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1 Introduction

Vehicle Routing Problem (VRP) formulations are used to model an extremely broad range
of issues in many application fields, transportation, supply chain management, production
planning, and telecommunications, to name but a few (Toth and Vigo, 2002; Hoff et al.,
2010). Not surprisingly, starting with the seminal work of Dantzig and Ramser (1959),
routing problems make up an extensively and continuously studied field, as illustrated by
numerous conferences, survey articles (e.g., Christofides et al., 1979; Bodin et al., 1983;
Fisher, 1995; Desrosiers et al., 1995; Powell et al., 1995; Gendreau et al., 2002; Laporte
and Semet, 2002; Bräysy et al., 2004; Bräysy and Gendreau, 2005a,b; Cordeau et al.,
2005, 2007; Laporte, 2009), and books (Toth and Vigo, 2002; Golden et al., 2008).

Surveying the literature one notices, however, that not all problem classes have re-
ceived an equal nor adequate degree of attention. This is the case for the problems with
multiple depots and periods. A second general observation is that most methodological
developments target a particular problem variant, the capacitated VRP (CVRP) or the
VRP with time windows (VRPTW ), for example, very few contributions aiming to ad-
dress a broader set of problem settings. This also applies to the problem classes targeted
in this paper.

Our objective is to contribute toward addressing these two challenges. We propose
an algorithmic framework that successfully addresses three VRP variants: the multi-
depot VRP, MDVRP, the periodic VRP, PVRP, and the multi-depot periodic VRP,
MDPVRP, with capacitated vehicles and constrained route duration. The literature on
these problems is relatively scarce (Francis et al., 2008) despite their relevance to many
applications, e.g., raw material supply (Alegre et al., 2007), refuse collection (Beltrami
and Bodin, 1974; Russell and Igo, 1979; Teixeira et al., 2004), food collection or distri-
bution (Golden and Wasil, 1987; Parthanadee and Logendran, 2006), and maintenance
operations (Blakeley et al., 2003; Hadjiconstantinou and Baldacci, 1998).

We propose a meta-heuristic that combines the exploration breadth of population-
based evolutionary search, the aggressive-improvement capabilities of neighborhood-based
meta-heuristics, and advanced population-diversity management schemes. The method,
that we name Hybrid Genetic Search with Adaptive Diversity Control (HGSADC ), per-
forms impressively, in terms of both solution quality and computational efficiency. Thus,
for all currently available benchmark instances for the three problem classes, HGSADC
identifies either the best known solutions, including the optimal ones, or new best solu-
tions.

To sum up, the main contributions of this article are: 1) A new meta-heuristic that
is highly effective for three important vehicle routing problem classes, the MDVRP,
the PVRP, and the MDPVRP. The meta-heuristic equals or outperforms the current
best methods proposed for each particular class and requires a limited computational
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effort. Moreover, with very limited adaptation, it also proves extremely competitive
for the CVRP. 2) New population-diversity management mechanisms to allow a broader
access to reproduction, while preserving the memory of what characterizes good solutions
represented by the elite individuals of the population. In this respect, we revisit the
traditional survival-of-the-fittest paradigm to enhance the evaluation of individuals by
making it rely on both solution cost and diversity (distance-to-the-others) measures. Our
empirical studies show this mechanism not only efficiently avoids premature population
convergence, but also outperforms traditional diversity management methods relative to
the general behavior of the solution method. 3) An efficient offspring education scheme
that integrates key features from efficient neighborhood search procedures, e.g., memories
and granular tabu search concepts.

The paper is organized as follows. Section 2 states the notation and formal definition
of the three classes of VRPs we address, while the relevant literature is surveyed in
Section 3. The proposed meta-heuristic is detailed in Section 4, its performances are
analyzed in Section 5, and we conclude in Section 6.

2 Problem Statement

We formally state the MDVRP, PVRP, and MDPVRP, introducing the notation used in
this paper and the transformation of the MDPVRP into a PVRP, which supports the
algorithmic developments.

The CVRP can be defined as follows. Let G = (V ,A) be a complete graph with
|V| = n+ 1 vertices, divided in two sets V = VDEP ∪VCST. The unique vertex v0 ∈ VDEP

represents the depot where the product to be distributed is kept and a fleet of m identical
vehicles with capacity Q is based. Vertices vi ∈ VCST stand for customers i, i = 1, . . . , n,
requiring service and characterized by a non-negative demand qi and a service duration
τi. Arcs aij ∈ A, i, j ∈ V represent the direct-travel possibility from vi to vj with travel
time equal to cij. The duration of a vehicle route is computed as the total travel and
service time required to serve the customers, and is limited to T . The goal is to design a
set of vehicle routes servicing all customers, such that vehicle-capacity and route-duration
constraints are respected, and the total travel time is minimized.

Several depots, d, are available to service customers in the Multi-Depot VRP, m rep-
resenting the number of vehicles available at each depot. In this case, vertices v0, . . . , vd
make up the set VDEP, while the remaining vertices VCST stand for customers. A time
dimension is introduced in the Periodic VRP as route planning is to be performed over
a horizon of t periods. Each customer i is characterized by a service frequency fi, rep-
resenting the number of visits to be performed during the t periods, and a list Li of
possible visit-period combinations, called patterns. The PVRP aims to select a pattern
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for each customer and construct the associated routes to minimize the total cost over
all periods. Finally, the Multi-Depot Periodic VRP extends the two previous problem
settings, asking for the selection of a depot and a visit pattern for each customer, with
services in different periods to the same customer being required to originate at the same
depot. The CVRP is NP-Hard and so are the three problem classes that generalize it
and are addressed in this paper.

The MDPVRP reduces to a PVRP when d = 1 and to a MDVRP when t = 1.
Furthermore, the three problem settings share similar mathematical structures. We take
advantage of this property and, in the spirit of the problem transformation from MDVRP
to PVRP of Cordeau et al. (1997), we transform a MDPVRP with d depots and t periods
into an equivalent PVRP with d × t periods corresponding to (depot, period) couples.
(The Annex 7.1 details these mathematical structures and problem transformations).
This transformation provides the means to address the three problem classes with the
same solution method and reduces the number of problem characteristics. Of course, the
method must be computationally efficient to deal with the increased number of periods
and the corresponding increase in problem dimension. As the computational results
displayed in Section 5 show, we achieve this goal.

3 Literature Review

This section provides a brief literature review of contributions for the PVRP, the MDVRP,
and the MDPVRP. The purpose of this review is twofold. First, to present the most
recently proposed meta-heuristic algorithms, particularly population-based ones, for the
considered problems. Second, to distinguish the leading solution approaches for the three
problem settings.

Some population and neighborhood-based meta-heuristics already exist in the PVRP
literature. Drummond et al. (2001) proposed an island-based parallel evolutionary method,
which evolves individuals representing schedules (patterns), the fitness of each individual
being obtained by constructing routes for each period with a savings heuristic. Alegre
et al. (2007) proposed a scatter search procedure designed especially for PVRPs with a
large number of periods. As in Drummond et al. (2001), the core of the method is ded-
icated to the improvement of visit schedules, while a neighborhood-based improvement
procedure is used to design routes for each period. Contrasting with the two previous
methods, Matos and Oliveira (2004) proposed an ant colony optimization (ACO) ap-
proach that first optimizes routes, then schedules. The PVRP is first transformed into
a large VRP containing each customer as many times as given by its frequency and ad-
dressed by an ACO method. The problem of distributing the resulting routes among
periods is then solved as a graph coloring problem, with occasional changes in customer
patterns to progress towards a feasible PVRP solution. In a final step, ACO is used to
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optimize the plan for each period separately.

Until recently, however, the most successful contributions to this problem were based
on the serial exploration of neighborhoods. The local search approach of Chao et al.
(1995) was the first to use deteriorating moves to escape from poor local optima, and
also allow relaxation of vehicle-capacity limits to enhance the exploration of the solution
space. The tabu search proposed by Cordeau et al. (1997) introduced an innovative
guidance scheme, which collects statistics on customer assignments to periods and vehicle
routes in order to penalize recurring assignments within the solutions obtained and, thus,
gradually diversify the search. For a long period of time, this method stood as the state of
the art solution approach for both the PVRP and the MDVRP, as well as, in its Unified
Tabu Search (UTS ) version (Cordeau et al., 2001), for a number of other VRP variants.
It has only been outperformed recently by the variable neighborhood search (VNS) of
Hemmelmayr et al. (2009), which is built upon various well-known VRP neighborhoods,
e.g., string relocate, swap, and 3-opt. Finally, one should notice the VNS algorithm with
multilevel refinement strategy of Pirkwieser and Raidl (2010), specifically tailored for
large-size instances.

We are aware of only two evolutionary approaches for the MDVRP, both taking ad-
vantage of geometric aspects within the problem. Thangiah and Salhi (2001) represented
solutions as circles in the 2D space, whereas Ombuki-Berman and Hanshar (2009) intro-
duced a mutation operator that targets the depot assignment to “borderline” customers,
which are close to several depots. In this case also, however, neighborhood-based meth-
ods, such as the tabu search algorithms of Cordeau et al. (1997) and Renaud et al. (1996),
and the simulated annealing method of Lim and Zhu (2006), proved to be more efficient.
To date, the most successful approach for the MDVRP remains the adaptive large neigh-
borhood search (ALNS) method of Pisinger and Ropke (2007), which implements the
ruin-and-recreate paradigm with an adaptive selection of operators.

In the case of the MDPVRP, most proposed algorithms do not consider all charac-
teristics simultaneously, but rather apply a successive-optimization approach. Thus, the
method developed by Hadjiconstantinou and Baldacci (1998) starts by first assigning all
customers to a particular depot. Given these a priori assignments, customer visits are
then successively inserted among available periods to obtain feasible visit combinations.
The depot-period VRP subproblems obtained are then separately solved using a tabu
search algorithm. Finally, a last phase attempts to improve the solution by modify-
ing some period or depot assignments. The overall solution strategy then repeats this
sequence of heuristics for a fixed number of iterations. Other such approaches were pro-
posed by Kang et al. (2005) and Yang and Chu (2000), where schedules for each depot
and period are first determined, followed by the design of the corresponding routes.

We are aware of only two methods that aim to address problems similar to the
MDPVRP as a whole. Parthanadee and Logendran (2006) implemented a tabu search
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method for a complex variant of the MDPVRP with backorders. The authors also study
the impact of interdependent operations between depots, where the depot assignment of
a customer may vary according to the periods considered. Significant gains are reported
on small test instances when such operations are applied. Crainic et al. (2009) introduced
the Integrative Cooperative Search (ICS) framework, which relies on problem decompo-
sition by attributes, concurrent resolution of subproblems, integration of the elite partial
solutions yielded by the subproblems, and adaptive search-guidance mechanisms. The
authors used the MDPVRP with time windows to illustrate the methodology with very
promising results, but did not report results for the problems addressed in this paper.
Moreover, ICS targets complex problem settings and we provide a simpler way to treat
the MDPVRP.

A number of exact methods were also proposed for one or another of the problems
we address. Noteworthy are the recent contributions of Baldacci and Mingozzi (2009)
and Baldacci et al. (2010) addressing the MDVRP and the PVRP. Exact methods are
limited in the size of instances they may handle, but these particular approaches have
proven quite successful in solving to optimality several instances that are used as a test
bed for the algorithm we propose.

This brief review supports the general statement made previously that no satisfac-
tory method has yet been proposed for the three problem settings. Furthermore, the
contributions to the MDPVRP literature are very scarce, those addressing all the prob-
lem characteristics simultaneously being scarcer still. Most solution methods proposed
address the periodic and multi-depot VRP settings, with neighborhood-based methods
yielding, until now, the best results on standard benchmark instances. However, evolu-
tionary methods have proven recently to be efficient on the standard VRP (Prins, 2004;
Nagata and Bräysy, 2009) and on a number of other variants, e.g., the VRPTW (Bräysy
et al., 2004). Noteworthy is the contribution of Prins (2004), who introduced an im-
portant methodological element, namely the solution representation for the VRP as a
TSP tour without delimiters along with a polynomial time algorithm to partition the se-
quence of customers into separate routes. This approach was later applied by Lacomme
et al. (2005) and Chu et al. (2006) to the periodic capacitated arc routing problem, which
shares a number of common characteristics with the PVRP. We adopt this solution repre-
sentation for the population-based method we propose to efficiently address the periodic
and multi-depot problems, as well as the MDPVRP as a whole. This methodology is
described in the next section.
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4 The Hybrid Genetic Search with Adaptive Diver-

sity Control Meta-heuristic

The Hybrid Genetic Search with Adaptive Diversity Control (HGSADC ) meta-heuristic
we propose is based on the Genetic Algorithm (GA) paradigm introduced by Holland
(1975) but includes a number of advanced features, in terms of solution evaluation,
offspring generation and improvement, and population management, which contribute to
its originality and high performance level.

The general scheme of the meta-heuristic we propose is displayed in Algorithm 1.
The method evolves a population of individuals, managing feasible and infeasible solu-
tions, which are kept in two separate groups (subpopulations). It applies successively a
number of operators to select two parent individuals and combine them, yielding a new
individual (offspring), which is first enhanced using local search procedures (education
and repair), and then included in the appropriate subpopulation in relation to its feasi-
bility. Of particular interest is the evaluation mechanism we propose, which is used to
select both parents for mating (Line 3 of Algorithm 1) and individuals to survive to the
next generation (Line 8). The mechanism takes into account not only the solution cost
(Section 4.1), which is often the norm, but also the contribution the individual makes
to the diversity of the gene pool. It thus contributes to maintain a high level of diver-
sity among individuals, and plays an important role in the overall performance of the
proposed methodology.

We initiate the description of HGADSC with the definition of the search space, Section
4.1, followed by the representation and evaluation of individuals, Sections 4.2 and 4.3,
respectively. We then proceed with detailed discussions of parent selection and crossover,
Section 4.4, education and repair, Section 4.5, and population management, Section 4.6.
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4.1 Search space

The meta-heuristic literature indicates that allowing a controlled exploration of infeasible
solutions may enhance the performance of the search, which may more easily transition
between structurally different feasible solutions (Glover and Hao, 2009). We thus define
the search space S as a set of feasible and infeasible solutions s ∈ S, the latter being
obtained by relaxing the limits on vehicle capacities and maximum route travel time (as
in Gendreau et al., 1994; Cordeau et al., 1997).

Let R(s) represent the set of routes making up solution s. Each route r ∈ R(s)
starts from a depot σr0 ∈ VDEP, visits a sequence of nr customers σr1, . . . , σ

r
nr
∈ VCST, and

returns to the same depot σrnr+1 = σr0. It is characterized by load q(r) =
nr∑
i=1

qσr
i
, driving

time c(r) =
nr∑
i=0

cσr
i σ

r
i+1

, and total duration τ(r) = c(r) +
nr∑
i=1

τσr
i
.

Let ωQ and ωD represent the penalties for exceeding the vehicle capacity and the
route maximum duration, respectively. The penalized cost of a route r is then defined in
Equation 1 as its driving time plus, when the route is infeasible, the weighted sum of its
excess duration and/or load.

φ(r) = c(r) + ωD max{0, τ(r)− T )}+ ωQ max{0, q(r)−Q} (1)

The penalized cost φ(s) of a solution s is then computed as the sum of the penalized
costs of all its routes φ(s) =

∑
r∈R(s) φ(r), and is used to compute the fitness of the

individuals.

4.2 Solution representation

Solutions s ∈ S are characterized by their customer schedules, depot assignments, and
routes. The individuals representing them in the HGSADC population are thus repre-
sented as a set of three chromosomes: 1) the pattern chromosome, which registers for each
customer i its pattern πi(P ); 2) the depot chromosome, containing the depot assignment
δi(P ) of each customer i; and 3) the giant tour chromosome, containing for each com-
bination (depot o, period l), a sequence Vol(P ) of customers without trip delimiters,
obtained by concatenating all routes from depot o during period l, in an arbitrary order,
and removing visits to depots. Figure 1 illustrates this representation scheme for a small
MDPVRP problem with two periods, two depots, and eight customers.

The representation of the routes out of the same period and depot as a giant tour
provides the means to use simple and efficient crossover procedures working on permuta-
tions, but requires an algorithm to find the optimal segmentation of the tour into routes
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Figure 1: From a MDPVRP solution to the individual chromosome representation

and, thus, retrieve both the solution and its cost. The first successful utilization of a
giant-tour representation within a genetic algorithm was reported by Prins (2004), who
also introduced an efficient algorithm to optimally extract the routes from the tour. This
algorithm, named Split, reduces the problem of finding the route delimiters to a shortest
path problem on an auxiliary acyclic graph. It is straightforward to adapt to the setting
with penalized costs and limited fleet size, and can be implemented in polynomial time
O(mn2), as explained in the e-companion 7.2.

4.3 Evaluation of individuals

The individual-evaluation function in population-based meta-heuristics aims to deter-
mine for each individual a relative value with respect to the entire population. Often
based on the value of the objective function of the problem at hand (e.g., the value of the
individual compared to the average value of the population), this so-called fitness mea-
sure is then used to perform various selections, e.g., parents for mating or individuals to
advance to the next generation, the latter being named survivors in the following. Such
an approach is, however, generally myopic with respect to the possible impact of the eval-
uation and selection processes on the diversity of the population, a critical performance
factor for this class of meta-heuristics. We therefore propose a mechanism that addresses
both objectives, the evaluation function accounting for the cost of an individual and its
contribution to the population diversity.

We define the diversity contribution ∆(P ) of an individual P as the average distance
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to its nclose closest neighbors, grouped in set Nclo∫e, computed according to Equation (2).
Several distance measures were tested in the experiments leading to the final algorithm.
A normalized Hamming distance δH(P1, P2), based on the differences between the service
patterns and depot assignments of two individuals P1 and P2, appeared the most adequate
for the multi-depot, multi-period routing problems we address. This distance is computed
according to Equation (3), where 1(cond) is a valuation function that returns 1 if the
condition cond is true, 0, otherwise.

∆(P ) =
1

nclose

∑
P2∈Nclo∫e

δH(P, P2) (2)

δH(P1, P2) =
1

2n

∑
i=1,...,n

(1(πi(P1) 6= πi(P2)) + 1(δi(P1) 6= δi(P2)) (3)

Let fit(P ) and dc(P ) in {1, . . . , nbIndiv} stand for the rank of an individual P in
a subpopulation of size nbIndiv, with respect to its penalized cost φ(P ) and diversity
contribution ∆(P ), respectively. The biased fitness function BF (P ) we propose combines
the cost and diversity ranks, and is given by Equation (4), where nbElit is the number
of elite individuals one desires to survive to the next generation.

BF (P ) = fit(P ) +

(
1− nbElit

nbIndiv

)
dc(P ), (4)

The ranks and biased-fitness measures are continuously updated for the two sub-
populations and are used to evaluate the quality of an individual during parent (Sec-
tion 4.4) and survivor (Section 4.6) selections. The biased-fitness is thus an adaptive
mechanism aiming to balance the drive for the best individual (elitism) and the pos-
sible loss of information usually associated with this drive. This concern for continu-
ous and “early” (parent selection) population-diversity control complements the periodic
population-management mechanism introduced in Section 4.6.

4.4 Parent Selection and Crossover

The offspring generation scheme of HGADSC selects two parents, P1 and P2, and yields
a single individual C. Parent selection is performed through a binary tournament, which
twice randomly (with uniform probability) picks two individuals from the complete pop-
ulation, grouping the feasible and infeasible subpopulations, and keeps the one with the
best biased fitness. Feasible and infeasible individuals may thus be selected to undergo
crossover in order to lead the search close to the borders of feasibility, where we expect
to find high quality solutions.
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We propose a new periodic crossover with insertions (PIX ) dedicated to periodic
routing problems and designed to transmit good sequences of visits, while enabling pat-
tern, depot, and route recombinations. We aimed for a versatile crossover, which would
allow for both a wide exploration of the search space and small refinements of “good”
solutions. The possibility for the offspring to inherit genetic material from its parents in
nearly equal proportions is required to provide the crossover with the former capability,
while copying most of one parent along with small parts of the other provides the latter.
To ensure PIX has both capabilities meant avoiding a priori determined rules on how
much genetic material the offspring inherits from each parent, as well as rules based on
simple random selection of individual characteristics.

Algorithm 2 displays the detailed pseudo-code for the PIX crossover procedure, which
is illustrated in Figure 2 on a problem with two periods and two depots, and described
in the rest of this section. The crossover begins in Step 0 by determining the period
and depot inheritance rule. Let Λ1, Λ2, and Λmix be the sets of (depot, period) couples
corresponding to inheriting material from the first parent, P1, the second parent, P2, or
both parents, respectively. The procedure then first determines the cardinality of each
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set and, then, fills them up sequentially by randomly selecting the appropriate number
of (depot, period) couples. We assume for the example of Figure 2 that Λ1 = {(d1,p2)},
Λ2 = {(d1,p1)}, and Λmix = {(d0,p1), (d0,p2)}.

Figure 2: The PIX crossover

Steps 1 and 2 are dedicated to taking genetic material from the two parents and
combining their giant-tour chromosomes. Step 1 targets the first parent and copies for
each selected (depot, period) couple either the complete material, if it belongs to Λ1, or
a random subsequence, if it belongs to Λmix. Thus, in Figure 2, all customers serviced
from depot 1 in period 2 (Λ1 = {(d1, p2)}) are inherited from P1, while only subsets are
inherited for depot 0 at periods 1 and 2 (Λmix = {(d0,p1), (d0,p2)}). Step 2 targets
the second parent and, thus, the material from (depot, period) couples in Λ2

⋃
Λmix.

The inheritance is restricted by the selections performed in Step 1, however, and, thus,
customers are inserted at the end of the corresponding sequence when the depot and
pattern compatibility conditions specified at line 12 of Algorithm 2 are satisfied. Given
the random order (d0,p2), (d1,p1), (d0,p1) of Λ2

⋃
Λmix in the illustration, the visits

from P2 that conform to this test and are transmitted to C are marked through dots on
white background in Figure 2. Thus, for example, the (d1,p1) pair of P2 yields only the
subsequence [6,9,8] out of [4,6,9,8], because a visit to customer 4 was copied during Step
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1 from (d0,p2) of P1.

The offspring built at the end of the Step 2 might not be feasible, however, because
of customers with unsatisfied service-frequency requirements. The goal of Step 3 is then
to perform the necessary insertions of additional visits. Most insertion mechanisms used
in vehicle routing and traveling salesman problems could be used. Yet, to enhance
the precision of the insertion, and because the routes must be extracted in all cases,
before undertaking the next phase of the meta-heuristic (Section 4.5), we anticipate this
extraction, using the Split algorithm, and perform best-insertion directly into the actual
routes based on the corresponding biased-fitness measure. In Figure 2, the necessary
services to customer 4 are not fulfilled in C following the first crossover steps, and a
possible result of least-cost insertion is illustrated.

4.5 Education

An Education operator is applied with probability Pm to improve the quality of the off-
spring solution (the routes were extracted in Step 3 of the PIX procedure). Education
goes beyond the classical genetic-algorithm concepts of random mutation and enhance-
ment through hill-climbing techniques, as it includes several local-search procedures based
on neighborhoods for the VRP. A Repair phase eventually the Education operator when
the educated offspring is infeasible.

Two sets of local-search procedures are defined. The nine route improvement (RI)
procedures are dedicated to optimize each VRP subproblem separately, whereas the
pattern improvement (PI) procedure relies on a quick and simple move to improve the visit
assignments of customers by changing their patterns and depots. These local searches
are called in the RI, PI, RI sequence.

Route Improvement. Let r(u) stand for the route containing vertex u in the given
(depot, period) routing subproblem, and (u1, u2) identify the partial route from u1 to u2.
Define the neighborhood of vertex u, customer or depot, as the hn closest vertices, where
h ∈ [0, 1] is a granularity threshold restricting the search to nearby vertices (Toth and
Vigo, 2003). Let v be a neighbor of u, and x and y the successors of u in r(u) and v in
r(v), respectively. The Route Improvement phase iterates, in random order, over each
vertex u and each of its neighbors v, and evaluate the following moves:

• (M1) If u is a customer visit, remove u and place it after v;

• (M2) If u and x are customer visits, remove them, then place u and x after v;

• (M3) If u and x are customer visits, remove them, then place x and u after v;
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• (M4) If u and v are customer visits, swap u and v;

• (M5) If u, x, and v are customer visits, swap u and x with v;

• (M6) If u, x, v, and y are customer visits, swap u and x with v and y;

• (M7) If r(u) = r(v), replace (u, x) and (v, y) by (u, v) and (x, y);

• (M8) If r(u) 6= r(v), replace (u, x) and (v, y) by (u, v) and (x, y);

• (M9) If r(u) 6= r(v), replace (u, x) and (v, y) by (u, y) and (x, v).

The first three moves correspond to insertions, while moves M4 to M6 are generally
called swaps. These moves can be applied indifferently on the same or different routes.
Move M7 is a 2-opt intra-route move, while moves M8 and M9 are 2-opt* inter-route
moves. Moves are examined in random order, the first yielding an improvement being
implemented. The Route-Improvement phase stops when all possible moves have been
successively tried without success.

Pattern Improvement. Let ō and p̄ be the depot and pattern, respectively, of cus-
tomer i in the current solution. The Pattern-Improvement procedure iterates on cus-
tomers in random order and computes, for each customer i, depot o, and pattern p ∈ Li,
Ψ(i, o, p) =

∑
l∈p ψ(i, o, l), the minimum cost to satisfy the visit requirements of i from

the depot o according to the visit pattern p. If a (i, o, p) combination exists such that
Ψ(i, o, p) < Ψ(i, ō, p̄), then all visits to customer i are removed, and a new visit is in-
serted in the best location in each sequence corresponding to depot o and period l ∈ p.
The procedure stops when all customers have been successively considered without a
modification.

The Pattern-Improvement procedure is significantly faster when the optimal position
and insertion cost of each customer is stored for each route. It is also worth noting
that, sometimes, the current pattern and depot choices are kept, but a better insertion
of customers is found. The resulting move is then, in fact, a combination of intra-
period M1 insertions. This may prove particularly interesting for the exceptional case
when the move was not attempted in RI because of proximity conditions. The Pattern-
Improvement phase thus fulfills the double role of changing the patterns and attempting
moves between distant vertices.

The individual yielded by the RI, PI, RI education sequence may be feasible, in which
case, we call it naturally feasible, or infeasible, and it is inserted into the appropriate sub-
population. Infeasible individuals are subject to the Repair procedure with probability
Prep. When Repair is successful, the resulting individual is added to the feasible sub-
population (the infeasible one is not deleted from the infeasible subpopulation). Repair
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consists in temporarily multiplying the penalty parameters by 10 and re-starting the RI,
PI, RI sequence. When the resulting individual is still infeasible, penalty parameters are
temporarily multiplied by 100 and the sequence is started again. This significant increase
of penalties aims at redirecting the search toward feasible solutions.

4.6 Population management and search guidance

The population management mechanism complements the selection, crossover, and ed-
ucation operators in identifying and propagating the characteristics of good solutions,
enhancing the population diversity, and providing the means for a thorough and effi-
cient search. The two subpopulations dedicated to feasible and infeasible individuals
are independently managed to contain between µ and µ + λ individuals, the former
representing the minimum subpopulation size, and the latter the generation size. Any
incoming individual is directly included in the appropriate subpopulation with respect to
its feasibility, and thus acceptance in the population is systematically granted. Any sub-
population reaching its maximum size will undergo a survivors selection phase to discard
λ individuals and thus return to its minimum size. Four main components thus consti-
tute the general behavior of the population: initialization, adjustment of the penalties
for infeasible individuals, diversification, and selection of survivors.

Initialization. To initialize the subpopulations, 4µ individuals are created by ran-
domly choosing a pattern and a depot for each customer and producing for each period
the associated service sequence in random order. These initial individuals undergo edu-
cation, repair with probability 0.5, and are inserted into the appropriate subpopulation
in relation to their feasibility. Survivor selection is activated, as described later on, when
a subpopulation reaches the maximum size. At the end of initialization, one of the two
subpopulations may be incomplete, with less than µ individuals.

Penalty parameter adjustment. The penalty parameters are initially set to ωD = 1
and ωQ = c̄/q̄, where c̄ represents the average distance between two customers and q̄ is
the average demand. The parameters are then dynamically adjusted during the execution
of the algorithm, to favor the generation of naturally-feasible individuals as defined in
Section 4.5. Let ξREF be a target proportion of naturally-feasible individuals, and ξQ

and ξD the proportion in the last 100 generated individuals of naturally-feasible one with
respect to vehicle capacity and route duration, respectively. The following adjustment is
then performed every 100 iterations, where par = q, d:

• if ξPAR ≤ ξREF − 0.05, then ωPAR = ωPAR × 1.2;
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• if ξPAR ≥ ξREF + 0.05, then ωPAR = ωPAR × 0.85.

Diversification is called when Itdiv iterations occurs without improving the best solu-
tion. It is performed by eliminating all but the best µ/3 individuals of each subpopulation,
and creating 4µ new individuals as in the initialization phase. This process introduces a
significant amount of new genetic material, which revives the search further, even when
the population has lost most of its diversity.

Diversity and selection of survivors. A major challenge in population-based al-
gorithms is avoiding premature convergence of the population. The issue is even more
challenging when, as in our case, education compounds the parent selection tendency
to favor individuals with good characteristics, thus reducing the genetic material diver-
sity in the population. The mechanism we propose aims to address this challenge by
simultaneously identifying and preserving the most promising solution characteristics,
and ensuring the diversity of both subpopulations.

The first component of this mechanism is made up of the definition of the biased-
fitness function and the explicit consideration of diversity during parents selection (Sec-
tion 4.3). The second takes place whenever one of the two subpopulations reaches the
maximum size µ+λ. Named Survivor selection, the procedure determines the µ individ-
uals that will go on to the next generation, such that the population diversity, in terms
of visit patterns, is preserved and elite individuals in terms of cost are protected. The
λ discarded individuals are thus either clones (Prins, 2004) or bad with respect to cost
and contribution to diversity as measured by their biased fitness.

Let a clone be an individual P2 with either the same pattern and depot assignments
as another individual P1, i.e., δH(P1, P2) = 0, or the same solution cost. The procedure
successively eliminates, first, clones, and then, bad individuals, as described in Algorithm
3. Proposition 1 formalizes the elitism property of the Survivor-selection procedure.

Proposition 1 An individual P 6∈ X, among the nbElit best individuals of the sub-
population in terms of cost, will not be removed from the subpopulation by the Survivor-
selection procedure.
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Proof Let J be the individual with the worst cost in the subpopulation, i.e., fit(J) =
nbIndiv, and thus BF (J) ≥ nbIndiv+1. P belongs to the best nbElit solutions in terms
of cost, thus BF (P ) ≤ nbElit+ (1− nbElit

nbIndiv
)(nbIndiv) ≤ nbIndiv. Individual P will not

be removed as J has a worst biased fitness. �

Figure 3: Illustration of the survivor selection property

Figure 3 represents the fitness and diversity measures of a subpopulation taken from
our experimentations after the survivor-selection procedure was run, where nbElit indi-
viduals are considered an elite. The figure also displays the removal zone, where individ-
uals with BF ≥ nbIndiv + 1 can be eliminated according to the biased fitness criteria.

5 Computational Experiments

We conducted several sets of experiments to evaluate the performance of HGSADC and
to assess the impact on this performance of a number of algorithmic components. The
former is performed through comparisons to results of state-of-the-art methods and to
Best Known Solutions (BKS) for the three multi-period, multi-depot settings (Section
5.2), as well as for the capacitated VRP (Section 5.3). The latter is discussed in Section
5.4, while the calibration of the meta-heuristic is discussed in Section 5.1.

HGSADC was implemented in C++. Experiments were run on a AMD Opteron 250
computer with 2.4 Ghz clock. To facilitate comparisons with previous work, all CPU
times reported in this section and the e-companion were converted into their equivalent
Pentium IV 3.0 Ghz run times using Dongarra (2009) factors (see e-companion 7.3).
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5.1 Calibration of the HGSADC algorithm

As for most meta-heuristics, evolutionary ones in particular, HGSADC relies on a set
of correlated parameters and configuration choices for its key operators. In order to
identify good parameter values, we adopted the meta-calibration approach (Mercer and
Sampson, 1978), which was shown to perform particularly well for genetic-algorithm
calibration (Smit and Eiben, 2009).

Meta-calibration involves solving the problem of parameter optimization by means of
meta-heuristics. In this scope, any evaluation of a set of parameters implies launching
automatically the algorithm to be calibrated (HGSADC here) on a restricted set of
training instances and measuring its effectiveness. We used a meta-evolutionary method,
the Evolutionary Strategy with Covariance Matrix Adaptation (CMA-ES) of Hansen
and Ostermeier (2001) to perform this optimization, as it necessitates few parameter
evaluations to converge towards good solutions.

The calibration was run independently for each problem class, with the dual objec-
tive of measuring the dependency of the best parameter set upon the problem class,
and identifying an eventual set of parameters suitable for all problem classes considered.
Table 1 provides a summary of HGSADC parameters, together with the range of values
we estimate to be appropriate due to either the parameter definition (e.g., probabilities
and proportions), conceptual requirements (a local distance measure is assumed to im-
plicate not more than 25% of the population), or values found in the literature (e.g.,
subpopulations sizes). The calibration results for each class, along with the final choice
of parameter values for HGSADC, are also presented.

Table 1: Calibration Results

Parameter Range PVRP MDVRP MDPVRP Final Params
µ Population size [5,200] 18 24 30 25
λ Number of offspring in a generation [1,200] 33 87 146 40 / 70 / 100

el
Proportion of elite individuals,
such that nbElit = el × µ [0,1] 0.38 0.45 0.36 0.4

nc
Proportion of close individuals considered for
distance evaluation, such that nclose = nc×µ [0,0.25] 0.24 0.18 0.15 0.2

Pm Education rate [0,1] 0.86 0.86 0.70 1.0
Prep Repair rate [0,1] 0.57 0.61 0.33 0.5
h Granularity threshold in RI [0,1] 0.53 0.36 0.35 0.4

ξREF Reference proportion of feasible individuals [0,1] 0.10 0.30 0.20 0.2

Except for the generation size λ, the optimum set of parameters appears independent
of the problem type. We therefore averaged these results to get the final parameter
values of Table 1, with the exception of the probability to educate a new individual (the
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education rate Pm). Calibrated education rates are generally very high, with an average
value of 0.8. Additional tests indicated similarly good performance as long as Pm ≥ 0.7.
Hence we selected the value Pm = 1, which corresponds to a systematic education of all
individuals, and reduces the number of parameters in use. The only parameter that is
problem dependent is λ, which is set to 40 for the PVRP, 70 for MDVRP, and 100 for
the MDPVRP.

5.2 Results on periodic and multi-depot VRPs

HGSADC was tested on the MDVRP and PVRP benchmark instances of Cordeau et al.
(1997), containing respectively 33 and 42 instances of various sizes, from 50 to 417 cus-
tomers. It was compared to state-of-the-art methods for these problems: the tabu search
of Cordeau et al. (1997) (CGL), the scatter search of Alegre et al. (2007) (ALP), and the
variable neighborhood search of Hemmelmayr et al. (2009) (HDH), for the PVRP; CGL
and the adaptive large neighborhood search of Pisinger and Ropke (2007) (PR) for the
MDVRP.

To further study the behavior of HGSADC with respect to the number of iter-
ations, three different stopping conditions were tested for (ItNI , Tmax), (104, 10min),
(2.104, 30min), and (5.104, 1h). In all cases, the diversification parameter was set to
Itdiv = 0.4ItNI . The instance set contains a few very large problems with more than 450
visits to customers over the different periods, for which the population size was reduced
by two, and the computation time limit was increased.

Tables 2 and 3 sum up the comparison of average results from 10 independent runs
of HGSADC, with various stopping conditions, to results reported for state-of-the-art
algorithms with various number of iterations. For each algorithm, we report the averages
for the 42 PVRPs and the 33 MDVRPs of the instance computation time (line Time)
and percentage of deviation from the BKS (Gap). Detailed results are provided in the
e-companion 7.4.

Table 2: HGSADC performance on PVRP instances

CGL (1 run) HDH (Avg. 10 runs) ALP HGSADC (Avg. 10 runs)
15.103 it 107 it 108 it 109 it — 104 it 2.104 it 5.104 it

Time 4.28 min 3.34 min — — — 5.56 min 13.74 min 28.21 min
Gap +1.82% +1.45% +0.76% +0.39% +1.40% +0.20% +0.12% +0.07%

With respect to these experiments, HGSADC seems to perform remarkably well in
comparison to other algorithms. During short runs of 104 iterations, an average overall
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Table 3: HGSADC performance on MDVRP instances

CGL (1 run) PR (Avg. 10 runs) HGSADC (Avg. 10 runs)
15.103 it 25.103 it 50.103 it 104 it 2.104 it 5.104 it

Time small 1.97 min 3.54 min 4.24 min 8.99 min 19.11 min
Gap +0.96% +0.52% +0.34% -0.01% -0.04% -0.06%

gap of +0.20% relative to the previous BKS is achieved for the PVRP, compared to more
than +1.40% for the other approaches. Similar performance is observed for MDVRP,
with an average gap of −0.01% indicating that the new method is on average better
than the previous BKS on all instances. Actually, during these short runs, HGSADC
produced new best average results for 41 out of 42 PVRP instances and for all 33 MDVRP
instances. It is noteworthy that the average standard deviation per instance obtained
by HGSADC is 0.15% for PVRP and 0.05% for MDVRP, meaning that the algorithm is
very reliable. New BKS were obtained for 20 instances out of 42 for the PVRP, and 9
instances our of 33 for the MDVRP.

The average computation time is short, barely higher than for other methods, and
suitable for many operational decisions. For MDVRP problems especially, only 2.15 min
are required, on average, to find the final solution for short MDVRP runs, the rest of
the time being spent to reach the time-limit termination criteria. Using the termination
criteria (5.104, 1h), previous BKS are retrieved on all runs for 21 instances out of 33,
while known optimal solutions from Baldacci and Mingozzi (2009); Baldacci et al. (2010)
are retrieved on every run. It is noticeable that HGSADC obtains in a few minutes
better PVRP results than HDH, the previous state-of-the-art method for PVRP, even
when HDH runs for 109 iterations (100 times the number of iterations for standard HDH
runs), corresponding to some 300 minutes of run time.

No benchmark instance set was available for the MDPVRP. We therefore built a set
of 10 MDPVRP instances by merging the PVRP and MDVRP instances of the second
set provided by Cordeau et al. (1997). Each of the 10 MDVRP instances was combined
with the PVRP instance with the same number of customers. The number of periods
and the patterns were taken from the PVRP instance, the depots from the MDVRP one,
and the number of vehicles was fixed to the smallest number such that a feasible solution
could be found by HGSADC. The full data sets can be obtained from the authors.

The maximum run time was increased to 30 minutes for these experiments (ItNI re-
mains set to 104) to account for the higher difficulty of the MDPVRP. The average results
of 10 runs of HGSADC on these new instances are reported in the e-companion 7.4, and
compared to the best solutions ever found during all our experiments. An average error
gap of +0.42% was observed, which is reasonable given the increased problem difficulty.
The average standard deviation per instance is now 0.26%, illustrating the increased irreg-
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ularity of the search space. Keeping the best solution of the 10 runs leads to significantly
better solutions, with an average error gap of +0.13%, but requires more computational
resources. This approach corresponds to the well-known independent-search strategy for
parallel meta-heuristics (Crainic and Toulouse, 2010). More sophisticated parallel-search
strategies, based on cooperation, in particular, could be used to improve the exploration
of the search space and reach better results.

5.3 Results on the capacitated VRP

The CVRP is a special case of multi-depot periodic problems, when d = 1 and t = 1.
HGSADC can thus be used to address the CVRP with very minor changes in the distance
measure and the parameters, even though its operators were designed for multi-period
settings.

Detailed results of experiments on 34 well-known CVRP instances from the literature
are reported in the e-companion 7.5. Very competitive results to state-of-the-art methods
were obtained in similar computation times. An overall gap to the BKS of 0.11% was thus
observed, which is equal to the performance of the best, highly specialized, algorithm in
the literature (Nagata and Bräysy, 2009). We also retrieved 12 new best known solutions
for Golden et al. (1998) instances. The diversity management method we propose seems
to compensate for the lack of problem-tailored operators, and opens several promising
avenues of research.

5.4 Sensitivity analysis of algorithmic components

A second set of experiments targeted the analysis of the impact on the performance of
the proposed meta-heuristic of various algorithmic components. Sensitivity analysis was
thus performed on “traditional” hybrid genetic components by “removing” each of them
in turn.

The “No-Education” version was obtained by setting the probability of offspring edu-
cation Pm to 0, which also meant that no repair was performed. In the “No-Population”
version, λ = 1, µ = 0, and nbElite = 1. Thus, only one individual appears in each
subpopulation, the population management mechanism then behaving as a steady-state
population management where the offspring replaces the parent only if it improves. The
crossover either combines an individual with itself, or both feasible and infeasible in-
dividuals. Only one parent was selected by binary tournament for the “No-Crossover”
version, underwent education and was inserted into the population. The parent selection
was performed only in the feasible subpopulation for the “No-Infeasible” algorithm, a
constant high penalty value being enforced through the search. Finally, setting the re-
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pair probability Prep to 0 yielded the “No-Repair” version. The results are reported in
Table 4, each column corresponding to the average time and gap to BKS of HGSADC
without the respective component.

Table 4: Sensitivity analysis on main HGSADC components

Benchmark No-Edu No-Pop No-Cross No-Inf No-Rep HGSADC
PVRP T 0.89 min 4.21 min 4.42 min 5.39 min 5.20 min 5.56 min

% +4.24% +2.19% +1.94% +0.80% +0.19% +0.20%
MDVRP T 0.83 min 3.49 min 4.21 min 4.45 min 3.58 min 4.24 min

% +7.10% +9.54% +7.04% +0.45% +0.07% -0.01%
MDPVRP T 0.89 min 9.29 min 11.21 min 15.47 min 13.22 min 15.96 min

% +25.22% +16.90% +8.39% +1.40% +0.54% +0.42 %

It is noticeable that all these algorithmic components play an important role in the
good performance of the proposed meta-heuristic, the most crucial being education fol-
lowed by population, crossover, infeasible solutions, and repair to a lesser extent.

The second part of the sensitivity analysis was dedicated to the adaptive population
diversity control mechanism, which is a cornerstone of the proposed methodology. We
therefore compared its performance to those of two mechanisms from the literature,
mechanisms that proved their worth in their respective contexts. Two new algorithms
were thus derived from HGSADC to conform to each of these two rules, as well as a
variant without diversity control (identified as HGS0 ).

The HGS1 variant involves a dispersal rule in the objective space as in Prins (2004).
Let F be the fitness function, defined as the cost, and ∆F a fitness spacing parameter.
Acceptance of an individual I in the population is granted only if |F (I) − F (C)| ≥ ∆F

for all individuals C already in the population. The second variant, named HGS2, relies
on the population management framework of Sörensen and Sevaux (2006). Let ∆D be a
spacing parameter and δH the distance measure presented in Section 4.3. To be added to
the population, an individual I must obey a dispersal rule, i.e., it must verify δH(I, C) ≥
∆D for all C already in the population. In our implementation, the value of ∆D changes
during run time: strong distance constraints are imposed at the beginning of the search
to encourage exploration, whereas the value of ∆D decreases progressively toward zero
as the method approaches the termination criteria, to encourage the exploitation of good
solutions. For both methods, we use an incremental population management and only
individuals with a fitness below the median of the population can be discarded.

Table 5 reports the average gaps to BKS and average run times for each method on the
instances presented in Section 5.2. One observes that the results verify that applying the
dispersal rule with respect to the solution space (HGS2) is more effective than using the
dispersal rule with respect to the objective space (HGS1), which is an indication of the
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Table 5: Comparison of population-diversity management mechanisms

Benchmark HGS0 HGS1 HGS2 HGSADC
PVRP T 4.68 min 5.15 min 5.37 min 5.56 min

% +0.70% +0.62% +0.39% +0.20%
MDVRP T 3.37 min 3.55 min 4.49 min 4.24 min

% +0.80% +0.61% +0.10% -0.01%
MDPVRP T 13.16 min 14.00 min 15.94 min 15.96 min

% +2.95% +2.95% +2.37% +0.42%

interest of the hybrid evolution strategy of HGSADC. One also observes that proceeding
without diversity management yields rather poor results compared to all other strategies.
The best results are definitely obtained with the proposed adaptive diversity management
method, which yields the best average gap for an equivalent computational effort.

Figure 4: Population entropy and error gap to the BKS for the diversity management
strategies on MDPVRP instance pr03

Figure 4 illustrates the behavior of the four population-diversity management strate-
gies during one of the runs (150 seconds) on MDPVRP instance pr03, as measured by
the population entropy and the gap to the BKS. The population entropy is computed
as the average distance from one individual to another. All algorithms close the gap to
less than 2.50% within a few seconds. The methods that use diversity management are
able, however, to efficiently continue searching and, thus, to reach better solutions. The
proposed HGSADC meta-heuristic is still regularly improving its best found solution as
the time limit approaches, despite being already very close to the best-known solution
(a gap of 0.19% only). The no-diversity management strategy, HGS0, provides a perfect
example of premature convergence. In less than one minute, one observes no additional
improvement of the best solution, very low entropy, and quite likely very little evolution
in the population. HGSADC, on the other hand, maintains a healthy diversity in the
population, as illustrated by a rather high level of entropy at 0.3. In comparison, the
two alternate strategies, HGS1 and HGS2, display lower entropy levels, around 0.1.
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We conclude that the proposed diversity management mechanism is particularly effec-
tive for the problem classes considered in this paper. In the experiments we conducted,
it allowed to avoid premature convergence and to reach high quality solutions.

6 Conclusions and Research Perspectives

We proposed a new hybrid genetic search meta-heuristic to efficiently address several
classes of multi-depot and periodic vehicle routing problems, for which few efficient algo-
rithms are currently available. Given the great practical interest of the problem consid-
ered, the proposed methodology opens the way to significant progress in the optimization
of distribution networks.

The paper introduces several methodological contributions, in particular, in the cross-
over and education operators, the management of infeasible solutions, the individual
evaluation procedure driven both by solution cost and the contribution to population
diversity and, more generally, the adaptive population management mechanism that
enhances diversity, allows a broader access to reproduction, and preserves the memory of
what characterizes good solutions represented by the elite individuals. The combination
of these concepts provides the capability of the proposed Hybrid Genetic Search with
Adaptive Diversity Control meta-heuristic to reach high quality solutions on the literature
benchmarks. The method actually identifies either the best known solutions, including
the optimal ones, or new best solutions for all benchmark instances, thus outperforming
the current state-of-the-art meta-heuristics for each particular problem class. Moreover,
with minimal adjustments, it obtains comparable results to the best methods for the
CVRP.

Among the many interesting avenues of research, we mention the interest to explore
the impact of the adaptive diversity control mechanism for other classes of problems, and
to validate its good performance using theoretical models. We also plan to generalize the
methodology to problems with additional attributes, and thus progress toward addressing
rich VRP problem settings, as well as real world applications.
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7 Annex - Details on formulations, procedures, and

computational experiments

Section 7.1 details the multi-depot periodic VRP formulation and the transformation
proposition of the MDPVRP into the PVRP. Additional precisions and examples for the
Split procedures are given in Section 7.2. The remaining three sections are focused on the
experimental studies, and provide respectively details on time comparisons between dif-
ferent CPUs (Section 7.3), detailed results on multi-depot and periodic VRP benchmarks
(Section 7.4), and the results for the CVRP benchmarks (Section 7.5).

7.1 Problem formulation and transformations

A PVRP formulation was introduced in Cordeau et al. (1997). We now introduce a
MDPVRP formulation, as a five-index vehicle flow formulation, and show how it reduces
to the PVRP.

Let cij be the routing cost from vertex vi to vertex vj ∈ V . Let the binary constants
apl be equal to 1 if and only if day l belongs to visit combination (pattern) p and 0
otherwise. Two sets of binary variables are defined. For every vi ∈ VCST, p ∈ Li, and
vo ∈ VDEP, yipo equals 1 if and only if customer i is assigned to visit combination p and
depot o. For any (vi, vj) ∈ V2, k = 1 . . .m, l = 1 . . . t, and vo ∈ VDEP, xijklo takes value
1 if and only if vehicle k coming from depot o on day l visits vj immediately after vi.
Using by convention τo = 0,∀vo ∈ VDEP, the MDPVRP can be stated as follows:

Minimize
∑
vi∈V

∑
vj∈V

m∑
k=1

t∑
l=1

∑
vo∈VDEP

cijxijklo (5)
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Subject to:
∑
p∈Li

∑
vo∈VDEP

yipo = 1 vi ∈ VCST

(6)∑
vj∈V

m∑
k=1

xijklo −
∑
p∈Li

aplyipo = 0 vi ∈ VCST ; vo ∈ VDEP ; l = 1 . . . t

(7)∑
vj∈V

xojklo ≤ 1 vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t

(8)∑
vj∈V

xijklo = 0 vi ∈ VDEP ; vo ∈ VDEP ; vo 6= vi ; k = 1 . . .m ; l = 1 . . . t

(9)∑
vj∈V

xjiklo −
∑
vj∈V

xijklo = 0 vi ∈ V ; vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t

(10)∑
vi∈V

∑
vj∈V

qixijklo ≤ Q vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t

(11)∑
vi∈V

∑
vj∈V

(cij + τi)xijklo ≤ T vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t

(12)∑
vi∈S

∑
vj∈S

xijklo ≤ |S| − 1 S ∈ VCST ; |S| ≥ 2 ; vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t

(13)

xijklo ∈ {0, 1} vi ∈ V ; vj ∈ V ; vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t
(14)

yipo ∈ {0, 1} vi ∈ V ; p ∈ Li ; vo ∈ VDEP

(15)

Constraints 6 ensure that exactly one depot and one visit combination are assigned
to each customer. Constraints 7 guarantee that customer visits occur only on the periods
related to the chosen visit combination on a vehicle coming from the assigned depot, while
constraints 8 and 9 enforce respectively the single use of vehicles, and compatibility issues
between depot assignments and route starting and ending points. Equations 10 are flow
conservation constraints and 11 and 12 enforce limits on the capacity of vehicles and the
duration of routes. Subtours are eliminated through 13. This MDPVRP model includes
both the MDVRP and the PVRP as a special case when t = 1, and d = 1 respectively.

Cordeau et al. (1997) showed that an MDVRP could be reduced into a PVRP, by
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associating a different period to each depot, such that each customer i has a frequency
fi = 1 and may be served during any period. A particularity of the resulting PVRP is
that routing costs cijl depend upon the period l considered.

In the same spirit, the MDPVRP also happens to have the same general structure
as the PVRP. Indeed, a simple change of indexes associating a period to each (depot,
period) pair, transforms the MDPVRP formulation into a PVRP. This transformation is
summarized in Proposition 2.

Proposition 2. The MDPVRP reduces to a PVRP with period-dependent routing costs.

Proof: Let I be an MDPVRP instance with t periods, d depot vertices in VDEP, and
m vehicles per depot. Each customer i ∈ VCST has frequency fi and pattern list Li =
{{pi11, . . . , pi1fi}, . . . , {p

i
|Li|1, . . . , p

i
|Li|fi}}. We now define an equivalent PVRP instance J ,

which has t′ = td periods, a single depot vertex v′0 ∈ V ′dep, the same set of customers
V ′cus = VCST, and m vehicles available at each period. Each customer i in the new
problem still must be served with frequency f ′i = fi, with a pattern list L′i containing
d × |Li| patterns defined by Equation 16. Also, travel costs (durations) c′ijl in the new
PVRP are period-dependent to take into account that vehicles operating in period l in
the new PVRP were based at depot vbl/dc in the MDPVRP. The new distance between
v′0 and any customer vi on period l is thus equal to cvbl/dci in the old problem, while all
other distances between customer pairs remain constant among periods.

L′i =
⋃

o ∈ {1, . . . , d}
r ∈ {1, . . . , |Li|}

{pir1 + ot, . . . , pirfi + ot} (16)

Solving the PVRP instance J leads to a solution of the MDPVRP instance I in a
straightforward manner, as the routes for period l and depot vo in I correspond to the
routes of period l + ot in J . �

7.2 The Split algorithm

The Split algorithm introduced in Section 4.2 to extract routes from the giant tour
reduces the problem of finding the route delimiters to a shortest path problem.

For a given visiting sequence, let ci be the customer in position i. Define an auxiliary
graph H = (V ,A), where V contains n + 1 nodes indexed from 0 to n. For each pair of
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nodes i < j, arc (i, j) represents the trip ri+1,j starting from the depot, visiting customers
ci+1 to cj, and coming back to the depot. For each trip, travel time and load are given by
Equations (17) and (18). If the total load of a trip including arc (i, j) exceeds Qmax = 2Q,
arc (i, j) is excluded from A. This avoids solutions that are too far from feasibility and
reduces the number of arcs. The cost of arcs is noted φ(ri+1,j) and accounts for penalized
infeasible solutions:

q(ri+1,j) =
∑

l=i+1,j

qSl
(17)

t(ri+1,j) = c0,Si+1
+

∑
l=i+1,j−1

(sSl
+ cSl,Sl+1

) + sSj
+ cSj ,0 (18)

An optimal segmentation of the giant tour into routes consists in identifying a minimum-
cost path from 0 to n inH containing less than m edges, where m is the number of vehicles
available per period. This minimum-cost path can be computed in m iterations of the
Bellman-Ford algorithm (see Cormen et al., 2001, for an implementation), each iteration
executing in O(n2). When the demand or the distance between customers is “large”, it
is possible to impose a bound b on the number of valid trips ending at a given customer
i. Thus the complexity of an iteration becomes O(n× b), and the Split algorithm works
in O(m× n× b).

Figure 5 illustrates the Split algorithm on a sequence of 5 customers c1 to c5. The first
graph shows the cost of each arc and the demands at nodes (in bold). In this example,
the vehicle capacity is set to Q = 6, thus Qmax = 12, the maximum route duration
to D = 150, all customers i have an identical service time di = 10, and the penalty
parameters are ωQ = 10 and ωD = 1. The corresponding graph H displays on each arc
the route cost including penalties. For example, the route servicing customers c3, c4, and
c5 has a cost of 165 + 20 + 15, the penalties of 20 and 15 corresponding to the load excess
of two units and duration, respectively. The optimal solution of the minimum-cost path
problem is of cost 260, and made up of the three following routes: route 1 visits c1, route
2 visits c2, c3, and c4, and route 3 visits c5.

Note that in the actual implementation of the algorithm, building the graph H ex-
plicitly is not mandatory. A detailed example of pseudo-code for this procedure can be
found in (Chu et al., 2006).

7.3 Comparison of run times

All CPU times in this paper were scaled into their equivalent Pentium IV 3.0 Ghz run
times. This conversion is based on the assumption that CPU time is approximately
linearly proportional to the amount of floating point operations per second (flop/s) per-
formed by the processor. Various types of processors have been tested by solving dense
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Figure 5: Illustration of a Split graph and shortest-path solution

systems of linear equations, to report their (flop/s) measures in Dongarra (2009). We
provide in Table 6 these values for each of the algorithms we compared with, along with
the resulting scaling factors used for time conversions. No (flop/s) measure could be
found for Pentium IV 2.8 Ghz, Pentium IV 3.2 Ghz, and we made the assumption that
the processor speed should be approximately linear with frequency among the processors
from the same family.

Table 6: Scaling factors for computation times
Authors Processor MFlop/s Factor
This paper & Nagata and Bräysy (2009) AMD Opteron 250 2.4 Ghz 1291 0.82
Mester and Braysy (2007) Pentium IV 2.8 Ghz — 0.92
Pisinger and Ropke (2007) Pentium IV 3.0 Ghz 1573 1.00
Hemmelmayr et al. (2009) Pentium IV 3.2 Ghz — 1.08
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7.4 Detailed results on PVRP, MDVRP and MDPVRP

Tables 7, 8, and 9 present respectively PVRP, MDVRP and MDPVRP results. The first
group of columns (1-4) display the instance identifier, number of customers, vehicles, and
periods. The next group of columns lists the state-of-the-art methods: the tabu search
of Cordeau et al. (1997) (CGL), the scatter search of Alegre et al. (2007) (ALP), and the
variable neighborhood search of Hemmelmayr et al. (2009) (HDH) for the PVRP; CGL
and the Adaptive Large Neighborhood Search of Pisinger and Ropke (2007) (PR) for the
MDVRP (none are available for MDPVRP). This list is followed by the results of the
method we propose. We indicate in boldface the best average result among algorithms
for each instance, as well as, in the last two columns, the previous best-known solution
(BKS), and the best solution obtained by HGSADC during all our experiments. Opti-
mality has been proved for several solutions marked with * by Baldacci and Mingozzi
(2009); Baldacci et al. (2010). When upper bounds are improved, the new state-of-the-
art solutions are underlined. Finally, the last two lines provide average measures over all
instances: the average percentage of error relative to the previous BKS, and computation
time for each method.

7.5 Experiments on capacitated VRP instances

The VRP appears naturally as a special case of the multi-depot periodic VRPs. The
HGSADC method is flexible enough to be used to address this fundamental problem
with the following minor changes:

• The distance measure of Section 4.3, originally designed for periodic problems, is
replaced by the broken pairs distance (Prins, 2009) measuring the proportion of arc
similarities between two solutions;

• The PIX crossover is replaced by the simple OX crossover (Prins, 2004) for per-
mutation based solutions. Routes are also concatenated in a cyclic way around the
depot to produce the giant tour representation. This should better match related
customer visits in the crossover;

• Finally, as the route improvement local search procedure tackles now a large num-
ber of customers visits in the same day (up to 483 visits in Golden et al. (1998)
instances), the number of neighbor nodes taken into account in moves has been
reduced to a small number (20).

All other operators and parameters, including our adaptive diversity management scheme,
remain identical.
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The algorithm is tested on the traditional benchmarks from the VRP literature. The
14 instances (p01-p14) of Christofides et al. (1979), ranging from 50 to 199 customers, are
geographically randomly distributed for the 10 first instances, and otherwise clustered.
The 20 large-scale instances (pr01-pr20) of Golden et al. (1998), range from 200 to 483
customers and present geometric symmetries.

Table 10 compares the average results of HGADSC to the actual state-of-the-art algo-
rithms on these benchmarks. The termination criteria (ItNI , Tmax) = (104,∞) is used to
perform experiments in a number of iterations and computation time similar to the liter-
ature. The first two columns display the instance identifier and the number of customers,
while the next group of columns compare the average performance of HGSADC to the
performance of the hybrid genetic algorithm of Prins (2004) (P), the guided evolution
strategies of Mester and Braysy (2007) (MB), and the edge-assembly crossover based
memetic algorithm of Nagata and Bräysy (2009) (NB). On the CVRP, our algorithm
differs from (P) only by its population management, infeasible solution use, and the way
neighborhoods are restricted in the education operator. These experiments enables thus
to state on the benefits of the concepts we introduce. Also, (MB) and (NB) constitute
the actual state-of-the-art algorithms for the CVRP. We indicate in boldface the best
average result among algorithms for each instance, as well as, in the last two columns,
the previous best-known solution (BKS), (found in (MB), (NB) and Zachariadis and Ki-
ranoudis, 2010), and the best solution obtained by HGSADC during all our experiments.
When upper bounds are improved, the new state-of-the-art solutions are underlined. The
last two lines provide average measures over all instances: the average percentage of error
relative to the previous BKS, and computation time for each method.

Table 11 finally reports the results of HGADSC with different termination criteria:
ItNI = {104, 2.104, 5.104}. The table format remains the same as previously.

These experiments reveal that HGSADC is competitive with state-of-the-art methods
in terms of solution quality and computation time, even though it has no been designed
for the CVRP. The results of Table 11 with increased computation times also under-
line the capability of HGSADC to maintain a very efficient search throughout the run.
With a reasonably small increase in the run time (26.37 minutes for 2.104 iterations
without without improvement compared to 17.69 minutes for Nagata and Bräysy (2009)
state-of-the-art algorithm), HGSADC solution quality already improves upon previously
published algorithms.

In addition, 12 new best known solutions are reported on Golden et al. (1998) in-
stances. All these solutions present equal numbers of vehicles and shorter distances than
previous BKS from the literature. In the special case of problem pr07, our algorithm
also succeeds in finding a solution with one less route (8 routes instead of 9 for previous
BKS), and also shorter distance. This solution is reported in details:
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pr07 – Total Distance: 10102.7 – 8 vehicles

Route Distance Load Customer Visits

1 1298.05 900
0 22 58 94 130 166 167 168 204 240 276 312 348 347 311 275 239 203 202

238 274 310 346 345 309 273 237 236 272 308 344 343 307 271 235 199 163

127 91 55 20 0

2 1263.58 900
0 23 59 95 131 132 133 169 205 241 277 313 349 350 314 278 242 206 207

243 279 315 351 352 316 280 244 208 172 171 170 134 135 136 137 138 102

101 100 99 98 97 96 60 61 25 24 0

3 1179.91 900
0 26 62 63 64 65 66 67 103 139 175 174 173 209 245 281 317 353 354 318

282 246 210 211 247 283 319 355 356 320 284 248 212 176 177 141 140 104

105 69 68 32 31 30 29 28 27 0

4 1298.33 900
0 1 36 35 72 71 107 143 179 215 216 252 217 218 254 290 326 325 289 253

288 324 360 359 323 287 251 250 286 322 358 357 321 285 249 213 214 178

142 106 70 34 33 0

5 1267.10 900
0 6 42 41 40 39 38 74 73 109 110 146 147 148 149 150 186 222 258 294 330

329 293 257 221 185 184 220 256 292 328 327 291 255 219 183 182 181 145

180 144 108 37 2 3 4 5 0

6 1263.58 900
0 8 7 43 44 80 79 78 77 76 75 111 112 113 114 115 151 187 223 259 295 331

332 296 260 224 188 189 225 261 297 333 334 298 262 226 190 154 153 152

116 117 118 82 81 45 9 0

7 1242.66 900
0 11 10 46 47 83 119 120 156 155 191 227 263 299 335 336 300 264 228 192

193 229 265 301 337 338 302 266 230 194 158 157 121 122 123 124 125 89

88 87 86 85 84 48 49 13 12 0

8 1289.48 900
0 21 57 56 92 93 129 128 164 165 201 200 198 234 270 306 342 341 305 269

233 197 196 232 268 304 340 339 303 267 231 195 159 160 161 162 126 90

54 53 52 51 50 14 15 16 17 18 19 0
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Table 7: Results on Cordeau et al. (1997) PVRP instances
Average BKS

Inst n m p CGL ALP HDH HGSADC T(min) prev BKS HGSADC
(1 run) — (10 runs) (10 runs) — (all exp.)

p01 50 3 2 524.61 531.02 524.61 524.61 0.22 524.61* 524.61*
p02 50 3 5 1330.09 1324.74 1332.01 1322.87 0.44 1322.87 1322.87
p03 50 1 5 524.61 537.37 528.97 524.61 0.18 524.61* 524.61*
p04 75 6 5 837.94 845.97 847.48 836.59 1.05 835.26* 835.26*
p05 75 1 10 2061.36 2043.74 2059.74 2033.72 2.27 2027.99 2024.96
p06 75 1 10 840.30 840.10 884.69 842.48 0.89 835.26* 835.26*
p07 100 4 2 829.37 829.65 829.92 827.02 0.88 826.14 826.14
p08 100 5 5 2054.90 2052.51 2058.36 2022.85 2.54 2034.15 2022.47
p09 100 1 8 829.45 829.65 834.92 826.94 1.01 826.14 826.14
p10 100 4 5 1629.96 1621.21 1629.76 1605.22 1.80 1593.45 1593.43
p11 126 4 5 817.56 782.17 791.18 775.84 4.60 779.06 770.89
p12 163 3 5 1239.58 1230.95 1258.46 1195.29 5.34 1195.88 1186.47
p13 417 9 7 3602.76 — 3835.90 3599.86 40.00 3511.62 3492.89
p14 20 2 4 954.81 954.81 954.81 954.81 0.08 954.81* 954.81*
p15 38 2 4 1862.63 1862.63 1862.63 1862.63 0.17 1862.63* 1862.63*
p16 56 2 4 2875.24 2875.24 2875.24 2875.24 0.32 2875.24* 2875.24*
p17 40 4 4 1597.75 1597.75 1601.75 1597.75 0.27 1597.75* 1597.75*
p18 76 4 4 3159.22 3157.00 3147.91 3131.09 0.89 3136.69 3131.09
p19 112 4 4 4902.64 4846.49 4851.41 4834.50 2.26 4834.34 4834.34
p20 184 4 4 8367.40 8412.02 8367.40 8367.40 4.01 8367.40 8367.40
p21 60 6 4 2184.04 2173.58 2180.33 2170.61 0.90 2170.61* 2170.61*
p22 114 6 4 4307.19 4330.59 4218.46 4194.23 4.27 4193.95 4193.95
p23 168 6 4 6620.50 6813.45 6644.93 6434.10 4.29 6420.71* 6420.71*
p24 51 3 6 3704.11 3702.02 3704.60 3687.46 0.32 3687.46* 3687.46*
p25 51 3 6 3781.38 3781.38 3781.38 3777.15 0.59 3777.15* 3777.15*
p26 51 3 6 3795.32 3795.33 3795.32 3795.32 0.33 3795.32* 3795.32*
p27 102 6 6 23017.45 22561.33 22153.31 21885.70 3.52 21912.85 21833.87
p28 102 6 6 22569.40 22562.44 22418.52 22272.60 4.67 22246.69* 22242.51**
p29 102 6 6 24012.92 23752.15 22864.23 22564.05 3.86 22543.75* 22543.75*
p30 153 9 6 77179.33 76793.99 75579.23 74534.38 9.99 74464.26 73875.19
p31 153 9 6 79382.35 77944.79 77459.14 76686.65 10.00 76322.04 76001.57
p32 153 9 6 80908.95 81055.52 79487.97 78168.82 10.00 78072.88 77598.00
pr01 48 2 4 2234.23 — 2209.11 2209.02 0.29 2209.02 2209.02
pr02 96 4 4 3836.49 — 3787.51 3768.86 2.49 3774.09 3767.50
pr03 144 6 4 5277.62 — 5243.09 5174.80 7.32 5175.15 5153.54
pr04 192 8 4 6072.67 — 6011.39 5936.16 10.00 5914.93 5877.37
pr05 240 10 4 6769.80 — 6778.00 6651.76 20.00 6618.95 6581.86
pr06 288 12 4 8462.37 — 8461.45 8284.94 20.00 8258.08 8207.21
pr07 72 3 6 5000.90 — 5007.01 4996.14 1.49 4996.14 4996.14
pr08 144 6 6 7183.39 — 7119.61 7035.52 10.00 6989.81 6970.68
pr09 216 9 6 10507.34 — 10259.09 10162.22 20.00 10075.40 10038.43
pr10 288 12 6 13629.25 — 13342.41 13091.00 20.00 12924.66 12897.01
Avg Gap to BKS +1.82% +1.40% +1.45% +0.20%

Avg Time 4.28 min — 3.34 min 5.56 min

** Optimality was proven within 0.02% precision, such that some “optimal” solutions
can still be slightly improved
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Table 8: Results on Cordeau et al. (1997) MDVRP instances

Average BKS
Inst n m d CGL PR HGSADC T(min) prev BKS HGSADC

(1 run) (5-10 runs) (10 runs) — (all exp.)
p01 50 4 4 576.87 576.87 576.87 0.23 576.87* 576.87*
p02 50 2 4 473.87 473.53 473.53 0.21 473.53* 473.53*
p03 75 3 2 645.15 641.19 641.19 0.43 641.19 641.19
p04 100 8 2 1006.66 1006.09 1001.23 1.94 1001.04 1001.04
p05 100 5 2 753.34 752.34 750.03 1.06 750.03 750.03
p06 100 6 3 877.84 883.01 876.50 1.14 876.50* 876.50*
p07 100 4 4 891.95 889.36 884.43 1.55 881.97* 881.97*
p08 249 14 2 4482.44 4421.03 4397.42 10.00 4387.38 4372.78
p09 249 12 3 3920.85 3892.50 3868.59 9.50 3873.64 3858.66
p10 249 8 4 3714.65 3666.85 3636.08 9.82 3650.04 3631.11
p11 249 6 5 3580.84 3573.23 3548.25 7.14 3546.06 3546.06
p12 80 5 2 1318.95 1319.13 1318.95 0.52 1318.95* 1318.95*
p13 80 5 2 1318.95 1318.95 1318.95 0.57 1318.95 1318.95
p14 80 5 2 1360.12 1360.12 1360.12 0.55 1360.12 1360.12
p15 160 5 4 2534.13 2519.64 2505.42 1.92 2505.42 2505.42
p16 160 5 4 2572.23 2573.95 2572.23 1.97 2572.23 2572.23
p17 160 5 4 2720.23 2709.09 2709.09 2.14 2709.09 2709.09
p18 240 5 6 3710.49 3736.53 3702.85 4.52 3702.85 3702.85
p19 240 5 6 3827.06 3838.76 3827.06 4.20 3827.06 3827.06
p20 240 5 6 4058.07 4064.76 4058.07 4.37 4058.07 4058.07
p21 360 5 9 5535.99 5501.58 5476.41 10.00 5474.84 5474.84
p22 360 5 9 5716.01 5722.19 5702.16 10.00 5702.16 5702.16
p23 360 5 9 6139.73 6092.66 6078.75 10.00 6078.75 6078.75
pr01 48 2 4 861.32 861.32 861.32 0.17 861.32 861.32
pr02 96 4 4 1314.99 1308.17 1307.34 0.76 1307.34 1307.34
pr03 144 6 4 1815.62 1810.66 1803.80 1.91 1806.60 1803.80
pr04 192 8 4 2094.24 2073.16 2059.36 5.22 2060.93 2058.31
pr05 240 10 4 2408.10 2350.31 2340.29 9.56 2337.84 2331.20
pr06 288 12 4 2768.13 2695.74 2681.93 10.00 2685.35 2676.30
pr07 72 3 6 1092.12 1089.56 1089.56 0.34 1089.56 1089.56
pr08 144 6 6 1676.26 1675.74 1665.05 2.05 1664.85 1664.85
pr09 216 9 6 2176.79 2144.84 2134.17 6.10 2136.42 2133.20
pr10 288 12 6 3089.62 2905.43 2886.59 10.00 2889.49 2868.26
Avg Gap to BKS +0.96% +0.34% -0.01%

Avg Time small 3.54 min 4.24 min
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Table 9: Results on new MDPVRP instances

Inst n m d t Average T(min) Best BKS
(10 runs) (all exp.)

pr01 48 1 4 4 2019.07 0.35 2019.07 2019.07
pr02 96 1 4 4 3547.45 1.49 3547.45 3547.45
pr03 144 2 4 4 4491.08 7.72 4480.87 4480.87
pr04 192 2 4 4 5151.73 22.10 5144.41 5134.17
pr05 240 3 4 4 5605.60 30.00 5581.10 5570.45
pr06 288 3 4 4 6570.28 30.00 6549.57 6524.92
pr07 72 1 6 6 4502.06 2.18 4502.02 4502.02
pr08 144 1 6 6 6029.58 7.96 6023.98 6023.98
pr09 216 2 6 6 8310.19 27.79 8271.66 8257.80
pr10 288 3 6 6 9972.35 30.00 9852.87 9818.42

Avg Gap to BKS +0.42% +0.13%
Avg Time 15.96 min 159.6 min
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Table 10: Results for Christofides et al. (1979) and Golden et al. (1998) CVRP instances

Average BKS
Inst n P MB NB HGSADC T(min) prev BKS HGSADC

(1 run) (1 run) (10 runs) (10 runs) — (all exp.)
p01 50 524.61 524.61 524.61 524.61 0.43 524.61 524.61
p02 75 835.26 835.26 835.61 835.26 0.96 835.26 835.26
p03 100 826.14 826.14 826.14 826.14 1.27 826.14 826.14
p04 150 1031.63 1028.42 1028.42 1028.42 2.87 1028.42 1028.42
p05 199 1300.23 1291.29 1291.84 1294.06 5.94 1291.29 1291.45
p06 50 555.43 555.43 555.43 555.43 0.48 555.43 555.43
p07 75 912.3 909.68 910.41 909.68 1.09 909.68 909.68
p08 100 865.94 865.94 865.94 865.94 1.14 865.94 865.94
p09 150 1164.25 1162.55 1162.56 1162.55 2.53 1162.55 1162.55
p10 199 1420.2 1401.12 1398.3 1400.23 8.22 1395.85 1395.85
p11 120 1042.11 1042.11 1042.11 1042.11 1.15 1042.11 1042.11
p12 100 819.56 819.56 819.56 819.56 0.84 819.56 819.56
p13 120 1542.97 1541.14 1542.99 1543.07 2.83 1541.14 1541.14
p14 100 866.37 866.37 866.37 866.37 1.19 866.37 866.37
pr01 240 5648.04 5627.54 5632.05 5627.00 11.68 5626.81 5623.47
pr02 320 8459.73 8447.92 8440.25 8446.65 20.75 8431.66 8404.61
pr03 400 11036.22 11036.22 11036.22 11036.22 27.99 11036.22 11036.22
pr04 480 13728.80 13624.52 13618.55 13624.52 43.67 13592.88 13624.53
pr05 200 6460.98 6460.98 6460.98 6460.98 2.56 6460.98 6460.98
pr06 280 8412.90 8412.88 8413.41 8412.90 8.38 8404.26 8412.90
pr07 360 10267.50 10195.56 10186.93 10157.63 22.94 10156.58 10102.7
pr08 440 11865.40 11663.55 11691.54 11646.58 40.67 11663.55 11635.3
pr09 255 596.89 583.39 581.46 581.79 16.22 580.02 579.71
pr10 323 751.41 741.56 739.56 739.86 25.86 738.44 736.26
pr11 399 939.74 918.45 916.27 916.44 45.61 914.03 912.84
pr12 483 1152.88 1107.19 1108.21 1106.73 95.67 1104.84 1102.69
pr13 252 877.71 859.11 858.42 859.64 9.36 857.19 857.19
pr14 320 1089.93 1081.31 1080.84 1082.41 14.12 1080.55 1080.55
pr15 396 1371.61 1345.23 1344.32 1343.52 39.15 1340.24 1337.92
pr16 480 1650.94 1622.69 1622.26 1621.02 58.27 1616.33 1612.50
pr17 240 717.09 707.79 707.78 708.09 7.06 707.76 707.76
pr18 300 1018.74 998.73 995.91 998.44 14.40 995.13 995.13
pr19 360 1385.60 1366.86 1366.70 1367.83 27.91 1365.97 1365.60
pr20 420 1846.55 1820.09 1821.65 1822.02 38.23 1819.99 1818.32
Avg Gap +1.00% +0.13% +0.10% +0.11%
Avg Time — 14.20 min 17.64 min 17.69 min
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Table 11: Behaviour of HGSADC on CVRP instances, when run times increase

Inst n 104it 2.104it 5.104it HGSADC
Avg sol. T(min) Avg sol. T(min) Avg sol. T(min) prev BKS new BKS

p01 50 524.61 0.43 524.61 0.96 524.61 2.96 524.61 524.61
p02 75 835.26 0.96 835.26 1.84 835.26 4.98 835.26 835.26
p03 100 826.14 1.27 826.14 2.30 826.14 6.33 826.14 826.14
p04 150 1028.42 2.87 1028.56 4.46 1028.42 10.65 1028.42 1028.42
p05 199 1294.06 5.94 1294.41 7.83 1291.74 19.52 1291.29 1291.45
p06 50 555.43 0.48 555.43 1.07 555.43 3.28 555.43 555.43
p07 75 909.68 1.09 909.68 2.10 909.68 5.89 909.68 909.68
p08 100 865.94 1.14 865.94 2.38 865.94 6.68 865.94 865.94
p09 150 1162.55 2.53 1162.55 4.78 1162.55 12.00 1162.55 1162.55
p10 199 1400.23 8.22 1398.58 18.37 1397.70 33.09 1395.85 1395.85
p11 120 1042.11 1.15 1042.11 2.35 1042.11 6.65 1042.11 1042.11
p12 100 819.56 0.84 819.56 1.73 819.56 5.06 819.56 819.56
p13 120 1543.07 2.83 1543.04 5.37 1542.86 12.65 1541.14 1541.14
p14 100 866.37 1.19 866.37 2.35 866.37 6.83 866.37 866.37
pr01 240 5627.00 11.68 5625.44 24.18 5625.10 66.90 5626.81 5623.47
pr02 320 8446.65 20.75 8438.79 39.52 8419.25 103.91 8431.66 8404.61
pr03 400 11036.22 27.99 11036.22 53.52 11036.22 116.43 11036.22 11036.22
pr04 480 13624.52 43.67 13624.52 50.67 13624.52 175.22 13592.88 13624.52
pr05 200 6460.98 2.56 6460.98 4.96 6460.98 13.25 6460.98 6460.98
pr06 280 8412.90 8.38 8412.90 15.94 8412.90 41.95 8404.26 8412.90
pr07 360 10157.63 22.94 10132.61 43.56 10134.90 108.49 10156.58 10102.7
pr08 440 11646.58 40.67 11635.30 63.65 11635.30 152.42 11663.55 11635.3
pr09 255 581.79 16.22 581.65 30.44 581.08 51.69 580.02 579.71
pr10 323 739.86 25.86 739.94 48.89 738.92 104.02 738.44 736.26
pr11 399 916.44 45.61 915.54 78.51 914.37 131.23 914.03 912.84
pr12 483 1106.73 95.67 1106.93 112.03 1105.97 196.52 1104.84 1102.69
pr13 252 859.64 9.36 859.24 19.24 859.08 25.56 857.19 857.19
pr14 320 1082.41 14.12 1082.21 18.13 1081.99 43.35 1080.55 1080.55
pr15 396 1343.52 39.15 1343.29 43.97 1341.95 109.14 1340.24 1337.92
pr16 480 1621.02 58.27 1619.49 79.24 1616.92 174.70 1616.33 1612.50
pr17 240 708.09 7.06 707.85 10.27 707.84 28.98 707.76 707.76
pr18 300 998.44 14.40 998.18 20.91 996.95 40.83 995.13 995.13
pr19 360 1367.83 27.91 1366.92 35.94 1366.39 81.49 1365.97 1365.60
pr20 420 1822.02 38.23 1822.09 45.03 1819.75 88.31 1819.99 1818.32
Avg Gap +0.11% +0.08% +0.03%
Avg Time 17.69 min 26.37 min 58.56 min
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