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Abstract. Advanced discrete choice models, such as parametric/non-parametric mixed
logit and hybrid choice models, are heavily used in travel behavior research. The
complexity of model formulation nevertheless remains limited by the associated estimation
difficulties, even if important progress has been made these last years. In this piece of
work, we examine the effectiveness of randomized quasi-Monte Carlo (RQMC) techniques
to estimate the integrals that express the discrete choice probabilities in a mixed logit
model, for which no closed form formula is available. We review some popular RQMC
constructions, discuss the choice of their parameters as a function of the considered class
of integrands, and compare their effectiveness to reduce both variance and bias, in
comparison with standard Monte Carlo (MC), when estimating the log-likelihood function
at a given parameter value. In our numerical experiments, randomized rank-1 lattice rules
(with carefully selected parameters) and digital nets in base 2 outperform randomized
Halton sequences and standard MC. Interestingly, they also reduce the bias as much as
the variance.
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Estimation of the Mixed Logit Likelihood Function by Randomized Quasi-Monte Carlo

1 Introduction

Travel behavior analysis makes heavy use of discrete choice models. Recent modeling frameworks
account for a large number of (random) effects: heterogeneity in preferences (Hess et al., 2005;
Cirillo and Axhausen, 2006) and/or in scale factor (Hess et al., 2009), variability in willingness
to pay (Bastin et al., 2010), correlation across alternatives (Brownstone et al., 2000), in space
(Bhat and Sener, 2009), etc. Advanced discrete choice models are often associated with choice
probabilities that can be written as multivariate integrals, but do not admit a closed-form formula.
In mixed logit models, for example, we have an integral with respect to the mixing density, which
depends on unknown parameters that we want to estimate. These integrals are typically estimated
by Monte Carlo (MC) or quasi-Monte Carlo (QMC) methods (McFadden and Train, 2000; Train,
2003), In particular, Halton sequences have found widespread application for mixed logit model
estimation in transportation (Train, 2000; Bhat, 2001, 2003a). Certain digital nets and sequences,
including Sobol’ nets, have also been experimented, e.g., by Sdndor and Train (2004). Sivakumar
et al. (2005) have compared Faure sequences against Halton sequences and found that they perform
better empirically in the evaluation of the multidimensional integrals that they considered.

In other areas of applications, for example in finance (L’Ecuyer, 2009), the best empirical
results are typically obtained by Sobol’ nets with certain types of scrambles and by randomly-
shifted lattice rules with a baker’s transformation, so we thought it would be interesting to try these
types of RQMC methods for estimating the integrals involved in mixed logit models. For the lattice
rules, we are also interested in selecting the parameters to minimize a measure of discrepancy
adapted to the problem, and see if it can make a difference. We focus solely on the estimation
of the log-likelihood function at a given parameter value, for a given data set. This is the basic
building block and the main source of error when we estimate the parameter value that maximizes
the log-likelihood function (and use it as an estimator of the unknown parameter value in the
model). Just estimating the log-likelihood function is simpler than estimating its maximizer, and
avoids additional error sources from the maximization. It also permits us to study both the bias
and the variance of the estimator. The lattice rules and Sobol nets examined in this paper perform
better than the Halton sequences. They reduce both the variance and the simulation bias.

The remainder is organized as follows. In Section 2, we collect the basic definitions and prop-
erties of the mixed logit model considered in this paper, and we analyze the bias and variance of
an MC estimator of the log-likelihood. In Section 3, we provide a short state-of-the-art review
of RQMC methods, with a particular focus on randomly-shifted lattice rules and the choice of
their parameters. Numerical experiments that examine and compare the bias and variance of var-

ious RQMC estimators of the log-likelihood, first for synthetic data and then for a real-life data
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set, are reported in Section 4. A brief experiment on parameter estimation (maximizing the log-
likelihood), with the real-life data, is also reported. A conclusion and ideas for future research are

given in Section 5.

2 The mixed logit model and log-likelihood estimation

2.1 The model

In a popular form of multinomial mixed logit model (McFadden and Train, 2000; Train, 2003;
Sivakumar et al., 2005; Bastin et al., 2006b), the utility of alternative j for individual ¢ has the

form
S
_ @t _E :
=1
where B, = (84,1, ..., [q,s)" is an unobserved random vector of taste parameters (or coefficients)
o B ¢ . .
for each individual ¢, x,; = (%gj1,...,%q;s)" gives the observed attributes for choice j and

individual ¢, and the ¢, ; are random variables that represent unobserved random noise. The €, ;
are assumed to be independent and to have a Gumbel distribution of mean 0 and scale factor of 1
(the choice of mean has no importance, because only utility differences matter).

It is assumed that if ¢ is an individual selected randomly from the entire population, then its
associated (random) vector 3, of taste coefficients has a multivariate density fg that depends on
some parameter (vector) 8. This accounts for the fact that different individuals may have different
tastes. Individual g always selects the alternative j having the largest utility U, ;.

Conditional on a given (fixed) B,, we have an ordinary logit model, and one can show in that

case that the individual selects alternative j with probability

exp[B,Xq,]
ZaGA(q) exp[ﬁflqua] ’

Lq(4,By) = ey

independently of other individuals, where .A(q) is the set of his alternatives. The unconditional

probability that a random individual selects alternative 7 is then

5:6) = BLLy5.8,)) = [ Li(i.B)1o(8) 5. @

We assume that a random vector 3 with density fg can be written as 8 = h(6, U) for some

explicit function h, where U is a vector of independent uniform random variables over (0, 1). This
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assumption is standard and is required to simulate realizations of 8 from independent uniform

random numbers. In the examples considered in this paper, U has dimension s. Then we have

i3, 0) = BLL (G AO.0)) = [ 1405, h(0.w)du ®
0,1)s
In general, no explicit formula is available for p,(j, #), and MC is often the most practical way
of estimating the integral in (2) or (3) for each ¢. To do that, for a given 8 and ¢, we generate n,
independent random points Ugl), ce U(gn‘Z), put ﬂfﬁ(@) = h(8, U((f)) fori = 1,...,n, and we
estimate p,(7, @) by

o 1o~ . 1 o= . Z-
pqq(jae):n_ZLq(jaﬁg])(e)):n_ZLq(j7h(07U(g)))7 (4)
7 =1 T =1

where each L,(7, ,Bgi) (6)) can be computed via (1).

When the same individual delivers several observations rather than only one, these repeated
choices are usually correlated, and we must consider the probability of the individual’s choice
sequence, instead of the particular observations. Typically, the tastes of a given decision-maker are
assumed to remain constant across choice situations for each particular respondent, such that tastes
vary across individuals, but not across observations for the same individual. If decision-maker ¢
makes a sequence of T; independent selections (conditionally on 8,) and chooses alternative j; for

his #th decision, the probability of this choice sequence is

Tq
qu(.jh e Jququ) = HLq(jtaﬁq)a
t=1

where each L,(j;, 8,) is computed as in (1), and the unconditional probability for the choices

sequence is
pq(jla . 7qu7 0) =K [qu(j17 e ,qu, h(0, U))] .

2.2 Estimating the log-likelihood of a sample

Suppose we have a data set of one observation per individual for m individuals (the case of several
observations per individual is similar), in which we observe that individual ¢ was given the vector
of attributes x,; for each alternative j and made the choice y,, for ¢ = 1,...,m. The goal
is to estimate @ from this data. The maximum likelihood method estimates the true 6 by the

value that maximizes the joint probability L (@) (the likelihood) of the observed population sample,
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as a function of 8, or the logarithm of this probability, which is mathematically equivalent and
computationally simpler. For convenience, we also divide by m, so we have an average over

individuals and the expression does not blow up when m — oo. That is, we want to maximize

InL(O) 1 15 1 &
nL{ ):Elanq(yq,B):—Zlnpq(yq,e). ®)
g=1

m
g=1 =

m

Here the p,(y,, 8) are unknown but we can replace them by their estimators pq? (v, @) defined in

(4). This gives the following estimator of In L(@)/m:

ln(z(a)) _ l Zln (ﬁgq (Vg 9)) — %zm:ln (ni iLq(yq, h(&USJi)))) ) 6)

The log-likelihood estimator is biased, because In is not a linear function, and the bias is nega-

tive because In is concave. The dominant term of the bias can be found as follows. Let

_ ﬁgq (Yg,0) — pe(yy, 0)
Pq (yqa 0)

R,

)

the relative estimation error in p,(y,, @). A Taylor expansion of In(pg* (y,, 8)) around In(p,(y,, 6))

gives
In(py* (g, 0)) — In(py(yg, 0)) = Ry — Ry/2+ O(IR,[*). 7

The total bias in (6) is

2

In(L(6)) — 1n<L<e>>] _ 13y {_ m O<|Rq|3)]

~ —L Var [ (8)

Pq"(yq,0) }
o2m ’
g=1

Pq(Yq, 0)

~

If n, = n for all ¢, then this bias is O(1/n) and the variance of In(L(8))/m is O(1/(mn)). For
fixed m, the contribution of the square bias to the mean square error (MSE) becomes negligible
compared to that of the variance when n is large enough: O(n~%) compared with O((mn)~"). But
in practice, n is not always very large and the bias can be important, and it is not reduced when
we increase m, in contrast to the variance. To reduce the bias, one can subtract an estimate of

A

(8) to the estimator In(L(@))/m. Bastin and Cirillo (2010) examined this strategy in the context
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of MC estimation. They observed empirically that the correction eliminated most of the bias
without significantly increasing the variance. In the remainder, we focus on the bias and variance
of estimators of In L(8) /m.

2.3 Multinormal density for 3

For some examples in this paper, we assume that fg is the multinormal density with mean vector
= (p1,. .., ps)" and covariance matrix X with elements o; ¢, and that 8 = (p, X). This multi-
normal assumption is frequent in practice, and X is also often assumed to be diagonal. Here we
also consider non-diagonal matrices, i.e., nonzero correlations between the coordinates of 3.

To generate a realization of 3, we first decompose 3 = A A", and then use inversion:
B=p+AZ )

where Z = (Zy,...,Z)", U = (Uy,...,Us)" is a uniform random vector over (0,1)*, Z, =
®~1(Uy), and @ is the standard normal distribution function (pdf). A standard way of decomposing
3 as AA" is the Cholesky decomposition, but there are many other ways (an infinite number, in
fact). The choice of decomposition makes no difference when the U,’s are generated independently
by standard MC, but it can have a large impact on the variance when we use RQMC (L’Ecuyer,
2009). A choice that often performs much better with RQMC is the eigen-decomposition used
in principal component analysis (PCA) (L’Ecuyer, 2009); it gives A = PD'/? where D is a
diagonal matrix that contains the eigenvalues of 3 in decreasing order and the columns of P are
the corresponding unit-length eigenvectors. With this decomposition, the randomness in 3 depends
as much as possible on the first few coordinates of U, that is, on the first few coordinates of the
RQMC points. We will use this PCA decomposition for all our reported experiments with RQMC.
We also tried the Cholesky decomposition and the RQMC variances were typically slightly larger,
by a factor between 1 and 2.

3 RQMC Methods

3.1 RQMC and variance bounds

RQMC methods are designed to estimate integrals over the unit hypercube, as in (3), with smaller
variance than ordinary MC (Owen, 1998; L’Ecuyer and Lemieux, 2000; L’Ecuyer, 2009; Lemieux,
2009). An RQMC method estimates the integral of a function f over the s-dimensional unit cube
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(0, 1)* by evaluating f over a set of n points P, = {Uy, ..., U,_;} and taking the average,

n—1

1
lan,rqmc = E Z f(Uz) (10)

i=0
These points must form an RQMC point set, which means that

(a) P, covers (0, 1)® very uniformly when taken as a set and

(b) each point U, has the uniform distribution over (0, 1)* when taken individually.

Condition (b) ensures that the average /i, rqm 1S an unbiased estimator of the integral . = f(0,1)s f(u) du.
We recognize that for (a), we need a precise definition of what “very uniformly” really means.
There are in fact many different ways of measuring the uniformity of a point set, and different
measures are used for different types of constructions and classes of integrands to obtain error and
variance bounds (Niederreiter, 1992; L’Ecuyer, 2009). For this, one usually specifies a class H of
functions f, often a reproducing kernel Hilbert space, and one derives a worst-case bound on the

integration error of the form
|/ln,rqmc _,u‘ S D(Pn)v(f) (11)

for all f € A and any point set P, C (0,1)*, where D(P,) measures the discrepancy of P, from
the uniform distribution and V'(f) = ||f — p||3 measures the variability of f in H (Hickernell,
1998, 2000; L"Ecuyer, 2009). The definitions of D(FP,) and V'( f) must depend on each other, and a
definition that makes V'( f) smaller will generally make D(P,) larger, and vice-versa. One special
case of (11) is the classical Koksma-Hlawka inequality often associated with QMC methods, where

P, is deterministic (Niederreiter, 1992). When P, is randomized, we obtain the variance bound

Var(fin,sqme] = E[(finsqme — 1)) < E[D*(P)] VZ(f). (12)

Then, if V(f) < oo, the variance converges at the same rate as E[D?(P,)] as a function of n. We

will return to this bound later.

3.2 Functional ANOVA decomposition

We know that covering the s-dimensional unit hypercube very uniformly requires a number of
points n that increases exponentially with s, so accurate high-dimensional integration by RQMC
looks hopeless at first sight. Yet empirically, the method works well even in hundreds of dimen-

sions in some cases. The usual explanation is that in those cases, the integrand f can be well

6 CIRRELT-2010-47
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approximated by a sum of low-dimensional functions that are accurately integrated by RQMC,
and the residual has small variance (Owen, 1998; L’Ecuyer, 2009). This can be formalized via the
functional ANOVA decomposition of f, defined as follows. If

o? = Var[f(U)] = /(Ol)sf(u)du—u2 < 00

for U uniformly distributed over (0, 1)*, one can write

f=p+ D fulw) (13)

0£uC{l,...,s}

where u denotes an arbitrary subset of coordinates (this is standard notation, not to be confused
with u), each f, : (0,1)* — R depends only on {u;, i € u}, the f,’s integrate to zero and are
orthogonal, and the variance admits the corresponding decomposition o2 = Zug (1,5} o2 where
g = Var[f,(U)].

If Y 02 /0% is very close to 1 for a relatively small set ¢ of the subsets of {1,..., s}, this
means that the approximation of f by > ., fu accounts for most of the MC variance. Then, we
can construct the RQMC point set P, by focusing on the uniformity of its projections over the
subsets of coordinates u € U, by giving them an importance in relation with o2, and neglect the

other projections. For a special case, define

2_2: 2
Or_ Uuﬂ

|u|=r

the total variance for the projections of dimension (or order) r, forr = 1,...,s. If Zilzl o2 /c?
is very close to 1 for some small &', then we can construct P, by giving a global weight to the

uniformity of all projections of order r, for each r < s, in relation to the size of 2.

3.3 Randomly-shifted lattice rules

A rank-1 lattice rule with n points in s dimensions is defined as follows (Niederreiter, 1992; Sloan
and Joe, 1994). Select a vectora; = (ay, . .., as) whose coordinates belong to Z,, = {0,...,n—1},
let vi = a;/n, and define P? = {v =iv; mod 1, i = 0,1,...,n — 1}, where the division and the
modulo operation are coordinate-wise. This point set is the intersection of a lattice with the unit
hypercube in s dimensions. The a; are usually taken relatively prime to n, so that the projection

of P? over any of its coordinates contains n distinct points, namely {0,1/n,...,(n — 1)/n}.

CIRRELT-2010-47 7
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Thus, there is no need to measure the uniformity of the one-dimensional projections. Here we
randomize P by applying a random shift modulo 1, which consists in generating a single point
U uniformly over (0, 1)* and adding it to each point of P°, modulo 1, coordinate-wise (Cranley
and Patterson, 1976; L’Ecuyer and Lemieux, 2000), to obtain F,,. We follow this by a baker’s
transformation, which replaces each coordinate u of each point by 2u if v < 1/2 and by 2 — 2u
otherwise (Hickernell, 2002; L"Ecuyer, 2009).

The vector v, is selected to try to minimize a given discrepancy measure of P?. In this paper,

we use the weighted Ps,, criterion

n—1 _ 772 ol
Pu(P) = Y %Z% [%} T1 Buo(uss), (14)

0AuC{l,...,s} =0 j€u

where w; = (u;1,...,u;s) = tvy mod 1 is the ith lattice point before the shift, o is a positive
integer, the projection-dependent weights -y, are arbitrary positive real numbers, |u| is the cardi-
nality of u, and By, is the Bernoulli polynomial of order 2« (for example, for & = 1 we have
By(u) = x? — x +1/6). This criterion can be motivated as follows. Consider the class F,, of func-
tions f for which for each subset u of coordinates, the partial derivative of order o with respect to
these coordinates is square integrable, and the partial derivatives of orders O to o — 2 of the periodic
continuation of f over R* are continuous. For o = 1, this continuity condition just disappears, but
for a = 2 the periodic continuation of f must be continuous. It turns out that the square variation
of f € F, defined as

2 2 —1
= 5 V= S S ],

uC{1,...,s} 0F#uC{1,...,s}

2

aful
? du, (15)

due

fu(u)

corresponds to a square discrepancy for which E[D?(P,)] = Pa.(P?), and the variance bound (12)
holds for this pair (Dick et al., 2004; L’Ecuyer, 2009). More interestingly, it is known that for any
a > 1, any 0 > 0, and any choices of weights -, there exists a sequence of rank-1 lattices for
which Py, (P?) = O(n~2¢+), and the corresponding vectors v can be constructed explicitly one
coordinate at a time, by a so-called component-by-component (CBC) construction method (Dick
et al., 2004). This means that for any f € F,, it is possible to construct lattice rules for which
Var[ i, rqme) = O(n 22"?). The role of the baker’s transformation mentioned earlier is to make
the periodic condition of f continuous, so we can have o = 2 instead of & = 1 when f is smooth
enough; see Hickernell (2002); L’Ecuyer (2009) for detailed explanations.
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3.4 Selecting the weights

We want to construct lattice rules that minimize (14), but how do we choose the weights ~,? It can

be shown that P, (P?) is equal to the RQMC variance for a worst-case function f defined by

; (2m)°
fa) =" V][ Baluw),
uC{l,...,s} Jj€u
whose ANOVA variance components are
47T2 a7y 47.‘_2 a7l def h
oz = @] = 10 ] e

where k() is a constant that depends on «. In particular, we have (1) = 3/7% ~ 0.30396 and
k(2) = 45/7* ~ 0.46197. Acting as if we were integrating this f*, a natural strategy is to adopt
weights v, given by these formulas, in which the o2 are replaced by estimates. In our experiments,
we did estimate those o2 using the algorithm of Sobol’ and Myshetskaya (2007) and we used o = 1
to compute the weights ~,. We took ov = 1 instead of & = 2 because we observed empirically that
in the range of values of n that we used, the variance of the estimator does not decrease faster
than O(n~17), even with the baker’s transformation. In our results, we will denote the lattices
constructed based on Py, (P?) with those weights by lattice-,.

Estimating all those weights becomes impractical when s increases, because there are 2° — 1
variance components to estimate. Note that the weights of one-dimensional projections (for which
lu| = 1) are irrelevant for selecting v;, because all one-dimensional projections are the same
under our assumptions, so there is no need to specify them. This gives s fewer parameters to
estimate. Also, multiplying all weights by a given constant has no impact on the selection of
v1, since it does not change the relative importance of the projections. To reduce the number
of parameters to estimate (and at the same time reduce the likelihood of overfitting), we may
bundle the projections u in subgroups, and attach one weight to each subgroup. For example, we
can have order-dependent weights, where all projections of cardinality (or order) r are given the
weight ~,, for r = 2,...,s. For this, we can estimate 02 = Z{u:M:T} o2, and plug it in the
formula 7, = C(k()) 02/ (%), where C' is an arbitrary positive constant and (*) is the number
of projections of order r. This gives s — 1 parameters to estimate. In our results, we will use
lattice-order to refer to these rules. To reduce this number even further, we can simply assume that

v, = Cv" for all r, for some constant -, and estimate a -y that best fits this model, for instance by

CIRRELT-2010-47 9
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fitting a linear regression model of the form
rink(a)+ 2o, =InC +rlny +e,

by finding C and -y that minimize -, e2. We call the resulting weights geometric order-dependent
weights. In our experiments, we will end up taking v = 0.1, v = 0.25, v = 0.5, and we refer to the
corresponding rules by lattice-0.1, lattice-0.25, and lattice-0.5. Note that multiplying v by some
factor here is equivalent to multiplying x(«) in (16) by the same factor.

The integral (5) that we estimate by RQMC is in fact an average of m integrals, one per individ-
ual. For this, it is most convenient to use the same lattice rule, with independent randomizations,
across individuals. Another possibility is to use a different lattice for each individual, in which
case the lattice parameters could conceivably be selected based on an ANOVA analysis and spe-
cific set of weights ~, for each individual. That is, instead of adopting a one-lattice-fits-all solution,
each individual could have his own specially tailored lattice. This is unlikely to be practical, but
we have nevertheless explored the potential MSE improvement that could be achieved by doing
this, by some empirical experiments with one example (based on real data), in Section 4.3. As we
will see, the gain was very small. Note that for classical deterministic QMC methods, it is it is
customary to use a different point sets for each individual (otherwise, the “positive dependence”
across individuals typically increases the error on the average). With RQMC, we can also do it,
but we do not have to, because the independent randomizations remove the dependence (L’ Ecuyer
and Lemieux, 2000).

We also considered for comparison the Korobov lattices tabulated in L’Ecuyer and Lemieux
(2000), whose parameters were selected based on the M3z 94 16,12 criterion defined in that paper,
and which accounts for projections in up to 32 dimensions over successive coordinates, and a
selected set of projections of order 2, 3, and 4 only. Also worthy of note is that only the “worst”
projection of a lattice contributes to this criterion, whereas (14) is a weighted average over all
projections. These point sets were constructed with no particular application in mind. We refer to
them by lattice-M 32.

3.5 Sobol’ nets

A Sobol’ net with n = 2% points in s dimensions, for some positive integer %, contains the first
n points of a Sobol” sequence in s dimensions (Sobol’, 1967; Lemieux, 2009). These points are
defined by w X k binary matrices Cq, . .., C, called the generator matrices, where w is the number

of bits retained in the binary expansion of the points. To define the ith point u;, fori = 0, ...,2%—1,

10 CIRRELT-2010-47
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we write the digital expansion of ¢ in base 2 and multiply the vector of its digits by C;, modulo
2, to obtain the digits of the binary expansion of the jth coordinate of u;. The matrices C; are
not unique; they depend on the choice of direction numbers, which determine their columns. For
our experiments here, we have used the default direction numbers of SSJ (L’Ecuyer, 2008), taken
from (Lemieux et al., 2004). We randomize our Sobol’ nets by a left matrix scramble followed by
a digital random shift. The left matrix scramble multiplies each matrix C; (modulo 2) by a lower
triangular binary matrix M; with 1’s on the diagonal and random bits below the diagonal (Owen,
2003). The digital random shift generates a single point U uniformly over (0, 1)* and adds each
digit of the binary expansion of each of its coordinate to the corresponding digit of each point,
modulo 2 (L’Ecuyer and Lemieux, 1999; Owen, 2003).

3.6 Halton points

We will also try P, defined as the first n points of randomized versions of the Halton sequence in s
dimensions, motivated by the fact that these Halton points are popular in discrete choice modeling
and analysis. We randomize them by random shifts modulo 1, independent across individuals, and
we refer to these points as shifted Halton points. In some cases, we also compare with the more
traditional practice of defining P, for individual ¢ as the points (¢ — 1)n — 1 through gn of the
Halton sequence, i.e., individual 1 has the first n points, individual 2 has the next n points, and so
on (Train, 2000; Bhat, 2001, 2003b). This strategy is quite standard and appropriate when using
deterministic QMC sequences, for the reasons mentioned earlier for lattice rules, but here we also
apply a random shift modulo 1 to the entire sequence to obtain an unbiased estimator. We will
refer to this as a shifted Halton sequence to distinguish from the case where we re-use the same
Halton points as described above, even though formally speaking both are Halton points taken
from the Halton sequence. Faure and Lemieux (2009) provide a recent extensive study of various

scrambles and randomizations for the Halton sequence, but we did not implement these methods.

4 Numerical experiments

4.1 General experimental setting

We report experimental results for two examples. The first one uses artificially generated data
and has two variants. The second one is based on real-life data. For each example, we selected
a parameter value @ not far from the optimizer of the log-likelihood. Because we want to use

the same lattices for all individuals, we constructed lattices adapted to an “average” individual.
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To do that, for each u of cardinality |u| < 6, we estimated 03, defined as the average over the
m individuals ¢ of the variance components aiu in the ANOVA decompositions of the functions
fqo(u) = Ly(y,, h(0,u)), which are the integrands that correspond to the estimators (4) (or their
extension to multiple choices per individual). This heuristic procedure is equivalent to construct-
ing lattices adapted to the integration of the average over ¢ of the f,’s, that is, for simulating an
estimator defined as in (6), but without the logarithm on the right-hand side. We have to use such a
heuristic because the estimator (6) is not expressed in the same form as (10) with the U; uniformly
distributed over (0, 1)*, so the ANOVA decomposition does not apply to it in the form described
in (13).  We estimated the variance components using the algorithm of Sobol’ and Myshetskaya
(2007) with 5000 independent RQMC runs (or more in some cases until sufficient precision was
reached) with 16381 lattice points, for each u. Computing them for all u would have been too
expensive for large s. Moreover, typical values of o2 decrease quickly when |u| increases, and they
become much more difficult to estimate accurately, because the relative error of their estimators
becomes too large. We selected our weights v, 7, and 7" based on those estimates of the o2, as
explained earlier. We also estimated the variance components aiu for selected individuals, in order
to construct specialized lattices based on specific weights for each of those individuals.

For MC and each RQMC method, and each n considered, we computed 5000 independent
realizations of the estimator (6) of (5), then computed the empirical mean and variance of these
realizations. We estimated the bias using the approximation in (8), based on the 5000 independent
realizations of (4) for each ¢q. For MC and for the lattice rules, the values of n considered were
n = 31, 67, 127, 257, 521, 1021, 2039, 4093, 8191 and 16381 (each one is a prime number close
to a power of two). For the Sobol’ nets and Halton points, we considered for n all powers of two
from n = 2% = 32 ton = 2!'* = 16384, and matched each one with its nearby prime n for lattice
rules.

We expect the variance and the bias of (6) with RQMC to behave approximately as Var[In(L(8))/m] ~
Vom™'n~*" and Bias[In(L(0))/m] ~ Byn~"2, where the constants Vj, By, v; and v, depend on
the RQMC method. Our numerical results will confirm this. For MC, we know that vy = vy = 1,
at least for large n. We wanted to fit this model in the range of values of n of practical interest,
say from 2% to 2!, instead of in the limit when n — oo (where the parameters might differ). We
did this by applying linear regression to the logarithm of the observations for n > 2% = 256. We
discarded the smaller values of n because the exponents 1, and v, were sometimes changing in
that range and this was distorting the results. These models for the variance and bias give the MSE
expression:

MSE([In(L(8))/m] ~ Vom™'n™" 4+ BZn=2~. (17)
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Estimation of the Mixed Logit Likelihood Function by Randomized Quasi-Monte Carlo

Assuming that 1 < v; < 2v, (which is typical), we see from this expression that for small enough
n and large enough m, the contribution from the square bias dominates, and that this contribution
becomes negligible compared with that of the variance when n becomes large enough. This means
that the MSE decreases roughly as O(n2"2) for small n and O(n~"") for large n. We define the
MSE reduction factor of an RQMC estimator with n points, with respect to an MC estimator based
on n independent simulation runs, as the MSE of the MC estimator divided by that of the RQMC
estimator. We estimate this factor using the fitted versions of (17). When n is large, it should
increase approximately as O(n**~1). But for small or moderate n, it is not always increasing in n,
because of the effect of the bias in (17).

4.2 Examples with synthetic data

Our first set of numerical experiments are with an artificial data set generated from a known model,
as in Sivakumar et al. (2005). We consider three values of s, namely s = 5, s = 10, and s = 15.
For each s, we take |.A(g)| = 4 for each ¢, for m = 2000 individuals. The coordinates z, ;, of
the attribute vectors are independent N (1, 1) random variables (normal with mean 1 and variance
1) for alternatives j = 1,2 and N(0.5,1) for alternatives j = 3,4. The s coordinates of B, =
(Bg,15- - - Bq.s) are also independent N (1, 1) random variables. Then we repeated the experiments
for B, multinormal with the same N(1,1) marginals, but with correlations of 0.3 across its s
components. That is, the covariance matrix has 1’s on the diagonal and 0.3 everywhere else.
We refer to these two distributions as the independent and correlated cases. After generating the
artificial data from the model in a first stage, in the second stage we estimate the log-likelihood
function for this data set, at the value of @ used to generate the data, by simulation. Here we give a
representative subset of the results and a qualitative summary. More detailed results can be found
in the online appendix.

The distribution of the ANOVA variances among the different projections vary significantly
across individuals, as illustrated in Figures 1 and 2 for selected individuals, for the independent
case with s = 5 and 7}, = 1. For example, the proportion of variance contributed by the projections
of order 3 and higher is less than 2% for individual ¢ = 1 and more than 9% for individual
q = 4. We thus expect RQMC to be more effective for the first individual than for the fourth one.
Figure 3 confirms this; it shows the variance of the likelihood estimator for these two individuals,
with a specialized lattice for each individual (lattice-y,) and for other RQMC point sets. As it
turns out, all the lattice rules (except lattice-M 32) as well as the Sobol’ nets have comparable
performances. They perform much better than the Halton points, and they provide a large MSE

reduction over MC. The lattice-M 32 rules have an erratic behavior; they come close to the good
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r | fraction of total variance Yr

1 0.83 1

2 0.12 0.023

3 0.035 0.0019
4 0.0079 0.00027
5 0.0011 0.000055

Table 1: Fraction of ANOVA variance per projection order (r), with associated order-dependent
weights, for the independent case with s = 5 and 7, = 1.

ones for some values of n and they do much worse for other values. The explanation might be that
for certain values of n, we were more lucky with the uniformity of the most important projections
not considered in the M3 94 16,12 criterion. For the other rank-1 lattices, no choice of weights
seems to offer a solid advantage over the other choices and their differences in MSE reductions
fluctuate somewhat randomly (but not too much) across values of n. For example, the ratio of
variances for lattice-0.1 and lattice-, is larger than 1 on average but ranges from 0.5 to 3.5 for the
different values of n, and is not at all monotone in n. These ratios are similar for the other choices
of weights (compared with lattice-v,). Thus, specializing the lattices to the different individuals
brings a modest improvement that can hardly be qualified as significant here.

Figure 1 (bottom) shows the average over all individuals of the ANOVA variances, for the
independent case with s = 5 and 7T;, = 1. We see that all projections of the same order contribute
almost the same variance. This symmetry is due to the homogeneity of the synthetic population.
It suggests that order-dependent weights are perfectly appropriate for this situation. The ANOVA
variances regrouped by projection order, with the associated order-dependent weights, are shown
in Table 1. The variance, bias, and MSE on the log-likelihood function, obtained with the lattices
constructed based on those weights and with other point sets, are given in Figure 5. In particular,
it can be seen from the bottom right plot that the share of MSE contributed by the square bias
decreases faster with RQMC than with MC when n increases. The reason for this is that the ratio
of the square bias to the variance decreases as n~ ! with MC whereas it decreases as n~(22*1) with
RQMC, and, at least in our examples, we have 215 — 1y > 1. For small n (say less than about 200),
the MSE reduction is mostly due to the reduction of the bias.

Figure 4 shows the ANOVA variances o2, averaged over individuals and regrouped by pro-
jection order r, for s = 5 and s = 10. We find that there is not much difference between the
independent and correlated cases, except that the lower-order projections have a slightly larger
share of the variance for the correlated case, so we expect RQMC to work slightly better in that
case. Their share also decreases (so we expect RQMC to be less effective) when s or 7}, increases.

By fitting the parameter y for the exponential order-dependent weights, in the independent case,
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Figure 1: Fractional ANOVA variances of the conditional likelihood function for a single individual

4 (middle) and for the average over all individuals (bottom), sorted by

decreasing order, for the independent case with s = 5 and 7;, = 1. The projections are listed on

1 (top) and ¢

q:

the horizontal axis, and their fraction of total variance is plotted along the vertical axis. The limits

of each vertical bar correspond to a normal confidence interval at 95 % on the variance estimate,

the standard deviation of which was estimated across random draws.
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Figure 2: Fractional ANOVA variance per order for the conditional likelihood function of selected
individuals, for the independent case with s = 5 and T, = 1.
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Figure 3: Estimated variance of the MC and RQMC estimators of the log-likelihood of a single
individual for the independent case with s = 5 and 7, = 1, for individuals ¢ = 1 (left) and 4
(right), using MC (—e-), lattice-v, (—=), lattice-0.1 (—=—), lattice-M 32 (——), Sobol’ nets (——),
and Halton points (----). For lattice-order and lattice-0.5, the variances are very similar to those of
lattice-v, and lattice-0.1, and we do not show them to reduce the number of curve superpositions.
The results for the Halton sequence (not shown here) are practically undistinguishable from those
for the Halton points. The dotted line indicates the n~2 slope, for reference.
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Figure 4: Average over all individuals of the fractional ANOVA variance per projection order r (up
to r = 6), for s = 5 and 10, with T, = 1 and 3, for the independent and correlated cases.

we obtained v = 0.13 for s = 5 and v =~ 0.09 for s = 10. This provides support for the lattice-0.1
rules.

Table 2 summarizes the estimated exponents v; and 15 for various RQMC point sets. We see
that 71 and v, are generally close to each other, and for the range of values of n considered here,
they are smaller when s or 7, are larger, as expected. These exponents are only part of the
story; the variance and MSE reduction factors also depend on the constants V{, and By. These
constants are much larger for the Halton points than for the other RQMC point sets, as indicated
by the vertical distance between the corresponding lines in Figures 3 and 5. Table 3 shows the
MSE reduction factors approximated by (17), evaluated at 16381. Sobol’ nets generally give the
best MSE reduction factors in low dimensions and when T}, = 1, but rank-1 lattices win in higher
dimension and with 7;, > 1. In general, the MSE reduction factors are much higher in situations
where the low-order projections have a large share of the variance (smaller s, smaller 7, and higher
correlation), as expected. In fact, the Sobol’ nets generally do a bit better in situations where the
projections of order two have a larger share of the variance (smaller s and higher correlation). This
is consistent with the fact that the parameters we use for those nets were selected mainly on the
basis of the uniformity of the two-dimensional projections.

As we said earlier, the MSE reduction factor does not always increase in n, even if v; > 1
and v > 1. This is illustrated in Figure 6 (top), which shows curves of the fitted MSE and MSE
reduction factors with MC and RQMC, for the independent case with s = 10. Here, when 7 is in
the range from 200 to 1000 (approximately), the square bias dominates the MSE for MC, and it
decreases faster in that range than the MSE for the RQMC method. This is an example where, in
the range of values of n used in practice, the bias is neither dominant nor negligible with respect
to the variance. Figure 6 (bottom) illustrates the fact that RQMC can remain efficient when the

population size m grows. We see in the figure that the MSE reduction factor increases with m.
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Figure 5: Estimated variance (top left), bias (top right), MSE (bottom left), and fraction of the
MSE contributed by the square bias (bottom right) of the MC and RQMC estimators of the log-
likelihood function for the independent case with s = 5 and 7, = 1, using MC (—e-), lattice-7,
(—=-), lattice-0.1 (—e—), lattice-M 32 (——), Sobol’ nets (——) and Halton points (- -). The dotted
line indicates the n 2 slope, for reference. The results for lattice-order and lattice-0.5 (not shown
here) are very similar to those of lattice-v, and lattice-0.1, while those for the Halton sequence
are almost indentical to those for the Halton points. The dotted line indicates the n=2 slope, for
reference.
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Independent case
s=05 s =10 s=15
T, =1 T,=3 T,=1 Ty =3 T, =1 T, =3

1.00 (1%) 1.01(0.4%) 1.02(0.6%) 0.97 (0.6 %) 1.02 (0.9 %) 0.98 (0.9 %)
1.00 (0.03 %) 1.00 (0.03 %) 1.00 (0.04 %) 1.00 (0.2 %) 1.00 (0.07 %) 1.00 (0.1 %)
1.672%) 150(5%) 1302%) 1112%) 1242%) 1.08 (0.7 %)
1.66 2%) 1.51(4%) 1.29 (0.9 %) 1.17 (0.7 %) 1.20 (0.8 %) 1.13 (0.2 %)

1.622%) 1531 %) 1292%) 1.10(01%) 1193 %) 1.053 %)

1.622%) 1541 %) 1272%) 115(1%) 1163%) 1.082%)
149(0.7%) 13510%) 1.28(0.8%) 1.06(1%) 1.26(2%) 1.04(3%)
1.48 (09%) 1.36(0.7%) 1.26(0.8%) 1.10(1%) 1222 %) 1.072%)

Point set

Monte Carlo

lattice-0.1

Sobol’ nets

Halton points

Correlated case
s=25 s=10 s=15
T,=1 T, =3 T,=1 T, =3 T, =1 T, =3

1.02 (0.5%) 1.02(0.8%) 1.01(0.5%) 1.01(0.5%) 1.01(0.6%) 1.03 (0.4 %)
1.00 (0.02 %) 1.00 (0.02 %) 1.00 (0.02 %) 1.00 (0.03 %) 1.00 (0.03 %) 1.00 (0.04 %)
1.733%) 1623 %) 1.3604%) 1261 %) 1.27(1%) 1.18 (0.8 %)
1.73B3%) 1623 %) 1362%) 1251 %) 1.26(1%) 1.17 (0.5 %)

1.701%) 1.62(1%) 1312%) 123(1%) 121(1%) 1.150 %)

1.70(1%) 1621 %) 1312%) 123(1%) 121(1%) 1.13 %)

1.52(1%) 1.4109%) 1320.6%) 1.17(1%) 135Q@ %) 1.154 %)

1.52(1%) 1.410.7%) 13103%) 1.17(1%) 132@%) 1.11 (3%)

Point set

Monte Carlo

lattice-0.1

Sobol’ nets

Halton points

Table 2: Estimates of 4 and v, for the independent case (top table) and the correlated case (bottom
table). Each entry contains 14 above v5, with the relative half-width of a 95% confidence interval
in parentheses.

Independent case

Point set §=9 s =10 s=15
T,=1 T,=3 T,=1 T,=3 T,=1 T,=3
Halton points 52 14 8.3 2.6 3.7 1.6
lattice-0.1 352 43 22 4.8 9.5 3.2
Sobol’ net 335 53 16 3.8 5.7 2.2
Correlated case
Point set $=9 s = 10 s =15
T, =1 T,=3 Ty,=1 Ty=3 T,=1 T,=3
Halton points 72 20 14 4 9.9 3.1
lattice-0.1 583 76 39 7.7 16 4.4
Sobol’ net 592 89 28 59 12 33

Table 3: MSE reduction factors with respect to MC, approximated by (17), evaluated at n = 16381,
for the independent case (top table) and the correlated case (bottom table).
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Figure 6: Top left: fitted MSE reduction factor showing the bias and variance regimes, for the
independent case with s = 10, 7, = 1, using MC and RQMC (lattice-0.1 rules). Top right: MSE
reduction based on the fitted MSE, for the same case, using lattice-0.1 (—), Sobol’ nets (---)
and Halton points (). Bottom: fitted MSE reduction factor as a function of m and n, for the
independent case with s = 10, with T, = 1 (left) and 7, = 3 (right), using lattice-0.1 rules.
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4.3 An example with real-life data

For our second example, we consider behavioral data collected in April 2008 at the Baltimore/Washington
International (BWI) airport, on airport ground access with automated vehicle technology (called
cybercars) (Cirillo and Xu, 2010). The respondents were intercepted in the waiting area of the
airport and the responses recorded during a face-to-face interview. The final sample contains in-
formation from 274 respondents. Both Revealed Preference (RP) data and Stated Preferences (SP)
information were collected. The SP experiment includes 2 parts: a between-mode experiment (SP
game 1) and a within mode experiment (SP game 2). SP game 1 is mainly about ground access
mode choice and includes the hypothetical cybercar service as long as three other existing modes
(car, transit and taxi). SP game 2 proposes two different cybercar services over which the respon-
dents are called to express their preferences. In each game the respondent was presented with 9
scenarios; attribute level of variations were based upon the respondents real trip to the airport as
reported in the RP questionnaire. We therefore have a total of 2466 observations. In this paper we
make use of just SP game 2; the variables that describe the service in this game are described in
Table 4. The following variables enter the SP game 2 model: (a) cybercar waiting time (rang-
ing from 10, 15 and 20 minutes) (b) cybercar travel cost (USD) (c) passenger being dropped at

the terminal, (d) fully automated driven cybercar, (e) human driven cybercar, and (f) guideway

cybercar.
variables possible levels
1. dropping area terminal building, parking lot
2. maneuvering system fully automated, human driver with ITS, human driver
3. waiting time 5, 10, 15, 20 (in minutes)
4. travel Cost 70% of taxi, 85% of taxi, same as taxi
5. track structure guideway, grade with rubber tire

Table 4: The variables and their admissible levels, for SP game 2

A number of parametric models for the distributions were estimated and compared, and the
retained model assumes that the waiting time distribution parameters are fixed across individuals,
that the cost is lognormal, and that the remaining service-level variables are normally distributed.
These distributions of the components of 3, are given in Table 5, where N (1, ¢%) and In N (p, 0*)
refer the the normal and lognormal distributions, respectively, with parameters ; and o2. The first
three components of 3, have constant values, so we simulate only the last five, to which we assign
the indexes 1 through 5. Thus, s = 5.

Like for the example of Subsection 4.2, the distribution of the ANOVA variances among the
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coordinate index distribution
constant = —0.6141158
constant = —1.0036583
constant = —1.7356732
In N(—1.9953313,1.8167162)
N(1.7088261,1.5988351)
N(—0.23137212,1.1745619)
N(0.13015642,0.71851975)
N(—0.10063324, 1.042506)

N B W =

Table 5: Distributions of the components of 3, used in the simulation experiments with the real
data.

different projections varies across individuals, as shown in Figures 7 and 8 for selected individuals
(the coordinate indices correspond to those in Table 5). For individual ¢ = 116, less than 10 % of
the total variance goes in projections of order r > 3, whereas this percentage is more than 45% for
individual ¢ = 79. Figure 9 shows the variance of the likelihood estimator for constructed lattices
and other point sets for these two individuals. As expected, RQMC is more effective for individual
q = 116 than for ¢ = 79. The respective performances of the different point sets follow the same
pattern as in the example with synthetic data, and here too, no choice of weights for lattices clearly
stands out for all values of n. For example, the ratio of variances for lattice-0.1 to those for lattice-
vy 18 larger than 1 on average but ranges from 0.4 to 2.7 for the different values of n, and is not at
all monotone in n.

The average over all individuals of the ANOVA variances (estimated here with 60, 000 inde-
pendent replications to obtain sufficient precision), are given in Figure 7 (bottom). Unlike in the
example with synthetic data, not only the variances are not uniform across all projections of the
same order, but neither do they consistently decrease with projection order. This suggests that
order-dependent or geometric weights are probably not ideal in this case, but we will see that
they nevertheless perform well empirically. Table 6 shows the ANOVA variances regrouped per
projection order 7, and the corresponding order-dependent weights. If we insist on exponentially-
decreasing weights, the best fit for the parameter v is v = 0.077, which is again not far from
0.1. This gives support to the lattice-0.1 rules. The variance, bias, and MSE on the log-likelihood
function, obtained with the lattices constructed based on those weights and with other point sets,
are plotted in Figure 10. Despite the fact that order-dependent weights and geometric weights
appear less suited for this example than in the previous example with synthetic data, the lattices
constructed with these weights offer comparable efficiency as the lattice-v, rules. The ratio of the
MSE obtained with lattice-v, to that obtained with lattice-order, lattice-0.25 or lattice-0.5 rules
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Figure 8: Fractional ANOVA variance per order for the conditional likelihood function of selected

individuals, for the example with real-life data.
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Figure 9: Estimated variance of the MC and RQMC estimators of the log-likelihood of a single
individual for the example with real-life data, for individuals ¢ = 79 (left) and 116 (right), using
MC (—e-), lattice-vy, (=), lattice-0.1 (——), lattice-M 32 (——), Sobol’ nets (——), and Halton

points (---). The dotted line indicates the 2 slope for reference.
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r | fraction of total variance Yr

1 0.75 1

2 0.21 0.043
3 0.033 0.0021
4 0.0043 0.00016
5 0.0034 0.00002

Table 6: Fractional ANOVA variance per projection order (r) associated order-dependent weights
computed with (16).

point set n = 4093 (4096) n =8191(8192) n = 16381 (16384)
lattice-y, 23 32 30
lattice-order 27 30 54
lattice-0.1 19 31 48
lattice-0.25 17 32 46
lattice-0.5 27 35 59
Sobol’ net 27 28 49
Halton points 8 9 11
Halton sequence 7 9 11

Table 7: Observed MSE reduction factors at two values of n = 4093, 8191 and 16381 for lattice
rules, and n = 4096, 8192 and 16384 for Sobol’ nets and Halton points.

range from 0.7 to 1.5, and from 0.9 to 1.1 with lattice-0.1 rules. Figure 11 shows plots of the fitted
MSE reduction factors with respect to MC, as a function of n, for several RQMC point sets. The
actual observed MSE reduction factors at a few values of n are given in Table 7. These results point
to the robustness of lattice rules constructed with criterion (14) with weights of a simple form, such

as lattice-0.5 rules.

4.4 Optimization with RQMC for the real-life data

While our main target in this paper was to develop a better understanding of RQMC methods for
the evaluation of choice probabilities, the ultimate goal should be to improve parameters estima-
tion. As an empirical test of the improvement provided by our randomized lattice rules for this
estimation, we generated 50 independent realizations of the log-likelihood function estimator (6),
using n = 1021 independent draws per individuals (standard MC) for each realization. Then we
maximized each of those functions with respect to 6, using a modified version of AMLET (Bastin
et al., 2006a), and we computed the sample mean and variance of these 50 optimizers. The vector
0 contains 13 parameters: three constants for the waiting times, and the two parameters ;4 and o
for each of the five normal or lognormal distributions. We repeated the same experiment using the
lattice-0.5 rule with n = 1021 points for each individual, with independent random shifts across in-

dividuals and across the 50 runs. Table 8 reports the empirical means of the 13 parameter estimates
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Figure 10: Estimated variance (top left), bias (top right), MSE (bottom left), and fraction of the
MSE contributed by the square bias (bottom right) of the MC and RQMC estimators of the log-
likelihood function for the example with real-life data, using MC (—e—), lattice-, (-—=-), lattice-0.1
(—e), lattice-M 32 (——), Sobol’ nets (——) and Halton points (---). The dotted line indicates the

2

n~~ slope for reference. The results for the lattice-order, lattice-0.25, and lattice-0.5 rules, are
very similar to those of lattice-y, and lattice-0.1 rules and Sobol’ nets. The results for the Halton

sequence are again essentially the same as those of Halton points.
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40
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MSE reduction factor
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Figure 11: MSE reduction factors based on the fitted MSE, for the example with real-life data,
using lattice-y, (—), lattice-0.1 (—), lattice-0.5 (- - - -), Sobol’ nets (- - - ) and Halton points ().

for MC and for lattice-0.5 (they agree quite well), and the variance reduction factor (VRF) defined
as the MC variance divided by the RQMC variance. It also reports the means and the VRF for the
50 estimates of the log-likelihood maximum value returned by the algorithm, for comparison. This
VREF is not the same as in the results of Figure 10, where 0 is fixed instead of being optimized.
We see that the VRF for the parameter estimates is more modest than for the log-likelihood esti-
mate, but it is still significant. We did not examine the bias on the parameter estimates, because
various sources of bias (from the simulation and from the optimization) can interfere, as observed

by Bastin and Cirillo (2010), and we have no good way of estimating the overall bias.

5 Conclusion

We have studied the application of randomly-shifted lattice rules to estimate the mixed-logit log-
likelihood function with better accuracy than standard MC for an equivalent computing effort,
and compared the performance with that of other RQMC methods. The lattice parameters were
selected based on a weighted P, discrepancy criterion, with weights on the projections of the
RQMC point set. We made an attempt at “optimizing” the projection weights (and select different
specialized lattice parameters) for each problem instance, and even for each individual in the pop-
ulation. But it turned out that much simpler choices of weights (geometrically decreasing with the

cardinality of the projection) and using the same lattice for all individuals gave comparable MSE
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Parameter MC mean | Lattice-0.5 mean | VRF
Waiting time 10 minutes -0.614 -0.617 4.2
Waiting time 15 minutes -1.003 -1.009 39
Waiting time 20 minutes -1.736 -1.743 39

Cost (1) -2.013 -2.009 54

Cost (0) 1.815 1.808 4.7
Passenger dropped (1) 1.704 1.704 4.8
Passenger dropped (o) 1.594 1.602 5.5
Automated cybercar (i) -0.230 -0.232 2.0
Automated cybercar (o) 1.168 1.178 4.2
Human driven cybercar (i) 0.134 0.135 2.5
Human driven cybercar (o) 0.715 0.732 2.6
Guided way cybercar (1) -0.098 -0.101 2.9
Guided way cybercar (o) 1.042 1.051 2.4
Loglikelihood -4.413 -4.410 15.8

Table 8: Parameter estimates with MC and with lattice-0.5, and variance reduction factor (VRF)
for lattice-0.5 compared with MC, for the example with real data

improvements in our experiments. This is very encouraging, because it indicates that the method is
relatively robust to the choice of weights and there is no need to spend a huge effort to estimate the
appropriate weights. The improvement was comparable to that obtained with Sobol’ nets with a
random digital shift, better than with Korobov lattices based on the M3 24,16,12 criterion, and much
better than randomly-shifted Halton points. Interestingly, RQOMC improves the convergence rate
(as a function of the number n of draws per individual) of the bias as well as that of the variance,
compared with MC, so it reduces the MSE in two ways. In fact, the reduction of square bias dom-
inates the variance reduction when n is small, and we saw this happening for n as large as 1000.
This bias reduction means that a smaller increase of n is required to compensate a growth of the
population size m (because increasing m reduces only the variance, not the bias). As expected,
we observed that the efficiency improvement of RQMC compared to MC is reduced when the di-
mension of the integration problem increases (either from an increase of the dimension s of the
parameter vector or because we have panel data), presumably because a larger proportion of the
variance falls into higher-order projections. Yet, in all cases, RQMC provided a net advantage over
MC. Finally, we saw in one example that this RQMC improvement translates into a lower variance
for the parameter estimates obtained by maximizing the sample log-likelihood. The improvement
is less spectacular than for estimating the log-likelihood at a single point, but still significant.

One issue that would require further examination and better understanding is the specific con-

tributions to the MSE from individuals drawn from a heterogeneous population, and in particular
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from individuals who make low probability choices. Moreover, here we focused on point esti-
mation of the log-likelihood near its maximizer, but much remains to be said about the impact of
RQMC on the behavior of the maximum-likelihood estimator itself and on the whole log-likelihood

optimization process.
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In these appendices, we present additional results, for the examples with syn-
thetic data (A) as well as with real-life data (B). In particular, we show the ANOVA
variances for more cases, together with the variance, bias and MSE on the log-
likelihood estimators for all examples. We also detail the analysis for a few more

single individuals. Finally, lattice parameters for geometric weights are given in
C.

A Additional results for the examples with synthetic
data

Figures 1 and 2 show the distribution of the ANOVA variances among all pro-
jections for the conditional likelihood of selected individuals, for the independent
case with s = 5 and 7, = 1. The estimated variances of the individual likelihood
estimator with constructed lattices and other point sets are reported in Figures 3
and 4. The empirical distributions of the values of the estimator, obtained with
5000 independent replications, are shown in Figure 5. Figure 6 presents the aver-
age over all individuals of these ANOVA variances, for the independent and cor-
related cases with s = 5. The estimated variance, bias, MSE and fraction of the
MSE due to the square bias on the likelihood function estimator with constructed
lattices and other point sets are plotted in Figures 7 through 18 for all independent
and correlated cases with s = 5, 10 and 15 with 7, = 1 and 3. We have con-
structed the lattice-v, and lattice-order rules only for s = 5. In higher dimension,
especially with s = 15, the lattice-0.1 rules are consistently more efficient than the
Sobol” nets. We also observe that in presence of panel data (7, > 1), the variance
is larger than for cross-sectional data (7;, = 1), and the square bias dominates
in the MSE until higher values of n. We estimated the log-likelihood for each
individual; we plot the distribution of these values in Figure 19. The empirical
distribution of the 5000 independent replications of the simulated log-likelihood
function is shown in Figure 20. It is in particular interesting to note that the
distribution of the individual contributions to the average log-likelihood has a tail
on the left, meaning that some individuals have a lower choice probability and
penalize the overall log-likelihood.
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Figure 1: Fractional ANOVA variances of the conditional likelihood function for
a single individual ¢ = 1 (top) and 2 (bottom), sorted by decreasing order, for
the independent case with s = 5 and 7, = 1. The projections are listed on the
horizontal axis, and their fraction of total variance is plotted along the vertical
axis. The limits of the vertical bars correspond to a normal confidence interval
at 95 % on the variance estimate, the standard deviation of which was estimated
across random draws.
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a single individual ¢ = 3, 4, and 5 (from top to bottom). See Figure 1 for further

details.
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Figure 3: Estimated variance of the MC and RQMC estimators of the log-
likelihood of a single individual for the independent case with s = 5 and 7, = 1,
for individuals ¢ = 1 (top left), 2 (top right), 3 (bottom left) and 4 (bottom right),
using MC (—e-), lattice-v, (—=-), lattice-0.1 (—e—), lattice-M 32 (——), Sobol’ nets
(——), and Halton points (----). For lattice-order and lattice-0.5, the variances are
very similar to those of lattice-v, and lattice-0.1, and we do not show them to re-
duce the number of curve superpositions. The results for the Halton sequence (not
shown here) are practically undistinguishable from those for the Halton points.
The dotted line indicates the =2 slope, for reference.
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Figure 7: Estimated variance (top left), bias (top right), MSE (bottom left), and
fraction of the MSE contributed by the square bias (bottom right) of the MC and
RQMC estimators of the log-likelihood function for the independent case with
s =5and T, = 1, using MC (—e-), lattice-, (—=-), lattice-0.1 (—e—), lattice-// 32
(——), Sobol’ nets (——) and Halton points (-#-). For lattice-order and lattice-
0.5, the variances are very similar to those of lattice-~, and lattice-0.1, and we do
not show them to reduce the number of curve superpositions. The results for the
Halton sequence (not shown here) are practically undistinguishable from those for
the Halton points. The dotted line indicates the n 2 slope, for reference.
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Figure 11: Same as Figure 7, but for the independent case with s = 10 and 7, = 1.
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Figure 12: Same as Figure 7, but for the correlated case with s = 10 and 7;, = 1.
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Figure 14: Same as Figure 7, but for the correlated case with s = 10 and Tj, = 3.
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Figure 15: Same as Figure 7, but for the independent case with s = 15 and T, = 1.
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Figure 18: Same as Figure 7, but for the correlated case with s = 15 and 1;, = 3.

18 CIRRELT-2010-47



Estimation of the Mixed Logit Likelihood Function by Randomized Quasi-Monte Carlo

0.2

independent, s = 5,7, =1

0.1
0.05

0.2 -

independent, s = 10, Ty =3

T T
—10 -9

0.4
0.3

0.1

independent, s = 15,7, =1

0.2 F

0.15
0.1
0.05
0

independent, s = 15, T4 = 3

-10 -5

0.2

0.1

0.1

0.05

0.2
0.1

0.1
0.05

0.3
0.2
0.1

0

0.15
0.1
0.05

- correlated, s = 5,7, =1 -
Wﬂfﬁ‘l‘iﬂ
-3 -2 -1
| | | |
r correlated, s = 5, T, =3 T
T T 1 T —h_‘
-8 —6 —4 -2 0
| | | |
correlated, s = 10,7y = 1
T T 1 T
-4 -3 -2 -1
| | | |
| correlated, s = 10,7y = 3 B
T T T T
-8 —6 —4 -2
! ! ! !
correlated, s = 15,75 = 1
T 1 T 1
—4 -3 -2 -1
_ | | | | _
correlated, s = 15,74 = 3
T T T T
-8 -6 -4 =2
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Figure 20: Empirical distribution of the simulated values of the log-likelihood
function across independent replications, for all independent and correlated cases
with s =5, 10 and 15 and 7;; = 1 and 3, using lattice-0.1 with n = 4093.
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B Additional results for the example with real-life
data

We also performed additional analysis of the real-life data. Figures 21 and 22
show the distribution of the ANOVA variances among the different projections
for the conditional likelihood of selected individuals.  For individuals ¢ = 1,
61, 116 and 135, whose log-likelihoods range from —4.33 to —2.81, the ANOVA
variances were estimated with 5000 replications. For individuals ¢ = 24 and
79 with log-likelihoods —5.70 and —6.44, respectively, it can be seen that the
ANOVA variances are less accurate, despite the fact that we increased the number
of replications to 20,000 for these individuals. The relative error on the ANOVA
variances thus seems larger for individuals with a low choice probability. The es-
timated variances of the individual likelihood estimator with constructed lattices
and other point sets are plotted in Figures 23 and 24. The empirical distributions
of the values of the estimator are presented in Figure 25. Finally, histograms
showing the empirical distribution of the individual log-likelihoods across indi-
viduals, and of the simulated values of the average log-likelihood function across
independent replications, are given in Figure 26.
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Figure 21: Fractional ANOVA variances of the conditional likelihood function for

a single individual ¢ = 1 (top) and 24 (bottom), for the example with real-life

data. See 1 for further details.
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Figure 23: Estimated variance of the MC and RQMC estimators of the log-
likelihood of a single individual for the examples with real-life data, for individ-
uals ¢ = 1 (top left), 24 (top right), 61 (bottom left) and 79 (bottom right), using
MC (—e-), lattice-vy, (-=-), lattice-0.1 (—e—), lattice- M 32 (——), Sobol’ nets (——),
and Halton points (---). For lattice-order and lattice-0.5, the variances are very
similar to those of lattice-v, and lattice-0.1, and we do not show them to reduce
the number of curve superpositions. The results for the Halton sequence (not
shown here) are practically undistinguishable from those for the Halton points.
The dotted line indicates the =2 slope, for reference.
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Figure 25: Empirical distribution of the simulated log-likelihood In p} of a single
individual for the example with real-life data, for individuals ¢ = 1, 24, 61, 79,
116 and 135 (row-wise), using lattice-0.1 with n = 4093.
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Figure 26: Empirical distribution of the m = 274 estimated individual log-
likelihoods across individuals (left) and of the simulated values of the log-
likelihood function across independent replications (right), for the example with
real-life data, using lattice-0.1 with n = 4093.

C Lattice Parameters

The parameters for lattice-0.1, lattice-0.25 and lattice-0.5 are given in Tables 1, 2,
and 3, respectively. To generate a lattice in s dimensions, use v = (ay, as, ..., as)/n.
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n a a2 as a4 as as a7 as ag aip @11 @12 G613 Q14 Q15
3 |1 12 9 17 4 6 1 16 1 7 2 5 11 3 8
2 |1 9 1B 7 15 5 3 11 5 3 11 13 1 15 7
64 |1 27 15 23 25 29 19 17 3 11 7 9 31 13 21
67 |1 18 14 8 20 23 12 17 5 2 11 19 32 2 30
127 |1 29 24 56 38 35 10 43 16 50 52 31 18 44 7
128 |1 49 37 23 29 47 39 53 6 9 5 57 45 51 33
256 |1 99 67 37 107 47 117 53 19 13 31 8 127 29 6l
257 |1 76 113 54 44 97 231 83 12 211 124 33 117 5 60
274 |1 115 127 8 35 59 133 31 69 25 263 117 123 65 43
512 |1 149 115 87 55 123 45 153 193 139 37 109 181 79 191
521 | 1 199 226 53 127 135 109 190 230 409 511 22 17 337 79
1021 | 1 647 154 420 214 456 473 295 96 63 891 104 354 426 401
1024 | 1 275 421 231 71 453 83 483 105 325 27 411 19 371 345
2039 | 1 462 705 520 775 1640 348 182 882 1788 570 236 675 32 962
2048 | 1 791 549 207 493 659 535 225 87 277 541 477 131 595 631
4093 | 1 1210 984 1577 1785 612 439 1110 1467 1244 2023 1486 1092 947 1288
4096 | 11557 1237 1119 481 175 295 2025 429 747 1197 201 863 1271 1393
8191 | 1 2431 3799 1570 1690 992 806 2083 2924 2714 1337 3462 3669 1878 220
8192 | 1 2431 3739 1689 3185 2609 3849 1525 71 2109 2585 679 3083 3657 433
16381 | 1 6789 1848 3501 6232 5261 2010 13207 2720 2974 3100 3669 3747 3551 986
16384 | 1 6229 2691 1399 7751 2865 3221 379 2211 1593 4075 2911 3051 7907 2063
Table 1: Lattice parameters for geometric weights with v = 0.1.
n a1 a2 as a4 as a6 ar as ag a10 a1l a12 a13 a14 a1s
3 |1 12 9 14 4 6 20 7 15 2 10 13 3 5 8
2 |1 9 15 7 5 11 3 13 1 7 9 15 3 13 5
64 [ 1 19 29 11 3 17 20 5 27 25 15 13 31 7 9
67 |1 26 6 23 10 14 19 8 32 28 17 30 21 12 5
127 |1 98 54 61 46 13 9 31 43 51 6 39 56 24 50
128 |1 49 37 23 29 5 6 45 11 13 19 51 43 35 9
256 |1 75 47 111 125 87 15 27 65 123 71 8 39 23 105
257 |1 71 56 21 120 75 12 26 114 53 10 95 103 100 7
512 | 1 149 115 193 225 155 27 245 207 145 131 105 151 215 139
521 | 1 144 249 79 163 420 231 134 53 176 476 184 220 181 107
1021 | 1 374 420 154 130 37 104 214 16 402 980 237 322 496 302
1024 | 1 275 167 403 195 481 253 131 321 371 365 101 111 499 2I5
2039 | 1 462 711 140 398 505 956 745 165 1522 642 1868 1001 593 18
2048 | 1 791 549 207 287 659 641 271 611 385 445 759 95 989 36l
4093 | 1 2378 1422 499 1559 92 1136 1939 1314 2257 1388 1579 830 856 681
4096 | 1 1557 1741 1449 1873 1009 371 47 1673 787 127 215 365 1289 265
8191 | 1 2431 3799 1570 6501 992 806 1072 3662 1914 4798 356 127 328 5674
8192 | 1 3457 2879 3047 1631 975 2383 3665 1751 3175 1343 261 887 1325 1953
16381 | 1 3711 5711 3321 8615 9236 6041 5832 670 11056 5153 1779 323 6091 3623
16384 | 1 6915 3959 7525 1123 7817 3185 6091 6655 5519 7241 2535 4815 931 635

Table 2: Lattice parameters for geometric weights with v = 0.25.
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n a1 a2 as a4 as a6 ar as a9 aijp @11 aG12 a13 614  a15
31 1 12 5 3 10 8 14 6 15 4 7 13 2 9 11
32 1 7 15 5 3 9 11 13 1 7 9 13 5 15 3
64 1 27 15 31 25 29 9 21 11 7 23 13 5 17 3
67 1 41 6 28 9 23 21 10 14 25 8 12 24 5 7
127 1 29 73 66 46 50 59 35 41 3 10 24 48 8 31
128 1 47 19 11 53 15 59 45 21 31 55 3 41 23 5
256 1 75 47 111 125 87 53 113 7 95 99 109 33 43 117
257 1 71 20 104 57 169 59 5 106 120 9 36 123 81 55
512 1 149 113 193 51 187 167 109 179 93 41 215 249 217 91
521 1 144 272 79 163 37 94 255 152 211 81 90 34 190 51
1021 | 1 374 154 420 352 61 322 302 89 231 247 289 271 496 245
1024 | 1 275 167 403 195 61 145 283 35 349 267 165 251 125 359
2039 | 1 462 711 140 398 26 241 670 9 777 326 968 553 459 522
2048 | 1 791 213 957 761 37 697 375 775 471 891 255 69 825 477
4093 | 1 1210 2551 1785 842 1113 910 418 2775 822 460 1003 1714 897 1031
4096 | 1 1557 1741 1873 1449 1061 1213 735 709 437 169 1541 1023 1735 1577
8191 | 1 2431 3799 1141 520 2865 3896 3528 3514 971 788 851 3562 717 1842
8192 | 1 2433 3867 1159 2847 3779 3191 1447 1615 2183 671 97 3221 45 1869
16381 | 1 9592 1848 6013 7065 13117 4236 5320 1907 413 6127 8168 7284 6739 2486
16384 | 1 6229 2691 3349 5893 3723 1143 4779 6569 6173 2619 2029 2195 4415 2383

Table 3: Lattice parameters for geometric weights with v = 0.5.
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