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Abstract. This paper draws on the stochastic multi-period location-transportation problem 

(SMLTP) for studying the impact of various types of operations anticipations on the quality 

of the supply chain network (SCN) designs obtained. The problem solving approach used 

to design SCNs involves the modeling of facility location decisions and of network 

operations decisions. Most SCN design models are extensions of deterministic location-

allocation models incorporating anticipations based on aggregate arc flow variables and 

demand zones. This is a crude approximation and it could lead to bad designs. In this 

paper, several alternative approximate anticipations are proposed and tested in order to 

analyze their impact on the quality of the designs obtained. More precise anticipations 

however yield more complex models, and the tractability and solvability of these models is 

an issue because of their size and their underlying combinatorial-stochastic structures. 

The paper explores various accuracy-solvability tradeoffs for the SMLTP and it makes 

recommendations on modeling issues leading to better SCN design methodologies.  
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1. Introduction 
 Supply Chain Network (SCN) design problems deal with strategic decisions such as facility 

location, technology selection and capacity acquisition that involve important investments and 
are crucial value drivers for the firm. For example, by providing shorter delivery times, a SCN 
design improves market shares and, by providing a proper trade-off between production, inven-
tory and transportation costs, it fosters operational effectiveness. In particular, the location of 
facilities and the specification of their mission in term of the downstream locations and/or cus-
tomers to supply are two critical strategic SCN design decisions. Many approaches have been 
proposed to solve these design problems, such as the use of location-allocation models (Revelle 
et al., 2008). However, in real world applications, several simplifications and assumptions must 
be made to use these models. For example, ship-to-points must be aggregated into demand 
zones, products into families and suppliers into supply sources, aggregate transportation cost 
functions must be estimated to compute unit arc-flow costs, etc. (Ballou, 2001). 

Moreover, SCNs must be designed to cope with future business environments. Once a SCN 
design has been implemented, it is used on a daily basis to perform operations such as sales, 
warehousing, transportation, procurement, etc. In fact, the revenues and expenses generated by a 
SCN over its useful life are directly related to these user operations. Thus, SCN design decisions 
cannot be optimized without anticipating how operations will eventually be performed in the 
implemented network. The conceptual importance of such anticipations was discussed by 
Schneeweiss (2003). However, the concept of anticipation and its impact on SCN design quality 
were not investigated explicitly in the literature. In this paper, we study the impact of the fidelity 
and accuracy of anticipations on the tractability and solvability of SCN design models, and on 
the quality of the designs they provide. To do this, we investigate a typical SCN design problem: 
the stochastic multi-period location-transportation problem (SMLTP). 

The paper is organized as follows. In section 2 the user anticipation concept, as it applies to 
SCN design problems, is defined more precisely. Section 3 reviews the existing literature on the 
problem. Section 4 presents and formulates the SMLTP, and discusses approaches to obtain ap-
proximate user anticipations. In section 5, several SMLTP models based on these approximate 
anticipations are formulated. Section 6 describes the methods used to generate and to solve these 
design models, and it also explains the approach proposed to evaluate and compare the SCN de-
signs obtained. Section 7 presents our plan of experiment and the test results. Section 8 provides 
concluding remarks on the role of anticipations in SCN design models, as well as recommenda-
tions on the methodology to use to obtain good quality SCN designs. 

The Impact of Operations Anticipations on the Quality of Supply Chain Network Design Models

CIRRELT-2010-45 1



 

2. Problem Statement  
SCN design involves decisions on the acquisition, deployment and mission of production-

distribution assets in order to create sustainable value for the firm. These decisions are made over 
a multi-period planning horizon, which may cover multiple decades, and therefore they have a 
lasting impact over an uncertain business environment. When the SCN designed or reengineered 
has been implemented, it becomes available for use during several usage periods. Consequently, 
design decisions cannot be made without evaluating the initial investments required, and without 
anticipating the revenues and expenses generated during the network usage periods. This clearly 
positions the SCN design problem as a hierarchical decision problem (Schneeweiss, 2003), the 
top level being associated to design decisions and the bottom level to user decisions. In such a 
decision-making framework, the design level must anticipate user decisions. The anticipation 
pertains to the reaction of the network’s users to the resources provided by the design level. Fig-
ure 1 shows a simplified depiction of the role of anticipations in a SCN design methodology 
under uncertainty. 

  
Figure 1- Anticipation-based SCN Design Methodology 

In fact, the ideal design model that incorporates exact user anticipations for all possible fu-
tures is generally of no use because it is unsolvable for any non-trivial case. In practice, one must 
rely on approximate user anticipations. Depending on the approach favoured, the approximations 
made may concern decision variables, data parameters, probability distributions, evaluation func-
tions, or a combination of these elements. However, the tractability and solvability of more real-
istic models are at issue because of the size of realistic SCN design models and their underlying 
combinatorial-stochastic structures. Therefore, it is legitimate to ask the following fundamental 
questions: 

Design Level 

User Level

SCN Design

Synchronization of supply and demand to 
minimize operations costs and maximize revenues

Anticipation of expected 
revenues and costs

Anticipated User Sub-Models
• Exact anticipation
• Several approximate anticipations

Design Model
Investments
Deployment
Policy making
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• What is the impact of the fidelity and accuracy of the models on the quality of the 
SCN design decisions? 

• What are the compromises to be made between model accuracy and fidelity on one 
hand, and tractability and solvability on the other hand?  

Model simplifications generally reduce complexity and lead to exact “optimal” solutions. 
Fidelity is linked to the extent to which the model is able to capture the essence of the real world 
problem (Pidd, 2010). Accuracy is related to the precision of the data embedded in the model 
through estimations and measurements (Roy, 2010). Clearly, higher fidelity and accuracy en-
hance the quality of the solution, but often it increases complexity and leads to possibly intracta-
ble and unsolvable models. Currently, with the increase in computational power and the im-
provement in exact and heuristic solution techniques, it is possible to solve more realistic mod-
els. Consequently, when faced with SCN design problems, should an analyst favour fidelity and 
accuracy over tractability and solvability? Or should he/she make model simplifications to im-
prove solvability? In any case, what is lost by going one way or another? In other words, are bet-
ter SCN designs obtained by finding the optimal solution of models with approximate user an-
ticipations or by finding approximate (heuristic) solutions to models with exact user anticipa-
tions? Also, could a compromise between these two extremes be a better alternative?  

In order to address these questions, we propose to examine the SMLTP business context. 
Through adequate approximations, several location model variants are proposed to obtain SCN 
designs. Some of these models are much more difficult to solve than others, and for realistic 
cases, some of them can be solved only heuristically. The SCN designs provided by the various 
pairs of (model, solution method) are compared, using a user model, for several plausible futures, 
in order to assess their performances. Note that our aim is not to find the best approach, but to 
investigate common user anticipation approximation practices, and to study the quality of result-
ing SCN design models in terms of the performance of their solutions. 

3. Related Literature 
The strategic design problem has been studied in the literature through the formulation of 

location-allocation models. The basic formulation of these models dates back to the 1960’s and 
much has been published since on variants of the problem, and on exact and heuristic methods to 
solve them. Comprehensive reviews are found in Klose and Drexl (2005) and Revelle et al. 
(2008). However, to use these models in real world circumstances, several problem reductions 
must be performed (Ballou, 2001). For instance, most of the available literature assumes that the 
problem is deterministic and involves a single planning period.  
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During the last few years major efforts have been devoted to the development of location 
models with a much more detailed anticipation of network users’ operations decisions. A review 
on integrated location-routing and location-inventory models is found in Shen (2007). These 
models provide better anticipations, but they are more difficult to solve. Moreover, transportation 
capacity in contemporary SCNs is often provided by common or contract carriers, as opposed to 
private fleets, as implicitly assumed in location-routing problems (Nagy and Salhi, 2007), which 
offer more varied transportation options such as full truckloads (TL), multi-drop routes, and less-
than-truckload (LTL) shipments, and these variants should be anticipated adequately. A Stochas-
tic Multi-Period Location-Transportation Problems (SMLTP), taking these considerations into 
account, has been studied recently by Klibi et al. (2010b). The stochastic programming model 
proposed provides a better anticipation of the revenues and expenditures generated by the net-
work user operational decisions, but it is solved with a heuristic method. 

SCN design models can typically be partitioned into a design sub-model and a user anticipa-
tion sub-model. In classical location-allocation models (Geoffrions and Graves, 1974; Klose, 
2000; Martel, 2005), design decisions are associated to binary variables and user anticipations to 
continuous aggregate throughput and flow variables. The anticipation variables are typically ag-
gregates over several products, customers, means of transportation and usage periods. These de-
cision variables are used to anticipate revenues and expenses, but they cannot be implemented. 
For example, in practice, flow decisions take the form of daily shipments in response to specific 
customer orders, and not the form of an annual quantity of products to ship between two loca-
tions. The later is used as a crude approximation of the former. In fact, such approximations are 
often so crude, that they raise issues about the validity of classical models. More recently, some 
authors proposed models with more accurate anticipations. A model incorporating detailed mar-
ket response anticipations was proposed by Vila et al., (2007). More elaborated transportation 
and inventory costs anticipations are proposed in the location-routing and location-inventory 
models reviewed in Shen (2007). Pomper (1976), Laporte et al. (1989) and Santoso et al. (2005) 
introduced stochastic programming with recourse formulations. In these models, design deci-
sions are associated with first stage variables and anticipations with second stage variables. To 
the best of our knowledge, the investigation of the impact of various user anticipation sub-
models on SCN design quality is yet to be published in the academic literature. Much of the ex-
isting literature on classical location-allocation models focus on solving approaches and algo-
rithms. The solution methods proposed range from exact approaches to heuristic methods (see 
Klibi et al., (2010a) for a review). However, since all these models are based on approximate 
anticipations, it is difficult to appreciate the quality of the SCN designs they provide. 
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4. The Stochastic Location-Transportation Problem 
A company purchases a family of similar products, considered as a single product, from a 

number of supply sources. This product is sold to customers located in a large geographical area 
and hence it must be shipped to a large number of ship-to-points. In order to provide a next day 
delivery service, the company must employ a number of uncapacitated depots. The customers 
order a varying quantity of product on a daily basis and the company delivers them on the next 
day, using common or contract carriers. For a given day τ , at each depot, when all the orders are 
in, the company plans its transportation for the next day and it requests from its carriers the 
trucks required to deliver products to ship-to points using truckload (TL) tariffs, or it specifies 
the loads to pick-up using less than truckload (LTL) transportation. The TL-trucks provided by 
the carriers can be used in three different ways: a full truckload (FTL) can be shipped to a desti-
nation, a partially loaded truck can be shipped to single ship-to-point (STL), or the truck can be 
assigned to a route including multiple ship-to-points (MTL). Let L be the set of depots consid-
ered, P the set of ship-to-points where orders can be delivered, pL L⊂  the subset of depots 
which are able to provide next day delivery service to ship-to-point p P∈ , and, conversely, 

lP P⊂  the subset of ship-to-points which could be served by depot l. When a depot l L∈  is 
used, a fixed operating cost lA  is incurred, and the unit value of products shipped from that depot 
is lv . The value lv  takes into account the product production/procurement costs, inbound ship-
ment costs, warehousing costs and inventory holding costs. The unit price of products sold to 
ship-to-point p is pu .  

 
Figure 2- The SMLTP Structure 

Given this context, the strategic decisions to make are the selection of a subset of the depots 
L L⊂*  to operate during the planning horizon uT  considered and the assignment of ship-to-

lpx

Sources

Ship-to 
points

Potential depot 
locations

lx

p P∈ Days

• Location decisions
• Allocation decisions

• Daily transportation 
decisions

Design level

User level

Compound Demand Process

l L∈ …

MTL Route FTL Shipment LTL ShipmentSTL Route

 u
kly Tτ τ ∈,
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points  l lP P l L⊂ ∈* *, , to these depots, in order to maximize total expected profits. An important 
aspect of the problem is that the mission of the selected depots, defined by their customer sets, 

 lP l L∈* *, , must remain the same for each day uTτ ∈  of the planning horizon. This stochastic 
multi-period location transportation problem is illustrated in Figure 2. A more detailed descrip-
tion of the problem is found in Klibi et al. (2010b). The SMLTP is as hierarchical decision prob-
lem due to the temporal hierarchy between the location decisions and the transportation deci-
sions. Formulations of the design and user level problems over the planning horizon are pre-
sented next. 

User Model  
Let L  be the subset of open depots in L , L L L= \  its complement, and l lP P⊂  the subset 

of ship-to-points assigned to depot l L∈ . On a daily basis, the depots l L∈  receive orders from 
their customers lp P∈  and they make shipping decisions for the next day. It is assumed that the 
demands of the ship-to-points p P∈  follow a compound stationary stochastic process with a 
random order inter-arrival time pq  and a random order size po . The cumulative distribution 
functions of inter-arrival times and order sizes are denoted respectively by (.)q

pF  and (.)pFο . A 
possible realization of these compound stochastic processes over planning horizon uT  constitute 
a demand scenario ω  and the set of all demand scenarios associated to the compound demand 
processes considered is denoted by Ω . The probability that demand scenario ω∈Ω  will eventu-
ally be observed is denoted by ( )π ω . For a given scenario ω , the set of ship-to-points ordering 
products on day τ  is denoted by ( )τ ωP , and the shipments to make on day τ  at depot l L∈  are 
defined by the loads ( ) ( )τ τω ω∈ ,p ld p P , where ( ) ( )τ τω ω= ∩l lP P P  is the set of depot l ship-
to-points which order products on that day under scenario ω . 

Given the loads ( ) ( )τ τω ω∈ ,p ld p P , to deliver on day τ , shipping decisions are made by 
the network depots users  in two steps. First, for the loads that are larger than a truckload, a deci-
sion is made to ship as much as possible in full truckloads. Let ( )τ ωFTL

plK  be the set of vehicle 
types (routes) selected to make full truckload shipments to point p. Then the residual loads to be 
inserted in STL, MTL or LTL shipments at depot l on day τ  are: 

( ) ( ) ( )
( )

( )
τ

τ τ τ τ
ω

ω ω ω ω
∈

= − ∈∑ ,
FTL
pl

FTL
p p k kl l

k K

d d b y    p P  (1)  

where ( )τ ωFTL
kly  is the number of truckloads shipped to point p from depot l on route k, and bk is 

the capacity of route k vehicles.  

Next, the best delivery routes must be constructed. Let, 

lK   Set of feasible STL, MTL and LTL delivery routes from depot l L∈  considering 
carrier offers and service requirements; 
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kP   Ordered set of ship-to-points in route lk K∈  ( kP P⊂ ); 

kw : Tariff paid for route k;  

( )τ ωlK :   Set of non-dominated feasible delivery routes from depot l, on day τ , under scenario 
ω  (i.e. such that ( )k lP Pτ ω⊂ , ( )

kp P p kd bτ ω∈ ≤Σ , and lk K∈ ); 

δkp : Binary coefficient taking the value 1 if ship-to point p is covered by route k  (i.e. if 

kp P∈ ), and to 0 otherwise; 

ky :    Binary decision variable equal to 1 if route k is used for the depot, day and scenario 
considered, and to 0 otherwise. 

Note that for a TL-route ( )lk K τ ω∈ , the tariff is independent of the load carried in the vehicle. It 
is given by max( ; ) ( 1)k k k l l kw r m TL a P= + − , where km  is the total mileage of route k, kr  the 
transportation cost rate per mile, lTL   a minimum transportation charge, and la  a drop charge for 
any additional stop. On the other end, for single destination LTL-routes in ( )lK τ ω , the tariff kw  
depends on the load carried ( )pd τ ω  between depot l and the ship-to-point kp P∈  of route k. 

For demand scenario ω , the best routes are obtained at depot l on day τ  by solving the fol-
lowing transportation sub-problem:  

( )
( )l

u
l k k

k K
C Min w y

τ

τ
ω

ω
∈

= ∑y  

subject to 

(2)
 

( )
1

l

kp k
k K

y
τ ω

δ
∈

=∑  ( )τ ω∈ lp P  (3) 

{ }0 1ky ∈ ,     ( )τ ω∈ lk K        (4) 

where y  denotes the vector of all the transportation decisions, and ( )τ ωu
lC  is the cost of the op-

timal shipments made by depot l on day τ  under scenario ω .  

Furthermore, shipments made on a daily basis generate sales revenues. Taking these into ac-
count, as well as depots production/procurement, warehousing, inventory holding and customer 
shipment costs, the net revenues ( )uR ω  generated at the distribution network user level for de-
mand scenario ω  are given by: 

 ( ) ( ) ( )
( )

( ) ( )
( )( )u FTL

l l pl

u FTL u
p l p k kl l

l L T p P p P k K

R u v d w y C
τ τ τ

τ τ τ
τ ω ω ω

ω ω ω ω
∈ ∈ ∈ ∈ ∈

⎡ ⎤
⎡ ⎤= − − −⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

∑∑ ∑ ∑ ∑  (5) 

These net revenues are an important element to anticipate in the design model.  
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Design Model 
At the strategic level, the only decisions made here and now are the selection of the subset 

of facilities L L⊂*  to be used during the planning horizon, and the mission lP l L∈ * *, , of these 
facilities. However, adequate network design decisions cannot be made without anticipating the 
net revenues generated. The best possible anticipation involves the explicit inclusion, in the de-
sign model, of the transportation model (2)-(4) and of the net revenue expression (5), but with the 
information available at the time the network design decisions are made. This leads to the formu-
lation of the SMLTP as a two-stage stochastic program with recourse (Ruszczynski and Shapiro, 
2003). The following first stage decision variables are required to formulate the model:  

lx :       Binary variable equal to 1 if depot l is opened, and to 0 otherwise; 

lpx :            Binary variable equal to 1 if ship-to point p is assigned to depot l, and to 0 otherwise. 

The notation x  is used to denote the vector of all these decision variables, and xl  the vector of 
depot l ship-to-point assignment variables. 

The stochastic programming model to solve is the following:     

( )
x

( ) x,du
l l

l L

R Max R A x
ω

π ω ω
∈Ω ∈

= −∑ ∑  

subject to 

 

 

(6) 

1
p

lp
l L

x
∈

=∑  p P∈  (7) 

lp lx x≤  l L∈ , lp P∈   (8) 

{ }0 1l lpx x ∈, ,     l L∈ , lp P∈   (9) 

where, based on (2)-(5), the optimal value ( )xduR ω,  of the second stage program for design x  
and scenario ω  is given by: 

( ) ( ) ( ) ( )
( )( )

( )
u FTL

pl

du FTL du
p l p k kl lp l l

l L p PT k K

R u v d w y x C
τ τ

τ τ τ
ωτ ω

ω ω ω ω
∈ ∈∈ ∈

⎧ ⎫⎡ ⎤⎪ ⎪= − − −⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑∑ ∑ ∑x x, ,       (10) 

with 
( ) ( )

( )τ

τ τ
ω

ω ω
∈

= ∑
y

x ,
l

du
l l k kl

k K
C Min w y  

subject to 

(11) 

 

( )
( )

τ

τ
ω

δ ω
∈

=∑
l

kp kl lp
k K

y x  ( )τ ω∈p P  (12) 

( ) { }0 1τ ω ∈ ,kly     ( )τ ω∈ lk K    (13) 

In the first term of objective function (6) the expected net revenues are calculated, based on 
(10), and in the second term the depots fixed costs are subtracted from net revenues to get ex-
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pected profits. Constraints (7) in the first stage program enforce single depot assignments for 
ship-to-points, and constraints (8) limit ship-to-point assignments to opened depots. Note that (7)
-(9) are classical location-allocation constraints. Constraints (12) in the second stage program are 
coupling relations ensuring that daily route selections respect depot mission decisions. This de-
sign model incorporates an exact anticipation of the user transportation decisions. Unfortunately, 
it is intractable due to the infinite number of possible scenarios and the extremely large number 
of possible transportation routes. 

Approximate Anticipations for the SMLTP 
Since a perfect anticipation (accurate and complete anticipation) is not possible, approxi-

mate anticipations are generally used to develop solvable network design models. Approximate 
user anticipations can be obtained through aggregations over transportation decisions, customer 
locations and/or time periods, and through scenario sampling. Figure 3 distinguishes four model-
ing features on which approximate anticipations can be based for the SMLTP. For each feature, 
the option identified by an arrow (←) is the one used for the exact anticipation. An approximate 
anticipation is obtained by selecting at least one alternative option.  

   

Figure 3 - User Sub-Model Reduction Options 

The first modeling feature considered is stochastic demand. When the distribution function 
of inter-arrival times (.)q

pF  and/or order sizes (.)pFο  is continuous, there is an infinite number of 
demand scenarios in Ω , and the resulting stochastic program cannot be solved. An approach 
which has been used to reduce the complexity of stochastic programming models is the sample 
average approximation (SAA) method presented in Shapiro (2003). This approach uses Monte 
Carlo methods to generate an independent sample of m equiprobable scenarios  

Modeling 
Features

Stochastic 
Demand

Transportation

Typical scenario (ex. average scenario)

Flows

Demand Zones → Granularity levels

Ship-to pointsCustomer
Locations

Planning 
Horizon

Routes

Planning periods (          ) → Granularity levels

Ω
mΩ ⊂Ω

lK l L∈,

l lK K l L⊂ ∈ˆ ,
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Scenario sample

u uT T⊂ˆ

ˆt T∈

uT

←

←

←

←

The Impact of Operations Anticipations on the Quality of Supply Chain Network Design Models

CIRRELT-2010-45 9



 

{ }1,..., m mω ω = Ω ⊂ Ω  from the probability distributions of the random variables, and it solves 
the model obtained by replacing Ω  with mΩ  in the original program. This removes the necessity 
of explicitly computing the scenario probabilities ( )π ω , which is also a significant simplifica-
tion. The SAA method has been successfully applied to SCN design problems by Santoso et al. 
(2005) and Vila et al. (2007). Another option is to select a typical scenario in Ω , which yields a 
deterministic model. When this is done, an average demand scenario is typically used. The large 
literature on deterministic SCN design models is implicitly based on this single-scenario option. 

The second modeling feature considered is the anticipation of user transportation decisions. 
In the exact anticipation model, the transportation costs for a given design and scenario are pro-
vided by ( )du

l lC τ ωx , , and they depend on the optimal solution of the user transportation sub-
model (11)-(13). This model is similar to the classical set partitioning formulation of the vehicle 
routing problem (VRP). Similar formulations were also used by Novoa et al. (2006) for the sto-
chastic VRP, by Baldacci et al. (2002) for a capacitated location problem and by Berger et al. 
(2007) for an uncapacitated LRP. Toth and Vigo (1998) stress that this formulation has a very 
tight LP relaxation which helps reduce solution times significantly. Despite this, to obtain the 
optimal solution, all the non-dominated delivery routes ( )l lK Kτ ω τ ω=∪ , , l L∈ , must be used, 
and the size of these sets of routes grows exponentially with the number of ship-to-points. For 
this reason, in practice, pre-established subsets of routes ( ) ( )l lK Kτ τω ω⊂ˆ , are usually used as 
input to the problem. These subsets are often built from historical data, but some authors (Novoa 
et al., 2006) proposed approaches to obtain good route subsets. Clearly, the quality of the solu-
tion obtained depends on the quality of the candidate route subsets used. Another option avail-
able to simplify the problem is not to consider routing decisions explicitly, and to approximate 
the transportation costs in (10) by aggregate depot-to-customer flow costs. This requires the defi-
nition of unit flow costs lpg  between all depots l L∈  and ship-to points lp P∈ . These unit costs 
are typically provided by a regression function lp lpfg m ε= ( ) + , estimated from historical ship-
ments, transportation rates data or simulated data, where lpm  is the mileage between depot l and 
ship-to points p and ε is a random error term (Ballou, 1991, 1994). Note that the precision of this 
function depends on the data used to estimate it. When it is estimated from historical data, it is 
linked to the status-quo design of the company and thus it may not yield good costs anticipations 
for other feasible designs. If the data used is generated by simulation, with the user model, for a 
sample of representative designs and scenarios, then as we shall see the resulting anticipation is 
much better. 

The third modeling feature considered is related to ship-to locations granularity. To reduce 
the model size, ship-to-points can be aggregated into demand zones z Z∈ . For example, aggre-
gations can be based on a Zip Code proximity rules (Geoffrion, 1976). Typically, route-based 
formulations are considering deliveries to ship-to-points, but flow-based formulations can ac-

The  Impact of Operations Anticipations on the Quality of Supply Chain Network Design Models

10 CIRRELT-2010-45



 

commodate demand zones of any granularity level. The former reflect true transportation costs, 
but the later require the derivation of aggregate flow cost functions. Ballou (1994) studies the 
transport costing error associated with ship-to-point aggregation. Sankaran (2007) examines the 
error introduced by ship-to-point aggregation for large instances of the capacitated facility loca-
tion problem. Prins et al. (2007) proposed a heuristic approach for the LRP that uses the concept 
of ship-to point’s aggregation to solve iteratively the location problem. Practical recommenda-
tions have been made on the number of demand zones to use (Bender, 1985), but these depend 
largely on the problem breath and the computing power available. 

The fourth modeling feature relates to the planning horizon granularity. An exact anticipa-
tion requires the consideration of all usage periods uTτ ∈  of the user model which, for most 
practical problems, would lead to extremely large models. The number of periods considered can 
be reduced through sampling or aggregation. Sampling involves selecting a subset u uT T⊂ˆ  of 
usage periods with a given frequency (ex: 1 day per week or month). Note that when the demand 
process is stationary, as assumed in this paper, the resulting design model includes um T̂| |  usage 
periods with demands generated from the same probability distributions. Sampling periods in our 
case has therefore similar effect as sampling demand scenarios. When the demand is non-
stationary, however, sampling scenarios and sampling periods lead to different anticipations. 
Aggregation involves summing usage period demands over larger periods (ex: weeks, seasons, 
years) to get a set ˆt T∈  of planning periods. This approach makes sense only under a flow-based 
formulation, and it raises serious capacity aggregation questions when the depots are capacitated. 
If a single aggregate period is used (ex: a year), this yields a static model. Much of the literature 
on location-allocation problems makes this assumption.  

Another possibility is to represent demand by a typical usage period, an average day, for ex-
ample. Most LRP formulations available in the literature make this assumption. Although, at first 
sight, this seems to be an attractive approach to get a good anticipation, it is not without problem. 
When the demand follows a compound process, as assumed here, the average usage period de-
mand is not typical. If the mean time between arrivals is pλ  and the mean order size is pμ  then, 
on the average, the demand of customer p during a day is ( / )p pμ λ , which is not typical because, 
in reality, most customers do not order every day (i.e. 1pλ > ) and when they do their orders are 
larger (i.e. /p p pμ μ λ> ). Because of the drop charges added for MTL routes with several small 
orders, the best transportation option in this context is usually LTL transportation. Consequently, 
optimal average demand routes do not provide a good anticipation of transportation costs. More-
over, since MTL routes include several points, the sets of routes lK l L∈ , ,  to consider are ex-
tremely large, and the resulting model is very difficult to solve. For these reasons, this approach 
is not examined in more detail in what follows. 
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Based on these modeling features four approximate design models, corresponding to com-
mon location model variants found in literature, are described in Table 1. These models are for-
mulated, solved and compared in the following sections. 
 

 

Supply Network Design Models 

User Anticipation Approximation Features  
Stochastic 
Demand Transportation Customer 

Locations 
Planning 
Horizon 

Scenario Sample Average Approxi-
mation SMLTP Model (M1) 

mΩ ⊂ Ω  l lK K⊆ˆ  P uT  
Scenario-Period Sample Average 
Approximation SMLTP Models (M2) 

mΩ ⊂ Ω  l lK K⊆ˆ  P u uT T⊂ˆ  
Stochastic Location-Allocation Mod-
el (M3) Ω  Flows P Planning period 

Aggregate Location-Allocation Mod-
el (M4) Typical scenario Flows Z Planning period 

Table 1-Supply Network Design Models Considered  

5. Anticipation Based Models for the SMLTP 
Scenario Sample Average Approximation SMLTP Model (M1) 

Model M1 is a sample average approximation of stochastic program with recourse (6)-(13) 
based on a sample mΩ ⊂Ω  of m scenarios. In addition, this model is based on adequately gener-
ated subsets of routes ( ) ( )l lK Kτ τω ω⊂ˆ , l L∈ , uTτ ∈ , mω∈Ω . The approach proposed to gen-
erate these routes is discussed in the following pages. This gives rise to the following binary in-
teger program (BIP):  

( ) ( ) ( )
( )( )

( )
( )

1
m u FTL

lpl

FTL
p l p k kl lp k kl l l

l L p P l Lk KT k K

R Max u v d w y x w y A xm
τ ττ

τ τ τ
ω ωω τ ω

ω ω ω
∈ ∈ ∈∈∈Ω ∈ ∈

⎧ ⎫⎡ ⎤⎪ ⎪= − − − −⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑∑ ∑ ∑ ∑ ∑M1 x y, ˆ

ˆ

 

(14) 

subject to  

( )
( )

τ

τ
ω

δ ω
∈

=∑̂
l

kp kl lp
k K

y x  

 

l L∈ , ( )p Pτ ω∈ , uTτ ∈ , mω∈Ω  

 
(15) 

( ) { }0 1kly τ ω ∈ ,  l L∈ , ( )τ ω∈ ˆ
lk K , uTτ ∈ , mω∈Ω  (16) 

and to the location-allocation constraints (7)-(9). 

This model is still very complex to solve, especially when several usage periods and scenar-
ios are considered. Consequently, in our experiments, it will be solved using an exact method for 
small and medium size problems but, for large cases, the heuristic proposed by Klibi et al. 
(2010b) will be used.  
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Scenario-Period Sample Average Approximation SMLTP Models (M2) 

Model M2 is similar to M1, but it considers only a subset u uT T⊂ˆ  of usage periods. Given 
the original daily demands, one usage period per week (month) is randomly sampled to get the 
demands ( ) ( ) m u

pd p P Tτ τω ω ω τ∈ ∈Ω ∈, , , ˆ , and the transportation sub-problems are solved 
only for these periods. A periodicity weight u uT T| |/| |ˆ  is applied to net revenues to obtain an ade-
quate approximation of the total expected profits. The models thus obtained are much smaller 
than M1 and, consequently, they are much easier to solve. The resulting BIP has the following 
form: 

( ) ( ) ( )
( )( )

( )
( )

m u FTL
pl

l

u
FTL

p l p k kl lpu
l L p PT k K

k kl l
l Lk K

TR Max u v d w y x
m T

w y A x

τ τ

τ

τ τ
ωω τ ω

τ
ω

ω ω

ω

∈ ∈∈Ω ∈ ∈

∈∈

⎧ ⎡ ⎤⎪= − −⎢ ⎥⎨
⎢ ⎥⎪ ⎣ ⎦⎩

⎫⎪− −⎬
⎪⎭

∑ ∑∑ ∑ ∑

∑ ∑

M2 x y

| |                  
| |, ˆ

ˆ

ˆ
ˆ

 

(17) 

subject to  

( )
( )

l

kp kl lp
k K

y x
τ

τ
ω

δ ω
∈

=∑̂  l L∈ , ( )p Pτ ω∈ , uTτ ∈ ˆ , mω∈Ω  
 

(18) 

( ) { }0 1kly τ ω ∈ ,           l L∈ , ( )τ ω∈ ˆ
lk K , uTτ ∈ ˆ , mω∈Ω  (19) 

and to the location-allocation constraints (7)-(9). Clearly, we would expect better results under 
weekly sampling than monthly sampling.  

Stochastic Location-Allocation Model (M3) 

Model M3 is a stochastic location-allocation model obtained by aggregating usage period 
demands into a single planning period and by anticipating transportation costs using customer 
demand allocation variables. For a given scenario ω∈Ω , the annual demand ( )pD ω  of ship-to-
point p P∈  is obtained by summing daily demands over all usage periods, i.e. by computing 

( ) ( )up pT
D d ττ

ω ω
∈

= Σ . This model approximates transportation costs based on scenario specific 
depot to ship-to-point flows ( )p lp lD x l L p Pω ∈ ∈, , , using unit flow costs ( )lpg ω , sampled from 
the Normal distribution ( ( ), )lpN f m εσ , where εσ  is the standard deviation of the regression er-
rors. This approximate anticipation yields the following stochastic location-allocation model:  

( )
l

p l lp p lp l l
l L p P l L

R Max u v g D x A x
ω

π ω ω ω
∈ ∈ ∈Ω ∈

⎧ ⎫
= − − −⎨ ⎬

⎩ ⎭
∑∑ ∑ ∑M3 x

( ) ( ) ( )ˆ  (20) 

subject to location-allocation constraints (7)-(9).   
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In our case, because the assignment variables lpx  are first-stage variables (Birge and Lou-
veaux, 1997), (20) reduces to: 

( )
l

pu
p l lp lp l l

l L p P l Lp

R Max T u v f m x A x
μ
λ∈ ∈ ∈

⎧ ⎫⎪ ⎪= − − −⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ ∑M3 x
( )ˆ  (21) 

For the SMLTP, the model obtained with this approximate anticipation therefore has exactly the 
same form as a deterministic location-allocation model. For more complex SCN design prob-
lems, this type of anticipation yields models with random second stage variables, and the SAA 
method must be used to solve them (Santoso et al. 2005, Vila et al., 2007). As indicated previ-
ously, the quality of this anticipation depends largely on the precision of the transportation cost 
function lp lpfg m ε= ( ) +  used. 

Aggregate Location-Allocation Model (M4) 

This approximate anticipation is a reduction of model M3 based on the aggregation of ship-
to-points into demand zones. The set of ship-to-points P is partitioned into demand-zone subsets 

, zP z Z∈ , based on the points geographical position. The geographical centroids of the demand 
zones are calculated in order to be able to measure the mileage lzm  between the depots l L∈  and 
the demand zones lz Z∈  they can serve. The average annual demand for a demand zone z Z∈  is 
obtained by calculating | | ( / )

z

u
z p P p pD T μ λ∈= Σˆ . The ship-to-point allocation variables lpx  are re-

placed by demand-zone allocation variables lzx , and it is understood that any point zp P∈  will 
be supplied by the depot supplying zone z. In this model, approximate transportation costs are 
obtained by multiplying depot to demand-zone flows , , z lz lD x l L z Z∈ ∈ˆ , by average unit trans-
portation costs. The later are obtained from a regression function lz lzfg m ε= ( ) + '  estimated from 
aggregate zone flow data. The unit price of products sold to zone z is denoted by zu  and is de-
rived from pu  for ship-to-points p pertaining to zone z. This yield the following aggregate loca-
tion-allocation model:   

( ){ }
l

z l lz z lz l l
l L z Z l L

R Max u v f m D x A x
∈ ∈ ∈

= − − −∑∑ ∑M4 x
( )ˆ ˆ'  (22) 

subject to 

1lz
l L

x
∈

=∑  

 
z Z∈  

 
(23) 

llzx x≤  l L∈ , lz Z∈  (24) 

{ }0 1l lzx x ∈, ,  l L∈ , lz Z∈  (25) 
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6. SCN Design Models Solution and Evaluation 
Sampling and estimation procedures are needed to specify the different parameters used in 

the design models presented above. One must also elaborate solution methods for these models. 
Finally, an approach must be devised for the evaluation and comparison of the designs they pro-
vide. Figure 4 summarizes the approach proposed here to generate, solve and evaluate the SCN 
design models formulated. The top box in the figure represents all the problem solving ap-
proaches examined. The SAA models require several scenario sample replications and the loca-
tion-allocation (L-A) models are based on average demands and costs. In order to formulate 
these models, scenario samples mΩ ⊂Ω , route subsets l lK K l L⊆ ∈, ˆ , a usage period sample 

u uT T⊂ˆ  and/or a demand zones set Z must be generated. Truck load requirements ( )τ ωFTL
kly  

must also be calculated, and unit flow cost functions ( ( ) + lp lpg f m ε=  or ( ) + lz lzg f m ε′= ) es-
timated. The scenarios needed by the models are generated with a Monte Carlo procedure. The 
selection of a periodic sample of usage periods uT̂  is straightforward. The construction of de-
mand zones based on zip or postal codes structures is also relatively simple. In the US, for ex-
ample, 3-digit zip code zones are often used. Geographical coordinates are associated to each 
zone ∈z Z  by calculating the weighted average of its ship-to-points latitude and longitude (Bal-
lou, 1994). The details of the methods and procedures used to generate models and scenarios are 
presented in the Appendix.  

 
Figure 4- SCN Design Models Solution and Evaluation Approach  

Once the models are generated, exact and heuristic solution methods are needed to solve 
them. As indicated in Figure 4, the SAA models M1 and M2 and the location-allocation models 
M3 and M4 are solved using CPLEX-12. M1 is also solved using a metaheuristic that combines 
a modified Clarke and Wright savings procedure for transportation sub-problems with a Tabu-

1m
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search location-allocation heuristic (Klibi et al., 2010b). Altogether, the (model, solution 
method) pairs considered produce a set of alternative designs { }j j J∈x ,  and it is these designs 
that must be evaluated and compared in order to assess the design models. The evaluation of 
SCN designs is an issue that has been neglected in the literature (Robinson and Swink, 1985; 
Ballou, 2001). Clearly, since each design model involves some approximations, using the objec-
tive function of one of the models formulated to evaluate all the designs obtained is completely 
inadequate. The approach proposed here to assess the performance of the SCN designs obtained 
using several criteria computed from the solution of the user model for a large sample MΩ  of 
demand scenarios.  

The user model was presented in section 4 of the paper, however, to perform the evaluation 
of a design x j , the FTL shipments required must be calculated with (29) and transportation 
model (2)-(4) must be solved, for each usage period and each depot. The net revenue must then 
be calculated with (5), and this for all the scenarios Mω∈Ω . In our evaluations model (2)-(4) is 
solved with the heuristic, based on perturbed Clarke and Wright savings and 2-opt improve-
ments, proposed by Klibi et al., (2010b). More specifically, the UserEvaluation procedure used 
to evaluate a design x j  for a scenario Mω∈Ω  is found in Figure 5. The input vector ( )ωd  pro-
vides all the demands associated to scenario ω . The set jL  in the procedure includes all the 
opened depots in design x j . The net revenues calculated with (5) for design x j  are denoted by 

( )u jR ωxˆ , . The last term in (5) is computed with ( ) ( )( )l

u
l k klk K

C w y
τ

τ τω
ω ω

∈
=∑  for the solutions 

( )lτ ωy  provided by the transportation heuristic. 
 

( )( )( );j u jRω ωUserEvaluation x d xˆ, ,
 

For all ( , ) j ul L Tτ ∈ × , do 

S1:  Solve (29) by inspection to find the number of FTL shipments to make, and compute re-
sidual ship-to-point loads with (1); 

S2:    Select the best direct delivery transportation modes (LTL vs STL) and compute their 
tariffs; 

S3:   Solve the resulting transportation problem with the heuristic of Klibi et al., (2010b); 

End For 
S4:   Compute the net revenues ( )u jR ωxˆ ,  with (5). 

Figure 5- Evaluation Procedure for Design x j  under Scenario Mω∈Ω  

Once the UserEvaluation procedure has been executed for all the scenarios Mω∈Ω , ex-
pected value, mean semi-deviation and resilience measures can be computed to obtain a multi-
criteria assessment of the design considered. The net revenues obtained for a design x j  can be 
used to estimate its expected value:  
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( )1( ) ( )
M

j u j j
M l l

l L

ˆR R , A x
M ω

ω
∈∈Ω

= −∑ ∑x x  
  (26)

In order to evaluate the downside risk of a design, an adequate variability measure is its mean-
semi-deviation: 

( ) ( )1 1( ) max ;0
M M

j u j u j
M

ˆ ˆMSD R , R ,
M Mω ω

ω ω
∈Ω ∈Ω

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∑x x x          (27) 

In addition, another SCN quality sought by managers is resilience, i.e. the capability of the net-
work to quickly recover from failures (Klibi et al., 2010a). A measure of resilience is obtained 
by calculating the weighted average distance to a backup supply depot for each ship-to-point (i.e. 
its closest depot excluding the supply depot specified by x j ):  

       ( ) 2 ( )

1j
M pl p

p Pp P p

S m D
D ∈∈

= Σ ∑x    (28)

where ( )
( ){ }

{ }2

\
arg min

p
lpl L l p

l p m
∈

=  and ( )1
Mp pD DM ω

ω
∈Ω

= ∑ . 

These three performance measures provide an adequate multi-criteria assessment of the SCN 
designs considered.  

7. Computational Results 

Test Cases 
In order to test the design models proposed, several problem instances were generated based 

on four factors: the problem size, the cost structure, the network characteristics and the demand 
process. Problems of four different sizes were created as shown in Table 2. The networks incor-
porate about 3% P  potential depots, and ship-to points are realistically scattered in the geo-
graphical area covered. The distances between the network nodes based on existing roads are 
calculated with PC*MILER (www.alk.com). A one year planning horizon, with uT

 
= 240 

working days, is used. The next day delivery requirement is implemented through a 400 miles 
limit on the distance between depots and ship-to points. Exceptionally, when the number of inci-
dent lanes of a given ship-to-point is less than two, depots with distances larger than 400 miles 
are also considered. All the vehicles capacity ( Fb  and ,kb k K∈ ) are fixed to 400 cwt. Based on 
the cost structure of a real case, low level fixed costs (a) and high level fixed costs (b) were de-
fined. The fixed cost for each depot lA  was randomly generated in the interval [20 , 40 ]K K  for 
cost structure (a) and [50 ,70 ]K K  for (b). The unit value of products, lv , was selected randomly 
in [$20,$21]  for each depot and the products price, pu , was fixed to $23 for all ship-to-points.  
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Problem  
instance Geographical Area 

Potential 
depots 

Number of 
ship-to-points 

P1 New York and Pennsylvania States 4 86 
P2 Central North Eastern US States 7 206 
P3 North Eastern & Midwest US States 15 706 
P4 North Eastern & Midwest US States 28 1206 

Table 2- Test Problems Size 
We assume that order inter-arrival times follow an exponential distribution ( )pExp λ  with an 

expected time between orders pλ . In order to study different types of ordering behaviour, two 
distributions are considered to characterize order quantities: a log-normal distribution 

( )2
p pLN μ σ,  with mean pμ  and standard deviation pσ , and a triangular distribution 

( ), ,p p pTr γ γ γ  with minimum value pγ , maximum value pγ  and modal value pγ . The two dis-
tinct order size distributions used lead to the generation of two types of demand structures: DS1 
and DS2. DS1 incorporates log-normal orders which can exceed a full truckload. DS2 incorpo-
rates triangular orders which are always smaller than a truckload. The ship-to-points are parti-
tioned into three customer size (Large, Medium and Small), and two types of network are gener-
ated: larger ship-to-points networks (LN) dominated by large and medium size customers and 
smaller ship-to-points networks (SN) dominated by small customers. The proportion of ship-to-
points of different size in each network type is given in Table 3. The table also provides the 
probability distribution parameters used to generate the orders for each customer size.  

Ship-to-point size Large Medium Small 

Larger ship-to points network (LN) 15% 65% 20% 

Smaller ship-to-points network (SN) 10% 30% 60% 
λ (days) [2.5,4.5] [5.5,15.5] [20.5,35.5] 

DS1 
μ (cwt) [480,580] [300,400] [120,220] 
σ (%μ ) 7% 10% 16% 

 
DS2 

 

γ  (cwt) [200,250] [125,175] [80,100] 
γ  (cwt) [350,400] [250,300] [150,200] 
γ  (cwt) [275,325] [200,250] [100,150] 

Table 3- Ship-to-Point Demand Structures  

The combination of all these elements yields 32 problem instances. Each instance is denoted 
as follows: ( ) { } { } { } { }1 2

1 2 3 4, , , , , , , ,  , ,  , , ,i j k l i P P P P j a b k LN SN l DS DS∈ ∈ ∈ ∈ . 
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Models and Solution Methods Calibration  
The solution methods proposed in this paper were implemented in VB.Net 2005, and the ex-

periments reported in this section were performed on a 64-bit server with a 2.5 GHz Intel XEON 
processor and 16 GB of RAM. All the BIPs were generated with OPL Studio 6.3 and solved with 
CPLEX-12. As discussed previously, a number of parameters must be fixed for the models and 
solution methods proposed, namely: the various sample sizes (m) for the SAA models, the route 
set generation parameters ( max, yρ ), the usage period sampling frequency for M2, the flow rate 
regression functions ( ( )lpf m , ( )' lzf m ) for M3 and M4, the parameters of the metaheuristic used 
to solve M1, and the scenario sample size (M) to use for the evaluation of the designs obtained.  

M1 and M2 are stochastic programs and the issue of the adequate sample size to use for 
their SAA reductions arises. Several sample sizes have been tested (see Table 8 in the Appendix) 
to study the tractability of these SAA models. Based on calibration tests, we concluded that even 
when a small sample size is used ( 6m = ) the SAA models M1 are still extremely accurate and 
provide low statistical optimality gap values (Shapiro, 2003). This is due partly to the fact that, 
for the problem instance considered, the profits generated are relatively high and the objective 
function value has low variability (6.1%, 4.5%, 1.5% and 0.7% on average for P1, P2, P3 and P4, 
respectively), which could mean that the value of stochastic solutions (Birge and Louveaux, 
1997) is relatively low. Note that two sampling frequency for M2 are tested: the weekly period 
case M2-w where one day per week is sampled and the monthly period case M2-m where one 
day per month is sampled. The routes sets included in M1 and M2 were calibrated (with the 
RouteGen procedure described in the Appendix) based on the sample size, the number of peri-
ods and the number of ship-to points. Note also that when solving M1 using the Tabu-search 
heuristic, samples of 6, 20 and 50 scenarios were tested for all the instances. The label M1-H is 
used to denote the designs obtained by solving M1 with the heuristic. In the case of design model 
M3, two design solutions are evaluated depending on the approach employed to derive the ob-
servations used to estimate the transportation costs functions. M3 refers to the basic approach 
where the observations come from an arbitrary status-quo design and historical scenario, and 
M3-S refers to the case where the observations are sampled from a set of heuristically generated 
designs and a subset of scenarios. The former uses a unique function aggregating all the transpor-
tation options, and the latter separates the FTL shipments from the other transportation options. 
In addition, in the case of M4, a 3 digits ZIP code rule has been used for the zones aggregation in 
order to guarantee the respect of the delivery distance rule. Thus, the percentage of zones over 
ship-to-points is about 60%, 51%, 43% and 28% for P1, P2, P3 and P4, respectively. The trans-
portation functions were estimated using a sample of designs and scenarios as for M3-S, and 
hence we denote this model by M4-S in the following discussion on results. The calibration of 
all the parameters used is presented in more details in the Appendix. 
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Numerical Results 
The design models solvability, the value of the designs obtained and the solution times are 

discussed for the 32 problem instances. Additional comparisons are provided in order to assess 
the quality of anticipations. First, the solvability of the models is examined in Table 4 for prob-
lem instances with (a, LN and DS2) attributes. The notation M(m,ρ) is used to describe the mod-
els, where ρ  is the maximum number of segments in the routes generated. For each model, the 
number of variables, the number of constraints and the mean solution times (MST) in seconds 
are provided. As can be seen, there are a huge discrepancies between the models solved in terms 
of complexity and consequently of running times. The equivalent deterministic version of the 
stochastic location-allocation model (M3) is very easy to solve even for large instances: it has 
processing times that are less than 1 second. Also, the reduced version with zones aggregation 
(M4) is even easier to solve given the small size of the models obtained.  

P1 

Models M1(50,5) M1-H(50,5) M2-w(50,5) M2-m(50,5) M3 M4 
Variables 702 919     137 893  35 255  353  217 

Constraints 444 994     87 110  22 746  434  264 

MST (s) 3 164  190  14  1  < 1  <1 

P2 

Models M1(20,5) M1-H(50,5) M2-w(50,2+) M2-m(50,5) M3 M4 
Variables 1 535 418     765 690  184 229  1 454  754 

Constraints 741 427     363 119  92 758  1 652  852 

MST (s) 15 481  159  10 576  44  < 1  < 1 

P3 

Models M1(6,2) M1-H(50,5) M2-w(12,5) M2-m(20,5) M3 M4 
Variables 2 345 319     1 042 983  404 772  10 610  4 580 

Constraints 1 664 161     690 976  280 906  11 300  4 868 

MST (s) 24 666  3025  1 883  31  < 1  < 1 

P4 

Models M1 M1-H(50,5) M2-w(6,2) M2-m(12,2+) M3 M4 
Variables       2 309 995  1 339 711  33 801  9 553 

Constraints       1 076 093  562 657  34 978  9 864 

MST (s)    3741  639  62  1  < 1 

Table 4- (Model, Solution Method) Pairs Characteristics for a-LN-DS2 Instance 

As mentioned previously, models based on M1 and M2 have a very tight LP relaxation 
which helps reduce solution times significantly even with the large number of binary variables 
(larger than one million) involved. For this reason, it was possible to solve M1 for P1, P2 and P3. 
For P3, M1 gives the largest model solved with CPEX 12: it has 2 345 319 binary variables and 
it was solved in 6.8 hours. However, for P4, although we were not able to solve M1 with 
CPLEX, a heuristic solution for M1-H was obtained in 3741 seconds. For P1 and P2, M2 was 
solved easily, which clearly shows that period sampling has a huge impact on solvability. How-
ever, for P4, the number of ship-to points involved yield very large routing problems and enu-
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merating all the MTL routes becomes impossible. Thus, for large problems, M2 also becomes 
intractable: it can be solved only when using a small number of scenarios and a small subset of 
the possible routes. Note finally that some problem instances are more difficult to solve than oth-
ers (LN and DS1 instances are more difficult because the set of non-dominated routes to consider 
is much larger). 

Now, let us examine the quality of the designs produced by all these models. As explained 
using Figure 4, the design generation phase produces several alternative designs for each prob-
lem instance. Given this set of designs, a large sample of scenarios ( 100M = ) is generated for 
each problem instance in order to evaluate each design in terms of expected value (i.e. mean net 
profit) using (26) and mean semi-deviation using (27). The average design value %-deviation 
and the average MSD %-deviation from the best-known solution, as well as the MST in seconds, 
are given in Table 5 for each problem size. The mean design value of all the designs obtained for 
different subsets of problem instances are shown in Table 6. Note that for each model-solution 
method pair, only the result for the dominant design found is presented. The result of the best 
model is highlighted for each problem subset.  

  
(P1, ., ., .)  (P2, ., ., .) 

Mean Value Mean Deviation MST (s) Mean Value Mean Deviation MST (s) 
M1 0.00%  0.49%  10 080  0.00%  0.27%  27 403 
M1-H ‐0.02%  0.43%  199  ‐0.02%  0.26%  378 
M2-w ‐0.02%  0.49%  60  ‐0.01%  0.27%  3 502 
M2-m ‐0.27%  0.00%  2  ‐0.35%  0.00%  216 
M3 ‐0.54%  0.91%  1  ‐0.71%  1.13%  1 
M3-S ‐0.15%  0.96%  1  ‐0.21%  0.97%  1 
M4-S ‐0.33%  1.48%  1  ‐0.68%  0.49%  1 

  
(P3, ., ., .)  (P4, ., ., .) 

Mean Value Mean Deviation MST (s) Mean Value Mean Deviation MST (s) 
M1 0.00%  0.44%  32 098       
M1-H ‐0.10%  0.36%  1 816  ‐0.10%  0.91%  3 798 
M2-w ‐0.03%  0.36%  3 589  ‐0.08%  1.01%  2 529 
M2-m ‐0.51%  0.00%  1 457  ‐1.90%  0.00%  366 
M3 ‐0.23%  0.66%  1  ‐0.13%  1.02%  1 
M3-S ‐0.09%  0.56%  1  0.00%  1.13%  1 
M4-S ‐0.29%  0.42%  1  ‐0.21%  0.82%  1 

Table 5- Mean Value and MSD Deviations and Solution Times by Problem Size  

These results indicate the superiority of M1 in terms of design value and underline the 
tradeoffs between performance and solution time necessary to produce near optimal designs. The 
best MSD performance is given by M2-m. This is probably due to the fact that, since M2-m is 
the simplest location-transportation model, larger scenario samples and larger route subsets could 
be used for the instances solved. In terms of mean design value, M1 produces superior designs 
for all P1, P2 and P3 subsets. For P3, even if smaller scenario and route sets had to be used, M1 
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gives better designs than all the other models. The average design values obtained when M1 is 
solved with the heuristic (M1-H) is always close to the best design found. Since the solution 
times of the heuristics are much smaller than those of CPLEX for the location-transportation 
models, using a heuristic solution provide a good compromise. On the other hand, the small % 
difference between the mean design value of M1 and M2-w in Table 5 proves that the later pro-
vides good quality designs with much smaller computation times. This confirms that the ap-
proximate anticipation based on weekly period sampling is accurate and, given the solvability of 
the model, it also yields a good compromise for larger instances. However, the designs obtained 
with M2-m are inferior to those found with M1 and M2-w, which indicates that one should not 
be too aggressive when sampling periods. 

P1  (P1, a, ., .)  (P1, b, ., .)  (P1, .,LN, .)  (P1, .,SN, .)  (P1, ., .,DS
1)  (P1, ., .,DS

2) 
M1 0.00%  0.00%  0.00%  0.00%  0.00%  0.00% 
M1-H ‐0.02%  ‐0.02%  ‐0.01%  ‐0.05%  0.00%  ‐0.06% 
M2-w ‐0.01%  ‐0.02%  ‐0.01%  ‐0.02%  ‐0.02%  ‐0.02% 
M2-m ‐0.14%  ‐0.43%  ‐0.16%  ‐0.46%  ‐0.16%  ‐0.55% 
M3 ‐0.10%  ‐1.06%  ‐0.61%  ‐0.41%  ‐0.14%  ‐1.49% 
M3-S ‐0.04%  ‐0.28%  ‐0.03%  ‐0.37%  ‐0.02%  ‐0.45% 
M4-S  ‐0.05%  ‐0.67%  ‐0.30%  ‐0.39%  ‐0.15%  ‐0.78% 

P2  (P2, a, ., .)  (P2, b, ., .)  (P2, .,LN, .)  (P2, .,SN, .)  (P2, ., ., DS
1)  (P2, ., ., DS

2) 
M1 0.00%  0.00%  0.00%  0.00%  0.00%  0.00% 
M1-H ‐0.02%  ‐0.02%  ‐0.01%  ‐0.03%  ‐0.01%  ‐0.04% 
M2-w ‐0.01%  0.00%  ‐0.01%  0.00%  0.00%  ‐0.01% 
M2-m ‐0.40%  ‐0.29%  ‐0.19%  ‐0.59%  ‐0.27%  ‐0.51% 
M3 ‐0.72%  ‐0.69%  ‐0.05%  ‐1.76%  ‐0.78%  ‐0.55% 
M3-S ‐0.16%  ‐0.27%  ‐0.05%  ‐0.47%  ‐0.06%  ‐0.54% 
M4-S  ‐0.99%  ‐0.33%  ‐0.10%  ‐1.60%  ‐0.09%  ‐1.94% 

P3  (P3, a, ., .)  (P3, b, ., .)  (P3, .,LN, .)  (P3, .,SN, .)  (P3, ., ., DS
1)  (P3, ., ., DS

2) 
M1 0.00%  0.00%  0.00%  0.00%  0.00%  0.00% 
M1-H ‐0.11%  ‐0.09%  ‐0.12%  ‐0.07%  ‐0.06%  ‐0.19% 
M2-w ‐0.03%  ‐0.03%  ‐0.01%  ‐0.06%  ‐0.01%  ‐0.06% 
M2-m ‐0.67%  ‐0.35%  ‐0.29%  ‐0.89%  ‐0.34%  ‐0.87% 
M3 ‐0.31%  ‐0.16%  ‐0.16%  ‐0.36%  ‐0.27%  ‐0.14% 
M3-S ‐0.10%  ‐0.08%  ‐0.08%  ‐0.10%  ‐0.05%  ‐0.16% 
M4-S  ‐0.33%  ‐0.26%  ‐0.32%  ‐0.25%  ‐0.29%  ‐0.30% 

P4  (P4, a, ., .)  (P4, b, ., .)  (P4, .,LN, .)  (P4, .,SN, .)  (P4, ., ., DS
1)  (P4, ., ., DS

2) 
M1  
M1-H ‐0.02%  ‐0.19%  ‐0.08%  ‐0.12%  ‐0.02%  ‐0.27% 
M2-w ‐0.03%  ‐0.15%  ‐0.10%  ‐0.06%  ‐0.08%  ‐0.08% 
M2-m ‐1.77%  ‐2.05%  ‐1.54%  ‐2.39%  ‐2.36%  ‐0.94% 
M3 ‐0.06%  ‐0.21%  ‐0.02%  ‐0.28%  ‐0.18%  ‐0.03% 
M3-S 0.00%  0.00%  0.00%  0.00%  0.00%  0.00% 
M4-S  ‐0.23%  ‐0.19%  ‐0.18%  ‐0.25%  ‐0.15%  ‐0.35% 

Table 6- Mean Design Values Deviations (%) for all Problem Types 
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When the location-allocation models M3 and M4 are tested, the quality of the designs pro-
duced for P1, P2 and P3 is not as good as those obtained with M1, M2-w and M1-H, however, 
the difference is quite small. The performance of M3-S is surprisingly good and it gives the best de-
signs for P4. M3-S is superior to M3 in about 80% of the instances solved, and in some cases by 
as much as 4%. This confirms that the precision of the transportation cost function used to gen-
erate the location-allocation models has a major impact on the quality of the designs obtained. It 
shows that it is much better to estimate transportation cost functions from (cost-distance) obser-
vations obtained by simulation, with the user model, for a sample of representative designs and 
scenarios, than to use historical data. In particular, it can be seen in Table 6 that M3-S provides 
excellent results for DS1 problems. This is due to the fact that these problems include a large 
proportion of single destination FTL transportation and that, under such conditions, as discussed 
in the Appendix, very precise transportation cost functions are obtained. The results also show 
that when demand zone aggregates are used, as in model M4-S, the quality of the designs ob-
tained deteriorates, mainly when the ship-to-point density per zone is relatively high as in P3 and 
P4. Too much aggregation should therefore be avoided. 

For each problem size and model, Table 7 provides the percentage of design decisions (lo-
cations and allocations), and depot location decisions, that are identical to the best design ob-
tained with all the models. For example, for P1, it indicates that the designs obtained with M1 
and M2-w include identical depot locations for 87.5% of the instances, but exactly the same de-
sign only for 37.5%, of them. There is a high similarity in depot location decisions and a much 
lower similarity in allocation decisions. This indicates that few alternative depot locations are 
interesting but that allocation decisions are very sensitive to the anticipation of operational reve-
nues and costs. It was observed by various authors (Verter and Dincer, 1995) that location deci-
sions tend to be highly driven by the topology of the network. Our results confirm this character-
istic. This is also probably why the location-allocation models perform so well.  

Models 
 (P1, ., .,.)   (P2, ., .,.)   (P3, ., .,.)   (P4, ., .,.) 

Design Location Design Location Design Location Design Location 
M1 100%  100%  87.5%  100%  100%  100%   
M1-H 37.5%  100%  0%  100%  0%  62.5%  50%  87.5% 
M2-w 37.5%  87.5%  12.5%  100%  0%  87.5%  25%  87.5% 
M2-m 25%  75%  0%  100%  0%  87.5%  0%  87.5% 
M3 0%  50%  0%  25%  0%  25%  12.5%  50% 
M3-S 37.5%  87.5%  0%  37.5%  0%  62.5%  62.5%  87.5% 
M4-S  0%  75%  0%  37.5%  0%  37.5%  0%  37.5% 

Table 7- Similarity (%) between Design Decisions for All Problem Size 

Finally, when the resilience of the designs obtained is evaluated using (28), we find that for 
most instances, location-allocation models provide a better coverage in terms of the average dis-
tance to the second nearest depot. We observe average distance deviation gaps of 4.75%, 28.28% 
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and 2.75% between M1 and M3-S for P1, P2 and P3 respectively, which clearly indicates a better 
delivery service in case of disruptions for the later. This is due to the aggregate flow approxima-
tions used in these models which are highly correlated to depot to ship-to-point distances. These 
results stress the need to explicitly incorporate mathematical constructs in design models to take 
resilience strategies and measures into account.  

8. Conclusions  
We studied the role of anticipations using the business context of the SMLTP. Throughout 

several approximations related to uncertainty, transportation, planning horizons and ship-to loca-
tions were discussed, alternative design model formulations were proposed, and solution meth-
ods were investigated. We performed several experiments on models with different anticipations, 
with a focus on the solvability of these models and on the quality of the SCN designs they pro-
vide. Our results indicate significant differences between the designs obtained with the various 
models studied, and thus between the underlying anticipations. They demonstrate that there is a 
relationship between the quality of the operations anticipation used and the performance of the 
design obtained. 

We also observed that the quality of the approximate anticipation used is negatively corre-
lated with the solvability of the model. The more precise the anticipation, the more difficult the 
model obtained is to solve, and vice versa. Our empirical results indicate that there is a huge dif-
ference between the time required to solve stochastic location-transportation models (M1 and 
M2) and stochastic location allocation models (M3 and M4). This is due in part to the fact that, 
for the SMLTP, the deterministic equivalent program obtained for the stochastic location-
allocation formulation is identical to the classical deterministic location-allocation model. For 
more complex SCN involving, for example, several products, non-stationary demands, produc-
tion decisions, inventory decisions and/or capacitated facilities subject to environmental disrup-
tions, the stochastic location-allocation model obtained may also be quite difficult to solve. Even 
with the power of current computers, and the sophistication of recent solution techniques, finding 
the optimal solution for large-scale models based on exact anticipations remains elusive. In order 
to solve larger stochastic models, one still needs to use specialised decomposition methods, or 
metaheuristics.  

Another insight from our experiments is that complexity reduction approaches such as pe-
riod sampling and ship-to-point aggregation work well when moderate sampling or aggregations 
are performed, but that it deteriorates when the sampling/aggregation is too aggressive. A com-
forting observation is also that classical location-allocation approximations based on aggregate 
depots to ship-to-points flows provide good results, provided that special care is taken to derive 
precise transportation costs functions. In other words, this approach works well if the empirical 
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cost functions used to derive aggregate parameter values are precise. More precise functions can 
be obtained by estimating them from simulation data derived using the user model instead of 
from historical data. Also, when the SCN is dominated by full truckloads transportation, more 
precise transportation cost functions are naturally obtained.  

Overall, our results show that in order to obtain the best possible SCN designs with the cur-
rent state of the art, one should adopt a modeling-based methodology with a good compromise 
between model accuracy and solvability. In other words, the problem solving approach adopted 
should belong to the accuracy-solvability trade-off diagonal portrayed in Figure 6. Our results 
show that the quality of the operations anticipation used plays a key role in the model precision 
and thus in the effectiveness and robustness of the SCN designs obtained. The use of approxi-
mate anticipations is a necessary complexity reduction approach to solve real SCN design prob-
lems. In practice, in order to obtain better designs, one should explore various accuracy-
solvability tradeoffs before adopting a decision support model for network design.  

  
Figure 6- SCN Design Problem Solving Approaches 

Our study is not without limitations. Our investigation was based on the SMLTP and there-
fore mainly on the anticipation of sales revenues and transportation costs. More comprehensive 
SCN design problems incorporating multiple products, multiple-echelons, capacitated produc-
tion-distribution facilities, international factors and uncertain disruption-prone plausible futures 
should also be studied. These design problems are more complex than the one we considered: 
they will require more drastic anticipations and be more difficult to solve. Satisfactory anticipa-
tions of production and inventory decisions and costs, of exchange rates and tariffs… will there-
fore have to be elaborated. The added complexity will also require the development of more so-
phisticated exact and heuristic solution methods. The issue of the best compromise between these 
two fundamental axes will however remain. 
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Appendix 

In order to provide sufficient details to allow our work to be reproduced, this appendix gives 
complementary information on the procedures and methods used in the paper, and it also pre-
sents the parameter calibrations performed.   

A. SCN Design Models Generation and Solution 
In order to write the design models presented in the paper, scenario samples mΩ ⊂Ω , route 

subsets l lK K l L⊆ ∈, ˆ , usage period samples u uT T⊂ˆ  and/or demand zones sets Z must be 
elaborated. Truck load requirements ( )τ ωFTL

kly  must also be calculated, and unit flow cost func-
tions ( ( ) + lp lpg f m ε=  or ( ) + lz lzg f m ε′= ) estimated. The selection of a sample of usage peri-
ods uT̂  is straightforward. The construction of demand zones based on zip or postal codes struc-
tures is also relatively simple. In the US, for example, 3-digit ZIP code zones are often used. 
Geographical coordinates are associated to each zone ∈z Z  by calculating the weighted average 
of its ship-to-points latitude and longitude (Ballou, 1994). The other sampling and estimation 
procedures needed to define the models are explained in the following paragraphs.  

Scenario Generation Procedure 
Demand scenarios are generated from the probability distributions (.)q

pF  and (.)pFο  using 
Monte Carlo sampling methods. Assuming that the customer orders are independent of each 
other, to sample a scenario ω∈Ω , we generate independent pseudorandom numbers qu  and uο  
uniformly distributed on the interval [ ]0;1 , and we compute the inverse, -1( )q

p qF u  and 1( )p uFο
ο

- , 
of the distributions of inter-arrival times and order sizes. Order arrivals are generated in the in-
terval ]0,| |]uT  and mapped onto the corresponding daily periods uTτ ∈ . The MonteCarlo pro-
cedure used to generate the daily demands ( ) , , u

pd p P Tτ ω τ∈ ∈  , of the ship-to-points for a 
scenario ω  is presented in Figure 7. Note that all the Procedures presented in the paper use the 
following syntax: 

Procedure(input_variable1,…; procedure_parameter1,…; output_variable1,…) 

(( (.) (.) ) ( ) )q o u u
p p pF F p P T d p P Tτ ω τ∈ ∈ ∈MonteCarlo , , , ; ; , ,   

For all p P∈ , Do: 
0η = ;  ( ) 0  u

pd Tτ ω τ= ∈,  
     While uTη ≤ , Do: 
          Generate the Uniform [0,1] random numbers qu  and uο  
          Compute the next order arrival time -1( )q

p qF uη η= +  and τ η= ⎡ ⎤⎢ ⎥  
          Compute the daily demand ( ) ( ) 1-

p p p ud d Fο
τ τ οω ω= + ( )  

     End While 
End Do 
Figure 7- Procedure MonteCarlo for the Generation of a Demand Scenario 
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In this procedure, the continuous variable η  denotes order arrival times. Repeating sampling 
procedure MonteCarlo m times yields a sample of scenarios mΩ ⊂Ω . 

Truck Requirements and Route Set Generation Procedures 

Truck requirements for TL transportation and route sets are required for design models in-
cluding an exact anticipation of the transportation sub-problem (M1 and M2). More specifically, 
for usage period τ of scenario ω, the set partitioning formulation used requires the number 

( )τ ωFTL
kly  of truckloads that will be shipped to point p from depot l on route ( )FTL

plk K τ ω∈  if point 
p is assigned to depot l, as well as the sets of non dominated STL, MTL and LTL routes 

( ) , lK l Lτ ω ∈ˆ , as input to the problem. To obtain the FTL shipments, problem (29) below is 
solved by inspection for all ω, τ and l. The residual loads ( ) ( )lpd  p P ττ ω ω∈, , to be shipped can 
then be computed with (1).  

( )
( )

( ) ( )
( )arg max 0 1FTL

pl FTL FTL
pl pl

FTL
kl k k k k p kk K

k K k K

y b y b y d y
τ

τ τ

τ τω
ω ω

ω ω
∈

∈ ∈

⎛ ⎞
⎜ ⎟⎡ ⎤ = ≤ =⎣ ⎦ ⎜ ⎟
⎝ ⎠

∑ ∑y
, , , ...       (29) 

Next, given the residual loads, MTL, LTL and STL route selection variables ( )kly τ ω , 
( )τ ω∈ ˆ

lk K , l L∈ , uTτ ∈ ˆ , mω∈Ω , must be generated. For realistic problems, enumerating all 
the possible routes usually leads to unsolvable models. A procedure is consequently required to 
generate comprehensive subsets of feasible and non-dominated routes ( ) ( )l lK Kτ τω ω⊂ˆ . The 
procedure RouteGen presented in Figure 8 was designed to do this. It is based on two parame-
ters: 

maxy : Upper bound on the number of binary route selection variables to include in the model; 
ρ :   Upper bound on the number of segments to include in the routes generated. 

The procedure can be used in two different ways. If the parameter maxy  is unbounded (i.e. if 
y = ∞max ), then it generates all the feasible non-dominated routes with ρ  segments or less. If 

maxy  is bounded, then it generates additional routes until ymax  binary route variables are ob-
tained. The selection of these additional routes is based on a route marginal cost given by  

( ) ( )( )kk k p P k p pmc w m dτ τω ω∈ →= Σ        (30) 

where ( )k pm → is the mileage of the route segment ending with ship-to-point p in route k. The 
routes with the smallest marginal costs are selected first to ensure that the more promising routes 
are considered. We assume that the parameters ρ  and maxy  are given values such that the num-
ber of binary route variables generated in step S2 does not exceed maxy . 
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( ) ( )max
ˆ ˆ( , , , , ( , , ); , ; ( , , ),( , , ))u m

p l k kP L T d p y K l w P kτ τω τ ω ρ ω τ ωΩ ∀ ∀ ∀RouteGen  
S1:    Generate the sets of STL, MTL and LTL routes , lK l L∈ , satisfying carrier offers and 

specified service conditions, and compute their tariff kw , capacity kb and points set kP . 

S2:    Generate the sets ( )l lK Kτ ω ⊂ˆ , l L∈ , uTτ ∈ ˆ , mω∈Ω , of all the non-dominated routes 
with ρ  segments or less satisfying the feasibility conditions 

                        ( )k lP Pτ ω⊂ ,     ( )
kp P p kd bτ ω∈ ≤Σ          (31) 

If  y = ∞max ,  stop. Else: 

S3: Generate the sets ( )l lK Kτ ω+ ⊂ˆ , l L∈ , uTτ ∈ ˆ , mω∈Ω , of all the non-dominated routes 
with more than ρ  segments satisfying feasibility conditions (31). 

S4: Compute the marginal costs ( )kmc τ ω  of the routes ( ) u m
lk K l L Tτ ω τ ω+∈ ∈ ∈ ∈Ωˆ ˆ, , , , 

with (30), and include them in a List in increasing order of their ( )kmc τ ω . 

S5: Add the routes in the List sequentially to their respective sets ( )lK τ ωˆ  until a total of ymax  
binary route variables is obtained. 

 
Figure 8- RouteGen Procedure  

Flow Cost Functions Estimation 
Unit flow cost functions are required for the design models incorporating flow-based ap-

proximate anticipations of the transportation sub-problem (M3 and M4). These functions can be 
estimated by regression using historical or simulated order delivery data, aggregated by planning 
period and by depot to ship-to-point (or demand zone) lane. Since several transportation means 
(FTL, STL, MTL and LTL) are used, it is possible to derive flow cost functions by transportation 
means, and then to combine them a posteriori to evaluate transportation costs; or to derive joint-
functions a priori with combined means data. After some experimentation, we found that the 
best approach in our case was to derive two linear regression functions, one for FTL transporta-
tion and one for the other means (denoted by FTL  and including STL, MTL and LTL), and to 
combine these two functions using a weight θ  defined as the proportion of the network demand 
shipped by FTL. We also found that simulated order delivery data, generated simply by solving 
the user model for a set of feasible network designs { }j oj J∈x ,  and a few demand scenarios 

oΩ ⊂Ω  (obtained using procedure MonteCarlo), provided better unit flow cost functions. 

Let oL  be the set of the depot to ship-to-point lanes (l, p) associated to the set of designs 
{ }j oj J∈x , , FTL( )lp ωK  the set of all the FTL-shipments made to ship-to-point p from depot l dur-
ing the planning period (year) considered under scenario oω∈Ω , and ( ) FTL, ( )kp lpd kω ω∈K , the 
associated shipments size. Then, the observations 

( )FTL FTL
FTL o o
( ) ( ) ( )

( ) ,   (( ) )
lp lp

l p k kpk k
g w d l p

ω ω
ω ω ω

∈ ∈
= ∈ ×Ω∑ ∑, , ,

K K
L       (32) 
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for non-empty lane sets FTL( )lp ωK , are available to estimate the linear regression model for FTL 
transportation, namely: 

FTL FTL FTL FTL
( ) 0 1 ( )( ) + + ( )l p lp l pg mω β β ε ω=, ,

ˆ ˆ           (33) 

where FTL
0β̂  and FTL

1β̂  are the regression coefficients, and FTL
( ) ( )l pε ω,  is the error term. By using 

similar definitions, the following regression model is obtained for FTL  transportation: 
FTL FTL FTL FTL
( ) 0 1 ( )( ) + + ( )l p lp l pg mω β β ε ω=, ,

ˆ ˆ           (34) 

Note, however, that MTL-shipments MTL( )lpk ω∈K  involve several ship-to-points. The tariff kw  
of these routes must therefore be apportioned between their ship-to-points kp P∈  before it is 
used to calculate flow rate observations using the revised formula:  

( )STL LTL MTL FTL
FTL o o
( ) ( ) ( ) ( ) ( )

( ) [ ] ,  (( ) )
lp lp lp lp

l p k kp kpk k k
g w w d l p

ω ω ω ω
ω ω ω

∈ ∪ ∈ ∈
= + ∈ ×Ω∑ ∑ ∑, , ,

K K K K
L      (35) 

where, for MTL( )lpk ω∈K , kpw  is calculated with the proportional distance-load apportionment 
formula ( ) ( )[ ]

k
kp k lp kp lp kpp P

w w m d m dω ω
∈

= Σ . 

Based on the regression lines (33) and (34), the expected unit flow costs required by model 
M3 are given by: 

FTL FTL FTL FTL
0 1 0 1( ) ( + )+(1- )( + ),   , lp lp llpf m m l L p Pm θ β β θ β β= ∈ ∈ˆ ˆ ˆ ˆ        (36) 

The expected unit flow costs lzf m( )'  required by model M4 can be estimated using a similar 
approach. The only difference for FTL-transportation is that the flow rate observations used must 
be derived from the sets FTL o( ), (( ), )lz l zω ω ∈ ×Ω, 'K L , of the FTL-shipments made from depot l 
to all the ship-to-points in demand zone z, where 'L  is the set of the aggregate depot to demand 
zone lanes (l, z) associated to designs set { }j oj J∈x , . A similar adaptation is required to obtain 
the zone-based FTL  transportation regression line. 

B. Models and Solution Methods Calibration  
The procedures and solution methods proposed in this paper were implemented in VB.Net 

2005, and the programs were executed on a 64-bit server with a 2.5 GHz Intel XEON processor 
and 16 GB of RAM. All the BIPs were generated with OPL Studio 6.3 and solved with CPLEX-
12, using a MIP Relative Tolerance of 0.001. Location-allocation models M3 and M4 are rela-
tively simple BIPs, and they were solved easily with CPLEX-12. SAA models M1 and M2 were 
much more difficult to solve. Their solvability depends largely on the cardinality of the subsets 

mΩ , lK̂ , l L∈ , and uT̂  used. Our experiments showed that the current version of CPLEX can 
solve M1 instances with about 2.5 million binary variables and 1.5 million constraints. To solve 
large instances of M1, we used a nested metaheuristic proposed by Klibi et al., (2010b) that 
combines a modified Clarke and Wright savings procedure for transportation sub-problems with 
a Tabu-search location-allocation heuristic. The S1 and S2 neighborhood search strategies pro-
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posed in Klibi et al., (2010b) were used in our experiments. We also set the parameter for the 
Tabu and User procedures to the values recommended by the authors, and used slightly increased 
values for the Reassign procedure.  

Since the stochastic programs M1 and M2 were solved using the SAA method, the issue of 
the sample size to use had to be addressed (Shapiro, 2003). For M1, based on calibration tests, 
we found that a sample size 6m =  gives a very low statistical gap and thus is sufficient to pro-
vide near-optimal solutions for P1 and P2. Larger sample sizes were tested to study the tractabil-
ity of the models (Table 8). Note that when weekly or monthly period sampling is used, it is 
clearly possible so solve problems with larger scenario samples. Note also that DS1 instances are 
more difficult to solve because the transportation sub-problems are much larger.  

Problem Attribute  M1 M2-w M2-m 
(P1, ., .,DS

1) 
6, 20, 50 

(P1, ., .,DS
2) 

(P2, ., .,DS
1) 6, 12  6, 12, 20 

6, 12, 20, 50 
(P2, ., .,DS

2) 6, 12, 20  6, 12, 20, 50

(P3, ., .,DS
1) 2, 4 

6, 12  6, 12, 20 
(P3, ., .,DS

2) 6 
(P4, ., .,DS

1) 
  

2  2 
(P4, ., .,DS

2) 4, 6  4, 6, 8, 12 
Table 8- Sample Sizes Tested for the SAA Models by Problem Type 

For M1 and M2, the complexity of the design models also depends on the number of seg-
ments ρ  in the routes considered. In order to keep these models tractable we had to set maxy , the 
maximum number of routes in K̂ , to 2 000 000. For smaller problems, a value of 5ρ =  was 
used which, in our case, yields all the potential routes and thus provides near-optimal solutions. 
However, for larger problems, a reduced set of routes had to be used. For these cases, ρ  was set 
at 2 or 2+, the later meaning all the routes with 1 or 2 segments, and as may routes as possible 
within 2 000 000 with more than 2 segments, selected with the marginal cost rule in RouteGen. 
For P4 the number of ship-to points to serve in each period yields very large routing problems, 
and enumerating all the MTL routes becomes intractable. For this case, we were not able to gen-
erate the non-dominated route set in 24 hours of running time.  

The three transportation cost functions required for M3 and M4 also needed to be estimated 
for each problem type. Their regression coefficients were estimated using a sample of daily 
routes obtained with our VRP heuristic. Table 9 gives the estimated parameters 0β̂  and 1β̂  of 
the linear regression functions of the All Options, FTL and FTL  transportation options, the coef-
ficient of determination ( 2r ) of the regression and the estimated proportions (θ ) of FTL and 
FTL  transportation, for a-LN-DS1 instances. Based on the 2r  it can be seen that the FTL and 
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FTL functions needed for M3-S are a good fit, but that the All Options function needed by M3, 
is less precise. The estimates of demand proportions θ  illustrate the dominance of the FTL mode 
in DS1 problems, with more than 70% of the shipments. The functions required for M4-S were 
estimated in the same way, but from data based on 3 digits ZIP code demand zones. 

 P1 P2 P3 P4

All 
Options FTL FTL  

All 
Options FTL FTL  

All 
Options FTL FTL  

All 
Options FTL FTL

0β̂  0.0706 0.0415 0.1273 0.1077 0.0636 0.1478 0.1014 0.0432 0.1557 0.1166 0.0411 0.1853

1β̂  0.005 0.0036 0.0061 0.0048 0.0034 0.0059 0.0048 0.0035 0.0058 0.0043 0.0036 0.0051
2r  0.6 0.99 0.78 0.63 0.98 0.77 0.68 0.99 0.82 0.73 0.99 0.86 

θ  1 0.70 0.30 1 0.72 0.28 1 0.72 0.28 1 0.72 0.28 

Table 9- Regression Parameters for the a-LN-DS1 Problem Instances Solved with M3 
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