grouping efficacy Eff  [18] that is usually used by the authors to compare the efficiency of 
their methods; 
 

Parts 1 2 3 4 5 6 7 8 9 10 11 Parts 4 5 8 10 1 2 6 9 3 7 11
1 1 1 0 0 0 1 0 0 0 0 0 6 1 1 0 1 0 0 0 0 0 0 0
2 0 1 0 0 0 1 0 0 1 0 0 7 0 1 1 1 0 0 0 0 0 0 0
3 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0
4 0 0 1 0 0 0 1 0 0 0 0 2 0 0 0 0 0 1 1 1 0 0 0
5 0 0 1 1 0 0 0 0 0 0 1 3 0 0 0 0 1 0 0 0 1 1 1
6 0 0 0 1 1 0 0 0 0 1 0 4 0 0 0 0 0 0 0 0 1 0 0
7 0 0 0 0 1 0 0 1 0 1 0 5 1 0 0 0 0 0 0 0 1 1 1

M
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hi
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s

M
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s

(a) Incidence Matrix (b) Matrix Solution Figure 1.a
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                                           0 11

0 0

1 ( )
In OutOut

In In

a aa aEff
a a a a

+−
= = −

+ +
                                             (1) 

where 
1 1

M P

ij
i j

a a
= =

= ∑∑ denotes the total number of entries equal to 1 in the matrix A, 1
Outa  

denotes the number of exceptional elements, and 0
Ina is the number of zero entries in the 

gray diagonal blocks. The objective function of maximizing Eff is then equivalent to 
minimize  

0 1

0

( )
In Out

In

a aComEff
a a
+

=
+

. 

 
To formulate the mathematical formulation of the problem, we introduce the following 
binary variables: 

{

{

for each pair 1, , ; 1, ,
1      if machine  belongs to cell 
0      otherwise

for each pair 1, , ; 1, ,
1      if part  belongs to cell 
0      otherwise.

ik

jk

i m k K
i kx

j n k K
j ky

= =

=

= =

=

K K

K K
 

To evaluate the objective function ComEff, it is easy to verify that  

( )

1
1 1 1

0
1 1 1

1 ,

K m n
out

ij ik jk
k i j

K m n
In

ij ik jk
k i j

a a a x y

a a x y

= = =

= = =

= −

= −

∑∑∑

∑∑∑
 

and it follows that the objective function ComEff is a fractional function in x and y. In 
order to formulate an integer programming formulation for the cell formation problem, 
we approximate ComEff with another function PE specified in terms of 0

Ina (the number 
of zero entries in the gray diagonal blocks) and 1

Outa (the number of exceptional 
elements): 

0 1
In OutPE a aβ= +  

where 0β >  is used to give different weights to the two terms. Note that reducing the 
two terms included in the function PE should improve the grouping efficiency and induce 
more autonomous solution for the cell formation problem.  
  
Now the objective function PE can be formulated in terms of the variables x and y: 

An Exact Method for Solving the Manufacturing Cell Formation Problem

3 CIRRELT-2010-37



( )

( )( )

( ) ( )

1 1 1 1 1 1

1 1 1

1 1 1

1

1 1

1 1

K m n K m n

ij ik jk ij ik jk
k i j k i j

K m n

ij ik jk
k i j

K m n

ij ik jk
k i j

PE a x y a a x y

a a x y

a a x y

β

β β

α α

= = = = = =

= = =

= = =

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠

= + − +

= − + −

∑∑∑ ∑∑∑

∑∑∑

∑∑∑

 

where 1 .α β= + Hence in this paper we are considering the following binary 
programming problem M(x,y) of the cell partitioning problem: 
 

( ) ( ) ( )

( )

( )

( )

( )

( )

1 1 1

1

1

1

1

,           Min  1 1

              Subject to 1 1, , 2

1 1, , 3

1 1, , 4

1 1, , 5

0 or 1 1, , ; 1, , 6

0 or 1 1, , ; 1,

K m n

ij ik jk
k i j

K

ik
k

K

jk
k

m

ik
i
n

jk
j

ik

jk

M x y PE a a x y

x i m

y j n

x k K

y k K

x i m k K

y j n k

α α
= = =

=

=

=

=

= − + −

= =

= =

≥ =

≥ =

= = =

= = =

∑∑∑

∑

∑

∑

∑

K

K

K

K

K K

K K ( ), 7K

 

 
The constraints (2) and (3) ensure that each machine and each part is assigned to exactly 
one cell, respectively. The constraints (4) and (5) ensure that each cell includes at least 
one machine and one part. Finally, the variables are binary in (6) and (7). In our 
numerical experimentation we fix the number K of cells for each problem to its value in 
the best-known solution, and constraints (4) and (5) eliminate any empty cell. 
Referring to [23], we now transform M(x,y) into a linear binary programming problem 
using additional binary variables k

ijw to replace the product ik jkx y :  

                               1, , ; 1, , ; 1, , .k
ij ik jkw x y i m j n k K= = = =K K K                                (8) 

To complete a linear formulation of the cell formation problem, we use the following 
linear relations equivalent to the quadratic relations (8): 

( )
( )

1.5 0 1, , ; 1, , ; 1, , 9

1.5 0 1, , ; 1, , ; 1, , . 10

k
ij ik jk

k
ij ik jk

w x y i m j n k K

w x y i m j n k K

− + + − ≤ = = =

− − ≤ = = =

K K K

K K K

The linear binary programming problem M(x,y,w) is obtained by including the additional 
constraints (9) and (10) into problem M(x,y) and replacing the objective function PE by  

( ) ( ) ( )
1 1 1

1 1 .
K m n

k
ij ij

k i j
PE w a a wα α

= = =

= − + −∑∑∑  
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This problem can be solved using integer linear programming software like CPLEX. 
 
3. Numerical results 
 
In this paper we consider the 35 benchmark problems given in [14] and [35] where the 
results obtained with several different methods are reported. Our purpose is to solve the 
corresponding M(x,y,w) associated problems with CPLEX 10.11, and to evaluate the 
grouping efficiency Eff of these solutions. Now since CPLEX is an exact procedure, then 
comparing the Eff value of CPLEX with the grouping efficiency of a solution generated 
with a heuristic method should indicate how close this solution is to optimality. 
 
In order to complete this analysis, we consider the numerical results for the methods 
mentioned in the introduction. Referring to the result exhibited in [14] and [35], we can 
identify the best-known solution for each problem. The problems are summarized in 
Table 1. The problem number and the source are included in the first two columns of the 
table. Then the size of the problems (values of m and n) and the number of cells K are in 
columns 3, 4, and 5. The best known value of the grouping efficiency for each of the 35 
problems is included in column 6 of the table. 
 
The  M(x,y,w) problems are solved with CPLEX 10.11, and the computational testing are 
performed on a  AMD processor running at 2.2 GHz with 4096 Kilobytes of central 
memory and 1024 Kilobytes of memory cache. Each problem is solved twice for two 
different values of the parameter ( )1 and 2 .α  The grouping efficiency Eff is evaluated 
for both solutions, and the value reported in column 7 of the table correspond to the best 
solution. The solution time to obtain this solution is included in column 8. 
 
The results in the table indicate that the first 11 problems are easy to solve since CPLEX 
requires less than 2 seconds to obtain the solution, with the exception of problem P9 
requiring 5.03 seconds. The other problems are more difficult to solve since they require 
more than 78 seconds. For the larger problems (P18, P21, and P25 to P34), the time limit 
of 86400 seconds is reached before reaching the solutions. This is indicated by a * in 
column of the table. For the other larger problems P14, P19, and P35, we reach the 
optimal solution, but the computational time indicated in the table exceeds 86400 
seconds.  
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Problem 
number 

Problem  
source 

m n K Best-know 
solution 

CPLEX  
Eff 

Solution  
time (sec) 

P1 [17] 5 7 2 82.35 82.35 0.33 
P2 [36, fig.4a] 5 7 2 69.57 69.57 0.35 
P3 [29] 5 18 2 79.59 79.59 0.47 
P4 [21] 6 8 2 76.92 76.92 0.37 
P5 [22] 7 11 5 60.87 60.87 1.67 
P6 [3] 7 11 4 70.83 70.83 1.17 
P7 [30] 8 12 4 69.44 69.44 1.69 
P8 [7] 8 20 3 85.25 85.25 2.00 
P9 [8] 8 20 2 58.72 58.72 5.03 
P10 [25] 10 10 5 75 75 1.82 
P11 [6] 10 15 3 92 92 1.72 
P12 [2] 14 24 7 72.06 72.06 78.11 
P13 [34] 14 24 7 71.83 71.83 103.68 
P14 [24] 16 24 8 53.26 53.26 * 101783.88 
P15 [33] 16 30 6 68.99 69.53 752.01 
P16 [16] 16 43 8 57.23 57.23 86400 
P17 [5] 18 24 9 57.73 57.73 14909.77 
P18 [26] 20 20 5 43.45 39.66 * 
P19 [19] 20 23 7 50.81 50.81 * 869103 
P20 [5] 20 35 5 77.91 77.91 144.63 
P21 [4] 20 35 5 57.98 55.49 * 
P22 [7] 24 40 7 100 100 108.58 
P23 [7] 24 40 7 85.11 85.11 496.95 
P24 [7] 24 40 7 73.51 73.51 6556.99 
P25 [7] 24 40 11 53.29 47.95 * 
P26 [7] 24 40 12 48.95 39.39 * 
P27 [7] 24 40 12 46.58 41.84 * 
P28 [24] 27 27 5 54.82 50.57 * 
P29 [5] 28 46 10 46.91 35.68 * 
P30 [20] 30 41 14 63.12 59.70 * 
P31 [34, fig. 5] 30 50 13 60.12 49.69 * 
P32 [34, fig. 6] 30 50 14 50.83 41.42 * 
P33 [17] 36 90 17 46.67 43.77 * 
P34 [24] 37 53 3 60.64 57.47 * 
P35 [10] 40 100 10 84.03 84.03 * 1572184.5 

 
Table 1: Comparing the best-known solutions with Eff for CPLEX 
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For the problems solved to optimality with CPLEX, the value of Eff is equal to the best- 
known solutions, except for problem P15 where the value is larger by a factor of 0.8%. 
This observation indicates that for these problems the heuristic methods are very efficient 
since they can reach the same solutions as those obtained by solving the linear binary 
programming problem M(x,y,w) where ComEff is approximated by the function PE. For 
the problem where CPLEX reaches the solution time limit (indicated by *), we indicate in 
italic the value of Eff of the best solution reached by CPLEX. Furthermore, for these 12 
problems, the average value of the grouping efficiency of the heuristic methods is better 
by a factor of 11.17% better over the average corresponding values of Eff reached by 
CPLEX. 
 
4. Conclusion 
 
We introduce a binary linear programming problem for the cell formation problem where 
the value of the grouping efficiency is replaced by another function PE specified in terms 
of 0

Ina (the number of zero entries in the gray diagonal blocks) and 1
Outa (the number of 

exceptional elements). CPLEX 10.11 is used to solve 35 benchmark problems. For the 22 
smaller problems solved to optimality, the corresponding values of the grouping 
efficiency Eff are equal to the values of the best-known solutions obtained with the 
heuristic methods, and for an additional problem, the Eff is better than the best-known 
solution. Hence this indicates that the best-known solutions are fairly closed to the 
optimal solutions. 
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