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Abstract. We first introduce a local search procedure to solve the cell formation problem 

where each cell includes at least one machine and one part. The procedure applies 

sequentially an intensification strategy to improve locally a current solution and a 

diversification strategy destroying more extensively a current solution to recover a new 

one. To search more extensively the feasible domain, a hybrid method is specified where 

the local search procedure is used to improve each offspring solution generated with a 

steady state genetic algorithm. The numerical results using 35 most widely used 

benchmark problems indicate that the line search procedure can reduce to 1% the 

average gap to the best-known solutions of the problems using an average solution time 

of 0.64 seconds. The hybrid method can reach the best-known solution for 31 of the 35 

benchmark problems, and improve the best-known solution of three others, but using 

more computational effort.   

Keywords. Cell formation problem, grouping efficiency, local search, destroy & recover 

strategy, steady state genetic algorithm, uniform crossover. 
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1. Introduction 
 
In group technology or in cellular manufacturing, a system including machines and parts 
are interacting. To maximize the efficiency of the system, a cell formation problem is 
solved in order to partition the system into subsystems that are as autonomous as possible 
in the sense that the interactions of the machines and the parts within a subsystem are 
maximized and that the interactions between machines and parts of other subsystems are 
reduced as much as possible.  
 
The cell formation problem is a NP hard optimization problem (Dimopoulos and Zalzala 
2000). For this reason, several heuristic methods have been developed over the last forty 
years to generate good solutions in reasonable computational time. A very good survey of 
the methods is presented in Goncalves and Resende (2004) that review briefly the 
different methodologies used to solved the problem: cluster analysis, graph partitioning, 
mathematical programming, genetic (population based) algorithms, local search methods 
(tabu search, simulated annealing), and hybrids of these methods. The authors also 
indicate several references where the different methods are introduced. 
 
In this paper we introduce an approach similar to those in Goncalves and Resende (2004) 
and James et al. (2007). Our method is a hybrid integrating a Local Seach Algorithm 
(LSA) within a steady state Genetic Algorithm (GA) that are different from those used in 
Goncalves and Resende (2004) and James et al. (2007). The LSA includes two different 
procedures to intensify and diversify the search. They are applied successively for a fixed 
number of iterations. To intensify the search we modify successively the machines 
groups and the parts families until no modification can improve the current solution. To 
search more extensively the feasible domain, we partly destroy the current solution by 
selecting either a subset of machines or a subset of parts for which the assignment is 
modified. Then a recovering procedure allows generating a new solution by reassigning a 
new group to each machine or a new family to each part of the subset. 
 
The numerical results indicate that the LSA generates very good results using small 
computational time. But to improve even more the quality of the solution we use a hybrid 
method (HM) where each offspring solution generated with a steady state GA is improved 
with the LSA. 
 
The cell formation problem is described in Section 2. Additional constraints are included 
in our model insuring that each cell contains at least one machine and one part. The 
components of the LSA and of the GA are summarized in Sections 3 and 4, respectively. 
In Section 5, we compare the results obtained using the LSA and the HM with the best-
known solutions for 35 benchmark problems commonly used by the authors to evaluate 
their methods. The LSA generate very good solutions in a short computational time, but 
the HM can reach the best known solution for 31 problems and improves the best-known 
solution for three other problems using reasonable computational time.   
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2. Problem formulation 
 
To formulate the cell formation problem, consider the following two sets  

         set of  machines: 1, ,
set of  parts: 1, , .

I m i m
J n j n
= =
= =

K
K

 

The production incidence matrix ijA a⎡ ⎤= ⎣ ⎦  indicates the interactions between the 
machines and the parts: 

1 if machine  process part 
0 otherwise.ij

i j
a ⎧

= ⎨
⎩

 

Furthermore, a part j may be processed by several machines. A production cell k 
( )1, ,k K= K  includes a subset (group) of machines kC I⊂  and a subset (family) of 
parts kF J⊂ . The problem is to determine a solution including K production cells 

( ) ( ) ( ){ }1 1, = , , , ,K KC F C F C FK as autonomous as possible. Note that the K production 
cells induce partitions of the machines set and of the parts set: 

{ }
1 2 1 2

1 1

1 2

and
and for all pairs of different cell indices  and 1, ,

and    .

K K

k k k k

C C I F F J
k k K

C C F Fφ φ

= =

∈

= =

UKU UKU

K

I I

 

 
In the following example (Boctor 1991), the second matrix indicates a partition into 3 
different cells illustrated in the gray zones. The solution includes the 3 machine groups 
{(6,7), (1,2), (3,4,5)} and the 3 part families {(4,5,8,10), (1,2,6,9), (3,7,11)}.  
  

 
Figure 1.Boctor Matrix 

 
The exceptional elements (5,4) and (3,1) correspond to entries having a value 1 that lay 
outside of the gray diagonal blocks. 
 
Sarker and Khan (2001) carry out a comparative study of different autonomy measures 
for the solution of a cell formation problem. In this paper we consider the grouping 
efficacy Eff  (Kumar and Chandrasekharan 1990) that is mostly used: 
 

                                           1 1

0 0

Out In

In In

a a aEff
a a a a
−

= =
+ +

                                             (1) 

Parts 1 2 3 4 5 6 7 8 9 10 11 Parts 4 5 8 10 1 2 6 9 3 7 11
1 1 1 0 0 0 1 0 0 0 0 0 6 1 1 0 1 0 0 0 0 0 0 0
2 0 1 0 0 0 1 0 0 1 0 0 7 0 1 1 1 0 0 0 0 0 0 0
3 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0
4 0 0 1 0 0 0 1 0 0 0 0 2 0 0 0 0 0 1 1 1 0 0 0
5 0 0 1 1 0 0 0 0 0 0 1 3 0 0 0 0 1 0 0 0 1 1 1
6 0 0 0 1 1 0 0 0 0 1 0 4 0 0 0 0 0 0 0 0 1 0 0
7 0 0 0 0 1 0 0 1 0 1 0 5 1 0 0 0 0 0 0 0 1 1 1

M
ac
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ne

s

M
ac
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ne

s

(a) Incidence Matrix (b) Matrix Solution Figure 1.a
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where 
1 1

M P

ij
i j

a a
= =

= ∑∑ denotes the total number of entries equal to 1 in the matrix A, 1
Outa  

denotes the number of exceptional elements, and 1 0and In Ina a are the numbers of one and of 
zero entries in the gray diagonal blocks, respectively. The objective function of the 
problem is maximizing Eff . 

 
To formulate the mathematical formulation of the problem, we introduce the following 
binary variables: 

{

{

for each pair 1, , ; 1, ,
1      if machine  belongs to cell 
0      otherwise

for each pair 1, , ; 1, ,
1      if part  belongs to cell 
0      otherwise.

ik

jk

i m k K
i kx

j n k K
j ky

= =

=

= =

=

K K

K K
 

To evaluate the objective function Eff, it is easy to verify that  

( )

1
1 1 1

0
1 1 1

1 .

K m n
out

ij ik jk
k i j

K m n
In

ij ik jk
k i j

a a a x y

a a x y

= = =

= = =

= −

= −

∑∑∑

∑∑∑
 

 
 

In this paper we are considering the following model M(x,y) of the cell partitioning 
problem: 
 

( )
( )

( )

( )

( )

( )

( )

1 1 1

1 1 1

1

1

1

1

,           Max  
1

              Subject to 1 1, , 2

1 1, , 3

1 1, , 4

1 1, , 5

0 or 1 1, , ; 1, , 6

K m n

ij ik jk
k i j

K m n

ij ik jk
k i j

K

ik
k
K

jk
k
m

ik
i

n

jk
j

ik

j

a x y
M x y Eff

a a x y

x i m

y j n

x k K

y k K

x i m k K

y

= = =

= = =

=

=

=

=

=
+ −

= =

= =

≥ =

≥ =

= = =

∑∑∑

∑∑∑

∑

∑

∑

∑

K

K

K

K

K K

( )0 or 1 1, , ; 1, , 7k j n k K= = =K K
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The constraints (2) and (3) ensure that each machine and each part is assigned to exactly 
one cell, respectively. The constraints (4) and (5) ensure that each cell includes at least 
one machine and one part. Finally, the variables are binary in (6) and (7). In our 
numerical experimentation we fix the number K of cells for each problem to its value in 
the best-known solution reported in the literature, and constraints (4) and (5) eliminate 
any empty cell. 
 
3. Local Search Approach 
 
Our LSA is including two main procedures to intensify and diversify successively the 
search. In the first one, we intensify the search around a given current solution by 
modifying successively the machine groups on the basis of the part families and the part 
families on the basis of the machine groups until no modification is possible. In the 
diversification phase, we modify more extensively the current solution with a destroy & 
recover strategy. We apply a procedure to select either a subset of machines or a subset of 
parts. Then a recover procedure allows generating a new solution by reassigning a new 
group to each machine or a new family to each part of the subset. More specifically, the 
approach can be summarized as follows: 
 
Local Search Algorithm (LSA) 
 
Step 1. Generate an initial feasible solution ( )0 0,C F .  

    Set the current solution ( ),C F = ( )0 0,C F . Move to 2 a. 

     
 Step 2. Modifying the groups and the families (intensification) 
 
   2 a. Modify the part families on the basis of the machine groups. If no modification is 
          possible, then move to the destroy & recover strategy 3 a. Otherwise move to 2 b. 
 
   2 b. Modify the machine groups on the basis of the part families. If no modification is 
          possible, then move to the destroy & recover strategy 3 b. Otherwise, move to 2 a. 
 
Step 3. Destroy & recover strategy (diversification) 
 
   3 a. Eliminate the family assigned to some parts, and recover a new feasible solution by 
         assigning these parts to new families. Return 2 b.   
 
   3 b. Eliminate the group assigned to some machines, and recover a new feasible 
          solution by assigning these machines to new groups. Repeat 2 a. 
 
The LSA stops after applying the step 3 (Destroy & recover strategy) for a fixed number 
of times numstrat. The different procedures are now summarized in the following 
sections. 
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3 a)    Initial Solution 
 
To generate the initial solution, we use a procedure quite similar to the one proposed in 
Rojas et al. (2004). First we determine K machine groups 0 0

1 , , KC CK . Then the K part 
families 0 0

1 , , KF FK  are specified on the basis of the K machines groups known. 
 
Denote  

1 1
 and 

n m

i ij j ij
j i

a a a a
= =

= =∑ ∑� �  

the number of parts processed by machine i and the number of machines processing j, 
respectively. To initiate the machine groups formation, select the K machines having the 
largest values ia �, and assign them to the different groups 0 , 1, .kC k K= K  Then each of the 
other machines left is assigned to the group 0

kC  including machines processing mostly the 
same parts. More specifically, denote INA the set of machine left. The assignments are 
completed as follows: 
 

I. For all machines i INA∈ , determine the group  

                 ( )
0

0
1, , 1

1ArgMin
k

k k

n

ij i j
k K j i Ck

k i a a
C= = ∈

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑
K

. 

II. Determine the machine i INA∈  
                            ( ){ }ArgMin

i INA
i k i

∈
=  

and assign ( ) ( ) ( ) { }0 0 0 to group ;  i.e., .k i k i k ii C C C i= U  

III. Eliminate  from i INA , and repeat I) until INA becomes empty. 
 
On the basis of the K machine groups 0 0

1 , , KC CK , determine the K part families 
0 0

1 , , KF FK . For each part j, denote 

( )
0

1   the number of machines in group  that are processing part 
k

In
j ij

i C

a k a k j
∈

= ∑%  

( ) ( )0
0 1   the number of machines in group  that are not processing part In In

j k ja k C a k k j= −% %

( )
( )

1

0

  an approximation of the impact on the grouping efficiency of 

                      assigning part  to family .

In
j

In
j j

a k
Eff

a a k

j k

+�

%

%  

 

( ) ( ) ( )
( )

10

1, , 0

Then each part  is assigned to the family  where ArgMax   
In
j

Ink j
k K j j

a k
j F k j

a a k=

⎧ ⎫⎪ ⎪= ⎨ ⎬+⎪ ⎪⎩ ⎭
%

K �

%
%

%
in 

order to generate a good initial solution ( )0 0,C F  having the grouping efficiency 

Genetic Algorithm and Large Neighbourhood Search to Solve the Cell Formation Problem

CIRRELT-2010-39 5



  

( )( )

( )( )

1
1

0
1

.

n
In
j

j
n

In
j

j

a k j
Eff

a a k j

=

=

=
+

∑

∑

%%

%%

 

 
Note that if some family 0

kF  is empty, then we apply the repair process to reassign one 
part to it inducing the smallest decrease of the grouping efficiency. 
 
Then this initial solution becomes the current solution (i.e., ( ),C F  := ( )0 0,C F ), and we 
initialize the modification procedure by moving to modify the machine groups on the 
basis of the part families in step 2 a. 
 
3 b)    Modifying the machine groups and the part families 
 
Consider the current solution ( ), .C F  The procedures to modify the machine groups on 
the basis of the part families and to modify the part families on the basis of the machine 
groups are similar to the process to determine the part families in the preceding section 
where we generate the initial solution.  
 
For the sake of completeness, let us summarize the procedure to determine the new 
machine groups 1, , KC CK on the basis of the part families 1, , KF FK . For each machine i 
denote 

( )1   the number of parts in group  that are processed by machine 
k

In
i ij

j F
a k a k i

∈

= ∑  

( ) ( )0 1   the number of parts in group  that are not processed by machine In In
i k ia k F a k k i= −

( )
( )

1

0

  an approximation of the impact on the grouping efficiency of 

                     assigning machine  to group .

In
i

In
i i

a k
Eff

a a k
i k

+�  

 

( ) ( ) ( )
( )

1

1, , 0

Then each part  is assigned to the family  where ArgMax   
In
i

k i In
k K i i

a k
i C k i

a a k=

⎧ ⎫⎪ ⎪= ⎨ ⎬+⎪ ⎪⎩ ⎭K �

in 

order to generate a good initial solution ( ),C F  having the grouping efficiency 

( )( )

( )( )

1
1

0
1

.

m
In
i

i
m

In
i

i

a k i
Eff

a a k i

=

=

=
+

∑

∑
 

Note that if some group kC  is empty, then we apply the repair process to reassign one 
machine to it inducing the smallest decrease of the grouping efficiency. Now, if the 
machine groups remain identical (i.e. , 1, ,k kC C k K= = K ), then we cannot modify the 
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solution with this modification anymore. In this case, we move to the diversification 
phase applying the destroy & recover strategy in step 3 b. Otherwise the new current 
solution is obtained by replacing by ,  1, , .k kC C k K= K  
 
The procedure to determine the new part families 1, , KF FK on the basis of the machine 
groups 1, , KC CK . As in Section 3.1, we determine for each part j  

( )1   the number of machines in group  that are processing part 
k

In
j ij

i C
a k a k j

∈

= ∑%  

( ) ( )0 1   the number of machines in group  that are not processing part In In
j k ja k C a k k j= −% %

 
( )
( )

1

0

  an approximation of the impact on the grouping efficiency of 

                      assigning part  to family .

In
j

In
j j

a k
Eff

a a k

j k

+�

%

%  

( ) ( ) ( )
( )

1

1, , 0

Then each part  is assigned to the family  where ArgMax   
In
j

Ink j
k K j j

a k
j F k j

a a k=

⎧ ⎫⎪ ⎪= ⎨ ⎬+⎪ ⎪⎩ ⎭
%

K �

%%
%

in 

order to generate a good initial solution ( ),C F  having the grouping efficiency 

( )( )

( )( )

1
1

0
1

.

n
In
j

j
n

In
j

j

a k j
Eff

a a k j

=

=

=
+

∑

∑

%%

%%

 

Note that if some family kF  is empty, then we apply the repair process to reassign one 
machine to it inducing the smallest decrease of the grouping efficiency. Now, if the part 
families remain identical (i.e., , 1, ,k kF F k K= = K ), then we cannot modify the solution 
with this modification anymore. In this case, we move to the diversification phase 
applying the destroy & recover strategy in step 3 a. Otherwise the new current solution is 
obtained by replacing  by ,  1, , .k kF F k K= K  
 
Ng (1993) proposes a procedure to move parts on the basis of machine groups or to move 
machines on the basis of part families in the spirit of our procedure. On the one hand, 
Ng’s procedure is an ascent method since parts or machines are moved only when the 
group efficiency increases. On the other hand, our procedure is simpler to implement, but 
the moves do not necessarily induce an increase of the grouping efficiency. Hence it 
allows a better diversification to search more extensively the feasible domain. 
 
The local search in Goncalves and Resende (2004) is similar to the step 2 of our 
procedure to modify successively the machine groups on the basis of the part families and 
the part families on the basis of the machine groups until no modification is possible. 
Their approximation to evaluate the impact on the grouping efficiency Eff is different 
than ours. Note that James et al. (2007) use also the local search proposed by Goncalves 
and Resende (2004). 

Genetic Algorithm and Large Neighbourhood Search to Solve the Cell Formation Problem

CIRRELT-2010-39 7



  

 
3 c)    Destroy & recover strategy 
  
This strategy is in the spirit of the large neighborhood search presented by Shaw (1998), 
where a large number of variables are modified simultaneously. It also relates to other 
implementations introduced by Pisinger and Ropke (2007), Schrimpf et al. (2000), and 
Dees and Karger (1982). 
 
In step 3 a, the procedure is applied to modify the assignments of %q n= ⎡ ⎤⎢ ⎥  parts on the 
basis of the machine groups. The basic principle is to select q parts that are moved to 
alternate families in order to reduce the grouping efficiency as little as possible. First for 
each part j, we determine  

( ) ( )( )( ) ( ) ( )( )( ) ( )

( )
( )

{ }

( )
{ } ( )

1 1 0 0 , 1, , ,

ArgMin

Min

In In In In
jk j j j j

jk
k k j

j jk jok jk k j

f a k a k j a k a k j k n k k j

ok j f

f f f

≠

≠

= − − − = ≠

=

= =

%

%

% % %% % % % K

 

Then select the q parts { }1, , qj jK  having the smallest values of jf , and modify their 
families as follows: 

( ) ( ) { } ( ) ( ) { }and .
i i i ii ik j k j ok j ok jF F j F F j= − =% % % % U  

 
Now, if some family is empty, then the repair process described before can be applied to 
introduce a part in it. This new current solution is then used to return to step 2 b in order 
to modify the part families on the basis of these new machine groups. 
 
This procedure can also be adapted in step 3 b to modify %q m= ⎡ ⎤⎢ ⎥  machines on the 
basis of part families. This new current solution is then used to return to step 2 a in order 
to modify the machine groups on the basis of these new part families. 
 
4.      Hybrid method with a genetic algorithm 
 
Even if the numerical results reported in Section 5 indicate that the LSA generates very 
quickly very good results, we hybridize this method with a genetic algorithm procedure 
in order to search more extensively the feasible domain. The hybrid method is a steady 
state genetic algorithm (Davis 1991, Syswerda 1992) where two offspring solutions are 
generated at each generation. The LSA is then applied to improve each of these new 
offspring solutions. The procedure is summarized as follows: 
 
Hybrid method (HM) 
 

1) Generate an initial population S of feasible solutions. 
 

2) For nga generations 
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• Select two parent solutions from S. 
• Perform a crossover operation to generate two new offspring solutions. 
• If necessary, apply the repair process to each offspring solution to insure that no 

group or no family are empty. 
• Perform a mutation operation on each offspring solution with probability pm. 
• Apply the LSA to improve each offspring solution. 
• Update the population by keeping the best S  solutions from the current 

population and the two improved offspring solutions generated. 
 
To generate the initial population, we first introduce the solution generated by the LSA in 
S. Then each of the other solution in S is obtained according to the following procedure. 
First we decide to generate either the machine groups or the part families, each 
alternative having a probability of 0.5. If the first alternative is selected, then each 
machine i is assigned randomly to a group k. We also prevent that each group is not 
empty by applying a repair process to move a machine from the group including the most 
to the empty group. Then the part families are determined on the basis of these machine 
groups as in Section 3 a). The LSA is applied to improve the solution which is included in 
the population S. The procedure to complete the second alternative is similar. The role of 
machines and parts are exchanged. 
 
To complete the genetic algorithm, a proper encoding of the solutions is required. A 
feasible solution ( ) ( ) ( ){ }1 1, = , , , ,K KC F C F C FK  is encoded as a vector having ( )n m+  
components 

( )1 1, , , , ,n mP P M MK K  
where   is the index of the family including part , 1, ,

and      is the index of the group including machine , 1, , .
j

i

P j j n

M i i m

=

=

K

K
 

 
Note that this encoding is similar to the one used by Mahdavi et al. (2007). It is different 
from the Goncalves and Resende (2004) encoding involving only the machines, and from 
the James et al. (2007) encoding involving the parts, the machines, and the groups. 
Furthermore the genetic algorithm used in these two references is also different. Indeed a 
genetic algorithm with random keys and a group genetic algorithm due to Falkenauer 
(1998) are used by Goncalves and Resende (2004) and James et al. (2007), respectively. 
 
The two parent solutions are selected according to a tournament strategy. Four 
individuals are selected randomly from the population S, and the best of these solutions 
becomes the first parent solution. The second parent solution is selected similarly. 
 
To determine the two offspring solutions, a uniform crossover is completed. More 
specifically, suppose that the two parent solutions are 

( )
( )

1 1 1 1
1 1

2 2 2 2
1 1

, , , , ,

, , , , , .

n m

n m

P P M M

P P M M

K K

K K
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Generate a crossover mask vector of bits having ( )n m+  elements  

( )1 , 1, , , , .n n n mB B B B+ +K K  

The offspring solutions ( )1 1, , , , , , 1, 2l l l l
n mOP OP OM OM l =K K , are specified as follows: 

1 1 2 2

1 2 2 1

1 1 2 2

1 2 2 1

for 1, , ,
if 1, then  and 

if 0, then  and 

for 1, , ,
if 1, then  and 

if 0, then  and .

j j j j j

j j j j j

n i i i i i

n i i i i i

j n
B OP P OP P

B OP P OP P

i m
B OM M OM M

B OM M OM M
+

+

=

= = =

= = =

=

= = =

= = =

K

K
 

A repair process is applied to introduce a part or a machine in any empty family or group. 
 
The mutation operator is also applied to modify slightly an offspring solution. Four 
different elements are selected randomly:  

{ } { }
{ } { }

a part 1, ,                      a machine 1, ,

a family 1, ,             a group 1, , .

j n i m

k K k K

∈ ∈

∈ ∈

% K K

% K K
 

Then the part j%  is moved to the family kF% , and the machine i  to the group kC . Note that 
the elements are selected to avoid creating empty group or family. 
 
 
 
5. Numerical results 
 
In this paper we consider 35 benchmark problems that are commonly used by authors to 
evaluate the efficiency of their methods. In table 1, for each problem we indicate the 
reference where it is specified (Problem source), its size (values of m, n, and K), the value 
of its best-known solution (Best-known solution), and one of the reference where the 
best-known solution is obtained (Best-known solution ref.). Note that we mentioned only 
one reference generating the best-known solution even if the solution has also been 
obtained with other solution method. Moreover the best-known can be found in the 
following references (Goncalves and Resende 2004, James et al. 2007, Luo and Tang 
2009, Mahdavi et al. (2007), and Tunnukij and Hicks 2009) including the results obtained 
with different methods. 
 
The purpose of this analysis is to evaluate the efficiency of the procedures LSA and HM 
by comparing their values for the grouping efficiency Eff with the best-known values. 
Furthermore we compare the computational times of LSA and HM in order to see how it 
increases in order to improve the value of the grouping efficiency Eff. The numerical 
results are summarized in Table 2. The algorithms are coded in ++C , and the numerical 
tests are completed on a Personal Computer equipped with an AMD processor running at 
2.002 GHz and having 2048 Kilobytes of central memory. 
 

Genetic Algorithm and Large Neighbourhood Search to Solve the Cell Formation Problem

10 CIRRELT-2010-39



  

To implement the LSA, we have to specify the two parameters numstrat (the number of 
iterations where the destroy & recover strategy applies) and the values %q n= ⎡ ⎤⎢ ⎥  

(number of parts) and %q m= ⎡ ⎤⎢ ⎥  the number of parts or machines modified in the destroy 
& recover strategy. Preliminary testing indicates that the following values seem to be 
appropriate: 
 

-  numstrat = 5K 
         -  % = 20%. 
 
The numerical results for the Local Search Approach are summarized in column 3, 4 and 
5 of Table 3 showing 
 

• the grouping efficiency Eff 
• the percentage of gap with respect to the best-known solution 

( )
( )

best-known solution
%

best-known solution
Eff

gap
−

=  

• the solution time (sec) in seconds. 
 

 
Problem 
number 

Problem  
source 

m n K Best-know 
solution 

Best-known 
solution ref. 

P1  [18] 5 7 2 82.35 [40] 
P2 [41, Fig. 4a]  5 7 2 69.57 [40] 
P3  [34]  5 18 2 79.59 [40] 
P4 [20]  6 8 2 76.92 [40] 
P5  [23]  7 11 5 60.87 [40] 
P6  [2, Fig. 1b]  7 11 4 70.83 [40] 
P7  [35]  8 12 4 69.44 [40] 
P8  [7]  8 20 3 85.25 [40] 
P9  [8]  8 20 2 58.72 [40] 
P10  [27]  10 10 5 75 [15] 
P11  5] 10 15 3 92 [15] 
P12  [1]  14 24 7 72.06 [16] 
P13  [38]  14 24 7 71.83 [16] 
P14  [26]  16 24 8 53.26 [40] 
P15  [37]  16 30 6 68.99 [40] 
P16  [17] 16 43 8 57.53 [40] 
P17  [4] 18 24 9 57.73 [40] 
P18  [28]  20 20 5 43.45 [24] 
P19  [20] 20 23 7 50.81 [16] 
P20  [4]  20 35 5 77.91 [40] 
P21  [3]  20 35 5 57.98 [40] 
P22  [6] 24 40 7 100 [40] 
P23  [6] 24 40 7 85.11 [40] 
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P24  [6] 24 40 7 73.51 [40] 
P25  [6] 24 40 11 53.29 [40] 
P26  [6]  24 40 12 48.95 [40] 
P27  [6] 24 40 12 46.58 [40] 
P28 [26]  27 27 5 54.82 [40] 
P29  [4] 28 46 10 46.91 [16] 
P30  [21]  30 41 14 63.12 [16] 
P31 [38, Fig. 5]  30 50 13 60.12 [25] 
P32 [38, Fig. 6]  30 50 14 50.83 [16] 
P33  [18]  36 90 17 46.67 [24] 
P34  [26]  37 53 3 60.64 [40] 
P35  [9] 40 100 10 84.03 [15] 

 
Table 1: The test problems 

 
 
The LSA can reach the best-known solution for 13 problems (i.e., 37%). The values of the 
grouping efficiency Eff of these problems are marked in bold in table 2. As expected, the 
procedure LSA can reach the best-known solution for the smaller problems P1 to P11. 
These problems are “easier” to solve since in Elennani and Ferland (2010) we solve a 
linear approximation of the cell problem with CPLEX in order to derive a good feasible 
solution for ( ),M x y . The solution time of CPLEX is small for the first 11 problems, but 
it increases rapidly with the size of the problem.  
 
Furthermore, the average %gap for the 35 problems reduces to 1%, the largest value 
being 3.2% for problem P12. Moreover, the average computational time for the 35 
problems is equal to 0.64 seconds. Thus the procedure LSA can reach very good solutions 
using very small computational time. 
 
As mentioned in Section 4, the LSA is combined with a genetic algorithm in order to 
search more extensively the feasible domain and to obtain even better results. To 
implement the HB, four additional parameters must be specified. Preliminary testing 
indicates that the following values seem to be appropriate: 
 

-  population size of S = 2m + 1                          (m = the number of machines) 
-  number of generations  (nga) = 5m + 1 
-  mutation probability pm = 0.05. 

 
The numerical results for the HM are summarized in the last two columns of Table 2. 
Since the operators of selection, of crossover, and of mutation involve probabilities, we 
solve each problems 10 times. For each problem, the average value of the grouping 
efficiency Eff over the 10 runs (Avg Eff ) and the average value of the solution time over 
the 10 runs (Avg Time) are indicated. It is worthy of noting that for 33 out of the 35 
problems, the value of Eff is the same for the 10 runs. For the problem P29, a larger value 
of 47.08 for Eff is reached for one run. For the problem P33, a minimum and a maximum 
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value of 47.51 and 47.85 are reached. As a consequence, the HM seems to be a very 
robust procedure. 
 
The HM reaches a very good average value Avg Eff for each of the 35 problems. Indeed 
for the three problems P15, P29, and P33, the best-known solution is improved by a 
factor of 0.8%, 0.4%, and 2.5%, respectively. This is indicated by marking in bold the 
corresponding values of Avg Eff in Table 2. For 31 of the other problems, the HM 
generates solutions reaching an Avg Eff equal to the best-known value. Finally, the HM 
fails to reach the best known-solution for only P34 by a factor of 0.01%, as indicated in 
italic in table 2. 
 
The numerical results indicate that the HM generates excellent results for the 35 
problems, but its average solution time is much larger than that of the LSA. Roughly 
speaking, according to the values of the parameters selected, the solution time increases 
by a factor of the order (12m + 3). Thus the additional computational effort of HM is 
quite large in order to eliminate the 1% gap of the LSA procedure with respect the best-
known solutions  
 
           Problem                  Local Search              Hybrid 
Number Best-know 

solution 
       Eff 

 
% 
gap 

 Time 
(sec) 

 Avg      
Eff 

Avg Time 
   (sec) 

P1 82.35  82.35 0 0.001 82.35 0.19 
P2 69.57  68 2 0.001 69.57 0.20 
P3 79.59  79.59 0 0.001 79.59 0.31 
P4 76.92  76.92 0 0.001 76.92 0.23 
P5 60.87  60.87 0 0.02 60.87 1.63 
P6 70.83  70.37 0.6 0.01 70.83 0.89 
P7 69.44  68.29 1.6 0.01 69.44 1.85 
P8 85.25  85.25 0 0.02 85.25 1.77 
P9 58.72  58.72 0 0.001 58.72 0.64 
P10 75  75 0 0.03 75 2.82 
P11 92  92 0 0.01 92 1.86 
P12 72.06  69.70 3.2 0.28 72.06 19.99 
P13 71.83  71.83 0 0.12 71.83 24.44 
P14 53.26  52.08 2.2  0.32 53.26 58.66 
P15 68.99  67.15 2.6 0.17 69.53 31.15 
P16 57.23  57.23 0.5 0.63 57.53 156.38 
P17 57.73  57.14 1 0.37 57.73 84.70 
P18 43.45  43.06 0.8 0.17 43.45 25.31 
P19 50.81  50.00 1.5 0.29 50.81 67.36 
P20 77.91  76.02 2.4 0.19 77.91 57.16 
P21 57.98  56.54 2.4 0.17 57.98 75.24 
P22 100  100.00 0 0.33 100 62.55 
P23 85.11  85.11 0 0.61 85.11 113.51 
P24 73.51  73.51 0 0.47 73.51 115.82 
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P25 53.29  52.94 0.6 1.35 53.29 298.70 
P26 48.95  48.28 1.3 1.26 48.95 387.03 
P27 46.58  46.26 0.6 1.41 46.58 372.67 
P28 54.82  53.54 2.3 0.18 54.82 39.53 
P29 46.91  46.80 0.2 1.35 47.06 573.01 
P30 63.12  61.58 2.4 1.55 63.12 1240.00 
P31 60.12  59.77 0.5 2.62 60.12 847.20 
P32 50.83  50.56 0.5 2.35 50.83 1125.11 
P33 46.67  43.83 6 4.06 47.75 3018.70 
P34 60.64  60.34 0.4 0.26 60.63 89.64 
P35 84.03  84.03 0 1.93 84.03 1308.99 

 
 
6.      Conclusion 
 
In this paper we introduce a local search procedure LSA including intensification and 
diversification strategies to solve the cell formation problem where each cell includes at 
least one machine and one part. The numerical results obtained with 35 benchmark 
problems most widely used in experimentations, indicate that the LSA can reduce to 1% 
the average gap with respect to the best-known solutions. Furthermore the average 
solution time reduces 0.64 seconds. A hybrid method HM where the LSA is used to 
improve each offspring solution generated with a steady state genetic algorithm, can 
reach the best-known solution for 31 of the 35 benchmark problems, improve the best-
known solution of three others, and miss by 0.01% the best-known solution of the last 
one. But unfortunately, the solution time increase with respect to the LSA.   
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