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Abstract. We consider the Variable Cost and Size Bin Packing Problem, a generalization 

of the well-known bin packing problem, where a set of items must be packed into a set of 

heterogeneous bins characterized by possibly different volumes and fixed selection costs. 

The objective of the problem is to select bins to pack all items at minimum total bin-

selection cost. The paper introduces lower bounds and heuristics for the problem, the 

latter integrating lower and upper bound techniques. Extensive numerical tests conducted 

on instances with up to 1000 items show the effectiveness of these methods in terms of 

computational effort and solution quality. We also provide a systematic numerical analysis 

of the impact on solution quality of the bin selection costs and the correlations between 

these and the bin volumes. The results show that these correlations matter and that 

solution methods that are unbiased toward particular correlation values perform better. 
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1 Introduction

Bin packing problems aim to load a series of items into a number of bins, such that the
packing of each bin is feasible with respect to a number of restrictions, e.g., capacity
limits or load balancing constraints, while optimizing a given objective, such as the
minimization of the total number of used bins [8, 4, 15].

Bin packing problems belong to the core of classical combinatorial optimization prob-
lems. They are also of great practical interest to, e.g., planning of telecommunication,
transportation, production, and logistics/supply-chain systems. Although a great body
of work has been conducted on the topic [15], most developments ignored economic con-
siderations such as bin or item costs, focusing instead on the physical characteristics
associated with such problems, e.g., packing constraints on multiple dimensions..

We aim to contribute to address this issue by focusing on a problem setting including
both physical and economic attributes. More precisely, we address bin packing problems
where a finite set of items must be packed into a finite set of heterogeneous bins, charac-
terized by possibly different volumes (capacity) and selection fixed costs. The objective
is to select the bins to pack all items at minimum total bin selection cost.

The previous contributions to this problem setting were referred to in the literature
as the Variable Size Bin Packing Problem (VSBPP) [15].. It should be noted, however,
that an important assumption was made in this literature regarding the values of the bin
fixed costs, which were defined as equal to the volumes of the corresponding bins or, at
best, as directly proportional to them. This is a serious limitation because, in practical
applications, other than its volume, the cost of a bin is influenced by many other external
factors, as discussed in Section 2.

Our objective is to lift this hypothesis and address the problem in all generality by
considering that fixed costs are attributes associated with available bins that may, or
may not, be correlated to their volumes. We refer to this version of the problem as the
Variable Cost and Size Bin Packing Problem (VCSBPP) to better distinguish it from
the special case of the VSBPP.

Our contribution is twofold. First, we propose new and efficient heuristics for the
VCSBPP. Most solution methods in the literature rely either on decomposition techniques
[9, 11, 1] or on reformulations solved using commercial MIP software [3] and require
significant computation times when applied to large instances. This computational effort
makes them difficult to use in practice, planning settings in particular, where efficient,
i.e., fast and accurate, solution methods are crucial to address the VCSBPP subproblems
that must be solved repeatedly. The heuristic methods we propose successfully tackle the
challenge of efficiency by using lower and upper bound techniques to select bins and pack
items. Extensive numerical experiments were performed to support this claim, including
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on the special case of the VSBPP, for which we compare on a large set of instances the
results of the new heuristics we propose to those of the best methods in the literature
[3, 9]. This first numerical analysis indicates that the proposed heuristics find very good
solutions extremely fast, even when addressing instances with up to 1000 items.

The second contribution we make in this paper is to provide a systematic numerical
analysis of the impact on solution quality of the bin selection costs and of the correlations
of these with the bin volumes. This analysis, initiated in the first computational phase
mentioned above, is completed by experiments with a new set of instances specifically
generated for the general VCSBPP setting. The results show that, indeed, these cor-
relations matter and that the solution methods we propose, which are unbiased toward
particular correlation values, perform better.

The paper is organized as follows. Section 2 discusses the interest of the VCSBPP
setting with respect to applications, presents the model formulation, and reviews the
methods proposed in the literature to address it. Lower bounds and the corresponding
upper bound heuristics are introduced in Sections 3 and 4, respectively. Section 5 is
dedicated to the presentation and analysis of the computational results. We conclude in
Section 6.

2 The Variable Cost and Size Bin Packing Problem

The first part of the section is dedicated to describing the general settings in which the
VCSBPP is defined. We provide examples that both illustrate the usefulness of the
problem and show how fixed costs may help formulate practical packing applications.
We complete the section with the general formulation of the VCSBPP and the review of
related literature.

2.1 Problem setting

Costs are an important attribute to take into account when addressing packing problems
in many practical settings. Consider, for example, supply-chain management and the
planning of the capacity required for the next cycle of activities (e.g., a year) of a logis-
tics network. Warehousing and transportation activities are major components of such
networks and the incorporation of packing formulations might significantly enhance their
modeling, either in estimating the required capacity and its assignment to various prod-
uct classes or in selecting the providers of logistics services and the types and quantities
of vehicles (containers) to contract for with each of them. In all cases, the cost of the
“bin”, i.e., the unit of warehousing space or vehicle provided by each potential supplier,

2
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constitutes an important element when establishing the capacity plan.

Several factors influence the costs associated to the selection of bins, of which volume
is only one. Thus, for example, the type of the “bin”, be it an actual container or
a unit of warehousing space is a determining factor. Several box types exist for each
container size, from regular boxes and open tops to thermal containers and refrigerated
ones. Obviously, the costs are different, but most may be used for the same product
groups, given appropriate circumstances and substitution rules.

The availability of the space modeled by the bins is also an influencing factor. Turning
again for illustration purposes to containers for maritime transportation, availability may
vary with the particular physical, operational, and economic characteristics of the port
of origin, as well as with the companies providing the containers and shipping services
from that port [6].

One should also consider whether the fixed costs are used to model the prices of
renting the bins or those of buying them. In the former case, the time period for which
the container is to be used is an important factor that influences costs. When, on the other
hand, a company is looking to buy containers, then obviously the overall condition of the
units (new or used, in pristine condition or slightly damaged) becomes an important factor
determining costs. Considering the selection/use fixed cost as a relatively independent
attribute associated with a particular bin, that may or may not be correlated to its
volume, provides the means to address a much broader range of actual applications
compared to the case studied up to now in the literature..

2.2 Formulation and related work

Let I (|I| < ∞) be the set of items to be loaded. Each item i ∈ I has a volume vi. Let
J (|J | < ∞) be the set of available bins and let Vj and cj be the volume and cost of bin
j ∈ J , respectively. Without any loss of generality, let us assume that the volumes and
costs associated with the bins and items are integers.

Define the bin-selection variables y = (y1, y2, . . . , y|J |), where yj = 1, if bin j is selected
and yj = 0, otherwise, and the item-to-bin assignment variables xij, ∀i ∈ I, ∀j ∈ J ,
where xij = 1, if item i is loaded into bin j and xij = 0, otherwise. Then, the VCSBPP
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model can be formulated as:

min z(y) =
∑

j∈J cjyj (1)

s.t.
∑

j∈J xij = 1, ∀i ∈ I, (2)∑
i∈I vixij ≤ Vjyj, ∀j ∈ J , (3)

xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , (4)

yj ∈ {0, 1}, ∀j ∈ J . (5)

The objective function (1) minimizes the total fixed cost of the selected bins. Con-
straints (2) ensure that each item i ∈ I is packed within exactly one bin, while constraints
(3) make sure that the total volume of the items packed into bin j ∈ J does not exceed
its volume Vj. Relations (4) and (5) enforce the integrality requirements for all decision
variables.

A somewhat small number of studies have addressed the VCSBPP. In his Ph.D. thesis
dedicated to packing and scheduling problems, Monaci presents lower bounds, as well as
heuristic and exact solution methods for the VSBPP, i.e. the special case of the VCSBPP
where the fixed costs of bins are equal to their volumes [9]. The methods presented in [9]
take advantage of this correlation between bin volume and cost, and need to be modified
to address the VCSBPP. Moreover, only aggregated results are presented. and private
communications confirmed that the detailed ones are no longer available.

Seiden et al. [12] consider the on-line version of the problem and propose upper and
lower bounds. Kang and Park [5] develop two greedy algorithms for the special case of
the VCSBPP, where the cost of a unit of bin volume does not increase as the bin volume
increases, and analyze their performance on instances with divisibility constraints (on
both item and bin sizes, on only the bin sizes, and in the general case where no divisibility
constraints are present). An integer-linear formulation for the two-dimensional VCSBPP,
with bin costs proportional to bin sizes, is proposed by Pisinger and Sigurd [11], together
with lower bounds based on Dantzig-Wolfe decomposition and an exact branch-and-
price algorithm. Alves and Valério de Carvalho [1] propose a series of strategies aimed
at accelerating the column generation approach for the same problem.

Correia et al. [3] address the VSBPP and introduce bin selection costs that are
strongly correlated to the bin volumes, while also displaying economies of scale. The
authors discretize the formulation, propose valid inequalities to improve the quality of
the lower bounds obtained from the linear relaxation of the resulting model, and analyze
the quality of the lower bounds on a large set of instances (that we also use in the
computational experiments of this paper).

4

Efficient Lower Bounds and Heuristics for the Variable Cost and Size Bin Packing Problem

CIRRELT-2010-56



3 Lower Bounds for the VCSBPP

We present a series of lower bounds for the VCSBPP, which provide the means to measure
the solution quality of the various procedures and are also used as building blocks for
the heuristics proposed in Section 4. The first set of bounds is based on relaxations of
the formulation (1)-(5) and knapsack optimization principles, while the last is based on
column-generation ideas.

Let y? = (y?
1, y

?
2, . . . , y

?
|J |) stand for an optimal selection of bins yielded by the formu-

lation (1)-(5), with z? the associated optimal value of the objective function. Consider
formulation (6)-(8) obtained by relaxing the integrality constraints (4) on item-to-bin
assignment variables xij and aggregating the individual bin feasibility constraints (3).
This relaxation, originally proposed for the special case of the VCSBPP with bin fixed
costs equal to their volumes [9], yields an optimal set of bins ŷ? = (ŷ?

1, ŷ
?
2, . . . , ŷ

?
|J |) with

total capacity sufficient for the items considered, but with no guarantee of feasibility once
individual bins are packed. Obviously, z(ŷ?) ≤ z?.

min z(ŷ) =
∑

j∈J cj ŷj (6)

s.t.
∑

j∈J Vj ŷj ≥
∑

i∈I vi, (7)

ŷj ∈ {0, 1}, ∀j ∈ J. (8)

The substitution (9)
ŷj = 1− uj, (9)

applied to formulation (6)-(8) yields

max z(u) =
∑

j∈J cjuj (10)

s.t.
∑

j∈J Vjuj ≤
∑

j∈J Vj −
∑

i∈I vi, (11)

uj ∈ {0, 1},∀j ∈ J , (12)

which corresponds to a 0/1 knapsack problem. Therefore, by applying (9), one can
derive an optimal solution to (6)-(8) by solving the knapsack problem (10)-(12) using any
available exact method [8]. Furthermore, any lower bound LB(z(u)) for problem (10)-
(12) can also be used to produce a valid lower bound LB(z(ŷ)) =

∑
j∈J cj − LB(z(u))

for problem (6)-(8). We note LB1, the lower bound obtained from the original model
(6)-(8).

LB1 can be improved by considering that bins may be grouped according to the
distinct values of their volumes [9]. Let K define the set of distinct bin types relative to
the bin volumes, i.e., ∀k1, k2 ∈ K, Vk1 6= Vk2 . Let Mk, k ∈ K be the maximum (“best”)
filling ratio for the bin type k given the set of items I, obtained by solving the knapsack

problem Mk = max
{∑

i∈I vixi |
∑

i∈I vixi ≤ Vk, xi ∈ {0, 1},∀i ∈ I
}

. Clearly, Mk ≤ Vk,
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∀k ∈ K. Therefore, by replacing the bin volumes by their associated maximum filling
ratios in (10)-(12), one obtains an improved lower bound on (1)-(5) by solving

min z(ỹ) =
∑

j∈J cj ỹj (13)

s.t.
∑

j∈J Mj ỹj ≥
∑

i∈I vi, (14)

ỹj ∈ {0, 1},∀j ∈ J. (15)

Once again, substitution (9) transforms the formulation (13)-(15) into a knapsack prob-
lem, which may be used to compute lower bounds. We name LB2, the lower bound
obtained from the formulation (13)-(15).

LB1 can be further improved by considering that each item must be loaded. Define

Mik = max
{∑

j∈I\i vixi |
∑

i∈I vixi ≤ Vk − vi, xi ∈ {0, 1},∀i ∈ I \ i
}

for each pair of

item i and bin type k, corresponding to the maximum filling of a bin of type k when item
i is loaded into it. Then, ti = mink∈K{Vk −Mik} − vi represents the loss of volume due
to the loading item i, and a new lower bound can be computed by applying LB1 to the
instance where the item volumes are set to ṽi = vi + ti.

The task of computing the Mik indexes can be computationally heavy, requiring to
solve a knapsack problem for each item and bin type. We therefore use an approximation

M(p)ik =

{
Mik if vi +

∑p
j=1 vj > Vk and vi +

∑p−1
j=1 vj ≤ Vk,

Vk − vi otherwise,
(16)

where items are ordered by non-decreasing values of their volumes vi. The idea of the
M(p)ik approximation is that, in the best case, one cannot load more than p items
including a large item i into a bin of type k when 1) loading the smallest p items together
with item i overloads the bin, but 2) loading only the p− 1 smallest items together with
item i does not. Computing Mik in this case is then easy, since one has only to evaluate
all the p-tuples containing item i, which is O(np−1). Otherwise, we assume item i to be
“small” and set the associate loss of space to null (ti = 0).

The use of M(p)ik is profitable when the value of p is small, e.g., p = 2 for the
problems we tested (see Section 5). We refer to LB3, the lower bound obtained by
applying LB1 to the instances where the item volumes are set to ṽi = vi + ti and ti is
defined according to M(2)ik (notice that for any solution method, these indexes need to
be computed only once, during initialization, which makes LB3 suitable even for Branch
& Bound algorithms).

Both LB2 and LB3 dominate LB1, but no dominance relationship can be defined for
LB2 and LB3. Indeed, it is quite easy to define instances where LB2 displays a better
behavior than LB3 and vice versa (see the example in the Annex). On the other hand,
numerical experiments show that a new lower bound defined as L4 = max{LB2, LB3}
gives only marginal improvements compared to LB2 or LB3 separately.
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We now apply to the general case of the VCSBPP the column generation lower bound
introduced by Monaci [9] for the particular case of bin selection costs equal to their
volumes.

Let us group the bins in J into types t ∈ T , where two bins are defined to belong to
the same type t if they have the same cost cj and volume Vj. Define Ut as the number of
available bins of type t. A feasible loading pattern for a bin of type t corresponds to a set of
items that may be loaded into the bin satisfying all accommodation rules. Let Kt = {k}
be the set of all feasible loading patterns for the bin type t, and K =

⋃
t∈T Kt. A feasible

loading pattern k is described by a vector of indicator functions ai
k, k ∈ Kt, t ∈ T , such

that ai
k = 1 if item i is accommodated by pattern k of bin type t, 0 otherwise. The cost

of a pattern is the cost of the bin type.

We define the bin loading pattern selection variables λk, equal to 1 if the pattern
k ∈ Kt is used, 0 otherwise. The set covering formulation of the VCSBPP may then be
written as

min
∑
t∈T

∑
k∈Kt

ckλk (17)

Subject to
∑
t∈T

∑
k∈Kt

ai
kλk = 1 i ∈ I, (18)∑

k∈Kt

λk ≤ Ut t ∈ T , (19)

λk ∈ {0, 1} k ∈ K. (20)

The lower bound is computed from the linear relaxation of formulation (17)-(20),
which provides the means to implicitly deal with the large number of variables in the
model through a column generation approach [13]. The procedure starts with a relatively
small set of feasible patterns P , corresponding to a restricted VCSBPP that we identify
as RP , an then proceeds as follows:

1. Find an initial feasible solution to the VCSBPP and the corresponding set P ;

2. Solve the linear relaxation of RP and let LRP be its optimal solution;

3. For each bin type t ∈ T

(a) Find the non-basic pattern variable λk of LRP , k ∈ Kt, with the smallest
reduced cost rk among all non-basic pattern variables for type t;

(b) If rk < 0, P = P ∪ {λk};
(c) Continue to the next bin type (go to 3a);

7
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4. If rk ≥ 0 for all bin types t, then stop with LRP as the set covering lower bound
for the VCSBPP;
Otherwise, go to 2.

The main issue is how to find new negative reduced cost feasible patterns. Consider
the dual variables associated to the constraints of the continuous relaxation of the RP
set covering formulation, µi, for constraints (18), and αt ≤ 0, for constraints (19). Let
Ak be the column of a given pattern variable k for a bin of type t in model RP . Its
reduced cost rk is expressed as ck − [µ α]T Ak, which becomes

rk = ct −
[
µT αT

]
Ak = ct −

∑
i∈I

ai
kµi − αt.

We now define a column generation subproblem which, given a bin of type t, finds the
non-basic pattern with the minimum reduced cost. Notice that the vector Ak defining a
not yet generated pattern k of bin type t is not known, but may be expressed in terms of
item-to-bin assignment variables xi equal to 1 if item i belongs to the pattern, 0 otherwise
(for simplicity of notation, we dropped the k index). Because the dual variables αt, as
well as the bin cost ct, are constant for a given type t, to find the column with the
minimum reduced cost we can simply solve the following knapsack problem:

max
∑
i∈I

µi xi

Subject to:
∑
i∈I

wixi ≤ Wt t ∈ T

xi ∈ {0, 1} i ∈ I.

The procedure adds at most |T | columns to P at every iteration (in Step 3), one for
each bin type yielding a feasible loading pattern with negative rk. Any feasible solution
of the VCSBPP may be used to initialize the procedure, including the trivial solution
obtained by loading each item into a different bin. More accurate heuristics are presented
in Section 4. In the following, we refer to the objective function value of the optimal
solution of the final continuous RP problem as LBCG.

4 Heuristics for the VCSBPP

The heuristics we propose for the VCSBPP combine information yielded by the lower
bound computations and extensions of a number of fundamental concepts in the bin
packing and knapsack methodology.

8
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We thus adapt the well-known Best First Decreasing (BFD) loading heuristic, which
offers good performance for the classical bin packing problem, and loads each item into
the “best” bin, i.e., the bin with the maximum free space (defined as the bin volume
minus the sum of the volumes of the items loaded into it) once the item is loaded [8].
The BFD we propose for the VCSBPP, named the Adapted BFD (A−BFD) heuristic,
first sorts the items according to the non-increasing order of their volumes and, then,
loads them sequentially; Algorithm 1 displays the pseudocode. For each item, one first
attempts to load it into the “best” already-selected bin, that is, the bin maximizing the
merit function computing the free bin space as defined above. If the item cannot be
loaded into an already-selected bin, a new bin is selected and the item is loaded into it.

Algorithm 1 A−BFD

Input I : Items to be accommodated into the bins
Input K : Bin groups types available to load the items
S : Set of selected bins (empty at the beginning)

Sort the items in I according to non-increasing order of their volume
Sort the bins in K according to non-increasing order of the ratio cj/Vj, and non-
decreasing order of Vj when the unit costs cj are equal
S = {∅}
for all i ∈ I do

if i can be accommodated into a bin in S then
Accommodate i into the best bin b ∈ S

else
S = S ∪ {b′}, where b′ is the first bin in the ordered list K
Accommodate i into b′

end if
end for
for all j ∈ S do

for all k ∈ K \ S do
Uj =

∑
i loaded in j vi

if Vk ≥ Uj and ck < cj then
Move all the items from j to k
S = S \ {j} ∪ {k}

end if
end for

end for

return S

An issue particular to the VCSBPP, but irrelevant for the classical bin packing prob-
lem where bins are homogeneous, is how to choose a new bin, when required. Inspired
by the item-selection rule for knapsack problems, we select bins according to the non-
increasing order of their unit cost / volume ratios, cj/Vj, and in the non-decreasing order

9

Efficient Lower Bounds and Heuristics for the Variable Cost and Size Bin Packing Problem

CIRRELT-2010-56



of their volumes when the unit costs are equal.

Considering the bins according to this order generally yields good solutions, but may
falter when the last items are considered. Indeed, when a new bin needs to be selected
for an item toward the end of the list, the selected bin might have a volume much larger
than that of the item, even though its cost/volume ratio is good. Moreover, few items
might be left to take advantage of this volume. A bin with a worst ratio but an absolute
smaller cost, might be appropriate in this case, and we implement a post-processing
procedure that attempts to improve the solution by evaluating such possible bin swaps.
The procedure iteratively examines each selected bin j ∈ J with its cost cj and loaded
volume Uj defined as the sum of the volumes of the items assigned to it. Then, if an
unused bin k ∈ J , k 6= j such that Vk ≥ Uj and ck < cj exists, the procedure transfers
the items from bin j to bin k and discards the former.

Notice that any of the three lower bounds presented in Section 3 yields a set of bins
with total cost equal to the lower bound. We may use this information to initialize the
set of bins used in the heuristic and thus obtain a variant of A− BFD. More precisely,
the LB-Based BFD (LB −BFD) heuristic works as follows:

• Consider the set of the bins given by the selected lower bound, generically denoted
LB;

• Initialize the solution with a percentage p ∈ (0, 1] of these bins (bins are added
empty);

• Order the remaining bins as described above and apply A−BFD to build a feasible
solution.

A second variant of A − BFD also starts from the optimal solution associated to a
lower bond LB in order to choose the bins in the solution, but recomputes the bound when
items cannot be loaded into already-selected bins. The heuristic, denoted ITER−BFD,
iteratively adds a subset of the bins given by LB. Then, the new bins are loaded by
considering the items according to their non-increasing order of volumes. When an item
cannot be loaded, a partial instance is built out of the items not yet loaded and the bins
still unused, and a new bound LB is computed. The procedure stops when the item list
is empty or, if after a maximum number of iterations k some items are still unloaded, by
applying the A−BFD heuristic.

10
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5 Computational Results

In this section, we present and analyze the results of the computational experiments. The
first objective is to asses the relative performance of the proposed lower and upper bounds.
The second is to evaluate the efficiency of the procedures we propose by comparing the
best results we obtain to those of the best methods proposed in the literature. Finally, we
analyze the behavior of the methods in terms of efficiency and accuracy when problem
attributes change, in particular, the correlation between the costs and volumes of the
bins, and the volume distribution of the items.

The new lower and upper bounds are implemented in C++. Experiments were per-
formed on a Pentium IV 3GhZ workstation. The knapsack instances generated by the
LB1, LB2, and LBCG bounds were solved to optimality by means of the algorithm pre-
sented in [10], while the column generation in LBCG was implemented in C++ by means
of the CPLEX 12.1 solver.

5.1 Instance sets

The following sets of problem instances were used in the experiments:

Set1. Instances from [3]. Five instances were randomly generated for each combination
of the following parameters:

• Number of items in the set {100, 200, 500, 1000}.
• Item volumes randomly generated according to a (discrete) uniform distribu-

tion in the set {1, 2, ..., 20}.
• Five bin capacity cases: 1) all bins with the same capacity of 150; 2) three

different capacities, 100, 200, and 300; 3) six different capacities, 50 to 300 by
increment of 50; 4) twelve different capacities, from 25 to 300 by increment of
25; 5) all bins with different capacity from 60 to 330 by increment of 5.

• Bin fixed cost set to 100
√

Vj for each bin j.

• Instances with D and D + 1 bins are built, where D stands for the minimum
number of bins for each type required to load all items.

Set2. Instances proposed in [9] and regenerated for [3], derived from classical bin pack-
ing instances for the item-volume distribution and relations to the bin volume [14].
Ten instances were randomly generated for each combination of the following pa-
rameters:

• Item volume: three types with volumes uniformly distributed in [1; 100], [20;
100], and [50; 100], respectively.
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• Number of bin types: 3 (capacities equal to 100, 120 and 150, respectively)
and 5 (capacities equal to 60, 80, 100, 120 and 150, respectively).

• Number of items: 25, 50, 100, 200, and 500.

Set3. New instances created with the goal of providing the means to explore the impact
of the correlation between the selection fixed costs and the volumes of the bins.
The new instances are thus characterized by various correlation strengths, as well
as different compositions of the item set. The parameters of the new instances were
also chosen to reflect city logistics and supply chain applications cases:

• Number of items in the set {100, 200, 500, 1000}.
• Bin capacity values in the set {50, 100, 120}. The values have been chosen to

represent the typical volume ratios of ISO containers (20, 40 and 53 feet).

• Bin selection costs generated according to the following three rules:

SC. As in [9], the costs of the bins are very strongly correlated to their volumes:
they actually equal to their volumes.

LC. The costs of the bins are loosely correlated with the volumes. In order
to introduce an economy of scale, and following [3], the cost is defined as√

Vj.

R. For each bin volume, we generate three bin types. The first one has a cost
of

√
Vj, the second

√
Vj(1 + δ), where δ is randomly generated between

0.05 and 0.3, and the third
√

Vj(1 − γ), where γ is randomly generated
between 0.05 and 0.3. This cost-generation scheme simulates the situation
where different logistics operators are available. Thus, even though a basic
price exists for each bin size, there could be changes of the price of each
operator due to external factors.

• Item volumes. Following [7], the items are grouped into sets and, then, the
item types are mixed in order to generate the item volume types. The items
are grouped into three sets:

G1. Big-sized items with volumes randomly generated in the interval [20, 40].

G2. Medium-sized items with volumes randomly generated in the interval
[15, 25].

G3. Small=sized items with volumes randomly generated in the interval [5, 10].

Three item volume types are then generated mixing the item types in the
following way:

T1. 80% of the items are in G2 and 20% in G3.

T2. 10% of the items are in G1, 75% in G2 and 15% in G3.

T3. 20% of the items are in G1, 70% in G2 and 10% in G3.

For each combination of the parameters, 10 instances are randomly generated.
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5.2 Comparison of lower and upper bound versions

To compare the relative performance of the different versions of the upper bound pro-
cedures, we report results for the LB − BFD and ITER − BFD variants using LB1

only, because there was no difference in our final results when one of the two other lower
bounds was used. Moreover, we report the comparison results on instances of Set 2 only,
because both LB1 and the A − BFD heuristic solved to optimality all the instances of
Set 1. We further discuss this observation in the second part of the section.

Type/p 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0..50 0.55
1 1.2 1.17 1.3 1.42 1.45 1.39 1.5 1.63 1.81 1.85
2 2.5 2.57 2.61 2.61 2.61 2.68 2.83 3.04 3.33 3.94
3 1 0.97 1.07 1.24 1.43 1.55 1.64 2.03 2.66 3.12

Mean 1.6 1.57 1.66 1.76 1.83 1.87 1.99 2.23 2.6 2.97

Type/p 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1..00 Best
1 2.1 2.39 2.52 2.52 2.73 2.76 2.56 2.8 2.7 0.64
2 4.2 4.44 4.39 4.53 4.51 4.54 4.61 4.93 5.03 1.65
3 3.7 4.17 4.5 4.93 5.44 5.88 6.27 6.66 6.91 0.21

Mean 3.3 3.67 3.81 3.99 4.23 4.4 4.48 4.8 4.88 0.83

Table 1: Set 2: Mean optimality gaps (%) for the LB −BFD heuristic

Table 1 reports the optimality-gap performance of the LB − BFD heuristic while
varying p, the percentage of bins from the optimal solution of LB1 used to initialize
the heuristic solution, from 10% to 100%. The first column displays the item volume
type, while Columns 2 to 19 report the mean percentage deviation of LB − BFD from
the optimal solutions for the various values of p. The best mean values appear to be
obtained for 10% ≤ p ≤ 40%, but no setting of this parameter seems to dominate the
others. Computing A− BFD (or LB − BFD) requires less than 0.01 seconds CPU for
the largest instances, however. In fact, computing LB1 together with all the solution
obtained by LB−BFD for the varying p requires less that 10−2 in the worst case (most
of it is required to compute LB1). We therefore computed a composite solution as the
best solution among those with 10% ≤ p ≤ 40% and we report this value in the last
column. This composite implementation of the heuristic yields solutions that are less
than 1% from the optimum.

Table 2 reports the mean optimality gaps obtained by the ITER − BFD heuristic
while varying the maximum number of iterations k (Columns 2 to 10), as well as the
composite solution (Column 12) built according to the same idea described previously.
The results indicate that ITER − BFD has a worst behavior than LB − BFD, with
an average optimality gap of about 2%. The computational time, although small (less
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Type/k 2 3 4 5 6 7 8 9 10 Best
1 2.28 1.75 1.80 1.85 1.89 1.81 1.68 1.78 1.64 0.92
2 3.70 3.22 3.20 3.17 3.16 3.06 2.90 2.89 2.87 2.17
3 5.57 5.19 4.60 4.09 3.65 3.48 3.50 3.41 3.26 2.68

Mean 3.85 3.38 3.20 3.04 2.90 2.78 2.69 2.69 2.59 1.93

Table 2: Set 2: Mean optimality gaps (%) for the ITER−BFD heuristic

than 0.1 seconds for the largest instances) is also larger than for LB −BFD, due to the
necessity to compute a knapsack problem at the end of each iteration.

Table 3 sums up the performance results of the lower and upper bound procedures
introduced in this paper, together with those of CompBFD, a composite heuristic selecting
the best solution among those of the three upper bound procedures. Columns 1 and
2 present the volume type and the number of items, respectively, while the following
columns display the mean optimality gaps for the seven procedures. The best settings,
as reported in Tables 1 and 2, were used for LB−BFD and ITER−BFD, respectively.

The lower bound procedures are performing very well for instances of type 1 and 2,
while the gap increases slightly for instances of type 3. The latter are characterized by a
peculiar item-to-bin volume relation, however. Indeed, the minimum item volume is 50
and, thus, at most three items can be loaded into each bin type. The loading patterns
for each bin type are therefore polynomially limited, favoring column generation-based
methods.

With respect to the upper bounds, the best mean results were obtained by the A −
BFD and LB−BFD heuristics. The most critical instances from the upper bound point
of view are those of type 2, characterized by the presence of medium-sized items (volumes
in the interval 20− 100). But, as often in numerical experiments, the means do not tell
the whole story. Thus, just considering the mean, ITER−BFD is outperformed by the
other two heuristics. An instance-by-instance verification of the results shows, however,
that ITER−BFD performs better on the instances for which A−BFD and LB−BFD
yield their worst results. The upper bound procedures thus appear “complementary” and,
because their respective computational times are small, we propose to compute the three
values and select the best. The CompBFD computes this best result, and yields a mean
optimality gap of 0.78% with a computation effort of less than 0.1 seconds in the worst
case.
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Type n LB1 LB2 LB3 A−BFD LB −BFD ITER−BFD CompBFD

25 0.21 0.21 0.21 1.41 1.41 1.88 1.28
50 0.02 0.02 0.02 0.95 0.95 1.50 0.93

1 100 0.00 0.00 0.00 0.49 0.49 0.60 0.45
200 0.00 0.00 0.00 0.32 0.27 0.39 0.25
500 0.00 0.00 0.00 0.10 0.10 0.25 0.09

Mean 0.05 0.05 0.05 0.66 0.64 0.92 0.60

25 1.14 1.08 1.08 2.13 1.92 2.66 1.64
50 0.29 0.29 0.29 1.93 1.81 2.45 1.76

2 100 0.05 0.05 0.05 1.84 1.78 1.79 1.59
200 0.00 0.00 0.00 1.51 1.51 1.94 1.43
500 0.00 0.00 0.00 1.47 1.26 2.03 1.24

Mean 0.30 0.28 0.28 1.78 1.65 2.17 1.53

25 3.08 1.81 1.65 0.14 0.14 1.10 0.14
50 1.86 1.43 1.39 0.28 0.28 1.54 0.27

3 100 1.57 1.44 1.44 0.20 0.20 3.05 0.20
200 0.87 0.86 0.86 0.33 0.33 3.72 0.33
500 0.85 0.85 0.85 0.09 0.09 3.99 0.09

Mean 1.64 1.28 1.23 0.21 0.21 2.68 0.2

Overall mean 0.66 0.54 0.52 0.88 0.83 1..93 0.78

Table 3: Set 2: Average optimality gaps (%) for the upper and lower bound procedures
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5.3 Comparison of lower and upper bounds with state-of-the-
art algorithms

In the second part of this computational analysis, we present a comparison between the
results obtained by the bounds we propose and the best results from the literature [9, 3].
The optimal solutions and the lower bound values obtained by Correia et al. are taken
from the literature [3], while the results of the the column generation of Monaci [9] were
obtained applying the proposed lower bound LCG, the VSBPP being a special case of
the VCSBPP (the detailed results of the original implementation are not available [9])

The comparisons on the instances from Set 1 are not reported, because LB1 = A −
BFD for all instances, i.e., all instances are solved to the optimum by using the proposed
heuristic. We report in Table 4, however, the results of the instances of Set 1 not solved
to optimality in [3]. For each instance, we give in Columns 1-4, the instance name, the
number of bin types, the number of bins per type, and the number of items, respectively.
The best-known feasible solution reported in the literature is displayed in Column 5, while
the values of LB1 and A−BFD are reported in the last two columns. The results show
that we obtained or improved (instance pbin 1000 2 ) all the best-known solutions, which
are now proved to be optimal. Notice that the column generation proposed by Monaci
yielded a mean optimality gap of 0.23% on the instances of this set [9]. The proposed lower
and upper bound procedures are thus performing very well on the instances introduced
in [3], a conclusion even more impressive when one considers that this performance is
obtained in less than 0.01 CPU seconds in the worst case.

Instance m D n Best Known LB1 A−BFD
pbin 500 4 6 3 500 35313 35313 35313
pbin 500 4 6 3 500 35313 35313 35313
pbin 500 5 6 3 500 34089 34089 34089
pbin 1000 1 6 12 1000 68740 68740 68740
pbin 1000 2 6 7 1000 69345 68828 68828
pbin 1000 3 6 12 1000 69964 69964 69964
pbin 1000 4 6 7 1000 69121 69121 69121
pbin 1000 1 12 6 1000 72001 72001 72001
pbin 1000 2 12 6 1000 72160 72160 72160
pbin 1000 3 12 6 1000 73160 73160 73160

Table 4: Set 1: New optimal solutions

Table 5 summarizes the gaps (in %) from the optimal solutions yielded by the proposed
lower bounds on instances in Set 2. The first and second columns report the volume-
generation type and the number of items, respectively. The following columns report the
mean gaps over ten instances obtained by the lower bounds LBM by Monaci [9], LBC by
Correia et al. [3], and LB1, LB2, and LB3 proposed in this paper. The last row of each
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instance type reports the mean deviations from the optimal values over all instances of
that type.

Type n LBC LBM LB1 LB2 LB3

25 0,00 0,38 0,21 0,21 0,21
50 0,00 0,19 0,02 0,02 0,02

1 100 0,00 0,08 0,00 0,00 0,00
200 0,00 0,05 0,00 0,00 0,00
500 N/A 0,02 0,00 0,00 0,00

Average 0,00 0,14 0,05 0,05 0,05

25 0,00 0,22 1,14 1,08 1,08
50 0,00 0,14 0,29 0,29 0,29

2 100 0,00 0,07 0,05 0,05 0,05
200 0,00 0,03 0,00 0,00 0,00
500 N/A 0,02 0,00 0,00 0,00

Average 0,00 0,09 0,30 0,28 0,28

25 0,00 0,09 3,08 1,81 1,65
50 0,00 0,10 1,86 1,43 1,39

3 100 0,00 0,05 1,57 1,44 1,44
200 0,00 0,03 0,87 0,86 0,86
500 N/A 5,02 0,85 0,85 0,85

Average 0,00 1,06 1,64 1,28 1,23

Table 5: Set 2: Lower bound optimality gap (%) comparison

The best performance is offered by LBC , but the application of this procedure is
limited by the size of the MIP models involved. Thus, for example, it could not address
instances with 500 items while, for the other instances, it required 300 CPU seconds on
average and up to 3000 CPU seconds for the largest instances (200 items) it addressed,
on a 2.4 GhZ Pentium IV workstation.

With respect to the other bounds, one observes that LB1, LB2, and LB3 performed
better than LM on instances of type 1, characterized by item volumes in a broad interval
([1; 100]), and on the larger instances of type 2. As discussed earlier on, the particular
item-to-bin volume relation characterizing the other instances, favors column generation-
based procedures and heavily penalizes the proposed lower bounds.

The column generation method of [9] is quite effective. Thus, an average of 2 CPU
seconds were required for instances with 500 items, for which an average of 45 columns
were generated and, thus, 45 knapsack problems (plus the corresponding LPs) were
solved. A more in-depth analysis of the performances of LBM shows that this approach
achieves best results on instances of type 3, characterized by the presence of large items
resulting in the impossibility to load more than 2 items in the smallest bin. Moreover,
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the instances for which LBM performs best are also characterized by a small number
of items (25 and 50).. Consequently, such instances accept a small number of feasible
patterns, which makes column generation based lower bounds efficient and accurate. Such
instances are not representative of a large gamut of shipping and logistics applications,
however, which makes LBM less interesting as a general problem-solving tool.

The lower bound procedures we propose are the most effective, however, requiring to
solve only one knapsack instance for LB1 and at most 6 instances for LB2, with a worst
case of 0.01 seconds. Actually, LB1 achieves a performance of over 99%, compared to
the other procedures, in a negligible computational time. This identifies it as a good
candidate to rapidly obtain very good solutions to problem instances in a broad range of
situations, and for use in more complex problem-solving settings, e.g., simulations and
optimization frameworks, where the VCSBPP appears as a subproblem in meta-heuristics
or Branch & Bound schemes.

5.4 Analysis of the bin cost-volume relationships

The previous comparative analysis of the performance of the proposed lower and upper
bounds demonstrated their efficiency and accuracy on the instances of sets 1 and 2. These
instances present particular characteristics in terms of bin selection costs, which are very
tightly correlated to the bin volumes. The goal of of this part of the computational
study is to investigate the impact on the behavior of the methods we propose of different
problem characteristics, in particular, the correlations between the costs and volumes of
the bins.

IT BIN LB1 LBCG

T1 SC 0.33 0.44
LC 0.78 1.36
R 1.17 1.46

T2 SC 0.53 0.61
LC 0.58 1.29
R 1.35 1.61

T3 SC 0.51 0.60
LC 0.49 1.16
R 1.31 1.63

Table 6: Gaps (%) of LB1 and LBCG relative to CompBFD

Table 6 displays the comparative results of the lower bounds LB1 and LBCG relative
to those of the CompBFD heuristic. We do not report the results of bounds LB2 and
LB3 because their gaps relative to LB1 are small and do not change the results of the
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analysis. We report in Columns 1 and 2 the bin selection cost and the item distribution
type. Columns 3 and 4 display the mean gap between LB1 and LBCG with respect to
CompBFD, respectively, computed as (UB−LB)/LB. Each cell gives the mean gap over
the 40 instances characterized by the same bin cost - volume combination.

The results show that LB1 displays the best performance for all groups of instances.
This is not surprising, column generation approaches being more effective when the num-
ber of possible equivalent columns (item loading patterns) is somewhat limited, which
holds true for Set 2, but not for the instances of Set 3 used in this experiment. The
overall mean gap is about 1% in the worst case. The instances with the highest gap
are in set R, characterized by a low correlation between volume and cost of the bins.
No difference in solution quality can be noticed while changing the item volume type.
When the mix of the item sizes changes, the gap remains almost constant for the three
distributions.

An interesting question is whether the gap is mainly given by the lower or the upper
bounds. To address this issue, and inspired by the studies in [2] on the instances of Set 2
where the column generation yielded the optimal patterns for the majority of instances,
we defined UBCG, an upper bound procedure that starts from the model (17)-(20) with
the patterns identified while computing LBCG. All the instances of Set 3 were thus solved
to optimality using the CPLEX 12.1 solver. We then computed the gaps of CompBFD

and UBCG with respect to LB1.

We do not report the detailed results for CompBFD and UBCG in order not to overload
the paper. Globally, however, the solution found by UBCG is equal to that of CompBFD

in 27 instances over 360, reducing the gap with respect to LB1 from 0.60% to 0.59%. We
thus infer that the results of CompBFD and UBCG are generally “close” and, thus, even
though no formal proof of the optimality of the solutions CompBFD was obtained, these
comparisons suggest that the gap is mainly due to the lower bound LB1.

IT BIN USED SAT

T1 SC 2.4 0.1
LC 1.8 0.3
R 4.5 1.7

T2 SC 2.3 0.2
LC 2.0 0.4
R 4.5 1.5

T3 SC 2.1 0.2
LC 1.9 0.3
R 4.6 1.9

Table 7: Number of bin types used and saturated
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Figure 1: Columns generated by LBCG with respect to the number of items

Another interesting issue is related to the number of bin types used in the final
solution, relative to variations in the correlation between the selection costs and the
volumes of the bin types. Table 7 displays this characteristic of the solutions produced
by CompBFD. Columns 1 and 2 report the bin cost and the item distribution types,
respectively, while Columns 3 and 4 display the mean number of bin types used and
saturated, where a bin type is considered saturated if all the bins belonging to that type
are used in the given solution. As indicated by these results, the number of bin types
used is affected by the bin cost distribution relative to the bin volume. Indeed, while the
number of used and saturated bin types is almost the same for types SC and LC, the
mix changes a lot for the instances in R, when several bin types are characterized by the
same costs but different volumes. It is also noteworthy that the number of saturated bin
types increases with the variation in cost versus volume relation, indicating the capability
of the CompBFD procedure to select bins with a small cost per unit of volume.

Most previous analyzes were performed with respect to computing times and solu-
tion quality. In this respect, LB1 displays an excellent behavior, its computational effort
being determined by the resolution of a single Knapsack instance. We may thus present
a comparative analysis of LB1 and LBCG based on the number of columns the meth-
ods generate, a measure that may be used to predict their behavior for larger problem
instances. As indicated earlier on, the generation of each column produced by LBCG

requires solving a Knapsack instance, the overall computational effort of the procedure
being dominated by the resolution of these instances. According to our results, the main
parameter affecting the number of columns generated by LBCG is the number of items.
Figure 1 thus reports the relationship between the number of items and the number of
columns generated by LBCG. It should be noticed that, already for instances with 500
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items, the procedure generates about 2000 columns, number that raises to about 7000 for
1000-item instances. This implies a computational effort for LBCG three order of magni-
tude larger than that of LB1 and points to the interest of the heuristics proposed in this
paper to address large instances of the Variable Cost and Size Bin Packing Problem.

It is revealing to analyze these results in the light of the very small number of columns,
46, needed by LBM for the instances in Set 2. Recall that LBM is equivalent to the lower
bound LBCG for the VSBPP problem. Recall also that the instances of Set 2 are charac-
terized by important proportions of large items, which reduces considerably the number
of feasible patterns and, thus, of generated columns, and makes them less representa-
tive of actual applications. Focusing then on the results of the various procedures on
the instances of Sets 1 and 3, one may conclude that the proposed methodology, LB1

in particular, is both more efficient and more accurate than a column generation-based
approach, such as LBM and LBCG, for large-sized logistics applications.

6 Conclusion

We introduced the Variable Cost and Size Bin Packing Problem, an extension of the clas-
sical Variable Size Bin Packing Problem, characterized by both physical and economical
attributes, bin volumes (capacity) and selection fixed costs, in particular. We proposed
a solution methodology based on new upper and lower bounds for the VCSBPP. These
procedures proved to be extremely efficient on a large set of problem instances with up to
1000 items and varying correlations between the bin volumes and selection costs. Indeed,
compared to state-of-the-art methods, the proposed methodology yielded solution with
an accuracy of more than 99%, with a computational effort several order of magnitude
smaller.

We also presented, for the first time in the associated literature, a comprehensive
study of the impact on the solution-method performance of the correlation between the
cost and volume of the bin types, as well as of how the structure of the solutions changes
with it. The results show that, indeed, this correlation matters and that the solution
methods we propose, which are unbiased toward particular correlation values, offer a
better performance.
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Annex - Illustration of relationships between lower

bounds

As stated in Section 3, no dominance relation may be defined between LB2 and LB3.
This is an illustration of this statement through two instances for which LB2 displays a
better behavior than LB3 and vice versa, respectively.

Two bin types are defined for both instances: 12 bins with cost 1 and volume 100
for type 1 and 1 bin with cost 2 and volume 105 for type 2. The two instances have the
same number of items but differ in the characteristics of some of them. In instance I1,
we have 10 items with volume 60, 10 items with volume 30, and 2 items with volume
50. The mix for instance I2 is the same except for the last group where the items with
volume 50 are replaced by items with volume 45.

It is clear that, for both instances, bins of type 2 will not be included in the optimal
solution or any lower bound, as bins of type 1 are less costly and offer sufficient capacity
to accommodate all the items.

In I1, LB2 is not able to decrease the best filling of bins of type 1, due to the presence
of the two items with volume 50, while LB3 puts ti = 10 for all the items with volume
equal to 60. Thus their volume changes from 60 to 70 and the values of the lower bounds
are LB2 = 10 and LB3 = 11. Performing the same computations for I2, we have that for
LB2 the best filling ratio of bins of type 1 decreases from 100 to 90, yielding LB2 = 11.
In this case LB3 is not able to improve LB1. In fact, for any item, we are able to find a
combination with the remaining items that fills the bin of type 2. Thus ti = 0 for all the
items and LB3 = LB1 = 10.
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