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1 Introduction

Many operations-research (OR) applications, as well as problems in computer science,
applied mathematics, and many fields of engineering and management are based on
network formulations with an underlying design problem, see for example Ahuja et al.
(1995). Today’s complex supply chains require goods and information to be distributed
in many layers and in integrated ways. Increased competition force decision-makers to
study the whole supply chain, all the way from suppliers to end consumers, trying to
achieve overall optimality.

Network design has been a major area of research for the last four or five decades
and shows great diversity in methodology, see for example Scheibe and Ragsdale (2009).
But still we know very little about the structural characteristics of the optimal designs.
We are interested in revealing structural properties of the designs that can be used to
understand / evaluate designs even without solving the corresponding design problems.

It is evident that in most cases, at the time when a network is designed (or expanded),
the demand or supply that it will later face is uncertain. Traditionally this is not taken
into account during the design phase, but rather, the handling of uncertainty is postponed
to the operational phase of the problem at hand. While it is true that the actual handling
of uncertainty – meaning the reaction to revealed information – by definition, must take
place when it occurs, it is equally clear that different designs offer different opportunities
for how the uncertainty is handled, in particular, how costly the handling might be.
This principle is well explained in for example Yen and Birge (2006). A discussion may
also be found in Ball et al. (2007). So apart from understanding designs in general
we are particularly interested in understanding how designs stemming from assuming
deterministic demands differ from designs where uncertainty is included already in the
design phase of a project. We ask: Does it matter? Are there recognizable differences
between the two designs? Technically speaking, we shall compare, in different ways,
designs coming from two-stage stochastic programs (where the design is stage 1 and the
commodity flows stage 2) and their deterministic counterparts (where random demand
is replaced by expected demand).

A common way to handle this situation is to perform single- or multi-parameter
sensitivity analysis in order to understand how the optimal solution changes as a function
of demand. This approach might seem appropriate, but in fact it is not. This is outlined
in detail in Wallace (2000) and Higle and Wallace (2003). Logically, when performing
sensitivity analysis, one is assuming that the design can be postponed until after demand
has become known. So, whether sensitivity analysis is performed or not, we end up with
a solution not created to handle uncertainty, and hence, we may have to face difficult
operational decisions when demand is revealed.

It is old news that a deterministic solution might perform very badly in a stochastic
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environment. The reason is simply that it is not made to handle variation in parameters
such as price or demand in a good way. This argument often follows the logic of ”The
value of the stochastic solution”, see Birge (1982). In the network design case, good
designs stem from flexibility in the commodity flows, i.e., the ability to utilize installed
capacity across very different demand realizations. We have illustrated this in Thapalia
et al. (2009): the deterministic solution is itself badly suited to handle stochastic demand
for the single commodity, single source, multiple sink network design problem. However,
in the same paper we also observed that the structure (i.e., which edges to open) might
be similar in the deterministic and stochastic cases, albeit with rather different capacities
installed. Even this kind of similarity is unusual.

Lium et al. (2009) found consolidation to be a way to hedge against uncertain de-
mand in their multi-commodity stochastic service network design model. This cannot
(of course) be observed in the solution to the corresponding deterministic model, as the
model has no reason to hedge against uncertainty. The deterministic design might contain
volume-related consolidation, but that is not enough to cater properly for uncertainty.
So in that case, not only is the expected behavior of the deterministic design bad, but
also the structure (i.e. information about which edges to open) is of limited value. A
question for this paper is therefore: As we pass to the case of multiple sources for the
single-commodity case, shall we observe that the structure of the deterministic solution
is good (as we observed in the single-source single-commodity case) or bad as in the
multi-commodity case?

Hence, while we focus on comparing stochastic and deterministic designs, it is not
primarily to (once again) show the weaknesses of the deterministic solution, but to really
understand in what ways (if any) the deterministic solution is good and in what ways it
is bad. We also hope that this can be used not only to obtain a deeper understanding of
the effects of uncertainty on design, but also to develop heuristics for the stochastic case.

2 Problem description

Given a set of nodes (divided into source nodes, demand nodes, and transshipment nodes)
and a set of potential edges connecting these nodes, the single-commodity stochastic
network design problem with multiple sources and sinks (MSSND) is the problem of
determining a subset of the edges to open (including the edges’ capacities), so as to fulfill
the demand at the demand nodes at minimal cost, taking into account capacities of the
source nodes.

In general, the stochastics in this problem arises in the form of demand uncertainties
at the demand nodes, supply uncertainties at the source nodes, and failure of connections
(or failure of certain proportion of capacities in the edges) between the nodes. Demand
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uncertainties and edge failures are observed in most real life problems, as it is rare that
demand is fully known when the design is determined or that edges never fail. In this
paper, we discuss only random demand. The design is based on minimizing the sum of
the fixed costs of selecting edges connecting the nodes; linear costs to open capacities in
the edges; per unit flow costs of flows on the edges; and per unit penalty costs for not
satisfying demand. Not satisfying demand can have many interpretations, such as sending
the flow at a later point in time, with another mode, or a straightforward rejection. In
any case, in the model, it takes the form of a penalty cost per unit of unsatisfied demand.

It is important to include the possibility of flow being rejected in the model. The main
reason is that in real life, except in extremely particular situations, it is prohibitively
costly to build a network that can meet any possible demand—however unlikely it might
be. Deterministic models, operating on expected demand, may reasonably operate under
the assumption that (average) demand must be met. But even there, there will normally
be an understanding that some demand may end up being turned down in reality. When
working with stochastic demand, there is also the problem that requiring demand to be
met turns the model into a worst-case model, where the worst-case in most cases is not
even well understood. So, in total, we find it crucial to include the possibility of not
satisfying all the demand. We use the same formulation also in the deterministic models,
to make the results comparable.

We shall let all source nodes have the same capacity so that our focus will be on the
random demand. Hence, our assumption is that a set of demand nodes will have their
random demands satisfied from a set of equally-sized source nodes.

In the deterministic case, the demand in each node is fixed at the expected demand
from the stochastic case. This corresponds to the classical case of a single-commodity
multiple source network design problem. The first stage decisions in this problem are to
decide which edges to open and what capacities to install. The second stage decisions
are the flow decisions in the given network. The recourse action here is described by a
penalty cost incurred for not satisfying demand.

2.1 Mathematical formulation

Let G = (N , E) be a network defined by a set N of n nodes and set E of m edges
(undirected arcs), where

E ⊂ {‖ = (〉, |) : 〉 ∈ N , | ∈ N and 〉 < |} .

Each edge is indexed either by i, j or by k.

3
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The random demand is described by a set of scenarios S, where each individual
scenario s ∈ S has one demand realization for each demand node. We shall discuss in
Section 3.1 how the scenarios were generated. The notations for the sets, parameters,
and variables associated with this problem are as follows:

Sets:
C set of all source nodes;
D set of all demand nodes;
T set of all nodes with zero demand (transshipment nodes); T = N \ (C

⋃
D);

S set of all scenarios s.

Parameters:
M maximal arc capacity; used for linking capacities and open arcs in (5);
R unit cost of unsatisfied demand;
P s probability of scenario s ∈ S;
Ck flow cost on edge k ∈ E ;
Gk fixed setup cost for edge k ∈ E ;
Hk variable setup cost; the cost for adding one unit of capacity to edge k ∈ E ;
Vk initial/ existing capacity on edge k ∈ E , if any;
Ds

i demand (Ds
i < 0) in node i ∈ D in scenario s ∈ S;

D supply in each source node, D > 0.

Variables:
xs

k = xs
ij flow on edge k = (i, j) ∈ E going in direction i → j, in scenario s ∈ S;

zs
k = zs

ij flow on edge k = (i, j) ∈ E going in direction j → i, in scenario s ∈ S;
uk new capacity that is developed on edge k ∈ E ;
es

i for i ∈ D, this is the unsatisfied/lost demand in node i in scenario s ∈ S;
for i ∈ C, this is the unused capacity of source node i in scenario s ∈ S;

yk 1 if edge k ∈ E is developed, 0 otherwise.

We assume that total supply from equally-sized source nodes equals maximal demand
in the network, so that

D = max
s
{
∑
j∈D

{Ds
j}}/|C| (1)

where |C| is the number of source nodes.

Our overall problem is hence:

min
∑

k

Gkyk +
∑

k

Hkuk +
∑

s

P s

{∑
k

Ck (xs
k + zs

k) + R
∑
i∈D

es
i

}
(2)
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Subject to:

∑
j: (ij)∈E

(
xs

ij − zs
ij

)
−

∑
j: (ji)∈E

(
xs

ji − zs
ji

)
=


0 ∀i ∈ T ,∀∫ ∈ S
D − es

i ∀i ∈ C ,∀∫ ∈ S
Ds

i + es
i ∀i ∈ D ,∀∫ ∈ S

(3)

xs
k + zs

k ≤ uk + Vk ∀k ∈ E ∀∫ ∈ S (4)

uk ≤ Myk ∀k (5)

0 ≤ es
i ≤ −Ds

i ∀i ∈ D; ∀∫ (6)

xs
k, z

s
k, uk, e

s
i ≥ 0 and yk ∈ {0, 1} ∀k;∀i;∀s (7)

The objective function (2) minimizes the total costs of the network. The first part
is the costs of constructing all new edges, the second part the costs of building all the
new capacities, the third part the expected flow costs through all the edges and the
fourth part is the expected penalty costs of not fulfilling demand. Constraints (3) model
conservation of flow at nodes. The left-hand side is the net outflow from node i, which
must be zero for all transshipment nodes i ∈ T and is equal to the unused capacity for
source node i ∈ C. For the demand nodes, the net outflow must be equal to the satisfied
demand; since Ds

i is negative in this case, the right-hand side is the a difference between
the scenario demand Ds

i and the (positive) unsatisfied demand es
i .

Constraints (4) represent the flow limit in each edge. The left hand side of the equation
is the net flow on edge k which should be less then or equal to the total capacity of the
edge. Since we do not start with any initial/existing capacity in our test cases, we always
have Vk = 0. Note that in an optimal solution, an edge will never have flow in both
directions. Constraints (5) show that new capacity uk can be developed only if edge k is
built. Constraints (6) give bounds for the rejection amount and finally, (7) insure that
all variables are non-negative and the edge constructions binary.

For the deterministic counterpart we replace the stochastic demand by its expectation.

We model the problem in AMPL and solve it to optimality using CPLEX 9.0. The
solution time varies from few seconds to 5 hours depending on the case, on a PC with
3 GHz Intel R© CPU and 8 GB of RAM.
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3 Experimentation and Computational Results

The tests have two related goals. First we primarily focus on the quality of the determin-
istic designs by trying to understand how they differ from their stochastic counterparts,
and to what extent solving a deterministic problem will guide us toward a good design in
a stochastic environment. Does the deterministic design contain useful information, or is
it totally misleading if the real setting is that of stochastic demand? In the second part
we try more directly to characterize good designs, assuming that the stochastic design
model is the appropriate one. Our goal is to make qualitative statements about what
characterizes of a good design in light of random demand. These two questions are of
course related, but we find it useful to have these two focuses.

In order to answer these problems we have constructed a number of test cases. These
are now described together with our scenario generation approach.

3.1 Test instance generation

We have used seven different network instances. The first four instances, namely Ger-
many, Nobel-EU, NY, and US are telecommunication examples from the SNDlib library
(Orlowski et al., 2009), with some modification to suit our problem’s needs. The fifth
case was generated by us and named Molde and the last two, Montreal r06.1 and Mon-
treal r10.1 were obtained from CIRRELT (Interuniversity Research Center on Enterprise
Networks, Logistics and Transportation), Montreal. The names of the instances do not
mean anything particular in our computational setup.

It is worth noting that in all cases from SNDlib and Montreal, the test instances are
multi-commodity network design problems, so not all parameters can be used directly by
us. We only kept the coordinates (where available) for the nodes and the fixed setup cost
Gk for the edges. The values for the other parameters – variable setup costs Hk and flow
costs Ck – are all chosen proportional to the Euclidean distance between the node pairs.
The cost of unfulfilled demand R is derived for each test case using some multiple of the
highest value of the fixed plus variable setup cost for an edge in the network. We made
sure that R is not driving the solution. The results in the first part of 3.3 are based on
test cases with these cost structures. In the second part of the section, we changed the
fixed costs to understand their relative importance.

The Montreal test instance does not have node coordinates, so we used Graphviz
(Gansner and North, 2000) to draw the graph using fixed setup cost as distance measure.
The graphs of the test instances Nobel-EU, US and Molde are planar whereas the graphs
of the test instances Germany, NY, Montreal r06.1 and Montreal r10.1 are non-planar.
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For each of the seven problems, we picked 3 sets of nodes (2 in the case of Mon-
treal r06.1) as possible source node sets, thus creating in total 20 base test instances.
These 20 different versions of the problem instances are presented in 1. A set of source
nodes contains three or four nodes depending upon the test instances; the number of
source nodes for each test instance is listed in the fifth column of 1.

Given the difficulty of solving the stochastic network design problem to optimality
we kept n (the number of nodes) below 30 and m (the number of edges) below 50 for the
first six cases, while for the Montreal r10.1 cases we have up to 87 edges.

Table 1: The different test cases. Test case Molde is generated by us. For the others, the
names have been kept, even though the cases are adjusted to our needs.

Problem name # nodes # edges # demand nodes # sources # source sets
Germany 29 48 9 3 3
Nobel-EU 28 41 8 4 3
NY 16 41 7 4 3
US 26 42 9 3 3
Molde 22 45 8 4 3
Montreal r06.1 10 37 5 3 2
Montreal r10.1 20 87 6 4 3

We know from the work of Lium et al. (2007) that correlations might be important in
shaping the structure of the network. Hence, we further create 3 cases for each problem
instance: one with uncorrelated demands, one with positively correlated demands (all
correlations are set to 0.7), and one with mixed correlated demands: the demand nodes
are put into groups such that each group contains about half of the total number of
nodes. All correlations within a group are set to 0.7, while between groups we use −0.7.
All of this leads to positive definite correlation matrices. Thus we have in total 60 test
cases.

As stochastic programs need discrete distributions to represent the stochastics, we
discretized the chosen distributions (discussed below) by creating scenarios each having
equal probabilities to occur using the moment-matching method from Høyland et al.
(2003). In the absence of reference to a particular distribution representing the random
demand we chose to use truncated normal distributions with mean equal to the deter-
ministic demand (from the underlying cases) and standard deviation equal to 25% of the
mean to represent its stochasticity.

The decision on the number of scenarios used to represent the stochastics is critical
as we want to be sure we study the effects of randomness on our model, and not some
random effect of the scenario generating procedure. There is a trade-off between the
quality of scenarios representing the underlying distribution reasonably well and the
time needed to solve the stochastic program to optimality. As we increase the number

7
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of scenarios, we increase the quality of the representation of the distribution, but also
decrease the chance to solve the model to optimality within a manageable time. In our
case, we generated 100 scenarios to represent the distributions as this gives us in-sample
stability and manageable solution times. The in-sample stability is checked by solving
the same problem repeatedly with different 100-scenario trees. This lead to a coefficient
of variation (the standard deviation divided by the mean) of less than 1%, except for the
cases of ’NY’, ’Molde’ and ’Nobel-EU’ where it was 1.2%, 3.9%, and 4.8% respectively.
The cases of ’Molde’ and ’Nobel-EU’ have very high rejection costs, so even a minor
change in rejection volume results in a large change in objective function value.

With these values we are satisfied that we have in-sample stability for the problems
at hand. Since this is a necessary, but not sufficient, property of a satisfactory scenario
generation procedure, we also check out-of-sample stability. Out-of-sample stability is
checked by creating scenario trees with 1000 scenarios using sampling and then evaluating
the solutions over those scenarios. The evaluation is performed by re-optimizing the flow
in the network with given designs i.e., fixing the first stage variables of problem (2) to (7),
representing the network design under evaluation. The procedure is repeated 10 times
for a given network design and the objective values are compared by again calculating
the coefficient of variation. For our problem, out-of-sample stability was achieved as the
coefficient of variation for all the test instances was less then 0.2%, except for the cases
’NY’, ’Molde’ and ’Nobel-EU’ where it was 2.9%, 1.4%, and 2.6% respectively. For more
discussion on this subject we refer to Kaut and Wallace (2007).

Finally, we have to reconsider the definition of the supply D given in (1): since it
depends on the actual realizations of the stochastic demands Ds

j , it would be different
for the three versions (with different correlations) we generate for each test case, making
it difficult to compare the results. To avoid this problem, we calculated D for each of the
three correlation versions of a given case and used the median of the three D’s as our
demand size in all three versions.

3.2 Comparison Tests

As outlined in the Introduction, the deterministic solution, by its nature, has a worse
expected behavior than its stochastic counterpart. However, we would like to understand
more about why this is the case, and in what sense it is worse.

In order to check the quality of the deterministic designs, as well as comparing them
to the stochastic ones, we have set up three tests, named comparisons. Whenever a
comparison is performed, we take the deterministic and stochastic designs – or parts
thereof – (i.e. the first-stage solutions) and evaluate them using reference trees – in our
case trees with 1000 scenarios, to make sure we have good approximations of the true
distributions. The costs from the design and evaluation phases are added up, making the
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reported costs comparable across all tests.

A word of warning might be worthwhile here. If a stochastic programming problem,
as well as its deterministic counterpart, use hard constraints in the formulation, the
deterministic solution will normally be infeasible in the stochastic formulation (caused by
capacity problems when demand is high), and hence, its expected cost will be infinitely
large. On the other hand, if soft constraints are used, the deterministic solution will
normally be feasible in the stochastic model, but its expected performance can be made
arbitrarily bad by choosing large penalties on the soft constraints. This way, it is always
possible to make the deterministic solution look bad. We shall, however, set the penalties
at reasonable levels, and our goal is to understand how the deterministic solutions relate
to their stochastic counterparts. So, we shall certainly present numbers, and we do
believe the numbers are informative. But there will never be really objective numerical
results in this setting.

The three comparisons are:

A The classical test where the whole first-stage solution is evaluated out-of-sample.
This amounts to solving a 1000-scenario stochastic program with all first-stage
variables (designs and capacities) fixed, so in fact this equals the solution of 1000
independent second-stage problems. Since the second stage does not involve any
integer variables, this is very fast.

B Only edge information is imported from the first stage. So, in a 1000-scenario
stochastic program, all discrete variables y describing opened and closed edges—
we call it a skeleton—are fixed and the stochastic program is run. So the model
is allowed to install any capacity on the opened edges (also lower than in the
deterministic case), but not to open new ones.

C The whole design (both the skeleton and its capacities) is taken as input to the
1000-scenario stochastic program. The stochastic program can then add new ca-
pacities on already opened edges (paying only variable setup costs) and new edges
(paying both fixed and variable setup costs). Hence, all capacities opened in the
deterministic case add cost to the objective function, even if these are not needed
in the final design.

The purpose of Comparisons B and C is to check if the design from the deterministic
solution really is good for the stochastic case, and if it bad, in what way it is bad. By
making edges from the deterministic case “free” in two different ways, the stochastic
programs (as defined in the comparisons) are guided toward the deterministic solution.
This way we compare if stochastic programs solved with input from the deterministic
solutions behave much worse than stochastic programs which have no deterministic input
(they will never behave better).

9
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So, Comparison A is the classical test of the quality of the deterministic solution.
Comparison B, on the other hands, checks if we can use a deterministic method to
determine the skeleton and then solve a stochastic linear program to set the capacities.
If Comparison B comes out with good results for the deterministic solution, it points to
an alternative solution procedure that avoids solving a stochastic mixed integer program:
First use a deterministic method to find the skeleton, then a stochastic linear program
to set capacities. This represents a severe saving in computation (if it works well, of
course).

Comparison C can be seen as testing what happens if we first solve the deterministic
design problem and implement the solution, but then discover that it is not very good,
and wish to update it. If Comparison C comes out well for the deterministic solution, a
deterministic design can be corrected and become almost optimal for the stochastic case
provided setup costs must not be paid again. If Comparison C comes out badly, the costs
of updating a deterministic design in light of uncertainty in demand will be high. Note
that Comparison C is itself a stochastic mixed integer program, so in most cases it does
not represent an alternative solution approach. In our tests, though, Comparison-C with
1000 scenarios is faster than the original stochastic problem with 100 scenarios. But for
large problems, both are unsolvable.

In what follows of this section, we discuss the major findings, details are given in the
Appendix. Our first need is to understand the relationship between the stochastic and
deterministic solutions. We therefore perform Comparisons A, B and C as discussed in
3.2. That is, for all our 20 deterministic cases, we solve the corresponding network design
problem. Also, we solve all 60 stochastic cases, representing the stochastic versions of
the deterministic cases (each with three different correlation structures).

Then each of the 20 deterministic designs are imported into its three stochastic coun-
terparts (the three different correlation matrices). This is done for all three comparisons.
In all cases, as outlined earlier, the evaluations are done out-of-sample using 1000 scenar-
ios. 1 shows the results, where also the stochastic designs are evaluated out-of-sample.

3.3 Inheritance from the deterministic solutions

The deterministic solution is bad in the stochastic environment, and inheriting the struc-
ture (the skeleton) is also not good, see Figure 1. For Comparison A, the deterministic
solutions have expected objective function values which are from five up to almost 1600%
higher than that of their stochastic counterparts with mean value of 200%. For Compar-
ison B errors are from 0% up to little over 300% with mean value of 61%. On the other
hand, for Comparison C the errors are very low, from 0% up to just 9% with mean value
of 2%. This shows that when we allow to add new edges and open new capacities, the
deterministic design can be updated to become almost as good as the stochastic design.

10
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Figure 1: Results of the Comparison Tests. Ratios between the expected objective values,
obtained from importing the deterministic solution into the stochastic setting, and the
expected objective function value of the stochastic solution.

(Note that in these tests we might observe that the deterministic design is better than
the one coming from a 100-scenario stochastic model, since both designs are evaluated
out-of-sample with 1000 scenarios. We have observed one single case which can be seen
in Figure 1.)

Now, if we look at 2, which compares the cases where the costs of the first stage
decisions (the fixed and/or variable setup costs) are highest (the test instances of Molde,
Nobel-EU, and NY), then we see that the best design for Comparison A is 4.17 times
more costly than its stochastic counterpart. And on average, the deterministic design
produces expected costs that are 10.22 times what a stochastic model would produce.
If we further look only at certain components of the overall costs for these cases, which
are presented in 3, we find that on average, the costs for opening edges are just 74%,
and capacity built is just 62%, of that in the stochastic designs. This indicates that the
solutions are far from the optimal structure both in terms of edges opened and capacities
built.

So what do we see? Not very surprisingly we observe that the deterministic solution
behaves rather badly in a stochastic environment, implying that the common practice of
creating a design based on expected values and then handling randomness operationally
is not a very good idea—the costs can be astronomical. One reason for this is simply
that the deterministic design does not install enough capacity – even in our case where
the penalty is set at a very reasonable level. So what if only the skeleton – the edges
to be opened – is imported from the deterministic design, and the capacities are set as
in Comparison B? This is computationally effective, as solving the stochastic program
of Comparison B is very simple even for huge problems (it has no integer variables). It
helps, of course, but we can still be several hundred percent off, which in most cases is
not acceptable. There are situations where Comparison B does well, but it isn’t easy to
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Figure 2: Results for cases with higher cost of first stage decision. Ratios between the
expected objective value, obtained from importing the deterministic solution for the test
cases with high fixed and variable setup cost into the stochastic setting, and the expected
objective function value for the stochastic solution.

know upfront if a given case is of that type.

The results of Comparison C are worth an extra comment as they do not represent
a very common situation: if the deterministic design is taken as a starting point, a very
good (even if not optimal) design can be found by adding extra edges and capacities
on top of the deterministic one. In our test cases, we never lost more than 9% that
way. This is still a large number in many cases, but given the uncertainty in the model
(which of course is always there) this is not bad. Computationally, we must then solve
a deterministic design problem first, and then a stochastic one (Comparison C). This
stochastic program has substantially fewer integer variables than the original one, but
can still be expected to be as unsolvable as the original one for practical problems. This
is not the main point, though. The main observation is that the deterministic solution
can be updated to become very good even in a stochastic environment.

It is worth mentioning that the results in Comparison C are not in line with the
general observation that a stochastic solution is normally not the deterministic one “plus
something”—see Wallace (2009) for reasons why. In our case that is exactly what we
observe (genuinely or as a good approximation): the stochastic design equals the deter-
ministic design plus “something”.

For the single-source case, as described in Thapalia et al. (2009), Comparison B
came out rather well contrary to what we observe here. This difference can mainly be
attributed to the fact that we now have many source nodes with limited supply capacity.
As we minimize costs, the deterministic skeletons have many short paths, we term them
arms, connecting individual source nodes to nearby demand nodes. If not generally, this
typically gives us a forest of small trees. Just adjusting the capacities of these trees is
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Figure 3: Components of result. Ratios of the fixed and variable setup costs obtained
from importing the deterministic solution, for the test cases with high fixed and variable
setup cost, into the stochastic setting divided by the fixed and variable setup costs for
the stochastic solution.

not enough to find good designs. When there is only one supply node, the deterministic
skeleton is a tree, and hence, all nodes are connected, even if the connections are not
optimal. When the skeleton is a forest, there are simply too few connections.

We know from Lium et al. (2007) that correlations may play important roles in shaping
the solution structure of the stochastic problem in terms of sharing capacity and taking
benefit from variation in demand. By importing the deterministic solution into the
stochastic problem, the deterministic solution structure with short arms from each source
node cannot benefit from this variation in demand. Hence we see poor performance in
Comparison A. This is more evident in the cases where we have higher setup costs (fixed,
variable, or both) as these result in deterministic designs with particularly short arms.
Consider 4, where we observe that it is worse in the uncorrelated and mixed correlated
cases as compared to the positively correlated cases. This is natural since with strong
positive correlations there is less to be gained from joint use of edges in any case.

3.3.1 Relation between the number of source nodes and inheritance

The extreme case—one source node—was covered in Thapalia et al. (2009). In that case
both Comparisons B and C were rather good. We have already seen that for three or four
source nodes - as in this paper - Comparison B is no longer very good, while Comparison
C remains very strong. With high setup costs this is even more evident, as that will
cause the skeleton to be as minimalistic as possible in terms of the number of edges. We
wonder if also Comparison C will become weak as we get more source nodes.

Some of this we already understand: With one source node, the deterministic skeleton
is a tree (not necessarily spanning because of the transshipment nodes), while as the
number of source nodes increases, we tend to get several trees, in the extreme case, one
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Ratios between the expected objective value, obtained from importing the deterministic
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for each source node, and the ability to share capacity when randomness hits becomes
steadily lower. Comparisons A and B, limited by the deterministic skeleton, suffer from
this lack of connectedness – as it prevents sharing of supply capacity – and hence they
do not do very well.

In order to better understand the effect of the number of source nodes, we have
increased the number of source nodes for a few cases. What we observe is that Comparison
C gets steadily worse as the number of source nodes increases. However, be aware that
it is not easy to define what “these two cases are the same except that one has more
source nodes than the other” means. The reason is that as the number of source nodes
increases, the whole network design problem changes, and comparisons become unclear.
In this paper we are limited to cases we can solve to optimality. That prevents checking
the fate of Comparison C for really large cases. Within what we could check, we found
that Comparison C got worse as the number of source nodes increased, but remained
very good throughout, the deterministic solution never being more than 10% worse than
the stochastic one.

So, it seems, taking the deterministic design and adding edges and capacities produces
good solutions. Note again, however, that since Comparison C is also a stochastic integer
program, it it likely to be as unsolvable as the original stochastic program for large
realistic cases.
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3.3.2 Fixed costs

We want to make sure that the observations of how the stochastic solutions differ from
the deterministic ones do not depend on the cost structures we have used. So we turn
to testing these results when we vary the way setup costs are distributed between fixed
setup cost Gk and variable setup cost Hk. Let L be some large positive number, selected
conveniently. Here we take it to be 25% of M . For each of the 20 test cases, we calculate
for each edge Ck = Gk + LHk. Then we redistribute Ck in five different ways:

a Fixed setup cost 0.1% of Ck and variable setup cost 99.9% of Ck/L

b Fixed setup cost 5% of Ck and variable setup cost 95% of Ck/L

c Fixed setup cost 25% of Ck and variable setup cost 75% of Ck/L

d Fixed setup cost 50% of Ck and variable setup cost 50% of Ck/L

e Fixed setup cost 99.9% of Ck, and variable setup cost 0.1% of Ck/L.

All tests described earlier are now performed for each of these five cases and results
are shown in 5. The tests are performed with 100 scenarios. Some test instances which
CPLEX could not solve within 15 days are ignored.

We find that the deterministic design is, as before, rather bad in the stochastic en-
vironment (with errors up to nearly 2700%), while Comparisons B and C are getting
somewhat worse, in particular when the fixed setup cost is low and the capacity cost is
high. This is natural since in that case the cost of opening one edge with a given capacity
costs basically the same as opening two edges with the same total capacity. Hence, the
structures enforced upon the solutions in Comparisons B and C become more costly. We
see errors up to nearly 700% in the case of Comparison B, and up to 11% in the case of
Comparison C—still quite good. The results seems little dependent on correlations. The
details of the results are presented in the Appendix.

3.4 Structural differences

So far we have discussed different ways to bring the deterministic design into the stochas-
tic environment to understand to what extent the deterministic design is useful in creating
good solutions. Now we shall pass to a more direct comparison of the the structures of
the stochastic and deterministic designs, instead of just looking at their expected costs.

The optimal structures in single-commodity network design seem to be more compli-
cated to understand than those of the corresponding multi-commodity cases. The main
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Figure 5: Results of the Comparison tests for different distributions of setup costs. Ratios
between the expected objective value, obtained from importing the deterministic solution
into the stochastic settings, and the expected objective function value for the stochastic
solution.

reason is that in the multi-commodity case the commodities only share edge capacities
whereas in the single-commodity case there is also the phenomenon of flow cancellation.
So while it is easier to solve single-commodity flow problems (as standard network flow
theory can be applied directly), the optimal design is harder to characterize.

As already pointed out, the stochastic designs tend to have more capacity and more
edges than the deterministic counterparts. For the cases of uncorrelated and mixed
correlated demands, the extra edges and capacities are mainly there to cater for capacity
sharing. This results in loop formations, leave connections, and connections between
different clusters of nodes. The trees with few short arms, typical of the deterministic
skeletons, will generally not allow sharing based on some demands being large when
others are small simply because there are few demand nodes in each tree, and there is no
particular reason why demand nodes with negatively correlated demand end up in the
same tree.

In the cases of positive correlations, the edges and capacities are mostly there to
cater for the high-demand scenarios. Two phenomena occur: The high demand scenarios
(which now have high probabilities attached to them) need much more capacity than
the deterministic (expected value) case, and the limited capacity of the individual source
nodes makes it necessary to connect them so that all supply is used well. These con-
nections are simply to few (if at all) in the deterministic designs. In other words, even
though the demands are positively correlated, there is some variation, and connections
are needed to utilize overall supply.

Let us now turn to a more direct study of the stochastic designs rather than primarily
comparing stochastic and deterministic designs to understand the qualities of the deter-
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Figure 6: Comparison between deterministic and stochastic structure. Deterministic
(top left), stochastic with high variance (top right) and low variance (bottom) solutions
of the NY 02 test case showing that the stochastic solution structures are similar to the
deterministic ones in the low variation demand case, but rather different in the case of
high variation.

ministic ones. We know that good designs stem from flexibility in the routing of flow,
and the goal is then to understand how this is achieved. We shall do this by studying the
problems from 3.1. Some of the results are “obvious” meaning that good robust designs
are, at least structurally, not so difficult to understand. We consider this a strength.

3.4.1 Similarity in designs

The deterministic skeletons are trees (not spanning trees) with arms emerging from the
different source nodes. If the supply capacities are tight, the trees might be connected
to each other so that the supply nodes can help each other satisfy demand in “their”
demand nodes. These skeletons are contained within the stochastic designs under cer-
tain conditions. Remember that the trees from the deterministic designs represent the
cheapest way to connect to the demand nodes in the average case. Hence, if the ca-
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pacities of the source nodes are high enough to handle high demand scenarios, then we
often see that the deterministic skeletons are part of (or even the same as) the stochastic
skeletons. 6 compares the deterministic design with two stochastic designs, one with
high demand variation and one with low. (Solid edges (blue) are installed with the given
capacities, light (grey) edges are not installed. The dark (yellow) square nodes are the
supply nodes, the shaded (green) circular nodes are demand nodes, and the white circular
ones transshipment nodes. This color scheme is followed in all subsequent figures.) The
low variation case has the same skeleton as the deterministic design. This is because with
lower variation the source nodes still have sufficient capacities to fulfill the demand in
most scenarios (there is some unsatisfied demand). The higher variation case results in
high demand scenarios, where some source nodes may have insufficient capacity to fulfill
the demands of “their” demand nodes and hence we see a re-alignment of the distribution
patterns to fulfill more demand than would be possible from the deterministic skeleton.

Also when setup costs are substantially lower than flow costs, the deterministic skele-
tons are contained in the stochastic skeletons. This is because the deterministic design
represents the cheapest way to transport the bulk of the demand. Longer routes will
result in substantially higher flow costs. On top of the deterministic solution, new edges
needed to facilitate high demand scenarios and coordination of source nodes are cheap
to add. In 7 we see that both the mixed correlated and uncorrelated cases contain the
deterministic skeleton, and add a few extra edges to meet higher demands. For example,
the demand node 15 connects to source node 2 (for uncorrelated case) and node 15 & 3
get connected to source node 12 (for mixed correlated case ) in the stochastic solution.
This helps satisfying the higher demands. But the deterministic skeleton is fully used in
the stochastic designs.

When source nodes are far from the demand nodes, we also find the deterministic
skeletons, more or less fully, within the stochastic ones. Consider 8. In the first column
we see a case where the deterministic skeleton is almost kept. This is because source
nodes 2 and 12 are in the corners of the graph and both are far from demand nodes 22
and 20. Hence, the paths needed to reach those demand nodes are long. In that case
it is usually better to keep these cheapest connections even in the stochastic case. But
even so, the mixed correlated case is different. This is caused by another feature of the
stochastic solution which we shall discuss later in the section on negative correlations.
For the case in the second column, the skeleton is not retained, as here the source nodes
are very near to the demand nodes and hence have the possibilities to utilize variation
of demand and re-align the design.

3.4.2 Consolidated paths

In the stochastic design we sometimes observe that there are paths which act like highways
carrying supply and demand for many nodes. This is more evident in the cases where the
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setup costs are very high, especially when variable setup costs are proportionally very
high. This can be explained by the fact that as the setup costs are high, it becomes
beneficial to consolidate demand of different nodes in order to reduce the total installed
capacity. In 9, we show two cases where variable setup costs are comparatively much
higher than other costs. The first set of figures shows a consolidated path 22–21–20–
15–14–13 efficiently connecting nodes on the path and one edge away. The path is also
part of a loop (see later). This is better according to the out-of-sample evaluation, even
though most individual demand nodes now have longer paths to the source nodes. Here
it is possible, for example, to use free capacity available on the path to reach demand
nodes 16, 18 and 8 from source node 22.

In the second set of figures we see that demand nodes 20 and 16 are connected with
source node 12 via transshipment node 1 instead of the shorter (in terms of fixed and
variable setup costs) path via node 10, as in the deterministic design. If we look at the
stochastic design in more detail, we observe that edge 1–13 has 200 units of capacity
installed, while 1–7 and 7–20 have 388 units of capacity. These add to 588 units of
capacity usable for source node 12. But only 421 units of capacity are installed on edge
12–1. This makes sense since by consolidating the flow from source node 12 to nodes
20 and 16 with the flow to node 13 (and onward), the capacity into node 1 can be set
167 units lower than the outgoing capacity (this statement makes sense even though the
edges are not directed). Thus, consolidating flow saves costs in total even though the
paths used may be longer and costlier than in the deterministic case.

But this feature may not be attractive when the setup costs becomes low i.e., when
flow costs matter much for the optimal design. Then sharing does not create sufficient
savings as flow costs more than offset the savings in setup costs.

3.4.3 Loops

The stochastic design sometimes has loops. That will never happen in the deterministic
case as long as there are no effective upper bounds on edge capacities. Two types of
loops are seen, one where the source node(s) are part of them and the other is where
the loops are formed with nodes excluding source nodes. In 10 we see both types of
loops. In the second chart of the figure, we see that loops 3–5–4–2–3, 11–12–7–9–11, and
11–16–14–17–7–9–11 are formed having a source node in them. The third chart shows a
loop 16–13–15–18–14–16 without a source node in it.

The first kind of loop takes advantage of free capacity available in one of the arms
of the deterministic skeleton to fulfill demand of some demand node lying on a different
arm. An extra edge, connecting the two arms, makes a loop and helps satisfy demand.
For the second chart of the figure, demand node 4 has a maximal demand of 1803 in one
of the scenarios, whereas the path serving it (edges connecting 3, 2, and 4) has 1421 units
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of capacity. Here, the free capacity available on the path 3–5–12 is utilized by building
an extra edge 5–4 to form a loop to serve most of this higher demands of node 4. In
the third chart of the figure, we see a loop created by adding an extra edge 16–14 to the
deterministic solution. Here the loop is formed to fulfill higher demand scenarios of node
14. This loop provides more supply to demand node 14 than the capacity we see in path
11–16–14, as extra capacity of the path 16–13–15 is utilized to serve node 14.

And if we look back at the second network in 7, we see that node 28, a leaf in the
deterministic design, gets connected to the path 12–13–29–25 by an edge 28–29 to form
a loop. This is because it is cheaper to add the extra edge 28–29 with some capacity
than increase capacities all the way on the paths 12–6–23–17–28 and 12–13–29 to satisfy
demand of nodes 28 and 29 respectively. This edge is valuable as it can be use in both
directions, to supplement demand needs of nodes 28 and 29.

3.4.4 Negative correlations

A very basic hedging principle is seen when source and sink nodes are linked. This
principle does not show in the deterministic solutions. A source node is typically linked
with demand nodes with negatively correlated demands, so that variation in demand can
be utilized. In 11, we see that in the mixed correlation case demand node 16 is connected
to source node 10 which is also supplying demand node 11. This is because demand nodes
11 and 16 have negatively correlated demands. In the other cases, demand node 16 is
served by source node 15. Similarly, we observe that positively correlated demand nodes
are disconnected. Refer to the bottom-right chart of 9 of Nobel 01 mixed correlated case
where positively correlated demand nodes 20 and 24 are no longer connected the way
they were in the uncorrelated case.

4 Conclusion

The purpose of this paper has been to understand what constitutes a good robust design
for a single-commodity stochastic network design problem with multiple sources and
sinks. This paper discusses only randomness in demand.

We observe that the deterministic solution can be very bad with respect to expected
behavior. But still we see certain structural patterns re-emerging in the stochastic solu-
tions. First we observe that the deterministic solution behaves worse in the stochastic
environment as the number of source nodes increases. With many source node, the de-
terministic solution, which is a forest, typically of many trees, decreases the ability to
share capacity in a stochastic environment. Also, as correlations are of no concern in a
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Figure 11: Pairing of negatively correlated demand nodes. Deterministic (top left) and
three correlated cases of stochastic solutions–zero (top right), mixed (bottom left) and
positive (bottom right)–of NY 04 test case showing that in the stochastic solution nega-
tively correlated demand nodes 11 and 16 get connected to same source node.

deterministic setting, the assignment of demand nodes to source nodes may be rather far
off what is optimal.

If the variation in demand is moderate or low, the deterministic skeleton (being a
forest) can be used to carry a major portion of the flow, needing very few additional
edges in the stochastic environment. As the variation increases, the source nodes will
have insufficient capacity to fulfill demand using the deterministic skeleton (irrespective
of installed capacities), and hence will need more edges. Therefore, a re-alignment of
distribution patterns will emerge. However, when the fixed and variable setup costs are
low compared to the flow costs, the deterministic skeleton is contained in the stochastic
one, with only few extra edges added, even in cases of higher variation in demand.

For uncorrelated and positively correlated demands existing far from the source nodes,
we keep the portion of the deterministic skeleton that contains paths leading up to clusters
of demand nodes. However, within a cluster of demand nodes we observe changes from
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that of the deterministic solution, in order to benefit from demand variations.

With high variable setup cost, we see consolidation of capacities in paths reaching
downstream demand nodes. These paths will emerge more so between demand nodes
which are negatively correlated. However, with increasing proportion of flow cost in
deciding the optimal solution, this consolidation will be weaker.

Networks with all types of possible correlations among demands show loops in the
stochastic solution. The loop formation gets stronger with increasing variable setup costs.

Source nodes choose demands to serve according to the possibility for hedging among
them. Hence, everything else being equal, negatively correlated demand nodes are most
likely to be served from the same source node. This also results in the breaking or weak-
ening of links between positively correlated demand nodes relative to the deterministic
solution, which has no such concerns.

In total, the main observations of optimal designs are therefore as follows. Note
that the observations are connected, and to some extent see the same phenomena from
different perspectives.

• Especially with high setup costs, the deterministic design tends to be a forest of
small trees. This is particularly bad in a stochastic environment. The good robust
designs will contain many more connections than the deterministic counterpart,
and the design will contain loops.

• From a demand node perspective: When negative correlations in demand are
present, the design should be such that nodes with negatively correlated demands
share paths to one or more source nodes. If there are no negative correlations, it is
still important to utilize variation in demand to reduce investments by looking for
as small (albeit positive) correlations as possible.

• From a source node perspective: If supply capacity is limited, a source node needs to
be connected to several demand nodes, preferably nodes with as small correlations
(negative if feasible) in demand as possible, so as to be able to use its supply
capacity well in all scenarios.

• Especially with high setups costs and source and demand nodes concentrated in
different areas, it is good to build a high capacity path – a highway – from the
area of the source nodes to the area of the demand nodes. The source and demand
nodes are then connected to the highway using the principles of the previous two
items.

• A single loop may be seen as two paths plus a crossover edge (or path). The
crossover must be placed such that demand along either the two upstream or the
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two downstream sub-paths are negatively correlated. If no negative correlations are
possible, the same correlations should be as small as possible. This will reduce the
overall investments. The same logic applies if the crossover edge (path) connects
two disjoint paths.

Future work. We plan to follow up this work by studying the case of random arc
capacities.
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A Results of the numerical tests

This appendix provides detailed results from the tests in 3. Table 2 provides the numbers
used to generate 3, in 3.3. The analysis in 3.4 is also based on these computations, but
the individual cases cannot be reproduced from these tables. Tables 3, 4, and 5 present
the full computational results for 1, while those of 5 are found in 6, 7, and 8.

Table 2: The numbers corresponding to 3

Fixed setup cost Variable setup cost
A B C A B C

Minimum value 0.54 0.54 0.91 0.56 0.76 0.96
Geometric mean 0.74 0.74 1.00 0.62 0.95 1.03
Maximum value 0.93 0.93 1.14 0.68 1.09 1.12
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Table 3: Results of Comparison A corresponding to 1, split by correlation structure.

Deterministic solution Stochastic solution
Test Name ρ = 0 ρ > 0 ρ ≷ 0 ρ = 0 ρ > 0 ρ ≷ 0
Germany 01 17165 18525 17504 13410 14838 16038
Germany 02 18077 18749 18047 13774 15728 17210
Germany 04 17372 18048 17711 12182 13569 14822

Molde 01 89318 89814 89844 6968 21110 6794
Molde 02 90920 90791 90831 7470 21767 7032
Molde 04 90746 90618 90657 6987 21248 6769

Montreal r06.1 01 157972 157974 157969 112619 111764 113638
Montreal r06.1 02 147886 147892 147884 102292 104391 102577
Montreal r10.1 01 116165 117029 115614 103571 105251 102774
Montreal r10.1 02 80913 81512 81325 59662 61636 59078
Montreal r10.1 03 92081 92666 92496 71747 73474 71545

Nobel-EU 01 1209410 1332870 1237110 128951 192455 123499
Nobel-EU 02 1269300 1339410 1243730 110903 172271 108688
Nobel-EU 03 1262480 1332590 1236910 100219 163244 97482

NY 01 24860500 26023300 26012800 1851100 3366850 1786500
NY 02 25761800 26256300 26239100 1726640 3423220 1545050
NY 04 24693000 25856600 25846100 1629720 3268480 1553470
US 01 414391 414559 414378 371013 388984 360429
US 02 348460 353104 345384 314188 333334 303797
US 04 394493 400384 390647 354348 373575 345213
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Table 4: Results of Comparison B corresponding to 1, split by correlation structure.

Deterministic solution Stochastic solution
Test Name ρ = 0 ρ > 0 ρ ≷ 0 ρ = 0 ρ > 0 ρ ≷ 0
Germany 01 13772 16130 13552 13388 14812 13077
Germany 02 14246 15922 13565 13732 15710 13190
Germany 04 12448 13566 12645 12139 13556 12213

Molde 01 28210 63165 17824 6449 20898 6156
Molde 02 28727 63623 18177 7046 21340 6574
Molde 04 28643 63527 18102 6595 21088 6278

Montreal r06.1 01 118847 121655 116083 101285 105398 95922
Montreal r06.1 02 108009 110727 105391 87818 93341 85182
Montreal r10.1 01 104465 108639 103366 103536 105220 102748
Montreal r10.1 02 62477 66216 60969 59605 61577 59002
Montreal r10.1 03 74936 78331 73921 71676 73418 71505

Nobel-EU 01 163710 517543 117573 122131 189166 116968
Nobel-EU 02 204476 305544 130275 105638 168372 103345
Nobel-EU 03 300252 639796 143485 96720 160822 94153

NY 01 5813210 10931900 5899210 1675610 3281980 1700720
NY 02 3850040 8315310 2995700 1629340 3225060 1501700
NY 04 5586750 10731400 5691810 1516610 3128730 1483130
US 01 379657 389969 373204 369994 388887 360025
US 02 318592 334225 308236 313412 333110 303356
US 04 358255 373970 349697 353351 373159 344944
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Table 5: Results of Comparison C corresponding to 1, split by correlation structure.

Deterministic solution Stochastic solution
Test Name ρ = 0 ρ > 0 ρ ≷ 0 ρ = 0 ρ > 0 ρ ≷ 0
Germany 01 13588 15807 13180 13406 14836 13101
Germany 02 13752 16053 13172 13751 15717 13186
Germany 04 12114 13684 11968 12170 13563 11992

Molde 01 6582 21104 6175 6520 20911 6216
Molde 02 7168 21616 6667 7034 21352 6607
Molde 04 6908 21491 6380 6606 21076 6321

Montreal r06.1 01 97268 102469 94633 97280 102753 94745
Montreal r06.1 02 86172 91202 84293 86232 91237 84299
Montreal r10.1 01 107376 109207 106848 103546 105228 102765
Montreal r10.1 02 64556 66634 64130 59659 61593 59018
Montreal r10.1 03 71833 73624 71604 71718 73431 71534

Nobel-EU 01 124432 191719 117573 125304 190475 116983
Nobel-EU 02 106971 170755 103847 105794 169633 103365
Nobel-EU 03 101393 165388 98930 97405 162022 94310

NY 01 1738870 3326650 1761180 1676470 3286030 1705290
NY 02 1632510 3246760 1534730 1629740 3225230 1501700
NY 04 1524290 3143840 1472440 1521280 3128920 1483130
US 01 377252 401183 366298 370814 388883 360311
US 02 317048 341646 306368 313987 333100 303691
US 04 353590 373386 345223 353987 373186 345195

Table 6: The ratios corresponding to 5 split by correlation structure.

Comparison A Comparison B Comparison C
Test Name gk/Ck ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0
Germany 01 0.001 1.32 1.29 1.36 1.04 1.01 1.08 1.01 1.06 1.01

0.05 1.27 1.27 1.33 1.02 1.09 1.03 1.01 1.07 1.01
0.25 1.30 1.25 1.33 1.05 1.06 1.12 1.02 1.03 1.01
0.5 1.33 1.29 1.35 1.07 1.07 1.15 1.00 1.00 1.00

0.999 1.40 1.35 1.39 1.03 1.01 1.00 1.00 1.00 1.00
Germany 02 0.001 1.37 1.23 1.42 1.07 1.02 1.09 1.00 1.03 1.00

0.05 1.32 1.20 1.36 1.03 1.01 1.03 1.00 1.03 1.00
0.25 1.31 1.24 1.38 1.01 1.04 1.05 1.00 1.01 1.00
0.5 1.31 1.26 1.34 1.03 1.06 1.09 1.01 1.03 1.01

0.999 1.37 1.33 1.37 1.03 1.01 1.00 1.00 1.00 1.00
Germany 04 0.001 1.47 1.36 1.49 1.05 1.01 1.07 1.00 1.01 1.00

0.05 1.39 1.34 1.45 1.05 1.11 1.11 1.00 1.02 1.00
0.25 1.39 1.34 1.43 1.04 1.10 1.07 1.01 1.03 1.01
0.5 1.40 1.35 1.44 1.02 1.09 1.05 1.02 1.04 1.03

0.999 1.45 1.38 1.45 1.03 1.01 1.00 1.00 1.00 1.00
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Table 7: Ratios corresponding to 5 split by correlation structure, cont. The asterisk (*)
denotes cases where the solver did not finished within 15 days.

Comparison A Comparison B Comparison C
Test Name gk/Ck ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0

Molde 01 0.001 16.10 4.57 16.11 2.19 2.01 3.71 1.04 1.01 1.01
0.05 13.69 4.41 14.38 2.53 1.11 1.79 1.02 1.01 1.01
0.25 12.04 4.25 12.06 4.16 1.40 3.00 1.01 1.00 1.00
0.5 10.45 4.04 10.55 3.66 1.35 2.67 1.01 1.00 1.00

0.999 8.52 3.72 9.14 3.05 1.27 2.37 1.00 1.00 1.02
Molde 02 0.001 14.96 4.50 15.10 3.16 3.18 4.77 1.05 1.02 1.02

0.05 13.67 4.40 14.03 2.84 3.10 4.44 1.03 1.02 1.02
0.25 11.49 4.19 11.90 2.45 2.96 3.82 1.03 1.02 1.03
0.5 9.22 3.91 9.64 1.93 1.33 1.86 1.02 1.00 1.04

0.999 8.02 * * 3.02 * * 1.00 * *
Molde 04 0.001 15.92 4.55 15.87 3.27 3.20 5.01 1.08 1.03 1.02

0.05 14.60 4.46 14.57 3.03 3.14 4.62 1.07 1.03 1.03
0.25 11.84 4.20 11.93 4.13 1.39 3.01 1.02 1.00 1.04
0.5 10.15 3.99 10.44 3.59 1.34 2.68 1.02 1.00 1.05

0.999 8.17 3.68 8.05 2.30 1.33 2.41 1.03 1.01 1.04
Montreal r06.1 01 0.001 1.40 1.36 1.43 1.05 1.05 1.02 1.00 1.00 1.00

0.05 1.39 1.36 1.43 1.04 1.04 1.01 1.00 1.00 1.00
0.25 1.39 1.35 1.42 1.03 1.03 1.01 1.00 1.00 1.00
0.5 1.38 1.34 1.42 1.02 1.03 1.00 1.00 1.00 1.00

0.999 1.38 1.34 1.44 1.01 1.02 1.00 1.00 1.00 1.00
Montreal r06.1 02 0.001 1.50 1.46 1.53 1.06 1.06 1.02 1.00 1.00 1.00

0.05 1.50 1.45 1.53 1.05 1.06 1.02 1.00 1.00 1.00
0.25 1.49 1.45 1.52 1.04 1.05 1.01 1.00 1.00 1.00
0.5 1.48 1.44 1.52 1.03 1.04 1.00 1.00 1.00 1.00

0.999 1.48 1.43 1.53 1.02 1.03 1.00 1.00 1.00 1.00
Montreal r10.1 01 0.001 1.14 1.13 1.14 1.03 1.05 1.02 1.00 1.00 1.00

0.05 1.13 1.12 1.13 1.02 1.03 1.01 1.00 1.00 1.00
0.25 1.13 1.12 1.13 1.02 1.02 1.00 1.00 1.00 1.00
0.5 1.13 1.12 1.14 1.02 1.02 1.00 1.00 1.01 1.00

0.999 1.15 1.14 1.15 1.01 1.01 1.00 1.00 1.00 1.00
Montreal r10.1 02 0.001 1.35 1.32 1.36 1.08 1.10 1.06 1.00 1.00 1.00

0.05 1.34 1.31 1.36 1.03 1.03 1.02 1.00 1.00 1.00
0.25 1.33 1.30 1.35 1.02 1.02 1.01 1.00 1.00 1.00
0.5 1.33 1.30 1.35 1.01 1.02 1.00 1.00 1.00 1.00

0.999 1.34 1.31 1.36 1.00 1.01 1.00 1.00 1.00 1.00
Montreal r10.1 03 0.001 1.33 1.30 1.33 1.02 1.02 1.01 1.00 1.00 1.00

0.05 1.33 1.30 1.33 1.03 1.02 1.03 1.00 1.00 1.00
0.25 1.32 1.29 1.32 1.03 1.03 1.03 1.00 1.00 1.00
0.5 1.31 1.29 1.31 1.02 1.03 1.02 1.00 1.00 1.00

0.999 1.31 1.29 1.31 1.02 1.02 1.01 1.00 1.00 1.00
Nobel-EU 01 0.001 12.50 9.02 14.59 1.21 1.51 1.36 1.02 1.01 1.01

0.05 11.24 8.58 13.58 1.16 1.26 1.11 1.02 1.01 1.00
0.25 9.89 7.88 11.04 1.35 3.22 1.00 1.02 1.02 1.00
0.5 8.58 7.43 10.12 4.28 6.81 3.00 1.03 1.02 1.07

0.999 7.61 6.81 9.11 3.80 6.23 2.74 1.01 1.00 1.11
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Table 8: The remaining ratios corresponding to 5 split by correlation structure

Comparison A Comparison B Comparison C
Test Name gk/Ck ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0 ρ=0 ρ>0 ρ≷0
Nobel-EU 02 0.001 16.17 10.45 16.01 3.70 4.95 4.99 1.02 1.01 1.01

0.05 14.74 10.03 14.85 3.06 4.20 1.50 1.01 1.00 1.00
0.25 12.52 9.13 12.87 2.55 2.40 1.39 1.02 1.01 1.00
0.5 10.83 8.33 11.58 2.24 2.21 1.30 1.00 1.00 1.00

0.999 9.34 7.51 9.89 1.98 2.03 1.18 1.00 1.00 1.00
Nobel-EU 03 0.001 16.68 10.78 16.95 4.41 5.59 6.19 1.01 1.01 1.01

0.05 15.68 10.41 15.96 3.19 4.32 1.56 1.00 1.00 1.02
0.25 13.35 9.52 13.90 2.66 2.46 1.43 1.04 1.02 1.02
0.5 11.65 8.74 12.28 2.35 2.28 1.31 1.03 1.02 1.01

0.999 9.82 7.72 10.27 2.04 2.06 1.17 1.00 1.01 1.01
NY 01 0.001 22.52 8.73 23.11 5.17 3.65 5.24 1.03 1.01 1.01

0.05 20.55 8.45 21.39 4.74 3.54 4.86 1.03 1.01 1.01
0.25 17.71 7.97 17.91 4.13 3.36 4.13 1.03 1.02 1.03
0.5 14.97 7.46 16.11 6.02 3.70 7.95 1.00 1.00 1.01

0.999 12.58 6.77 14.13 5.22 3.41 7.08 1.02 1.01 1.02
NY 02 0.001 25.80 9.14 25.09 4.73 4.46 1.67 1.05 1.02 1.00

0.05 23.63 8.88 23.11 6.96 4.55 2.98 1.06 1.02 1.01
0.25 18.79 8.21 20.10 4.81 2.70 3.04 1.03 1.01 1.01
0.5 16.44 7.66 17.71 2.63 2.66 2.19 1.01 1.01 1.03

0.999 14.12 7.02 15.10 5.53 3.48 7.47 1.01 1.00 1.02
NY 04 0.001 27.91 9.34 26.74 5.95 3.81 5.66 1.02 1.01 1.03

0.05 25.38 9.07 24.78 5.43 3.71 5.26 1.01 1.00 1.02
0.25 20.58 8.38 20.73 4.55 3.50 4.69 1.03 1.01 1.05
0.5 17.75 7.82 18.24 3.98 3.29 4.18 1.00 1.00 1.03

0.999 14.73 7.10 15.61 3.55 3.04 3.69 1.00 1.00 1.00
US 01 0.001 1.12 1.06 1.15 1.03 1.00 1.03 1.02 1.03 1.02

0.05 1.09 1.06 1.13 1.01 1.00 1.02 1.00 1.00 1.00
0.25 1.08 1.06 1.11 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.09 1.07 1.12 1.00 1.00 1.00 1.00 1.00 1.00

0.999 1.15 1.11 1.16 1.03 1.02 1.07 1.03 1.02 1.07
US 02 0.001 1.11 1.05 1.14 1.02 1.00 1.01 1.01 1.02 1.01

0.05 1.11 1.07 1.13 1.02 1.01 1.01 1.01 1.03 1.01
0.25 1.10 1.07 1.13 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.11 1.07 1.13 1.00 1.00 1.00 1.00 1.00 1.00

0.999 1.14 1.10 1.17 1.00 1.00 1.00 1.00 1.00 1.00
US 04 0.001 1.11 1.07 1.13 1.02 1.00 1.01 1.00 1.00 1.00

0.05 1.08 1.07 1.11 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1.09 1.07 1.12 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.12 1.08 1.15 1.02 1.00 1.04 1.02 1.00 1.02

0.999 1.16 1.13 1.18 1.00 1.00 1.00 1.00 1.00 1.00
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