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1. Introduction

The purpose of this paper is to describe an adaptive large neighborhood
search heuristic (ALNS) for the Cumulative Capacitated Vehicle Routing
Problem (CCVRP). This problem is a variation of the classical Capacitated
Vehicle Routing Problem (CVRP) in which the objective is the minimization
of the sum of arrival times at the customers instead of the total routing cost.
The CCVRP is an extension of the Delivery Man Problem (DMP) [1, 2] to
the case of several vehicles. The DMP has applications in job scheduling
problems on a single machine [3, 4]. All applications of the DMP extend
naturally to the CCVRP. The CCVRP with time windows can be used to
model some school bus routing problems [5, 6].

An important application of the CCVRP arises in the procurement of
humanitarian aid in the context of natural disasters, such as tsunamis or
earthquakes, where it is crucial to reduce suffering and life losses [7, 8, 9, 10].
Campbell et al. [8] show that routes created by optimizing with respect
to the CVRP objective can serve communities significantly later than those
generated with a CCVRP objective and are not completely fair for a humani-
tarian supply chain. Besides, optimal solutions for the traditional CVRP can
be significantly different from those observed in the context of the delivery
of humanitarian aid [8, 9].

Ngueveu et al. [9] have recently studied the CCVRP with a homogeneous
fleet and a single depot. These authors have proposed lower bounds and two
memetic algorithms (MA) which were applied to some instances with up to
199 vertices. Nolz at al. [10] have presented a bi-objective metaheuristic
for a problem in which vehicle routes must be planned to deliver drinking
water in a post-disaster situation. More precisely, the authors consider the
joint minimization of the sum of distances between population centers and
their nearest facility, and of the latest arrival time of the supply vehicle at
a population center. They have applied their algorithm to instances with
up to 41 vertices, based on data from Manab́ı, Ecuador. Campbell et al.
[8] have considered the Traveling Salesman Problem and the CVRP with
two alternative objective functions: one that minimizes the maximal arrival
time, and one that minimizes the average (or total) arrival time. They have
derived lower bounds, as well as some insertion and local search heuristics.
Tests were performed on 50 instances with 30 to 79 customers proposed by
Augerat et al. [11], where customers are distributed uniformly or grouped
into clusters, and on 11 instances proposed by Golden et al. [12], with at
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most 100 customers, which are based on special structures such as concentric
circles, diamonds, squares and stars.

The CCVRP is NP-hard [9] and difficult to solve to optimality for even
moderate instance sizes. There is therefore a need to develop efficient heuris-
tics for this problem. To our knowledge, the only available heuristics for the
CCVRP are the MAs of Ngueveu et al. [9]. Our aim is to develop an alter-
native adaptive large neighborhood search heuristic (ALNS) for the CCVRP
and to compare it to the two heuristics of Ngueveu et al.

The remainder of this paper is organized as follows. Section 2 recalls
the mathematical formulation, the memetic heuristics and the lower bounds
proposed by Ngueveu et al. [9]. Our ALNS heuristic is described in Section
3, followed by computational results in Section 4. Conclusions are presented
in Section 5.

2. Mathematical model, lower bounds and memetic algorithm

This section presents a brief overview of the paper presented by Ngueveu
et al. [9]. We first recall their mathematical programming formulation in
order to state the CCVRP in a precise fashion. We then describe the lower
bounds and the MA proposed by these authors.

2.1. Mathematical model and lower bounds

The CCVRP is defined on an undirected graph G = (V,E) where V =
{0, 1, ..., n, n+ 1} is the vertex set, vertices 0 and n + 1 are two copies
of the depot, and V ′ = V \ {0, n+ 1} is the set of customers. The set
E {(i, j) : i, j ∈ V, i < j} is the edge set. A travel time cij is associated with
each edge (i, j) ∈ E. It is assumed that travel times are symmetric and
satisfy the triangle inequality. Each customer i ∈ V ′ has a demand qi. Let
R be a set of identical vehicles of capacity Q. The aim of the CCVRP is
to define a set of vehicle routes starting and ending at the depot, visiting
each customer once in exactly one route, having a demand not exceeding the
vehicle capacity, and minimizing the sum of arrival times at the customers.
Let tki be the arrival time of vehicle k at customer i and let xk

ij be a binary
variable equal to 1 if and only if vehicle k traverses edge (i, j) from i to j.
The CCVRP formulation is then:

(CCV RP ) minimize
∑

k∈R

∑

i∈V ′

tki (1)
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subject to

∑

i∈V

xk
ij =

∑

i∈V

xk
ji j ∈ V ′, k ∈ R (2)

∑

k∈R

∑

j∈V

xk
ij = 1 i ∈ V ′ (3)

∑

i∈V ′

∑

j∈V

qix
k
ij ≤ Q k ∈ R (4)

∑

j∈V

xk
0j = 1 k ∈ R (5)

∑

i∈V

xk
i,n+1 = 1 k ∈ R (6)

(tki + cij)x
k
ij − tkj ≤ (1− xk

ij)M i ∈ V \ {n+ 1} , j ∈ V, k ∈ R (7)

tki ≥ 0 i ∈ V, k ∈ R (8)

xk
ij ∈ {0, 1} i ∈ V, j ∈ V, k ∈ R. (9)

The objective function (1) minimizes the sum of arrival times at the
customers. Constraints (2) are flow conservation equations. Constraints (3)
state that each customer i is served once by only one vehicle. Constraints
(4) ensure that the total demand carried by vehicle k does not exceed its
capacity. Constraints (5) and (6) ensure that each route starts and ends at
the depot. Constraints (7) ensure that if customer j is served after customer
i by vehicle k, then tkj must be greater than or equal to tki , plus the travel
time cij, and M is a sufficiently large positive constant. Finally, constraints
(8) and (9) impose restrictions on the decision variables.

Ngueveu et al. [9] have shown that an optimal solution for the CCVRP
uses exactly min {n, |R|} vehicles. When |R| ≥ n, the optimal solution is a
set of back and forth routes between the depot and each customer, which
yields the lowest objective function value attainable for any value of |R|.

Thus a trivial lower bound is given by:

LB1 =
∑

j∈V ′

c0j. (10)

A second lower bound applicable when |R| < n is computed by using the
|R| shortest edges incident to the depot and the remaining n − |R| shortest
edges. Let c′e be the cost of the eth shortest edge incident to the depot, and
let c′′e be the cost of the eth edge between two customers. This bound can
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be calculated as:

LB2 =
|R|
∑

e=1

(⌈

|R|+n−e−(n mod |R|)
|R|

⌉)

c′e

+
n−|R|
∑

e=1

(⌈

n−e−(n mod |R|)
|R|

⌉)

c′′e.

(11)

2.2. Memetic algorithm

The MA proposed by Ngueveu et al. [9] is based on the hybrid genetic
algorithm of Prins [13]. It defines a chromosome as a permutation of the
n customers, without trip delimiters. The fitness of a chromosome is the
total cost corresponding to the best extractable solution from it, which is
obtained by applying an optimal splitting procedure based on the solution
of a shortest path problem.

The population of chromosomes is initialized as follows. The first indi-
vidual is a solution obtained by means of a nearest neighbor heuristic, while
the second is obtained after applying local search on it. These solutions
are transformed into chromosomes by concatenating their routes, and they
are inserted into the population. The remaining chromosomes are random
permutations of the customers.

For the crossover operation, two chromosomes are chosen randomly and
the order crossover OX is applied to them to generate two children, as in
Prins [13]. Ngueveu et al. [9] also consider children obtained by applying
OX with one or both parents reversed. Thus these authors work with two
MA implementations: MA1 where OX is used with zero, one or two par-
ents reversed, and MA2 which only applies the traditional OX. Unlike what
happens in the traditional CVRP, a route for the CCVRP has a different
cost when it is reversed. It is therefore important to check whether a better
solution can be obtained by reversing the parent solutions.

Local search is applied over the solutions obtained by the splitting pro-
cedure. It uses three moves for one or two distinct routes: 2-opt, exchange
of two customers between two routes, and relocation of one customer to a
different route. In addition to these three classical moves, a check is made to
see whether the result of a move can be improved by reversing the candidate
routes.

As a rule, MA1 generates better solutions than MA2, but it is more time
consuming.
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3. Adaptive large neighborhood search heuristic

We now present our ALNS heuristic for the CCVRP. The ALNS heuristic
introduced by Ropke and Pisinger [14] extends the large neighborhood search
heuristic of Shaw [15] by allowing the use of multiple destroy and repair
methods within the same search process. It belongs to the class of very large
scale neighborhood search algorithms [16].

At each iteration, the heuristic destroys part of the current solution s and
repairs it in a different way to generate a new solution s′. This new solution is
accepted according to a criterion defined by a search paradigm applied at the
master level, such as an acceptance criterion from simulated annealing (SA)
by which if s′ is better than s, the search continues from s′, and otherwise
the search continues from s′ with some probability.

The destroy and repair procedures are selected according to an adaptive
probabilistic mechanism. At each iteration, the probability of selecting a
given procedure depends on how well it has performed in the past. Recently,
ALNS has provided good solutions for a wide variety of vehicle routing prob-
lems, see for instance [14, 16, 17, 18, 19, 20].

We now describe the main elements of our ALNS implementation for the
CCVRP. This heuristic contains some user-controlled parameters denoted by
lower case Greek letters, which will be calibrated in Section 4.

1. Large neighborhood: Given a solution s, at each iteration, γ cus-
tomers are removed from it and are then reinserted. This is accom-
plished by using one of several removal and insertion heuristics.
Because the number of vehicles is limited to |R|, it may not be possible
to reinsert some customers without violating the capacity constraint.
In this case, they are placed in a request bank U and the solution s′

is penalized accordingly. If a solution s′ with customers in the request
bank is accepted by the SA criterion, at the next insertion operation
the customers in the request bank are pooled with the newly removed
customers. The request bank is necessary to allow the heuristic to
consider intermediate infeasible solutions, thus improving the overall
search [14].

2. Adaptive search engine: The choice of the removal and insertion
heuristics is governed by a roulette-wheel mechanism in which each
heuristic is assigned a weight that depends on its past behavior. More
precisely, let wi be a measure of how well heuristic i has performed in
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past iterations. Then, given h heuristics with weights wi, heuristic j is

selected with probability wj/
h
∑

i=1
wi. The insertion heuristic is chosen

independently of the removal heuristic.

3. Adaptive weight adjustment: The search is divided into a num-
ber of segments of ϕ consecutive iterations. In the first segment, all
heuristics have the same weight i.e., wi = 1 for i = 1, . . . , h. After ϕ
iterations, the weights used to select removal and insertion heuristics
are updated according to the score obtained during the segment. The
scores show how well the removal and insertion heuristics have per-
formed in the last segment. The score of a heuristic is increased by a
parameter equal to σ1, σ2 or σ3 when it identifies new solutions. For
the CCVRP, if a pair of removal-insertion heuristic finds a new best
solution, their scores are increased by σ1 = 50, if it finds a solution
better than the current one, their scores are increased by σ2 = 20, and
if it finds a non-improving solution which is accepted, their scores are
increased by σ3 = 5. When a segment ends, new weights are calculated
using the scores obtained, and all scores are reset to zero for the next
segment. Let πi and oij be, respectively, the score of heuristic i, and the
number of times that heuristic i has been chosen in the last segment j.
Then,

wi,j+1 =

{

wij if oij = 0
(1− η)wij + ηπi/oij if oij 6= 0,

(12)

where η ∈ [0, 1] is parameter called the reaction factor. This parameter
controls how quickly the weight adjustment algorithm reacts to changes
in the effectiveness of the heuristics.

4. Penalized objective function: Solutions s with customers in the
request bank are considered during the search. This is done through
the use of the penalized objective function

v(s) =
∑

k∈R

∑

i∈V ′

tki + λ |U | , (13)

where λ is a user-defined penalty.

5. Acceptance and stopping criteria: The acceptance criterion from
SA is used, i.e., given a current solution s, a neighbor solution s′ is ac-
cepted if v(s′) < v(s), and it is accepted with probability e−(v(s′)−v(s))/T

otherwise, where T > 0 is the current temperature and v(s) is the pe-
nalized solution cost defined by (13). The temperature starts at Tstart
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and is multiplied by c at every iteration, where 0 < c < 1 is the cooling
rate. Ropke and Pisinger [14, 17] suggest that the best choice of Tstart

should be instance-dependent. In our experiments, given an instance
and an initial solution s, Tstart is set equal to v(s) with λ = 0, while
the cooling rate is fixed to 0.99975 independently of the instance.

6. Noise to the objective function: Ropke and Pisinger [14] indicate
that to avoid the myopic behavior of some insertion heuristics, it is
necessary to add a noise term to the objective function. For the CCVRP
this strategy did not improve the results, and therefore it was not used.
Instead of it, we used a basic greedy insertion heuristic that inserts the
customers respecting their order in the removed list. This heuristic is
explained in Section 3.1.8.

The number γ of customers removed from the current solution has a
significant impact on the ALNS performance. If only a small part of the
solution is destroyed, then the heuristic may not be able to efficiently explore
the search space because the effect of a large neighborhood is lost. If a very
large part of the solution is destroyed, then the heuristic almost degrades into
independent reoptimization threads. This can be time consuming or yield
poor quality solutions, depending on how the partial solution is repaired [16].

3.1. Removal (H−) and insertion (H+) heuristics

This section describes seven removal and three insertion heuristics. Where
applicable, let v(s) be the penalized solution cost defined by (13) for a solu-
tion s, and let D be a set of removed customers, consisting of customers in
the request bank U and of γ − |U | newly removed customers from s.

3.1.1. Shaw removal heuristic based on arrival times

Following Ropke and Pisinger [14] and Shaw [15], the general idea of the
Shaw removal heuristic is to remove customers that are somewhat similar, as
it is expected to be reasonably easy to reshuffle similar requests and thereby
create new, perhaps better solutions. The degree of similarity between two
customers i and j is computed through a relatedness measure R(i, j), where a
lower value corresponds to more similar customers. The first Shaw Removal
Heuristic (SRH1) is based on the absolute difference between the contribu-
tions of customers i and j to the objective function. More precisely,

RSHR1 (i, j) =
∣

∣

∣tki − tkj
∣

∣

∣ . (14)
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Algorithm 1: SRH1 - Shaw removal heuristic

1 Input: Solution s, request bank U , γ and δ ≥ 1
2 Let D be a set of removed customers

3 Let L be an ordered set of customers and Li the ith customer of L

4 D ← U

5 if U = {} then

6 r ← a customer selected at random from s

7 D ← {r}
8 Remove r from s

9 end

10 while |D| < γ do

11 r ← a customer selected at random from D

12 L ← customers of s

13 Sort L such that i < j ⇒ RSHR1(r, Li) < RSHR1(r, Lj)
14 Choose a random number y from [0, 1]

15 i ←
⌊

yδ |L|
⌋

16 D ← D ∪ {Li}
17 Remove Li from s

18 end

19 Return s and D

The relatedness measure is used to remove γ customers as in Shaw [15].
Given a solution s and a setD of removed customers, the algorithm randomly
selects a customer r from D, calculates the relatedness measure between it
and all customers not yet removed, and then chooses a new customer to be
inserted in D. The process is repeated while |D| < γ. See Algorithm 1
for details and note that the parameter δ ≥ 1 introduces randomness in the
selection of a customer.

3.1.2. Shaw removal heuristic based on distances

For this Shaw removal heuristic (SRH2), the similarity between two cus-
tomers i and j is measured by the relatedness measure RSHR2 (i, j) = dij,
where dij is the distance between i and j. Apart from the relatedness mea-
sure, this procedure is identical to Algorithm 1. Note that some precomputa-
tions can be performed to streamline SRH2. If a nearest customer matrix is
kept at hand, i.e., a matrix where each line (customer) i has in the columns
the index (customer) j in non-decreasing order of distance dij, lines 13, 14
and 16 of Algorithm 1 can be merged to avoid unnecessary computations.
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3.1.3. Random removal heuristic

This simple removal heuristic removes γ − |U | customers selected at ran-
dom from the current solution s, given that the customers of U are already
considered removed. This heuristic tends to generate a poor set of removed
customers, but it helps diversify the search.

3.1.4. Worst removal heuristic

This heuristic removes customers with a high cost in the current solu-
tion s and attempts to insert them in better positions. Let Cost−(i, s) =
v(s) − v−i(s) be the cost associated with customer i in current solution s,
where v−i(s) represents the solution cost without customer i into s. The
heuristic first sorts the customers according to Cost−(i, s), chooses one to
be removed, recalculates Cost−(i, s) for the remaining customers, and the
process is repeated. See Algorithm 2 for details and note that the removal is
also randomized, but controlled by a parameter ρ ≥ 1.

Algorithm 2: WRH - Worst removal heuristic

1 Input: Solution s, request bank U , γ and ρ ≥ 1
2 Let D be a set of removed customers

3 Let L be an ordered set of customers and Li the ith customer of L

4 D ← U

5 while |D| < γ do

6 L ← customers of s

7 Sort L such that i < j ⇒ Cost−(Li, s) < Cost−(Lj , s)
8 Choose a random number y from [0, 1]
9 i ← ⌊yρ |L|⌋

10 D ← D ∪ {Li}
11 Remove Li from s

12 end

13 Return s and D

3.1.5. Cluster removal

Some CCVRP instances contain clusters of customers. Suppose that a
vehicle serves customers from two geographically distant clusters. Then, it
is important to divide these customers into two sets, and remove one of
them entirely to be reinserted in a correct way. Given a route r, the cluster
removal heuristic (CRH) splits it into two groups of related customers based
on strongly connected components criteria. To define this groups, we use
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a modified version of Kruskal’s algorithm [21] for the Minimum Spanning
Tree Problem, as in Ropke and Pisinger [17]. Instead of running Kruskal’s
algorithm to the end, we stop it when two connected components are found.
These components approximate the clusters. One of these clusters is chosen
at random and its customers are removed. If it is necessary to remove more
customers, an already removed customer i is chosen at random and another
customer j from a different route more related to i is found. The route
of the customer j is then partitioned into two clusters and the process is
repeated until the desired number of removed customers has been reached.
See Algorithm 3 for details.

Algorithm 3: CRH - Cluster removal heuristic

1 Input: Solution s, request bank U and γ

2 Let D be a set of removed customers

3 D ← U

4 rprior ← −1
5 while |D| < γ do

6 if |D| = {} then

7 r ← a non-empty route selected at random from s

8 else

9 i ← a customer selected at random from D

10 r ← a non-empty route different of rprior that has the closest

customer to i

11 end

12 Apply the Kruskal’s algorithm on r to find Cluster1 and Cluster2
13 L ← customers from one cluster chosen at random

14 D ← D ∪ L

15 rprior ← r

16 Remove customers in L from s

17 end

18 Return s and D

3.1.6. Neighbor graph removal

This removal heuristic uses historical information to remove customers.
The historical information is stored in a complete directed and weighted
graph called the neighbor graph [17, 18]. A node in this graph represents
a visit in the original problem. All edge weights are initially set to infinity.
The cost of an edge (i, j) in this graph is the best objective function value
found until the current ALNS iteration for which customer i is visited just
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before customer j. When a new solution is found, the edge weights in the
neighbor graph are updated if necessary. Given a current solution, this re-
moval heuristic calculates a score for each customer by summing up the edge
weights in the neighbor graph corresponding to the neighbor configuration
in s. The customers with high scores are likely to be in wrong positions and
are selected for removal. When a customer is removed, the scores of the sur-
rounding customers are recalculated. See Algorithm 4 for details and note
that the removal is also randomized, but controlled by a parameter φ ≥ 1.

Algorithm 4: NGR - Neighbor graph removal

1 Input: Solution s, request bank U , γ and φ ≥ 1
2 Let D be a set of removed customers

3 Let L be an ordered set of customers and Li the ith customer of L

4 D ← U

5 L ← customers of s

6 Calculate the score for each customer Li using the neighbor graph

7 while |D| < γ do

8 Sort L such that i < j ⇒ Score(Li) > Score(Lj)
9 Choose a random number y from [0, 1]

10 i ←
⌊

yφ |L|
⌋

11 D ← D ∪ {Li}
12 Update the scores for the customers close to Li

13 Remove Li from L

14 end

15 Return s and D

3.1.7. Request graph removal

Our heuristic also uses historical information to remove customers. This
information is stored in a complete and undirected graph called the request
graph [17, 18], in which a node represents a customer. All edge weights are
initially set to zero. The cost of an edge (i, j) in this graph is the number
of times customers i and j have been served by the same vehicle in the B
best unique solutions (top-B) observed so far in the search. When a new
unique top-B solution is found, the weights are incremented or decremented
according to the solutions entering and leaving the top-B solutions. In our
computational experiments, we use B = 100. Given a customer i, customer
j is considered more related to i if it presents the largest edge weight in
the current request graph. This relatedness measure is used as in the Shaw
removal heuristic described in Section 3.1.1.
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3.1.8. Basic greedy insertion heuristic (BGI)

Let ∆vik be the change in the solution cost incurred by inserting customer
i into route k in the position that increases the objective function the least
in the current solution s. If a customer i cannot be inserted into route k,
then vik = ∞. Let f+(i, s) = min

k∈R
{∆vik} be the minimum change found

in the solution representing the minimum cost position. If D is a set of
removed customers and i is the first customer in D, we calculate f+(i, s)
and customer i is removed from D and inserted in the corresponding route
in the best position. Note that this greedy insertion heuristic respects the
order of the customers in D. After the first customer has been inserted,
f+(i, s) is calculated again and the process is repeated. If a customer cannot
re-inserted, it is left in the request bank.

3.1.9. Deep greedy insertion heuristic (DGI)

This heuristic works differently from the previous one. Instead of inserting
the first customer i from D into the current solution s, it inserts the customer
i having the minimum global cost position. Formally, it inserts customer i
yielding min

i∈D
{f+(i, s)} when i is inserted in its least cost position. This

process is repeated until no more customers can be inserted. Consequently,
this heuristic is slower than BGI.

3.1.10. Regret-κ insertion heuristic

The regret heuristic tries to improve the myopic behavior of greedy heuris-
tics [14, 19, 22]. Given a set D of removed customers, for each customer
i ∈ D, this heuristic calculates a regret value equal to the difference in
cost between two solutions in which i is inserted in its best route or in its
second best route. The customer i with the maximum regret value is cho-
sen to be inserted in the current solution s. Formally, let ωik ∈ R be and
index indicating the route for which customer i has the kth lowest inser-
tion cost, i.e., ∆viωik

≤ ∆viωik′
for all k ≤ k′. Thus, the regret value is

RegretV aluei = ∆viωi2
−∆viωi1

and at each iteration, the heuristic chooses
customer i according to max

i∈D
{RegretV aluei}. Ties are broken by selecting

the lowest cost insertion.
This concept can be extended by considering not only the cost differ-

ence just defined, but also the difference in cost of inserting customer i
in its best, 2nd best, ..., κth best route, where κ is a user-defined param-
eter. With this idea, the regret-κ heuristic chooses a customer i according to
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max
i∈D

{

κ
∑

j=2
∆vi̟ij

−∆vi̟i1

}

and inserts it in its least cost position. Ties are

broken by selecting the lowest cost insertion.

3.2. Discussion

Ropke and Pisinger [14, 17] and Pisinger and Ropke [18] add a noise term
to to the objective function during the insertion phase of heuristics DGI and
regret-κ. As explained, this strategy did not improve our results and we then
decided to work with heuristic BGI described in Section 3.1.8. Although this
heuristic seems inappropriate because its inserts the customers according to
their order in D, it serves two major functions: to ensure the insertion of
customers who are in the request bank, and to introduce some noise in the
insertion process.

All removal heuristics defined in Section 3.1.1 to 3.1.7 first consider the
customers of the request bank as removed. So, when the BGI is invoked, the
customers not previously inserted are the first ones to be inserted, and since
the current solution s′ has n−γ customers, it is more likely that they will be
successfully inserted. This insertion heuristic is not as efficient as DGI and
the regret-κ heuristics to find new best solutions. However, even at the end
of the search, ALNS sometimes invokes BGI, which contributes to diversify
the search.

3.3. Initial solution and stopping criteria

Our initial solution is constructed by means of a regret-3 heuristic. All
customers are initially placed in the request bank, and the regret-3 heuristic
is run in parallel for all vehicles.

In the ALNS, the master framework is based on the SA mechanism and
the removal and insertion heuristics are repeated until one of the following
two stopping criteria is satisfied: 1) the number of iterations reaches 50000;
and 2) the temperature reaches 10−2.

4. Computational results

The ALNS heuristic was coded in C++ and run on a laptop with Pentium
Core 2 Duo processor of 2.0 GHz with 3 GB of RAM Memory under the
Windows operating system.

We have tested the ALNS heuristic on the seven 50 to 199 customer
instances used by Ngueveu et al. [9], and first proposed by Christofides et
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al. [23], and on the 20 large-scale instances proposed by Golden et al. [12],
ranging from 240 to 483 customers.

Our results were compared to the ones obtained with MA1 and MA2 [9].
To ensure fair comparisons, all heuristics were run five times for each instance
on the same computer. The computer codes for MA1 and MA2 were kindly
provided by Ngueveu et al. [9]. The travel times are equal to the Euclidean
distances calculated using double precision.

4.1. Tuning instances and parameters

To tune the parameters of ALNS, we have chosen four instances at ran-
dom: CMT2, CMT4, GWKC2 and GWKC9. To set the main ALNS param-
eters, we have followed the methodology presented by [17]. The parameters
not yet fixed are: γ, ϕ, η, λ, δ, ρ, φ and κ. The parameter γ has a signifi-
cant impact on the results. As shown by Pisinger and Ropke [18], it is not
necessary to remove a large number of customers in the removal phase. We
have used the following strategy: if n ≤ 200, γ is chosen at random in the
interval [10, 40], otherwise γ is chosen at random in the interval [10, 60].

To set all parameters, each parameter was in turn allowed to take sev-
eral values, while the others were kept fixed. We ran ALNS five times for
each parameter setting, and the setting yielding the best average results was
chosen. Table 1 shows the best values found for all parameters.

Table 1: Values for the ALNS parameters after the tuning phase

Parameter Meaning Best value

γ Defines the number of customers removed at each ALNS iteration.
If n ≤ 200, γ ∈ [10, 40],
otherwise, γ ∈ [10, 60]

ϕ Defines the number of consecutive iterations in a segment. 50
η Reaction factor. 10−2

λ Penalizes a solution violating deadlines in (13). 104

δ Avoids determinism in the Shaw and Request graph removal heuristics. 2
ρ Avoids determinism in the worst removal heuristic. 2
φ Avoids determinism in the neighbor graph removal heuristic. 3
κ Indicates which regret heuristic must be used. 3

Our computational experiments are summarized in Tables 2 and 3. The
column headings are: the instance name, the number of customers, the num-
ber of vehicles used, the larger of the two lower bounds LB1 and LB2 (column
LB), the best solution found in five runs of the heuristic (column Best), the
average solution found (column Avge), the average computational time in
seconds over five runs of the heuristic (Time (s)), and the deviation (column
Dev %) calculated as Dev(%)=100(Best − Best∗)/Best∗, where Best∗ is the
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Table 2: Results for the seven medium-size instances proposed by Christofides et al. [23]
and used by Ngueveu et al. [9]

MA1 MA2 ALNS
Name n |R| LB Best Avge Time Dev Best Avge Time Dev Best Avge Time Dev

(s) (%) (s) (%) (s) (%)

CMT1 50 5 1873.91 2230.35 2230.35 10.63 0.00 2230.35 2245.74 3.70 0.00 2230.35 2235.27 30.29 0.00
CMT2 75 10 1861.56 2421.90 2443.07 27.78 1.27 2429.18 2556.24 2.04 1.57 2391.63 2401.72 60.77 0.00
CMT3 100 8 2947.74 4073.12 4073.12 97.91 0.68 4073.12 4079.69 40.46 0.68 4045.42 4063.98 172.45 0.00
CMT4 150 12 3561.67 4987.52 5020.75 449.44 0.00 4987.52 4996.84 188.41 0.00 4987.52 4994.93 235.12 0.00
CMT5 199 17 4804.20 5810.12 5842.00 1035.45 0.00 5810.12 5840.77 629.27 0.00 5838.32 5857.76 277.37 0.49
CMT11 120 7 6119.66 7317.98 7395.83 160.64 0.03 7347.49 7395.46 68.83 0.43 7315.87 7341.28 202.07 0.00
CMT12 100 10 2885.48 3558.92 3559.23 38.20 0.00 3559.43 3559.43 23.66 0.01 3558.92 3566.06 152.74 0.00

Avge 113.43 9.86 3436.32 4342.84 4366.34 260.01 0.28 4348.17 4382.02 136.62 0.38 4338.29 4351.57 161.54 0.07

Table 3: Results for the 20 large instances proposed by Golden et al. [12]
MA1 MA2 ALNS

Name n |R| LB Best Avge Time Dev Best Avge Time Dev Best Avge Time Dev
(s) (%) (s) (%) (s) (%)

GWKC1 240 9 35423.72 54815.17 54878.25 1593.60 0.03 54826.53 54917.44 866.80 0.05 54786.92 54853.76 1038.27 0.00
GWKC2 320 10 62561.85 100836.90 100918.54 4549.05 0.17 100800.33 100924.25 2054.68 0.14 100662.53 100934.34 1484.74 0.00
GWKC3 400 10 105915.57 171277.26 171400.35 9295.64 0.00 171311.81 171523.42 3336.09 0.02 171613.59 172231,14 2061.75 0.20
GWKC4 480 10 165358.69 262584.23 262830.96 12810.31 0.00 262646.37 263020.99 6557.67 0.02 263433.03 265207.46 2626.89 0.32
GWKC5 200 5 91037.70 114163.64 114237.00 471.45 0.00 114163.64 114338.39 246.05 0,00 114494.66 114846.27 1200.67 0.29
GWKC6 280 7 101234.28 140430.09 140456.96 2358.40 0.00 140463.67 140556.57 788.71 0.02 140804.64 140929.71 1547.43 0.27
GWKC7 360 8 116694.54 183282.64 186702.15 1537.36 1.11 190371.53 192578.18 258.45 5.02 180481.56 181610.82 1926.19 0.00
GWKC8 440 10 116945.52 194312.60 194510.99 9598.42 0.02 194273.58 194454.29 5165.83 0.00 194988.74 195174.85 2330.34 0.37
GWKC9 255 14 4197.81 4730.70 4740.42 2453.61 0.10 4737.32 4744.14 1582.86 0.24 4725.58 4728.05 864.89 0.00
GWKC10 323 16 6014.12 6732.36 6747.10 7652.00 0.24 6721.16 6742.76 4332.24 0.07 6713.92 6717.76 1092.34 0.00
GWKC11 399 18 8290.60 9243.05 9259.66 8835.74 0.27 9240.37 9257.23 7429.60 0.24 9214.07 9216.60 1356.99 0.00
GWKC12 483 19 11079.18 12629.37 12649.21 9881.24 0.73 12659.15 12708.54 3449.06 0.97 12526.17 12543.04 1540.32 0.00
GWKC13 252 26 3331.28 3653.07 3660.93 2012.17 0.68 3686.62 3965.98 74.31 1.61 3628.30 3638.50 632.72 0.00
GWKC14 320 29 4719.74 5770.02 6045.20 2263.84 10.07 5826.43 6420.08 9.59 11.14 5216.80 5257.95 682.19 0.00
GWKC15 396 33 6336.77 7077.48 7140.11 5597.98 0.89 8576.61 8576.61 0.00 22.27 7010.41 7023.12 855.25 0.00
GWKC16 480 37 8254.46 9300.74 9339.45 16204.52 0.54 9347.02 9420.36 5307.29 1.04 9250.98 9268.30 1104.53 0.00
GWKC17 240 22 2583.17 3089.99 3103.99 1631.86 0,76 3095.32 3117.79 431.31 0.93 3065.46 3068.29 618.70 0.00
GWKC18 300 27 3576.10 4528.16 4582.44 2410.31 7.22 5083.70 5138.01 0.10 20.37 4221.14 4244.60 630.47 0.00
GWKC19 360 33 4905.86 5570.35 5589.12 5535.25 0.84 5600.05 5631.68 763.56 1.37 5523.38 5531.78 853.43 0.00
GWKC20 420 38 6568.06 7413.58 7473.69 6264.59 2.64 8453.96 8453.96 0.00 17.04 7223.08 7240.86 881.92 0.00

Avge 347.40 19.05 43251.45 65072.07 65313.33 5647.86 1.32 65594.26 65824.53 2132.71 4.13 64979.25 65213.36 1266.50 0.07

best known solution value obtained by any of the three heuristics for a given
instance. Best values are shown in boldface.

On the CMT instances, all heuristics exhibit a good behavior, in par-
ticular ALNS which identifies all best known solutions, except for instance
CMT5, and yields the best average solution values. It is important to mention
that MA1 and MA2 provided slightly different results from those reported in
[9]. Ngueveu et al. [9] report only the best known solution for each instance
found by MA1 and MA2. If we compare our solutions to those in [9], we
obtain better results for instances CMT2 and CMT5 and a worse result for
instance CMT3. The average best results for MA1 goes up from 4340.58 in
[9] to 4342.84 in our experiments.

On the GWKC instances (Table 3), ALNS found 15 best known solutions
whereas MA1 and MA2 found four and two best known solutions, respec-
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Figure 1: Best known solution found by ALNS for instances GWKC1. The number of
customers served by each route is in parentheses.
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Figure 2: Best known solution found by ALNS for instances GWKC13. The number of
customers served by each route is in parentheses.

tively. On the average results, ALNS again provides good solutions. Our
heuristic took on average 1266.50 seconds to converge, which is faster than
the times obtained with MA1 and MA2.

Figures 1, 2 and 3 show the best known solutions found by our ALNS
heuristic for instances GWKC1, GWKC13 and GWKC17, respectively. Note
that for each route, the return trip to depot is not shown.

16 CIRRELT-2011-02

An Adaptive Large Neighborhood Search Heuristic for the Cumulative Capacitated Vehicle Routing Problem



-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

Customer

Depot

(a) GWKC17 - Vertices

-20

-15

-10

-5

0

5

10

15

20

-20 -10 0 10 20 30 40 50 60

R1 (10) 

R2 (12) 

R3 (10) 

R4 (12) 

R5 (12) 

R6 (10) 

R7 (10) 

R8 (13) 

R9 (10) 

R10 (9) 

R11 (11)

R12 (12)

R13 (9) 

R14 (12)

R15 (9) 

R16 (11)

R17 (11)

R18 (10)

R19 (9) 

R20 (13)

R21 (14)

R22 (11)

Depot   

(b) GWKC17 - Routes

Figure 3: Best known solution found by ALNS for instances GWKC17. The number of
customers served by each route is in parentheses.

5. Conclusions

In situations where the arrival times at the customers are important, such
as after natural disasters, good routing methodologies must be developed to
attend those in need in a fast and equitable manner. The cumulative ca-
pacitated vehicle routing problem objective function constitutes a good way
to model such situations. We have provided a highly efficient local search
algorithm for this problem. On test instances it outperforms the only two
available published heuristics.
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